JP2013122859A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2013122859A JP2013122859A JP2011270941A JP2011270941A JP2013122859A JP 2013122859 A JP2013122859 A JP 2013122859A JP 2011270941 A JP2011270941 A JP 2011270941A JP 2011270941 A JP2011270941 A JP 2011270941A JP 2013122859 A JP2013122859 A JP 2013122859A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- primary particles
- secondary battery
- active material
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、例えば、リチウムイオン二次電池等の非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
近年、携帯電話やノートパソコンなどの電子機器の小型、軽量化に伴い、これらの電源である二次電池に対する高容量化が要求されている。この要求を満たす電池としては、非水電解質二次電池、例えば、負極活物質が金属リチウム、リチウム合金、またはリチウムイオンをインターカレートおよびデインターカレートできる材料(例えば、炭素材料)を含むリチウム二次電池が挙げられる。 In recent years, with the reduction in size and weight of electronic devices such as mobile phones and notebook computers, there is a demand for higher capacities for secondary batteries as power sources. As a battery that satisfies this requirement, a non-aqueous electrolyte secondary battery, for example, a lithium whose negative electrode active material includes metallic lithium, a lithium alloy, or a material that can intercalate and deintercalate lithium ions (for example, a carbon material) A secondary battery is mentioned.
正極材料にコバルト酸リチウム(LiCoO2)、負極材料に黒鉛あるいは非晶質炭素を用いたリチウムイオン二次電池が開発、製品化されている。またさらなる高エネルギー密度化が望まれており、LiCoO2に替わる正極材料として、ニッケル酸リチウム(LiNiO2)が期待されている。 Lithium ion secondary batteries using lithium cobalt oxide (LiCoO 2 ) as a positive electrode material and graphite or amorphous carbon as a negative electrode material have been developed and commercialized. Further, higher energy density is desired, and lithium nickelate (LiNiO 2 ) is expected as a positive electrode material replacing LiCoO 2 .
LiNiO2はLiCoO2に比べ高エネルギー密度が期待され、各方面で開発が進められているが、充電時の分極が大きく、Liが十分取り出せないうちに電解液の酸化分解電圧に達してしまうため、期待される大きい容量が得られなかった。 LiNiO 2 is expected to have a higher energy density than LiCoO 2 and is being developed in various directions. However, since the polarization during charging is large and Li can not be extracted sufficiently, it reaches the oxidative decomposition voltage of the electrolyte. The expected large capacity was not obtained.
このような問題を解決するためNi元素の一部をCoに置換したものを正極活物質に用い、リチウムイオンの挿入、離脱を利用した非水電解液二次電池が提案されている。 In order to solve such a problem, a nonaqueous electrolyte secondary battery using a positive electrode active material obtained by substituting a part of Ni element with Co has been proposed.
例えば、特許文献1では、炭酸リチウムと炭酸コバルト、炭酸ニッケルを混合し900℃で焼成する事によってリチウム複合ニッケル−コバルト酸化物を合成している。 For example, in Patent Document 1, lithium composite nickel-cobalt oxide is synthesized by mixing lithium carbonate, cobalt carbonate, and nickel carbonate and firing at 900 ° C.
また、特許文献2では、リチウムニッケル複合酸化物において、粒子表層部におけるアルミニウムまたはコバルトの含有割合が粒子内部に比べて高い一次粒子の記載がある。 Moreover, in patent document 2, in lithium nickel complex oxide, the content rate of the aluminum or cobalt in a particle | grain surface layer part has description of a primary particle higher than the inside of a particle | grain.
しかしながら、ニッケル酸リチウムはリチウムの挿入脱離のサイクル特性が悪いため、二次粒子を形成する一次粒子の粒子径をサブミクロンオーダーとして二次粒子に微細な空孔を形成し電解液との接触面積を高めないと良好な充放電サイクル特性が得られない。しかしながら、一次粒子の集合体からなる二次粒子は極板を圧縮する工程や充放電サイクルの繰り返しによって二次粒子を形成する一次粒子の粒界に応力が生じることから崩壊しやすい。 However, since lithium nickelate has poor cycle characteristics of lithium insertion and desorption, the primary particles that form the secondary particles have sub-micron order particle diameters that form fine voids in the secondary particles and come into contact with the electrolyte. If the area is not increased, good charge / discharge cycle characteristics cannot be obtained. However, secondary particles composed of aggregates of primary particles are apt to collapse because stress is generated at the grain boundaries of the primary particles forming the secondary particles by the process of compressing the electrode plate and the repetition of the charge / discharge cycle.
