JP2013121263A - Rotor of rotary electric machine and method for manufacturing the same - Google Patents

Rotor of rotary electric machine and method for manufacturing the same Download PDF

Info

Publication number
JP2013121263A
JP2013121263A JP2011268274A JP2011268274A JP2013121263A JP 2013121263 A JP2013121263 A JP 2013121263A JP 2011268274 A JP2011268274 A JP 2011268274A JP 2011268274 A JP2011268274 A JP 2011268274A JP 2013121263 A JP2013121263 A JP 2013121263A
Authority
JP
Japan
Prior art keywords
rotor core
rotor
permanent magnet
magnet member
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011268274A
Other languages
Japanese (ja)
Other versions
JP5929146B2 (en
Inventor
Hisayuki Momijishima
寿行 椛嶌
Nobuo Sakate
宣夫 坂手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2011268274A priority Critical patent/JP5929146B2/en
Publication of JP2013121263A publication Critical patent/JP2013121263A/en
Application granted granted Critical
Publication of JP5929146B2 publication Critical patent/JP5929146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnet-embedded synchronous motor that has enhanced torque density and reduced cogging.SOLUTION: A rotor 1 of a rotary electric machine comprises: a rotor shaft 3 as the center of rotation; and an approximately cylindrical rotor core 5 that is provided on an outer side of the rotor shaft 3. On an outer edge thereof, the rotor core 5 has eight permanent magnet members 11 that are disposed at regular intervals in a circumferential direction of the rotor core 5 and extend in an axial direction of the rotor shaft 3. The rotor core 5 is formed by laminating approximately annular magnetic steel sheets 15 in the axial direction of the rotor shaft 3. The rotor 1 also includes a ring bonded magnet member 7 that covers an outer circumferential surface of the rotor core 5 and that includes permanent magnet powder and resin material. The bonded magnet member 7 is anisotropically magnetized in such a manner that poles of the bond magnet member 7 face respective poles, having the same polarity, of the permanent magnet members 11.

Description

本発明は、回転電機のロータに関し、特に、埋込磁石型同期モータのロータ及びその製造方法に関するものである。   The present invention relates to a rotor of a rotating electrical machine, and more particularly to a rotor of an embedded magnet type synchronous motor and a manufacturing method thereof.

従来から、埋込磁石型同期モータ(IPMSM)は、自動車の駆動用モータやポンプ類駆動用モータ、パワステ駆動用モータ、さらには冷蔵庫や洗濯機、乾燥機といった家電製品の駆動用モータに用いられており、その高出力化および高効率化が求められている。   Conventionally, an embedded magnet type synchronous motor (IPMSM) is used for a motor for driving an automobile, a motor for driving a pump, a motor for driving a power steering, and a motor for driving home appliances such as a refrigerator, a washing machine, and a dryer. Therefore, higher output and higher efficiency are demanded.

このような状況において、樹脂中に永久磁石粉末を分散させた、所謂ボンド磁石の長所である磁化方向制御の簡便さや、形状成形自由度の高さや、他部材との一体成形性の容易さを利用して、従来の埋込磁石型同期モータの性能を向上させることが試みられている。   In such a situation, it is easy to control the magnetization direction, which is an advantage of the so-called bonded magnet, in which permanent magnet powder is dispersed in the resin, high degree of freedom in shape molding, and ease of integral molding with other members. Attempts have been made to improve the performance of conventional embedded magnet type synchronous motors.

例えば、特許文献1には、圧粉磁心と磁石とで構成された回転子で、前記圧粉磁心と磁石とを同時に圧縮成形することが記されている。具体的には、特許文献1に記載された発明は、モータのロータコアを粉末材料を成形して構成し、その成形体は結合材および磁石粉末を主とするボンド磁石部と、結合材および軟磁性粉末を主とする軟磁性部とを有し、圧縮成形手段を用いて形成された永久磁石型のロータであり、低コギング化と高出力化とを実現しようとするものである。   For example, Patent Document 1 describes that a dust core and a magnet are simultaneously compression-molded with a rotor composed of a dust core and a magnet. Specifically, in the invention described in Patent Document 1, a rotor core of a motor is formed by molding a powder material, and the molded body is composed of a bond magnet portion mainly composed of a binder and magnet powder, a binder and a soft material. This is a permanent magnet type rotor that has a soft magnetic part mainly composed of magnetic powder and is formed by using compression molding means, and is intended to realize low cogging and high output.

また、鉄心内に永久磁石を埋込むタイプではないが、特許文献2には、表面磁石型のモータ用磁石回転子において、磁石を螺旋形状にスキューさせて低コギング化を図るとともに、互いに異なる極性の磁石間に鉄心部を設けてリラクタンストルクを発生可能にすることが開示されている。   Moreover, although it is not the type which embeds a permanent magnet in an iron core, in patent document 2, in the magnet rotor for motors of a surface magnet type, a magnet is skewed in a helical shape to achieve low cogging and different polarities. It is disclosed that an iron core is provided between the magnets so that reluctance torque can be generated.

