JP2013122310A - Method of controlling electric oil pump in hybrid vehicle - Google Patents

Method of controlling electric oil pump in hybrid vehicle Download PDF

Info

Publication number
JP2013122310A
JP2013122310A JP2012145971A JP2012145971A JP2013122310A JP 2013122310 A JP2013122310 A JP 2013122310A JP 2012145971 A JP2012145971 A JP 2012145971A JP 2012145971 A JP2012145971 A JP 2012145971A JP 2013122310 A JP2013122310 A JP 2013122310A
Authority
JP
Japan
Prior art keywords
oil pump
electric oil
loop control
open loop
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012145971A
Other languages
Japanese (ja)
Inventor
Sang Lok Song
相 録 宋
Sanghyun Jeong
相 ヒョン 丁
Haksung Lee
學 成 李
Seung Ki Kong
承 基 孔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp filed Critical Hyundai Motor Co
Publication of JP2013122310A publication Critical patent/JP2013122310A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/107Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity

Abstract

PROBLEM TO BE SOLVED: To provide a method of controlling an electric oil pump in a hybrid vehicle, configured so that the number of revolutions of the electric oil pump is not unnecessarily increased at an ultra-low temperature.SOLUTION: A method of controlling an electric oil pump in a hydraulic vehicle includes: an oil temperature measurement step of measuring an oil temperature of a transmission; an ultra-low temperature determination step of determining whether the oil temperature of the transmission is an ultra-low temperature condition that does not exceed a predetermined reference temperature; a first open loop control step of controlling the electric oil pump in an open loop up to a target number of revolutions when the ultra-low temperature determination step results in the ultra-low temperature; and a closed loop control step of controlling the electric oil pump in a closed loop in order to hold the target number of revolutions when the first open loop control step is ended. The predetermined reference temperature in the ultra-low temperature determination step is in a range of ≤-10°C, in consideration of an effect that a change in a viscosity of oil in the transmission takes on a formation of oil pressure in response to the driving of the electric oil pump.

Description

本発明はハイブリッド車両の電動式オイルポンプ制御方法に係り、より詳しくは極低温の際に電動式オイルポンプの回転数が不必要に高くならないようにしたハイブリッド車両の電動式オイルポンプ制御方法に関する。   The present invention relates to an electric oil pump control method for a hybrid vehicle, and more particularly to an electric oil pump control method for a hybrid vehicle in which the rotational speed of the electric oil pump is not increased unnecessarily at extremely low temperatures.

ハイブリッド車両には、変速機の内部に備えられた機械式オイルポンプの外に、エンジンの駆動と無関係に作動可能な電動式オイルポンプが備えられ、エンジンが駆動していない状況でも変速機に必要な油圧を供給するものがある。
図1は従来技術による常温状態の電動式オイルポンプ制御を説明するグラフである。電動式オイルポンプを制御する従来の方法は、図1に示したとおり、電動式オイルポンプが自動変速機制御装置(TCU)から指示される目標回転数によって制御されるが、電動式オイルポンプの初期駆動の際には、応答性確保のために所定の基準回転数までは、開ループ制御を行って電動式オイルポンプの回転数を迅速に上昇させ、該回転数が基準回転数を超えた後に、TCUから指示された目標回転数に制御するために閉ループ制御を行う。
基準回転数は通常、常温状態で変速機オイルの粘度を考慮して速かに所望の油圧を形成するように設定される(例えば、特許文献1参照)。
In addition to the mechanical oil pump provided inside the transmission, the hybrid vehicle is equipped with an electric oil pump that can be operated independently of the engine drive, and is required for the transmission even when the engine is not driven. There are those that supply the proper hydraulic pressure.
FIG. 1 is a graph illustrating electric oil pump control in a normal temperature state according to the prior art. As shown in FIG. 1, the conventional method for controlling the electric oil pump is such that the electric oil pump is controlled by the target rotational speed indicated by the automatic transmission control unit (TCU). During initial driving, open loop control is performed to quickly increase the rotational speed of the electric oil pump to a predetermined reference rotational speed to ensure responsiveness, and the rotational speed exceeds the reference rotational speed. Later, closed-loop control is performed in order to control the target rotational speed instructed by the TCU.
The reference rotational speed is normally set so as to quickly form a desired hydraulic pressure in consideration of the viscosity of the transmission oil in a normal temperature state (see, for example, Patent Document 1).