一方、一般的な非水電解質二次電池であるリチウムイオン電池の正極合剤層には活物質間の導電性を持たせるためカーボン等の導電剤が含まれている。しかしながら一次粒子界面で活物質が崩壊すると一次粒子間の電子抵抗が高くなり充放電サイクル特性が低下する傾向にある。 On the other hand, a positive electrode mixture layer of a lithium ion battery, which is a general non-aqueous electrolyte secondary battery, contains a conductive agent such as carbon in order to provide conductivity between active materials. However, when the active material collapses at the primary particle interface, the electronic resistance between the primary particles increases, and the charge / discharge cycle characteristics tend to deteriorate.
本発明は高容量で充放電サイクル特性優れた非水電解液二次電池を提供することを目的とする。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high capacity and excellent charge / discharge cycle characteristics.
本発明に係る非水電解質二次電池は、リチウムイオンを可逆的に吸蔵放出する正極と負極、および前記リチウムイオンを含む電解質を溶解させた有機電解質を具備し、前記正極および負極が多孔質絶縁層を介して配置された非水電解質二次電池において、前記正極活物質は、一般式がLixNi1−y−zCoyAlzO2(x:0.9<x<1.3、0.1<y<0.3、0.0<z<0.3)、で示されるリチウム複合酸化物からなり、且つ前記正極活物質は一次粒子の集合体からなる二次粒子であり、前記一次粒子の粒子間に導電剤が含まれていることを特徴とする非水電解質二次電池である。 A non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode and a negative electrode that reversibly occlude and release lithium ions, and an organic electrolyte in which the electrolyte containing the lithium ions is dissolved. The positive electrode and the negative electrode are porous insulating. In the non-aqueous electrolyte secondary battery disposed through the layers, the positive electrode active material has a general formula of Li x Ni 1-yz Co y Al z O 2 (x: 0.9 <x <1.3 0.1 <y <0.3, 0.0 <z <0.3), and the positive electrode active material is a secondary particle made of an aggregate of primary particles. The nonaqueous electrolyte secondary battery is characterized in that a conductive agent is contained between the primary particles.
二次粒子を構成する一次粒子の粒子間に導電剤が含まれていることで、二次粒子が崩壊したとしても一次粒子間の導電性が低下しにくいため充放電サイクル特性の著しい低下を抑制することができる。 By containing a conductive agent between the primary particles that make up the secondary particles, even if the secondary particles collapse, the electrical conductivity between the primary particles is unlikely to decrease, preventing a significant decrease in charge / discharge cycle characteristics. can do.
また前記導電剤は、非水電解質二次電池の使用電圧範囲においての電気化学的安定性、及び非水電解質に対する化学的安定性の観点から炭素材料を用いることが好ましい。 The conductive agent is preferably a carbon material from the viewpoint of electrochemical stability in the operating voltage range of the nonaqueous electrolyte secondary battery and chemical stability with respect to the nonaqueous electrolyte.
また前記正極活物質の一次粒子はその内部から表面へとアルミニウムの量が増加していることが好ましい。一次粒子表面にアルミニウムを多く含むことで、一次粒子表面での電解液とニッケルとの反応を抑制し、一次粒子表面の抵抗増加を抑制することができ一次粒子と導電剤間の抵抗の増加も抑制することができるためより好ましい。 The primary particles of the positive electrode active material preferably have an increased amount of aluminum from the inside to the surface. By containing a large amount of aluminum on the primary particle surface, the reaction between the electrolytic solution and nickel on the primary particle surface can be suppressed, and the increase in resistance on the primary particle surface can be suppressed. Since it can suppress, it is more preferable.
本発明によると、二次粒子を構成する一次粒子の粒子間に導電剤が含まれていることで、二次粒子が崩壊したとしても一次粒子間の導電性が低下しにくいため充放電サイクル特性の著しい低下を抑制することができるので、高容量で充放電サイクル特性優れた非水電解液二次電池を提供することができる。 According to the present invention, since the conductive agent is contained between the primary particles constituting the secondary particles, even if the secondary particles are collapsed, the conductivity between the primary particles is unlikely to decrease, so that the charge / discharge cycle characteristics Therefore, a non-aqueous electrolyte secondary battery having a high capacity and excellent charge / discharge cycle characteristics can be provided.