特開2006−320036号公報JP 2006-320036 A 特開2006−180677号公報JP 2006-180677 A

ところで、現行の埋込磁石型同期モータでは、ロータコアに埋め込まれた磁石間で、短絡磁束やステータ巻線に鎖交しない(ロータ内で磁路が完結する)磁束成分といった、トルク発生に寄与しない磁束成分が発生することから、埋込磁石の磁束を有効利用できておらず、このため、トルク発生に寄与しない磁束成分を低減することによって、トルク密度を向上することが求められている。   By the way, in the current embedded magnet type synchronous motor, between the magnets embedded in the rotor core, it does not contribute to torque generation such as a short-circuit magnetic flux or a magnetic flux component that does not interlink with the stator winding (a magnetic path is completed in the rotor). Since the magnetic flux component is generated, the magnetic flux of the embedded magnet cannot be effectively used. For this reason, it is required to improve the torque density by reducing the magnetic flux component that does not contribute to the torque generation.

また、その一方で、埋込磁石型同期モータには、低コギング化による振動低減や騒音低減も求められている。しかしながら、上記特許文献1及び2のものでは、低コギング化は図れるものの、トルク発生に寄与しない磁束成分を低減することについては何ら開示されていないことから、かかる磁束成分を低減することによるトルク密度の向上と、低コギング化を同時に達成するための有効な手段となり得ない。   On the other hand, the interior magnet type synchronous motor is also required to reduce vibration and noise by reducing cogging. However, in Patent Documents 1 and 2, although cogging can be reduced, there is no disclosure about reducing a magnetic flux component that does not contribute to torque generation. Therefore, torque density by reducing the magnetic flux component is not disclosed. It cannot be an effective means for simultaneously achieving improvement and low cogging.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、埋込磁石型同期モータのロータにおいて、トルク密度の向上と低コギング化とを両立する技術を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a technology that achieves both improvement in torque density and low cogging in a rotor of an embedded magnet type synchronous motor. is there.

上記目的を達成するために、本発明に係る回転電機のロータでは、埋込磁石の磁束を整流する機能と、ロータとステータとの間のエアギャップ磁束密度の急峻な変化を抑制する機能とを有するリング状のボンド磁石部材によって、ロータコアの外周面を覆うようにしている。   In order to achieve the above object, the rotor of the rotating electrical machine according to the present invention has a function of rectifying the magnetic flux of the embedded magnet and a function of suppressing a steep change in the air gap magnetic flux density between the rotor and the stator. The outer peripheral surface of the rotor core is covered with a ring-shaped bonded magnet member.

具体的には、第1の発明は、回転中心となる回転軸部材と、当該回転軸部材の外側に設けられる略円筒形状のロータコアと、を備え、当該ロータコアの外周部に、当該回転軸部材の軸方向に延びる複数の永久磁石部材が当該ロータコアの円周方向に略等間隔で配設された回転電機のロータを対象とする。   Specifically, the first invention includes a rotation shaft member serving as a rotation center, and a substantially cylindrical rotor core provided outside the rotation shaft member, and the rotation shaft member is disposed on an outer peripheral portion of the rotor core. A rotor of a rotating electrical machine in which a plurality of permanent magnet members extending in the axial direction of the rotor core are disposed at substantially equal intervals in the circumferential direction of the rotor core.

そして、上記ロータコアは、略円環状の磁性鋼板が上記回転軸部材の軸方向に積層されたものであり、上記ロータコアの外周面を覆う、永久磁石粉末と樹脂材とを含むリング状のボンド磁石部材をさらに備え、上記ボンド磁石部材は、当該ボンド磁石部材の極が、上記永久磁石部材の極と同極が対向するように、極異方着磁されていることを特徴とするものである。   The rotor core is formed by laminating substantially annular magnetic steel plates in the axial direction of the rotary shaft member, and a ring-shaped bond magnet including a permanent magnet powder and a resin material covering the outer peripheral surface of the rotor core. The bonded magnet member is characterized in that the pole of the bonded magnet member is poled anisotropically so that the same pole as the pole of the permanent magnet member is opposed. .

第1の発明によれば、その極が永久磁石部材の極と同極が対向するように極異方着磁されたボンド磁石部材を、ロータコアの外周面を覆うように設けているので、かかるボンド磁石部材が、永久磁石部材(埋込磁石)の磁束をステータ側に整流する役割を果たすことから、有効な鎖交磁束成分を増やして(トルク発生に寄与しない磁束成分を低減して)、トルク密度を向上させることができる。   According to the first aspect of the present invention, since the pole magnet is magnetized anisotropically so that its pole is opposite to the pole of the permanent magnet member so as to cover the outer peripheral surface of the rotor core. Since the bond magnet member plays a role of rectifying the magnetic flux of the permanent magnet member (embedded magnet) to the stator side, increase the effective flux linkage component (reduce the flux component that does not contribute to torque generation) Torque density can be improved.