しかしながら、−10度以下の極低温の状態では、オイルの粘度が常温状態に比べて極端に高くなり、電動式オイルポンプがわずかな回転数で回転する場合にも十分な油圧の形成が可能である。
したがって、極低温の状況で電動式オイルポンプを常温状態で設定されている基準回転数まで開ループで制御することが不適当になることがある。
図2は、従来技術による極低温状態の電動式オイルポンプ制御を説明するグラフである。図2に一例として示したとおり、常温状態に適合するように設定された基準回転数が500RPMであり、TCUが指示する初期目標回転数が300RPMである時にも、従来と同一の制御方法によって電動式オイルポンプの回転数が基準回転数である500RPMまで開ループ制御された後、基準回転数に至ってから目標回転数に制御する閉ループ制御を行うことによって、“A”で表示された部分の不要に電動式オイルポンプの回転数が高くなる状況が発生する。
However, in the extremely low temperature state of -10 degrees or less, the viscosity of the oil becomes extremely higher than that in the normal temperature state, and sufficient hydraulic pressure can be formed even when the electric oil pump rotates at a small number of revolutions. is there.
Therefore, it may be inappropriate to control the electric oil pump in an open loop up to a reference rotational speed set at a normal temperature in an extremely low temperature state.
FIG. 2 is a graph illustrating electric oil pump control in a cryogenic state according to the prior art. As shown in FIG. 2 as an example, even when the reference rotational speed set to be adapted to the normal temperature state is 500 RPM and the initial target rotational speed indicated by the TCU is 300 RPM, After the open speed of the oil pump is controlled to 500 RPM, which is the reference speed, closed loop control is performed to control to the target speed after reaching the reference speed. In other cases, the rotational speed of the electric oil pump increases.

上記のとおり、電動式オイルポンプの回転数が不必要に高くなると、不必要なバッテリーの電力消耗によって車両の燃費に悪影響を与え、また、不必要な騷音を引き起こして車両の商品性を低下させ、さらに、電動式オイルポンプの耐久性にも好ましくない問題を引き起こす。   As mentioned above, if the rotational speed of the electric oil pump becomes unnecessarily high, unnecessary battery power consumption will adversely affect the fuel efficiency of the vehicle, and it will cause unnecessary noise and reduce vehicle merchandise. In addition, there is an undesirable problem in the durability of the electric oil pump.

特開2008−230522号公報JP 2008-230522 A

本発明は上記の問題を解決するためになされたものであって、その目的とするところは、極低温の際には電動式オイルポンプの回転数が不必要に高くならないようにしたハイブリッド車両の電動式オイルポンプ制御方法を提供することにある。   The present invention has been made to solve the above-described problems, and the object of the present invention is to provide a hybrid vehicle in which the rotational speed of the electric oil pump is not increased unnecessarily at extremely low temperatures. The object is to provide an electric oil pump control method.

上記目的を達成するためになされた本発明のハイブリッド車両の電動式オイルポンプ制御方法は、変速機の油温を測定する油温測定段階と、変速機の油温が所定の基準温度以下の極低温状況であるかを判断する極低温判断段階と、極低温判断段階の遂行結果、極低温状況であれば、電動式オイルポンプを目標回転数まで開ループ制御する第1開ループ制御段階と、第1開ループ制御段階が終了すれば、目標回転数を保持するために電動式オイルポンプを閉ループ制御する閉ループ制御段階と、を含んでなることを特徴とする。   An electric oil pump control method for a hybrid vehicle according to the present invention made to achieve the above object includes an oil temperature measuring step for measuring the oil temperature of the transmission, and a pole where the oil temperature of the transmission is below a predetermined reference temperature. A cryogenic temperature judging step for judging whether the temperature is low; a result of performing the cryogenic temperature judging step; and a first open loop control step for controlling the electric oil pump to the target rotational speed if the cryogenic temperature status is obtained; When the first open loop control step is completed, the method includes a closed loop control step of performing a closed loop control of the electric oil pump in order to maintain the target rotational speed.