本発明のリチウムイオン二次電池は、正極の活物質として一般式がLixNi1−y−zCoyAlzO2(x:0.9<x<1.3、0.1<y<0.3、0.0<z<0.3)、で示されるリチウム複合酸化物からなり、且つ前記正活物質は一次粒子の集合体からなる二次粒子であり、二次粒子を構成する一次粒子間には導電剤が含まれる。
正極活物質として一般式LixNi1−y−zCoyAlzO2で表される化合物は、安全性が優れていることに加え、高エネルギー密度化およびサイクル特性も良好である。
The lithium ion secondary battery of the present invention has a general formula of Li x Ni 1-yz Co y Al z O 2 (x: 0.9 <x <1.3, 0.1 <y <0.3, 0.0 <z <0.3), and the positive active material is a secondary particle composed of an aggregate of primary particles, and constitutes a secondary particle. A conductive agent is included between the primary particles.
The compound represented by the general formula Li x Ni 1-yz Co y Al z O 2 as the positive electrode active material is excellent in safety, high energy density, and good cycle characteristics.
上記正極活物質において、Ni組成を示すxが0.6〜0.75であり、Co組成を示すyが0.1〜0.3であり、Al組成を示すzが0.0〜0.3が望ましく、さらに、Ni組成を示すxが0.6〜0.7であることが好ましい。 In the positive electrode active material, x indicating Ni composition is 0.6 to 0.75, y indicating Co composition is 0.1 to 0.3, and z indicating Al composition is 0.0 to 0.00. 3 is desirable, and x indicating the Ni composition is preferably 0.6 to 0.7.
これらの理由として以下の点が考えられる。正極活物質中のNi組成が0.75より大きい場合、即ち、異種金属の添加量が0.25未満の場合、添加金属と酸素との結合による安定化効果が減少することが挙げられる。 The following points can be considered as these reasons. When the Ni composition in the positive electrode active material is larger than 0.75, that is, when the addition amount of the dissimilar metal is less than 0.25, the stabilization effect due to the bond between the added metal and oxygen is reduced.
添加金属量が多いほど、結晶構造の安定化に対する効果も増すことから、特に、Ni組成は0.7以下が好ましい。逆に、Ni組成が0.6未満の場合、充放電容量が低下する傾向があるため、好ましくない。 Since the effect of stabilizing the crystal structure increases as the amount of added metal increases, the Ni composition is particularly preferably 0.7 or less. Conversely, when the Ni composition is less than 0.6, the charge / discharge capacity tends to decrease, which is not preferable.
一方、Coの添加量は多い方が、より結晶構造が安定化し、安全に対して効果があると期待されたが、0.3よりも多い置換は、均一な結晶構造が得られないので0.3以下が望ましい。 On the other hand, it was expected that the larger the amount of Co added, the more stable the crystal structure and the effect of safety, but substitution exceeding 0.3 is not possible because a uniform crystal structure cannot be obtained. .3 or less is desirable.
Alは、結晶構造安定化の効果に加えてリチウムの吸蔵放出の可逆性向上に効果があるがAlが0.15より多い場合、リチウムの吸蔵放出量が減少してしまう。従って、Al添加量が0.1付近が最適であり、Co組成は0.2〜0.3の範囲が望ましい。 Al has the effect of improving the reversibility of lithium occlusion and release in addition to the effect of stabilizing the crystal structure. However, when Al is more than 0.15, the amount of occlusion and release of lithium decreases. Therefore, the optimum Al addition amount is around 0.1, and the Co composition is preferably in the range of 0.2 to 0.3.
前記正活物質は一次粒子の集合体からなる二次粒子であり、一次粒子の大きさは0.5μm〜3.0μmであることが好ましい。0.5μm以下であると一次粒子の表面積が増加するため一次粒子間の導電性を確保するために導電剤の量が多量に必要となり、電池内に詰めこめられる活物質量の低下を招き電池容量が低下することから好ましくない。一方、一次粒子の大きさが3.0μm以上であると、活物質の電解液との接触面積が低下することから著しい反応性の低下を招き充放電特性の低下するため好ましくない。 The positive active material is a secondary particle composed of an aggregate of primary particles, and the size of the primary particle is preferably 0.5 μm to 3.0 μm. If it is 0.5 μm or less, the surface area of the primary particles will increase, so a large amount of conductive agent will be required to ensure the conductivity between the primary particles, leading to a decrease in the amount of active material packed in the battery. It is not preferable because the capacity is lowered. On the other hand, if the size of the primary particles is 3.0 μm or more, the contact area of the active material with the electrolytic solution is lowered, which causes a significant decrease in reactivity, which is not preferable.