また、極異方着磁したボンド磁石部材によってロータコアの外周面を覆うことにより、ロータコアの外周面で正弦波的な磁束密度波形が得られことから、コギングトルクを低減することができる。   Further, by covering the outer peripheral surface of the rotor core with the polar magnetized bonded magnet member, a sinusoidal magnetic flux density waveform is obtained on the outer peripheral surface of the rotor core, so that the cogging torque can be reduced.

これらにより、埋込磁石型同期モータのロータにおいて、トルク密度の向上と低コギング化とを両立することが可能となる。   As a result, in the rotor of the embedded magnet type synchronous motor, it is possible to achieve both improvement in torque density and reduction in cogging.

第2の発明は、上記ボンド磁石部材は、上記永久磁石部材と同数の極を有していることを特徴とするものである。   The second invention is characterized in that the bonded magnet member has the same number of poles as the permanent magnet member.

第2の発明によれば、永久磁石部材の磁束をステータ側に効率よく整流して、有効な鎖交磁束成分をより一層増やすことができる。   According to the second invention, the magnetic flux of the permanent magnet member can be efficiently rectified to the stator side, and the effective flux linkage component can be further increased.

第3の発明は、回転中心となる回転軸部材と、当該回転軸部材の外側に設けられる略円筒形状のロータコアと、を備え、当該ロータコアの外周部に、当該回転軸部材の軸方向に延びる複数の永久磁石部材が当該ロータコアの円周方向に略等間隔で配設された回転電機のロータの製造方法を対象とする。   3rd invention is equipped with the rotating shaft member used as the rotation center, and the substantially cylindrical rotor core provided in the outer side of the said rotating shaft member, and extends in the axial direction of the said rotating shaft member in the outer peripheral part of the said rotor core. The present invention is directed to a method for manufacturing a rotor of a rotating electrical machine in which a plurality of permanent magnet members are arranged at substantially equal intervals in the circumferential direction of the rotor core.

そして、その外周部に、永久磁石部材を挿通可能な開口を複数個有する略円環状の磁性鋼板を、当該開口が上記回転軸部材の軸方向に連なるように積層一体化し、上記ロータコアを形成するロータコア形成工程と、永久磁石粉末と樹脂材とを混合してコンパウンド化するコンパウンド化工程と、上記ロータコアを金型に形成されたキャビティ内に設置する設置工程と、上記開口と径方向に対向するように金型の外側に配置された配向用磁石から、複数の極を形成するように配向磁場を付与しながら、上記ロータコアの外周を囲むキャビティに上記コンパウンド化された材料を射出して、当該ロータコアの外周面を覆うようにリング状のボンド磁石部材を成型する磁場配向射出工程と、上記ロータコア及び上記ボンド磁石部材を金型から離型した後、当該ボンド磁石部材に含有される永久磁石粉末に極異方着磁を施す着磁工程と、上記回転軸部材を上記ロータコアに挿通して固定するとともに、上記永久磁石部材を当該ロータコアの上記開口に挿通して固定する挿通固定工程と、を含むことを特徴とするものである。   Then, a substantially annular magnetic steel plate having a plurality of openings through which the permanent magnet member can be inserted is laminated and integrated on the outer peripheral portion so that the openings are continuous in the axial direction of the rotary shaft member, thereby forming the rotor core. A rotor core forming step, a compounding step of mixing the permanent magnet powder and the resin material into a compound, an installation step of installing the rotor core in a cavity formed in a mold, and the opening facing the radial direction In this way, the compounded material is injected into the cavity surrounding the outer periphery of the rotor core while applying an orientation magnetic field so as to form a plurality of poles from the orientation magnet arranged outside the mold as described above. A magnetic field orientation injection step of molding a ring-shaped bonded magnet member so as to cover the outer peripheral surface of the rotor core, and releasing the rotor core and the bonded magnet member from the mold. Thereafter, a magnetizing step of applying anisotropic anisotropic magnetization to the permanent magnet powder contained in the bond magnet member, and inserting and fixing the rotary shaft member through the rotor core, and fixing the permanent magnet member to the rotor core And an insertion fixing step of inserting and fixing through the opening.

第3の発明によれば、トルク密度の向上と低コギング化とを両立することが可能な埋込磁石型同期モータを、簡単に製造することができる。   According to the third aspect of the invention, it is possible to easily manufacture an embedded magnet type synchronous motor that can achieve both improvement in torque density and reduction in cogging.

第4の発明は、回転中心となる回転軸部材と、当該回転軸部材の外側に設けられる略円筒形状のロータコアと、を備え、当該ロータコアの外周部に、当該回転軸部材の軸方向に延びる複数の永久磁石部材が当該ロータコアの円周方向に略等間隔で配設された回転電機のロータの製造方法を対象とする。   4th invention is equipped with the rotating shaft member used as the rotation center, and the substantially cylindrical rotor core provided in the outer side of the said rotating shaft member, and extends in the axial direction of the said rotating shaft member in the outer peripheral part of the said rotor core. The present invention is directed to a method for manufacturing a rotor of a rotating electrical machine in which a plurality of permanent magnet members are arranged at substantially equal intervals in the circumferential direction of the rotor core.