本発明によると、ハイブリッド車両において、極低温の際には電動式オイルポンプの回転数が不必要に高くならないようにして、不必要なバッテリーの電力消耗を防止して車両の燃費向上に寄与することができる。また、不必要な騷音が発生しないようにして車両の商品性を向上させることができる。さらに、電動式オイルポンプの耐久性も向上させることができる。   According to the present invention, in a hybrid vehicle, the rotational speed of the electric oil pump does not become unnecessarily high at extremely low temperatures, thereby preventing unnecessary battery power consumption and contributing to an improvement in vehicle fuel efficiency. be able to. Further, the merchantability of the vehicle can be improved without generating unnecessary noise. Furthermore, the durability of the electric oil pump can be improved.

従来技術による常温状態の電動式オイルポンプ制御を説明するグラフである。It is a graph explaining the electric oil pump control of the normal temperature state by a prior art. 従来技術による極低温状態の電動式オイルポンプ制御を説明するグラフである。It is a graph explaining the electric oil pump control of the cryogenic state by a prior art. 本発明によるハイブリッド車両の電動式オイルポンプ制御方法を例示したフローチャートである。3 is a flowchart illustrating an electric oil pump control method for a hybrid vehicle according to the present invention. 本発明による極低温状態の電動式オイルポンプ制御を説明するグラフである。It is a graph explaining the electric oil pump control of the cryogenic state by this invention.

図3は本発明によるハイブリッド車両の電動式オイルポンプ制御方法を例示したフローチャートである。図3に示したとおり、本発明によるハイブリッド車両の電動式オイルポンプ制御方法の実施例は、変速機の油温を測定する油温測定段階(S10)と、変速機の油温が所定の基準温度以下の極低温状況であるかを判断する極低温判断段階(S20)と、極低温判断段階(S20)の遂行結果、極低温状況であると判断されると、電動式オイルポンプを目標回転数まで開ループ制御する第1開ループ制御段階(S30)と、電動式オイルポンプの回転数が目標回転数以上になると、第1開ループ制御段階(S30)を終了し、電動式オイルポンプを閉ループ制御し、目標回転数に保持する閉ループ制御段階(S40)とを含んでなる。
すなわち、極低温状態で電動式オイルポンプの作動を開始する場合には、従来のように無条件で所定の基準回転数まで開ループで制御するのではなく、TCUが指示する目標回転数まで電動式オイルポンプを開ループで制御し、目標回転数に達した後は、閉ループ制御を遂行することにより、目標回転数を超える過度な電動式オイルポンプの初期駆動を排除する。これにより、不必要なエネルギー消耗を防止することによって車両の燃費を向上させ、騷音を低減させ、電動式オイルポンプの耐久性向上に寄与することができる。
FIG. 3 is a flowchart illustrating an electric oil pump control method for a hybrid vehicle according to the present invention. As shown in FIG. 3, the embodiment of the electric oil pump control method for a hybrid vehicle according to the present invention includes an oil temperature measuring step (S10) for measuring the oil temperature of the transmission, and the oil temperature of the transmission is a predetermined reference. When the result of the cryogenic temperature judgment step (S20) and the cryogenic temperature judgment step (S20) for judging whether or not the cryogenic temperature is below the temperature is determined to be a cryogenic situation, the electric oil pump is rotated to the target rotation. The first open loop control stage (S30) for performing open loop control up to a number, and when the rotational speed of the electric oil pump exceeds the target rotational speed, the first open loop control stage (S30) is terminated, and the electric oil pump is turned on. A closed loop control step (S40) in which the closed loop control is performed and the target rotational speed is maintained.
That is, when the operation of the electric oil pump is started in a cryogenic state, the motor is not controlled unconditionally in an open loop until a predetermined reference rotational speed, but is electrically operated up to a target rotational speed indicated by the TCU. After the oil pump is controlled in an open loop and the target rotational speed is reached, closed loop control is performed to eliminate excessive initial drive of the electric oil pump exceeding the target rotational speed. Accordingly, unnecessary fuel consumption can be prevented to improve the fuel consumption of the vehicle, reduce the noise, and contribute to improving the durability of the electric oil pump.