また、前記導電剤は電子電導性が高く、非水電解質二次電池の使用電圧範囲においての電気化学的安定性、非水電解質に対する化学的安定性の観点から炭素材料を用いることが好ましい。 The conductive agent has a high electronic conductivity, and it is preferable to use a carbon material from the viewpoint of electrochemical stability in the operating voltage range of the nonaqueous electrolyte secondary battery and chemical stability with respect to the nonaqueous electrolyte.
炭素材料としては、少量の添加で高い効果を得るために表面積が高いアセチレンブラックや、カーボンナノファイバーなどの表面積の高い材料を用いることが好ましい。添加量については用いる炭素材料によって異なるが、0.1wt%〜10wt%であることが好ましい。添加量が0.1wt%以下であるその効果を十分に得られることができず、添加量が10wt%以上であると活物質の量が低下するため好ましくない。 As the carbon material, it is preferable to use a material having a high surface area such as acetylene black having a high surface area or carbon nanofibers in order to obtain a high effect with a small amount of addition. The amount added varies depending on the carbon material used, but is preferably 0.1 wt% to 10 wt%. The effect that the added amount is 0.1 wt% or less cannot be sufficiently obtained, and if the added amount is 10 wt% or more, the amount of the active material is lowered, which is not preferable.
一次粒子表面にAl酸化物が多く存在することで、活物質の表面での電解液との副反応を抑制することができ、さらに導電剤を一次粒子間に含ませた効果が得られる。 The presence of a large amount of Al oxide on the surface of the primary particles can suppress a side reaction with the electrolytic solution on the surface of the active material, and an effect of including a conductive agent between the primary particles can be obtained.
以下、本発明のリチウム二次電池について図面を参照し説明する。図1は、本発明による一実施形態のリチウム二次電池の構成を示す図である。 Hereinafter, the lithium secondary battery of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a lithium secondary battery according to an embodiment of the present invention.
正極11、セパレータ12、負極13、セパレータ12の順で積層し捲回したものを電池缶18内に、上部絶縁板16および下部絶縁板17と共に収納されている。正極11には正極タブ14、負極13には負極タブ15が取付けられており、正極タブ14は電池内蓋19に設けられた正極端子20、負極タブ15は電池缶18にそれぞれ接続されている。 A positive electrode 11, a separator 12, a negative electrode 13, and a separator 12 that are stacked and wound in this order are housed in a battery can 18 together with an upper insulating plate 16 and a lower insulating plate 17. A positive electrode tab 14 is attached to the positive electrode 11, and a negative electrode tab 15 is attached to the negative electrode 13. The positive electrode tab 14 is connected to the positive electrode terminal 20 provided on the battery inner lid 19, and the negative electrode tab 15 is connected to the battery can 18. .
次に、本発明のリチウム二次電池の実施例を示して具体的に説明する。 Next, an example of the lithium secondary battery of the present invention will be shown and described in detail.
以下、実施例及び比較例によって本発明をさらに詳細に説明する。なお、本発明がこれらの実施例に限定されないことは言うまでもない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. Needless to say, the present invention is not limited to these examples.
本実施例では、リチウムイオン二次電池を作製し、作製したリチウムイオン二次電池の容量の測定及び充放電サイクル特性の評価を行った。 In this example, a lithium ion secondary battery was produced, the capacity of the produced lithium ion secondary battery was measured, and the charge / discharge cycle characteristics were evaluated.