そして、その外周部に、永久磁石部材を挿通可能な開口を複数個有する略円環状の磁性鋼板を、当該開口が上記回転軸部材の軸方向に連なるように積層一体化した上記ロータコアと、永久磁石粉末と樹脂材とを含有し、且つ、当該永久磁石粉末に極異方着磁が施されたボンド磁石部材と、を用意し、上記ボンド磁石部材の極と上記永久磁石部材の極との同極が対向するように、上記ロータコアの外周面と当該ボンド磁石部材の内周面とを接合する接合工程と、上記回転軸部材を上記ロータコアに挿通して固定するとともに、上記永久磁石部材を当該ロータコアの上記開口に挿通して固定する挿通固定工程と、を含むことを特徴とするものである。   Then, on the outer periphery, a substantially annular magnetic steel plate having a plurality of openings through which the permanent magnet member can be inserted is laminated and integrated so that the openings are continuous in the axial direction of the rotary shaft member, and the permanent core A bonded magnet member containing magnet powder and a resin material, and wherein the permanent magnet powder is poled anisotropically, and a pole of the bonded magnet member and a pole of the permanent magnet member A joining step of joining the outer peripheral surface of the rotor core and the inner peripheral surface of the bonded magnet member so that the same poles face each other, and inserting and fixing the rotary shaft member through the rotor core, and fixing the permanent magnet member An insertion and fixing step of inserting and fixing the rotor core through the opening.

第4の発明によれば、トルク密度の向上と低コギング化とを両立することが可能な埋込磁石型同期モータを、より一層簡単に製造することができる。   According to the fourth aspect of the invention, it is possible to more easily manufacture an embedded magnet type synchronous motor that can achieve both improvement in torque density and reduction in cogging.

本発明に係る回転電機のロータによれば、その極が永久磁石部材の極と同極が対向するように極異方着磁されたボンド磁石部材を、ロータコアの外周面を覆うように設けているので、かかるボンド磁石部材が、永久磁石部材の磁束をステータ側に整流することから、トルク発生に寄与しない磁束成分を低減して、トルク密度を向上させることができるとともに、磁極間の界面で正弦波的な磁束密度波形が得られことから、コギングトルクを低減することができる。よって、埋込磁石型同期モータのロータにおいて、トルク密度の向上と低コギング化とを両立することが可能となる。   According to the rotor of the rotating electrical machine according to the present invention, the bond magnet member that is anisotropically polarized so that the pole thereof is opposite to the pole of the permanent magnet member is provided so as to cover the outer peripheral surface of the rotor core. Therefore, the bonded magnet member rectifies the magnetic flux of the permanent magnet member to the stator side, thereby reducing the magnetic flux component that does not contribute to torque generation and improving the torque density, and at the interface between the magnetic poles. Since a sinusoidal magnetic flux density waveform is obtained, the cogging torque can be reduced. Therefore, in the rotor of the embedded magnet type synchronous motor, it is possible to achieve both improvement in torque density and reduction in cogging.

また、本発明に係る回転電機のロータの製造方法によれば、簡単な方法で、トルク密度の向上と低コギング化とを両立した埋込磁石型同期モータのロータを製造することができる。   Further, according to the method for manufacturing a rotor of a rotating electrical machine according to the present invention, it is possible to manufacture a rotor of an embedded magnet type synchronous motor that achieves both improved torque density and low cogging by a simple method.