極低温判断段階(S20)の所定の基準温度は変速機のオイル粘度変化が電動式オイルポンプの駆動による油圧形成に及ぼす影響を考慮して設定されるもので、−10℃以下の範囲に設定されることが好ましい。
極低温判断段階(S20)の遂行結果、極低温状況ではない場合には、電動式オイルポンプを所定の基準回転数まで開ループ制御する第2開ループ制御段階(S50)を遂行し、第2開ループ制御段階(S50)の後には閉ループ制御段階(S40)を行う。
すなわち、第2開ループ制御段階(S50)は従来の一般的な状況での制御方法と同様である。
したがって、第2開ループ制御段階(S50)の基準回転数は常温状態を基準として電動式オイルポンプの応答性を考慮して設定されるもので、第1開ループ制御段階(S30)の目標回転数より高い回転数となる。
The predetermined reference temperature in the cryogenic temperature judgment step (S20) is set in consideration of the influence of the change in the oil viscosity of the transmission on the hydraulic pressure formation by driving the electric oil pump, and is set in a range of −10 ° C. or lower. It is preferred that
If it is determined that the cryogenic temperature determination step (S20) is not in a very low temperature state, a second open loop control step (S50) for performing open loop control of the electric oil pump to a predetermined reference rotational speed is performed. After the open loop control step (S50), a closed loop control step (S40) is performed.
That is, the second open loop control step (S50) is the same as the control method in the conventional general situation.
Therefore, the reference rotational speed in the second open loop control stage (S50) is set in consideration of the responsiveness of the electric oil pump on the basis of the normal temperature state, and the target rotational speed in the first open loop control stage (S30). The number of rotations is higher than the number.

図4は本発明による極低温状態の電動式オイルポンプ制御を説明するグラフである。図4に一例として示したとおり、変速機オイルの常温時の粘度と電動式オイルポンプの駆動開始による応答性を考慮して基準回転数を500RPMに設定した場合、第1開ループ制御段階(S30)でTCUにより計算されて提示される目標回転数は当然基準回転数より低い回転数となる。図4に例示したとおり、電動式オイルポンプの駆動初期の比較的高い目標回転数も300RPMであり、基準回転数500RPMより低くなる。これは、基準回転数が第1開ループ制御段階(S30)の目標回転数より高い値に設定されることを意味する。   FIG. 4 is a graph illustrating electric oil pump control in a cryogenic state according to the present invention. As shown as an example in FIG. 4, when the reference rotational speed is set to 500 RPM in consideration of the viscosity at normal temperature of the transmission oil and the responsiveness due to the start of driving of the electric oil pump, the first open loop control stage (S30 ), The target rotational speed calculated and presented by the TCU is naturally lower than the reference rotational speed. As illustrated in FIG. 4, the relatively high target rotational speed at the initial driving stage of the electric oil pump is also 300 RPM, which is lower than the reference rotational speed 500 RPM. This means that the reference rotational speed is set to a value higher than the target rotational speed in the first open loop control stage (S30).

開ループ制御は電動式オイルポンプのモーターにデューティー値のみを提供するデューティー制御で遂行することができ、閉ループ制御は電動式オイルポンプの回転数をフィードバックして目標回転数に従わせるPI制御(比例積分制御)で遂行される。もちろん、閉ループ制御の具体的な方法としては、その外にもPID制御などを使用することも可能である。
図4に示した極低温状態の電動式オイルポンプ制御は、図2に示した従来の極低温状態の電動式オイルポンプ制御に比べ、電動式オイルポンプの作動初期のオーバーシュート状況が解消され、不必要な電動式オイルポンプの回転数上昇が発生しなくなる。これにより、車両の燃費改善と騷音低減、そして電動式オイルポンプの耐久性向上が可能となる。
The open loop control can be performed by duty control that provides only the duty value to the motor of the electric oil pump, and the closed loop control is PI control that feeds back the rotation speed of the electric oil pump and follows the target rotation speed (proportional Integration control). Of course, as a specific method of the closed loop control, PID control or the like can also be used.
The electric oil pump control in the cryogenic state shown in FIG. 4 eliminates the overshoot situation in the initial operation of the electric oil pump, compared to the conventional electric oil pump control in the cryogenic state shown in FIG. Unnecessary increase in the rotational speed of the electric oil pump will not occur. As a result, it is possible to improve the fuel consumption of the vehicle, reduce the noise, and improve the durability of the electric oil pump.