(実施例1)
(正極活物質の作製)
平均粒子径1μmのLi1.02Ni0.82Co0.15Al0.03O2と100重量部と繊維径15nmアスペクト比100のカーボンナノチューブ0.5重量部とバインダーとしてカルボニルメチルセルロース0.5重量部を水に分散させた後にスプレードライアーを用いて粒子径15μmとなるように造粒した。次いで得られた造粒粒子を765℃で20時間本焼成した。得られた焼成体を電気炉内で室温まで冷却させ一次粒子が凝集した球状の焼成粉末を得た。この粉末では、一次粒子間にカーボンナノチューブが点在していた。
Example 1
(Preparation of positive electrode active material)
Li 1.02 Ni 0.82 Co 0.15 Al 0.03 O 2 having an average particle diameter of 1 μm, 100 parts by weight, 0.5 parts by weight of carbon nanotubes having a fiber diameter of 15 nm and an aspect ratio of 100, and carbonylmethylcellulose 0.5 as a binder After dispersing a weight part in water, it was granulated using a spray dryer so as to have a particle diameter of 15 μm. The resulting granulated particles were then calcined at 765 ° C. for 20 hours. The obtained fired body was cooled to room temperature in an electric furnace to obtain a spherical fired powder in which primary particles were aggregated. In this powder, carbon nanotubes were scattered between primary particles.
(正極の作製)
まず、0.5重量部のアセチレンブラック(導電剤)と、1.0重量部のポリフッ化ビニリデン(PVDF(poly(vinylidene fluoride)))(結着剤)と100重量部のLi1.02Ni0.82Co0.15Al0.03O2(正極活物質)とN−メチルピロリドンとを混合し、正極合剤ペーストを得た。
(Preparation of positive electrode)
First, 0.5 part by weight of acetylene black (conductive agent), 1.0 part by weight of polyvinylidene fluoride (PVDF (poly (vinylidene fluoride))) (binder) and 100 parts by weight of Li 1.02 Ni 0.82 Co 0.15 Al 0.03 O 2 (positive electrode active material) and N-methylpyrrolidone were mixed to obtain a positive electrode mixture paste.
この正極合剤ペーストを、厚さ15μmの日本製箔製アルミニウム箔(A8021H−H18−15RK)の両面に塗布し、乾燥させた。このようにして得られた正極板を圧延してから280℃で60秒間を加熱してから裁断し、厚み0.157mm、幅57mm及び長さ564mmの正極を得た。 This positive electrode mixture paste was applied to both surfaces of a 15-μm thick aluminum foil made in Japan (A8021H-H18-15RK) and dried. The positive electrode plate thus obtained was rolled and then heated at 280 ° C. for 60 seconds and then cut to obtain a positive electrode having a thickness of 0.157 mm, a width of 57 mm, and a length of 564 mm.
(負極の作製)
まず、平均粒子径が約20μmになるように、鱗片状人造黒鉛を粉砕及び分級した。
(Preparation of negative electrode)
First, the flaky artificial graphite was pulverized and classified so that the average particle diameter was about 20 μm.
次に、100重量部の鱗片状人造黒鉛に、結着剤としてスチレン/ブタジエンゴムを3重量部とカルボキシメチルセルロースを1重量%含む水溶液100重量部とを加えて混合し、負極合剤ペーストを得た。その後、負極合剤ペーストを厚さ8μmの銅箔(負極集電体)の両面に塗布し、乾燥させた。このようにして得られた負極板を圧延してから190℃で加熱してから裁断し、厚み0.156mm、幅58.5mm及び長さ750mmの負極を得た。 Next, 100 parts by weight of flaky artificial graphite was added and mixed with 3 parts by weight of styrene / butadiene rubber as a binder and 100 parts by weight of an aqueous solution containing 1% by weight of carboxymethylcellulose to obtain a negative electrode mixture paste. It was. Thereafter, the negative electrode mixture paste was applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm and dried. The negative electrode plate thus obtained was rolled and then heated at 190 ° C. and then cut to obtain a negative electrode having a thickness of 0.156 mm, a width of 58.5 mm, and a length of 750 mm.
(非水電解液の調製)
エチレンカーボネートとジメチルカーボネートとの体積比が1:3である混合溶媒に5wt%のビニレンカーボネートを添加し、1.4mol/m3の濃度となるようにLiPF6を溶解した。このようにして、非水電解液を得た。
(Preparation of non-aqueous electrolyte)
5 wt% vinylene carbonate was added to a mixed solvent in which the volume ratio of ethylene carbonate to dimethyl carbonate was 1: 3, and LiPF 6 was dissolved to a concentration of 1.4 mol / m 3 . In this way, a nonaqueous electrolytic solution was obtained.