本発明の実施形態に係る回転電機のロータを示す斜視図である。It is a perspective view which shows the rotor of the rotary electric machine which concerns on embodiment of this invention. 図1のII−II線の矢視図である。It is an arrow line view of the II-II line | wire of FIG. 図2のA部の部分拡大図である。It is the elements on larger scale of the A section of FIG. ロータコアに埋め込まれた永久磁石部材の漏れ磁束を模式的に示す図であり、同図(a)は、ボンド磁石部材を設けていない場合を示す図であり、同図(b)は、ボンド磁石部材を設けた場合を示す図である。It is a figure which shows typically the leakage magnetic flux of the permanent magnet member embedded in the rotor core, The figure (a) is a figure which shows the case where the bond magnet member is not provided, The figure (b) is a bond magnet. It is a figure which shows the case where a member is provided. 横軸に回転角度を縦軸に磁束密度をとったときの、ロータコア外周面における磁束密度波形を表す図である。It is a figure showing the magnetic flux density waveform in a rotor core outer peripheral surface when taking a rotation angle on a horizontal axis and taking a magnetic flux density on a vertical axis | shaft. 回転電機のロータの製造方法のフローチャートである。It is a flowchart of the manufacturing method of the rotor of a rotary electric machine. 金型及びこれに配置されたロータコアを示す断面図である。It is sectional drawing which shows a metal mold | die and the rotor core arrange | positioned at this. 磁場配向射出成形を説明する模式図である。It is a schematic diagram explaining magnetic field orientation injection molding. 回転電機のロータの製造方法のフローチャートである。It is a flowchart of the manufacturing method of the rotor of a rotary electric machine. 磁場配向射出成形を説明する模式図である。It is a schematic diagram explaining magnetic field orientation injection molding. 接合工程を模式的に説明する図である。It is a figure which illustrates a joining process typically.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
−ロータ構造−
図1は、本実施形態に係る回転電機のロータを示す斜視図であり、図2は、図1のII−II線の矢視図である。このロータ1は、例えば、車両におけるポンプ類駆動用モータやパワステ駆動用モータさらには家電製品の駆動用モータ等、2kW以下の比較的低出力のモータに好適に用いられるものであり、図1に示すように、回転中心となる金属製のロータシャフト(回転軸部材)3と、当該ロータシャフト3の外側に設けられる略円筒形状のロータコア5と、当該ロータコア5の外周面を覆うリング状のボンド磁石部材7と、を備えている。
(Embodiment 1)
-Rotor structure-
FIG. 1 is a perspective view showing a rotor of a rotating electrical machine according to the present embodiment, and FIG. 2 is a view taken along the line II-II in FIG. The rotor 1 is preferably used for a relatively low output motor of 2 kW or less, such as a pump driving motor, a power steering driving motor, and a household appliance driving motor in a vehicle. As shown, a metal rotor shaft (rotary shaft member) 3 serving as a rotation center, a substantially cylindrical rotor core 5 provided outside the rotor shaft 3, and a ring-shaped bond covering the outer peripheral surface of the rotor core 5. And a magnet member 7.

ロータコア5は、プレスで打ち抜いた薄い磁性鋼板15を、より詳しくは、中央部に形成された円形開口15aと、外周部に等間隔で形成された8つの矩形開口15bとを有する略円環状の薄い磁性鋼板15を、円形開口15a及び矩形開口15bがロータシャフト3の軸方向に連なるように積層一体化することにより形成されている。これにより、ロータコア5は、その中央部に断面円形の中央貫通孔5a(円形開口15aの連なり)を有するとともに、その外周部に当該ロータコア5の円周方向に等間隔で並ぶ8つの断面矩形状の貫通孔5bを有する、略円筒形状をなしている。   The rotor core 5 is made of a thin magnetic steel plate 15 punched by a press. More specifically, the rotor core 5 has a substantially annular shape having a circular opening 15a formed in the center and eight rectangular openings 15b formed at equal intervals on the outer periphery. The thin magnetic steel plate 15 is formed by stacking and integrating so that the circular opening 15 a and the rectangular opening 15 b are continuous in the axial direction of the rotor shaft 3. Thereby, the rotor core 5 has a central through hole 5a (a series of circular openings 15a) having a circular cross section at the center, and eight rectangular cross sections arranged at equal intervals in the circumferential direction of the rotor core 5 at the outer periphery. It has a substantially cylindrical shape having a through hole 5b.

そうして、かかる中央貫通孔5aには、ロータシャフト3が挿通固定されている一方、外周部の8つの貫通孔5bには、ロータシャフト3の軸方向に延びる断面矩形状の永久磁石部材11(例えば、Nd焼結磁石、フェライト等)がそれぞれ挿通固定されている。換言すると、このロータコア5では、8本の永久磁石部材11がその長手方向が円周方向に沿うように等間隔で配置されていて、これら8本の永久磁石部材11が、径方向外側にN極とS極とが交互に並ぶ8つの磁極を形成するようになっている。つまり、本実施形態のロータ1は、埋込磁石型同期モータであり、ロータコア5の磁化によるリラクタンストルクと永久磁石部材11の磁化によるマグネットトルクの両方を利用することが可能となっている。   Then, the rotor shaft 3 is inserted and fixed in the central through hole 5a, and the permanent magnet member 11 having a rectangular cross section extending in the axial direction of the rotor shaft 3 is inserted in the eight through holes 5b in the outer peripheral portion. (For example, Nd sintered magnet, ferrite, etc.) are inserted and fixed. In other words, in this rotor core 5, eight permanent magnet members 11 are arranged at equal intervals so that the longitudinal direction thereof is along the circumferential direction, and these eight permanent magnet members 11 are arranged N on the radially outer side. Eight magnetic poles are formed in which poles and S poles are alternately arranged. That is, the rotor 1 of this embodiment is an embedded magnet type synchronous motor, and can use both reluctance torque due to magnetization of the rotor core 5 and magnet torque due to magnetization of the permanent magnet member 11.