以上、本発明に関する好ましい実施例を説明したが、本発明の範囲は特定の実施例に限定されるものではなく、特許請求の範囲によって解釈されなければならない。また、この技術分野で通常の知識を有する者なら、本発明の技術的範囲内で多くの修正と変形ができることはいうまでもない。   As mentioned above, although the preferable Example regarding this invention was described, the scope of the present invention is not limited to a specific Example, and should be interpreted by a claim. Further, it goes without saying that a person having ordinary knowledge in this technical field can make many modifications and variations within the technical scope of the present invention.

本発明は、変速機の内部に備えられた機械式オイルポンプの外に、エンジンの駆動と無関係に作動可能な電動式オイルポンプが備えられたハイブリッド車両の電動式オイルポンプ制御方法に適用可能である。   INDUSTRIAL APPLICABILITY The present invention can be applied to an electric oil pump control method for a hybrid vehicle provided with an electric oil pump that can be operated independently of engine driving in addition to a mechanical oil pump provided in a transmission. is there.

S10 油温測定段階
S20 極低温判断段階
S30 第1開ループ制御段階
S40 閉ループ制御段階
S50 第2開ループ制御段階
EOP 電動式オイルポンプ
PPM 回転数
TCU 自動変速機用制御装置
S10 Oil temperature measurement stage S20 Cryogenic temperature judgment stage S30 First open loop control stage S40 Closed loop control stage S50 Second open loop control stage EOP Electric oil pump PPM Speed TCU Automatic transmission controller

Claims (5)

変速機の油温を測定する油温測定段階(S10)と、
前記変速機の油温が所定の基準温度以下の極低温状況であるかを判断する極低温判断段階(S20)と、
前記極低温判断段階(S20)の遂行結果、極低温状況であれば、電動式オイルポンプを目標回転数まで開ループ制御する第1開ループ制御段階(S30)と、
前記第1開ループ制御段階(S30)が終了すれば、前記目標回転数を保持するために前記電動式オイルポンプを閉ループ制御する閉ループ制御段階(S40)と、
を含んでなることを特徴とするハイブリッド車両の電動式オイルポンプ制御方法。
An oil temperature measuring step (S10) for measuring the oil temperature of the transmission;
A cryogenic temperature determination step (S20) for determining whether the oil temperature of the transmission is in a very low temperature state below a predetermined reference temperature;
If the result of performing the cryogenic temperature determination step (S20) is a cryogenic state, a first open loop control step (S30) for performing open loop control of the electric oil pump to a target rotational speed;
When the first open loop control step (S30) is completed, a closed loop control step (S40) for performing a closed loop control of the electric oil pump in order to maintain the target rotational speed;
An electric oil pump control method for a hybrid vehicle characterized by comprising:
前記極低温判断段階(S20)の所定の基準温度は前記変速機のオイル粘度変化が電動式オイルポンプの駆動による油圧形成に及ぼす影響を考慮して設定されるもので、−10℃以下の範囲に設定されることを特徴とする請求項1に記載のハイブリッド車両の電動式オイルポンプ制御方法。   The predetermined reference temperature in the cryogenic temperature determination step (S20) is set in consideration of the influence of the change in the oil viscosity of the transmission on the hydraulic pressure formation by driving the electric oil pump. The electric oil pump control method for a hybrid vehicle according to claim 1, wherein 前記極低温判断段階(S20)の遂行結果、極低温状況ではない場合には、前記電動式オイルポンプを所定の基準回転数まで開ループ制御する第2開ループ制御段階(S50)を遂行し、
前記第2開ループ制御段階(S50)の後には前記閉ループ制御段階(S40)を行うことを特徴とする請求項1に記載のハイブリッド車両の電動式オイルポンプ制御方法。
If the result of performing the cryogenic temperature determination step (S20) is not a cryogenic temperature state, a second open loop control step (S50) for performing open loop control of the electric oil pump to a predetermined reference rotational speed is performed.
The method of claim 1, wherein the closed loop control step (S40) is performed after the second open loop control step (S50).
前記第2開ループ制御段階(S50)の前記基準回転数は常温状態を基準として前記電動式オイルポンプの応答性を考慮して設定されたもので、前記第1開ループ制御段階(S30)の目標回転数より高い回転数であることを特徴とする請求項3に記載のハイブリッド車両の電動式オイルポンプ制御方法。   The reference rotational speed in the second open loop control step (S50) is set in consideration of the responsiveness of the electric oil pump on the basis of the normal temperature state, and in the first open loop control step (S30). The method for controlling an electric oil pump for a hybrid vehicle according to claim 3, wherein the rotational speed is higher than a target rotational speed. 前記開ループ制御は前記電動式オイルポンプのモーターにデューティー値のみを提供するデューティー制御で遂行し、
前記閉ループ制御は前記電動式オイルポンプの回転数をフィードバックして前記目標回転数に従わせるPI制御(比例積分制御)で行うことを特徴とする請求項1〜4のいずれか1項に記載のハイブリッド車両の電動式オイルポンプ制御方法。
The open loop control is performed by duty control that provides only a duty value to the motor of the electric oil pump,
The closed loop control is performed by PI control (proportional integral control) that feeds back the rotation speed of the electric oil pump and follows the target rotation speed. An electric oil pump control method for a hybrid vehicle.
JP2012145971A 2011-12-09 2012-06-28 Method of controlling electric oil pump in hybrid vehicle Pending JP2013122310A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0131872 2011-12-09
KR1020110131872A KR101724750B1 (en) 2011-12-09 2011-12-09 Electric oil pump control method of hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2013122310A true JP2013122310A (en) 2013-06-20