(円筒型電池の作製)
まず、正極集電体にアルミニウム製の正極リードを接続し、負極集電体にニッケル製の負極リードを接続した。次に、正極と負極との間にポリエチレン製のセパレータを挟んだ状態で捲回し、電極群を作製した。
(Production of cylindrical battery)
First, a positive electrode lead made of aluminum was connected to the positive electrode current collector, and a negative electrode lead made of nickel was connected to the negative electrode current collector. Next, it wound in the state which pinched | interposed the polyethylene-made separator between the positive electrode and the negative electrode, and produced the electrode group.
次に、電極群の上と下とに絶縁板をそれぞれ配置し、負極リードを電池ケースに溶接すると共に、正極リードを内圧作動型の安全弁を有する封口板に溶接した。そして、電極群を電池ケースの内部に収納した。 Next, insulating plates were respectively arranged above and below the electrode group, the negative electrode lead was welded to the battery case, and the positive electrode lead was welded to a sealing plate having an internal pressure actuated safety valve. The electrode group was housed inside the battery case.
その後、減圧方式により非水電解液を電池ケースの内部に注入した。それから、電池ケースの開口端部をガスケットを介して封口板でかしめることにより、電池1を作製した。電池の電池容量は2900mAhであった。なお、電池容量は、25℃環境下で、4.2Vまで1.4Aの定電流で充電を行い、その後4.2Vの定電圧で電流値が50mAになるまで充電を行った後、0.56Aの定電流値で2.5Vまで放電を行った時の容量であ
る。
Thereafter, a non-aqueous electrolyte was injected into the battery case by a reduced pressure method. Then, the battery 1 was produced by caulking the open end of the battery case with a sealing plate via a gasket. The battery capacity of the battery was 2900 mAh. The battery capacity was charged at a constant current of 1.4 A up to 4.2 V in a 25 ° C. environment, and then charged at a constant voltage of 4.2 V until the current value reached 50 mA, and then the battery capacity was reduced to 0. This is the capacity when discharging to 2.5 V with a constant current value of 56 A.
(実施例2)
正極活物質作製時にカーボンナノチューブ0.5重量部の替わりにアセチレンブラック0.5重量部を添加したこと以外は実施例1と同様にして実施例2の電池を作製した。
(Example 2)
A battery of Example 2 was produced in the same manner as in Example 1 except that 0.5 part by weight of acetylene black was added instead of 0.5 part by weight of carbon nanotubes during the production of the positive electrode active material.
(実施例3)
正極活物質作製時にカーボンナノチューブ0.5重量部の替わりにアセチレンブラック0.5重量部を添加したこと以外は実施例1と同様にして実施例2の電池を作製した。
(Example 3)
A battery of Example 2 was produced in the same manner as in Example 1 except that 0.5 part by weight of acetylene black was added instead of 0.5 part by weight of carbon nanotubes during the production of the positive electrode active material.
(比較例1)
正極活物質作製時にカーボンナノチューブを添加しないこと以外は実施例1と同様にして比較例1の電池を作製した。
(Comparative Example 1)
A battery of Comparative Example 1 was produced in the same manner as in Example 1 except that no carbon nanotubes were added during the production of the positive electrode active material.
<サイクル特性の評価>
電池1〜8の非水電解質二次電池について、45℃において、下記の充放電サイクルを500回繰り返した。
<Evaluation of cycle characteristics>
About the nonaqueous electrolyte secondary battery of the batteries 1-8, the following charging / discharging cycle was repeated 500 times at 45 degreeC.
定電流充電:充電電流値1450mA/充電終止電圧4.2V
定電圧充電:充電電圧値4.2V/充電終止電流50mA
定電流放電:放電電流値2750mA/放電終止電圧2.5V
そして、下記の式に従って、容量維持率(%)を求めた。結果を表1に示す。
Constant current charging: Charging current value 1450mA / end-of-charge voltage 4.2V
Constant voltage charging: Charging voltage value 4.2V / end-of-charge current 50mA
Constant current discharge: discharge current value 2750 mA / discharge end voltage 2.5 V
And according to the following formula | equation, the capacity | capacitance maintenance factor (%) was calculated | required. The results are shown in Table 1.
容量維持率(%)=(500回目の放電容量/1回目の放電容量)×100
その結果を表1に示す。
Capacity retention rate (%) = (500th discharge capacity / first discharge capacity) × 100
The results are shown in Table 1.
本発明は、携帯電子機器用電源だけでなく、自動車駆動用電源又は家庭用電力供給用電源等にも有用である。 The present invention is useful not only for power sources for portable electronic devices but also for power sources for driving automobiles or power sources for supplying household power.