ボンド磁石部材7は、バインダー樹脂(例えば、ポリアミド(PA12等)、ポリフェニレンサルファイド(PPS)等)と、永久磁石粉末(例えば、Nd焼結磁石、フェライト等)とを含んでおり、後述するように、これらバインダー樹脂(樹脂材)と永久磁石粉末とを混合してコンパウンド化した後、金型9で配向磁場射出成形することによりリング状に形成されていて、当該ボンド磁石部材7の内周面とロータコア5と外周面とがバインダー樹脂で接着されている。   The bonded magnet member 7 includes a binder resin (for example, polyamide (PA12, etc.), polyphenylene sulfide (PPS), etc.) and permanent magnet powder (for example, Nd sintered magnet, ferrite, etc.), as will be described later. These binder resins (resin materials) and permanent magnet powder are mixed and compounded, and then formed into a ring shape by orientation magnetic field injection molding with a mold 9, and the inner peripheral surface of the bonded magnet member 7. The rotor core 5 and the outer peripheral surface are bonded with a binder resin.

このボンド磁石部材7は、図2に示すように、当該ボンド磁石部材7の極7aが、永久磁石部材11の極と同極が対向するように(ボンド磁石部材7の外周円とロータコア5の磁極中心線5cとの交点に位置するように)、極異方着磁されている。より詳しくは、このボンド磁石部材7は、配向磁場射出成形の際に、8つの極の配向磁界を作り、磁化容易軸が揃うように永久磁石粉末を配向した後に着磁することにより、そのN極が永久磁石部材11のN極と対向し且つそのS極が永久磁石部材11のS極と対向した、永久磁石部材11と同数である8つの極7aを有している。   As shown in FIG. 2, the bonded magnet member 7 is arranged so that the pole 7a of the bonded magnet member 7 faces the same pole as the pole of the permanent magnet member 11 (the outer circumference of the bonded magnet member 7 and the rotor core 5 It is poled anisotropically so as to be located at the intersection with the magnetic pole center line 5c). More specifically, this bonded magnet member 7 is formed by forming an orientation magnetic field of eight poles during orientation magnetic field injection molding, and magnetizing the magnet after aligning the permanent magnet powder so that the easy magnetization axes are aligned. There are eight poles 7 a having the same number as the permanent magnet member 11, the poles facing the N pole of the permanent magnet member 11 and the S poles facing the S pole of the permanent magnet member 11.

このように、ロータコア5の外周面を覆うリング状のボンド磁石部材7を、その極7aが永久磁石部材11の極と同極が対向するように極異方着磁することにより、図3に示すように、ボンド磁石部材7によって白抜き矢印の方向に磁束が流れ易くなることから、永久磁石部材11のN極から出た磁束(磁力線の束)11aが、不図示のステータ側に整流されることになる。   In this way, the ring-shaped bonded magnet member 7 covering the outer peripheral surface of the rotor core 5 is poled anisotropically so that the pole 7a thereof is opposite to the pole of the permanent magnet member 11, thereby obtaining FIG. As shown, since the magnetic flux easily flows in the direction of the white arrow by the bonded magnet member 7, the magnetic flux (a bundle of magnetic lines) 11 a emitted from the N pole of the permanent magnet member 11 is rectified to the stator side (not shown). Will be.

これにより、ボンド磁石部材7を設けていない従来のロータ101では、図4(a)に示すように、漏れ磁束111b(トルク発生に寄与しない磁束成分)が大量に発生しているため有効磁束111a(トルク発生に寄与す磁束成分)が少ないのに対し、ボンド磁石部材7を設けていた本実施形態のロータ1では、図4(b)に示すように、永久磁石部材11の漏れ磁束11bが大幅に減少するとともに、減少した分の漏れ磁束11bがボンド磁石部材7によってステータ側に整流されて、有効磁束11aが増大し、トルク密度を向上させることができる。なお、図4では、図を見易くするために、8つの永久磁石部材11のうちの一部についてだけ、磁束を図示しているが、他の永久磁石部材11についても同様の現象が起きる。   Thereby, in the conventional rotor 101 in which the bonded magnet member 7 is not provided, as shown in FIG. 4A, a large amount of leakage magnetic flux 111b (magnetic flux component that does not contribute to torque generation) is generated, so that the effective magnetic flux 111a. In the rotor 1 of the present embodiment in which the bonded magnet member 7 is provided while the magnetic flux component contributing to torque generation is small, the leakage magnetic flux 11b of the permanent magnet member 11 is as shown in FIG. While the magnetic flux is greatly reduced, the reduced leakage magnetic flux 11b is rectified to the stator side by the bonded magnet member 7, so that the effective magnetic flux 11a is increased and the torque density can be improved. In FIG. 4, in order to make the drawing easier to see, the magnetic flux is illustrated only for a part of the eight permanent magnet members 11, but the same phenomenon occurs in the other permanent magnet members 11.