Family

ID=48464775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012145971A Pending JP2013122310A (en) 2011-12-09 2012-06-28 Method of controlling electric oil pump in hybrid vehicle

Country Status (5)

Country Link
US (1) US20130149170A1 (en)
JP (1) JP2013122310A (en)
KR (1) KR101724750B1 (en)
CN (1) CN103161933B (en)
DE (1) DE102012106917A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806671B1 (en) * 2016-03-10 2017-12-08 현대자동차주식회사 Method for controlling line pressure of hybird vehicle
JP2021076217A (en) * 2019-11-12 2021-05-20 本田技研工業株式会社 Hydraulic controller
US11705852B2 (en) 2019-09-30 2023-07-18 Nidec Tosok Corporation Motor driving device and electric oil pump device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140059614A (en) * 2012-11-08 2014-05-16 현대자동차주식회사 Method and system for controlling warm-up of clutch fluid for hybrid electrical vehicle
US9168913B2 (en) * 2013-07-11 2015-10-27 Hyundai Motor Company Oil pump system of hybrid vehicle and method for controlling the same
KR20160150161A (en) * 2015-06-18 2016-12-29 현대자동차주식회사 Method for noise mitigation of electronic oil pump
KR101766017B1 (en) * 2015-07-01 2017-08-08 현대자동차주식회사 Method for diagnosis abrasion of electric oil pump rotor
JP6288059B2 (en) * 2015-12-09 2018-03-07 トヨタ自動車株式会社 Power transmission device for vehicle
KR20190080879A (en) * 2016-11-14 2019-07-08 가부시키가이샤 티비케이 Electric pump device
KR102602368B1 (en) 2018-10-24 2023-11-17 현대자동차주식회사 Vehicle and method for controlling the vehicle
CN111441926A (en) * 2019-01-17 2020-07-24 上海汽车集团股份有限公司 Hybrid gearbox driving motor cooling electric oil pump system and control method
DE102019218010B4 (en) * 2019-11-22 2022-04-28 Zf Friedrichshafen Ag Method and control unit for operating an oil pump