11 正極
12 セパレータ
13 負極
14 正極タブ
15 負極タブ
16 上部絶縁板
17 下部絶縁板
18 電池缶
19 電池内蓋
20 正極端子
DESCRIPTION OF SYMBOLS 11 Positive electrode 12 Separator 13 Negative electrode 14 Positive electrode tab 15 Negative electrode tab 16 Upper insulating plate 17 Lower insulating plate 18 Battery can 19 Battery inner lid 20 Positive electrode terminal
Claims (3)
前記正極活物質は、一般式がLixNi1−y−zCoyAlzO2(x:0.9<x<1.3、0.1<y<0.3、0.0<z<0.3)、で示されるリチウム複合酸化物からなり、且つ前記正極活物質は一次粒子の集合体からなる二次粒子であり、前記一次粒子の粒子間には導電剤が含まれていることを特徴とする非水電解質二次電池。 A non-aqueous electrolyte secondary comprising a positive electrode and a negative electrode that reversibly occlude and release lithium ions, and an organic electrolyte in which an electrolyte containing the lithium ions is dissolved, and the positive electrode and the negative electrode are disposed via a porous insulating layer In batteries,
The positive electrode active material has a general formula of Li x Ni 1-yz Co y Al z O 2 (x: 0.9 <x <1.3, 0.1 <y <0.3, 0.0 < z <0.3), and the positive electrode active material is secondary particles composed of aggregates of primary particles, and a conductive agent is included between the particles of the primary particles. A non-aqueous electrolyte secondary battery characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011270941A JP2013122859A (en) | 2011-12-12 | 2011-12-12 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011270941A JP2013122859A (en) | 2011-12-12 | 2011-12-12 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013122859A true JP2013122859A (en) | 2013-06-20 |
Family
ID=48774714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011270941A Pending JP2013122859A (en) | 2011-12-12 | 2011-12-12 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013122859A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019168035A1 (en) * | 2018-02-27 | 2019-09-06 | 積水化学工業株式会社 | Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery |
-
2011
- 2011-12-12 JP JP2011270941A patent/JP2013122859A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019168035A1 (en) * | 2018-02-27 | 2019-09-06 | 積水化学工業株式会社 | Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery |
JPWO2019168035A1 (en) * | 2018-02-27 | 2020-08-20 | 積水化学工業株式会社 | Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5286200B2 (en) | Lithium ion secondary battery | |
JP7265668B2 (en) | Lithium-ion secondary batteries, mobile terminals, automobiles and power storage systems | |
TWI691115B (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and method for producing non-aqueous electrolyte secondary battery and negative electrode material for non-aqueous electrolyte secondary battery using the negative electrode active material | |
CN102270759B (en) | Cathode, lithium ion secondary battery, electric power tool and electrical vehicle | |
JP6964386B2 (en) | Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery | |
JP2004342500A (en) | Non-aqueous electrolyte secondary battery and battery charge/discharge system | |
TW201611393A (en) | Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle | |
JP6530071B2 (en) | Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, method of manufacturing negative electrode for non-aqueous electrolyte secondary battery, and method of manufacturing non-aqueous electrolyte secondary battery | |
JP2008243684A (en) | Lithium secondary battery | |
JP2007265668A (en) | Cathode for nonaqueous electrolyte secondary battery and its manufacturing method | |
JP2015060824A (en) | Nonaqueous electrolyte battery and battery pack | |
JP5031065B2 (en) | Lithium ion secondary battery | |
WO2014141875A1 (en) | Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack | |
JP2017520892A (en) | Positive electrode for lithium battery | |
KR20130129819A (en) | Lithium ion secondary battery | |
WO2011070748A1 (en) | Non-aqueous electrolyte secondary battery, and method for charging same | |
WO2016104024A1 (en) | Lithium ion battery | |
WO2017047030A1 (en) | Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery | |
JP2012227068A (en) | Lithium-ion secondary battery and battery pack system | |
JP5523506B2 (en) | Method for producing lithium ion secondary battery | |
WO2012147647A1 (en) | Lithium ion secondary cell | |
JP5205863B2 (en) | Non-aqueous electrolyte secondary battery | |
WO2017068985A1 (en) | Lithium-ion cell | |
CN113054159A (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JPH11312523A (en) | Electrode for battery and nonaqueous electrolyte battery |