加えて、本実施形態のロータ1では、極7aが永久磁石部材11の極と同極が対向するように極異方着磁されたボンド磁石部材7によってロータコア5の外周面を覆うことにより、磁束を通し難い極中心でも径方向の磁束密度が増大すること等により、ロータコア5の外周面における磁束密度波形(ギャップの磁束密度分布)を正弦波に近づけることができる。これにより、図5に示すように、本実施形態のロータ1の場合(図5の実線a)は、ボンド磁石部材7を設けていない従来のロータの場合(図5の破線b)と比較して、磁束密度の急峻な変化を抑制して、換言すると、磁束変化の勾配をなだらかにして、コギングトルクを大幅に低減することができ、その結果、埋込磁石型同期モータの振動低減や騒音低減を実現することができる。   In addition, in the rotor 1 of the present embodiment, the pole 7a covers the outer peripheral surface of the rotor core 5 with the bond magnet member 7 that is poled anisotropically so that the same pole as the pole of the permanent magnet member 11 faces. The magnetic flux density waveform (gap magnetic flux density distribution) on the outer peripheral surface of the rotor core 5 can be made close to a sine wave by increasing the magnetic flux density in the radial direction even at the pole center where it is difficult to pass the magnetic flux. As a result, as shown in FIG. 5, the rotor 1 of the present embodiment (solid line a in FIG. 5) is compared with the conventional rotor without the bonded magnet member 7 (broken line b in FIG. 5). In other words, the steep change in the magnetic flux density can be suppressed, in other words, the gradient of the magnetic flux change can be smoothed, and the cogging torque can be greatly reduced. As a result, vibration and noise of the embedded magnet type synchronous motor can be reduced. Reduction can be realized.

−ロータの製造方法−
次に、本実施形態に係る回転電機のロータ1の製造方法を、図6に示すフローチャートに基づいて説明する。
-Rotor manufacturing method-
Next, a method for manufacturing the rotor 1 of the rotating electrical machine according to the present embodiment will be described based on the flowchart shown in FIG.

先ず、ステップSA1では、中央部に形成された円形開口15aと、外周部に等間隔で形成された8つの矩形開口15bとを有する略円環状の磁性鋼板15をプレスで打ち抜き、かかる磁性鋼板15を、円形開口15a及び矩形開口15bが軸方向に連なるように積層一体化し、ロータコア5を形成する(ロータコア形成工程)。   First, in step SA1, a substantially annular magnetic steel plate 15 having a circular opening 15a formed in the central portion and eight rectangular openings 15b formed at equal intervals in the outer peripheral portion is punched out with a press, and the magnetic steel plate 15 Are laminated and integrated so that the circular opening 15a and the rectangular opening 15b are continuous in the axial direction to form the rotor core 5 (rotor core forming step).

次のステップSA2では、永久磁石粉末と樹脂材とを混合してコンパウンド化する(コンパウンド化工程)。   In the next step SA2, the permanent magnet powder and the resin material are mixed and compounded (compounding process).

次いで、金型9を用意する。この金型9は、図7に示すように、リング状の突条部19aを有する固定型19と、中央に円柱部29aを有する有底筒状の可動型29とを備えており、突条部19aによって相対的に凹んだ部位19bに円柱部29aの先端を挿入するとともに、リング状の突条部19aに可動型29の筒部29bを外嵌合させて、固定型19と可動型29とを組み合わせることにより、その内部に略円筒形状のキャビティ9aが形成されるようになっている。また、固定型19のリング状の突条部19aの外周部には、8つのゲート部13が等間隔をあけて貫通形成されており、これら8本のゲート部13は、コンパウンド化された永久磁石粉末及びバインダー樹脂を射出するための射出ユニット23とそれぞれ繋がっている。   Next, a mold 9 is prepared. As shown in FIG. 7, the mold 9 includes a fixed mold 19 having a ring-shaped protruding portion 19a, and a bottomed cylindrical movable mold 29 having a cylindrical portion 29a at the center. The distal end of the cylindrical portion 29a is inserted into a portion 19b that is relatively recessed by the portion 19a, and the cylindrical portion 29b of the movable mold 29 is externally fitted to the ring-shaped protruding portion 19a, so that the fixed mold 19 and the movable mold 29 are fitted. Are combined to form a substantially cylindrical cavity 9a. Further, eight gate portions 13 are formed through the outer peripheral portion of the ring-shaped protrusion 19a of the fixed mold 19 at equal intervals, and these eight gate portions 13 are compounded permanent. Each is connected to an injection unit 23 for injecting magnet powder and binder resin.

そうして、ステップSA3で、円柱部29aをロータコア5の中央貫通孔5aに差し込んで、金型9を型締めすることにより、ロータコア5を金型9に形成されたキャビティ9a内に設置する(設置工程)。これにより、キャビティ9a内に設置されたロータコア5の周りには、8本のゲート部13が臨む、リング状の空間9bが形成される。   Then, in Step SA3, the cylindrical portion 29a is inserted into the central through hole 5a of the rotor core 5 and the mold 9 is clamped to install the rotor core 5 in the cavity 9a formed in the mold 9 ( Installation process). As a result, a ring-shaped space 9b where the eight gate portions 13 face is formed around the rotor core 5 installed in the cavity 9a.