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699592B2 (en) * 1989-12-14 1998-01-19 日産自動車株式会社 Line pressure control device for automatic transmission
JP3471972B2 (en) * 1995-06-05 2003-12-02 ジヤトコ株式会社 Transmission control device for automatic transmission
JP3168951B2 (en) * 1997-09-01 2001-05-21 日産自動車株式会社 Transmission control device for continuously variable transmission
KR100399248B1 (en) * 1999-11-22 2003-09-26 미쯔비시 지도샤 고교 가부시끼가이샤 Control appratus of endless transmission for vehicles
KR100320527B1 (en) * 1999-12-30 2002-01-15 이계안 Shift controlling method for automatic transmission of vehicle
JP3521873B2 (en) 2001-01-17 2004-04-26 トヨタ自動車株式会社 Hydraulic control device for automatic transmission for vehicles
JP2005110345A (en) * 2003-09-29 2005-04-21 Aisin Seiki Co Ltd Start control method and controller of sensorless brushless dc motor for driving hydraulic pump
JP4136956B2 (en) * 2004-01-27 2008-08-20 トヨタ自動車株式会社 Sensorless brushless motor oil pump controller
JP4312692B2 (en) 2004-09-30 2009-08-12 ジヤトコ株式会社 Hydraulic control device for automatic transmission
JP4614811B2 (en) * 2005-04-04 2011-01-19 トヨタ自動車株式会社 Drive device, automobile equipped with the same, and drive device control method
JP4721801B2 (en) * 2005-07-27 2011-07-13 東芝三菱電機産業システム株式会社 Control device for synchronous motor
JP4607833B2 (en) * 2006-08-08 2011-01-05 ジヤトコ株式会社 Hydraulic control device for belt type continuously variable transmission
KR100946524B1 (en) 2007-11-05 2010-03-11 현대자동차주식회사 Method for controlling electrically-powered oil pump for HEV
KR101173050B1 (en) * 2009-12-04 2012-08-13 기아자동차주식회사 Drive control apparatus and method for electric oil pump
KR20110131872A (en) 2010-06-01 2011-12-07 박태진 Method and control system of reducing vacant rate on the public transportation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806671B1 (en) * 2016-03-10 2017-12-08 현대자동차주식회사 Method for controlling line pressure of hybird vehicle
US9845094B2 (en) 2016-03-10 2017-12-19 Hyundai Motor Company Method for controlling line pressure of hybrid vehicle
US11705852B2 (en) 2019-09-30 2023-07-18 Nidec Tosok Corporation Motor driving device and electric oil pump device
JP2021076217A (en) * 2019-11-12 2021-05-20 本田技研工業株式会社 Hydraulic controller
JP7153628B2 (en) 2019-11-12 2022-10-14 本田技研工業株式会社 hydraulic controller

Also Published As

Publication number Publication date
US20130149170A1 (en) 2013-06-13
DE102012106917A9 (en) 2013-08-22
CN103161933A (en) 2013-06-19
KR101724750B1 (en) 2017-04-10
KR20130065147A (en) 2013-06-19
CN103161933B (en) 2017-04-12
DE102012106917A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP2013122310A (en) Method of controlling electric oil pump in hybrid vehicle
JP5134663B2 (en) Transmission oil supply device
JP2012157141A5 (en)
KR101728612B1 (en) Drive control system for hybrid vehicle
US11035460B2 (en) Method for controlling electric oil pump
JP5416060B2 (en) Control device for electric oil pump for vehicle
WO2015136749A1 (en) Electric oil pump control device and control method
JPWO2013108813A1 (en) Internal combustion engine start control device and control method
JP5399433B2 (en) Electric oil pump control device
JP5909110B2 (en) Electric oil pump control device
KR101551013B1 (en) Method for controlling of cooling system for vehicle
JP2011214691A (en) Method and device for controlling electric oil pump
JP2013047470A (en) Fan control device
JP2012197842A (en) Controller for motor-driven oil pump
JP5216798B2 (en) Electric oil pump control device
JP2014027770A (en) Controller for motor pump
RU2645527C2 (en) Vehicle compressor control system
JP2017027769A (en) Fuel battery system
JP5807002B2 (en) Electric oil pump control device and control method thereof
US10794318B2 (en) Method and apparatus for operating an EC-fuel pump
JP2014240263A (en) Oil pump system of hybrid vehicle and control method of the same
JP2006258079A (en) Electric liquid pump, its control method and control device
JP2006234366A (en) Method of controlling rotational frequency of compressor in refrigerator
JP5624419B2 (en) Hydraulic control device for continuously variable transmission
JP5817520B2 (en) Motor control device and electric pump unit