次のステップSA4では、図8に示すように、金型9の外側で、且つ、キャビティ9a内に設置されたロータコア5の貫通孔5bと径方向に対向する位置に、8つの配向用電磁石25を配置する。そうして、8の極を形成するように、より具体的には、8つの永久磁石部材11が径方向外側にN極とS極が交互に並ぶように8つの貫通孔5bに挿通されていると仮定したときに、永久磁石部材11の極と同極が対向する8つの極を形成するように、8つの配向用電磁石25から配向磁場を印加しながら、ステップSA2でコンパウンド化された材料をゲート部13から空間9bに射出して、ロータコア5の外周面を覆うようにリング状のボンド磁石部材7を成型する(磁場配向射出工程)。なお、図8では、図を見易くするために、金型9を図示省略している。   In the next step SA4, as shown in FIG. 8, eight orienting electromagnets 25 are located outside the mold 9 and at positions facing the through holes 5b of the rotor core 5 installed in the cavity 9a in the radial direction. Place. More specifically, the eight permanent magnet members 11 are inserted into the eight through holes 5b so that the N poles and the S poles are alternately arranged radially outward so as to form the eight poles. The material compounded in step SA2 while applying an orientation magnetic field from the eight orientation electromagnets 25 so as to form eight poles having the same polarity as the poles of the permanent magnet member 11. Is injected into the space 9b from the gate portion 13 to form the ring-shaped bonded magnet member 7 so as to cover the outer peripheral surface of the rotor core 5 (magnetic field orientation injection step). In FIG. 8, the mold 9 is not shown for easy understanding of the drawing.

また、磁場配向射出成形における成形条件は、バインダー樹脂がポリアミドの場合には、シリンダー温度が220〜270(℃)、金型温度が50〜100(℃)、射出圧力が120〜170(MPa)、配向磁場が5〜15(kOe)であることが望ましく、また、バインダー樹脂がポリフェニレンサルファイドの場合には、シリンダー温度が270〜340(℃)、金型温度が120〜150(℃)、射出圧力が130〜180(MPa)、配向磁場が5〜15(kOe)であることが望ましい。   The molding conditions in the magnetic field orientation injection molding are as follows: when the binder resin is polyamide, the cylinder temperature is 220 to 270 (° C.), the mold temperature is 50 to 100 (° C.), and the injection pressure is 120 to 170 (MPa). The orientation magnetic field is preferably 5 to 15 (kOe), and when the binder resin is polyphenylene sulfide, the cylinder temperature is 270 to 340 (° C.), the mold temperature is 120 to 150 (° C.), and the injection is performed. It is desirable that the pressure is 130 to 180 (MPa) and the orientation magnetic field is 5 to 15 (kOe).

永久磁石粉末がバインダー樹脂によって接着されると、ステップSA5において、可動型29を固定型19から離間させて金型9を型開きし、ロータコア5及びこれに接着されたボンド磁石部材7を金型9から脱型する。そうして、次のステップSA6では、脱型されたボンド磁石部材7に含有される永久磁石粉末に極異方着磁を施す(着磁工程)。   When the permanent magnet powder is bonded with the binder resin, in step SA5, the movable mold 29 is separated from the fixed mold 19 to open the mold 9, and the rotor core 5 and the bonded magnet member 7 bonded thereto are bonded to the mold. Demold from 9. Then, in the next step SA6, polar anisotropic magnetization is performed on the permanent magnet powder contained in the debonded bonded magnet member 7 (magnetization step).

次のステップSA7では、ロータコア5に形成された中央貫通孔5aにロータシャフト3を挿通固定し、次のステップSA8では、着磁された8つの永久磁石部材11を、径方向外側にN極とS極が交互に並ぶように8つの貫通孔5bに挿通固定する(挿通固定工程)。   In the next step SA7, the rotor shaft 3 is inserted and fixed in the central through hole 5a formed in the rotor core 5, and in the next step SA8, the eight magnetized permanent magnet members 11 are connected to the N pole radially outward. The eight south holes 5b are inserted and fixed so that the S poles are alternately arranged (insertion fixing step).

以上により、その極が永久磁石部材11の極と同極が対向するように極異方着磁されたボンド磁石部材7によってロータコア5の外周面が覆われた埋込磁石型同期モータのロータ1を、磁場配向射出成形を用いた簡単な方法で製造することができる。   As described above, the rotor 1 of the embedded magnet type synchronous motor in which the outer peripheral surface of the rotor core 5 is covered with the bond magnet member 7 which is poled anisotropically so that the pole of the permanent magnet member 11 faces the same pole. Can be manufactured by a simple method using magnetic field orientation injection molding.

−効果−
本実施形態によれば、その極7aが永久磁石部材11の極と同極が対向するように極異方着磁されたボンド磁石部材7を、ロータコア5の外周面を覆うように設けているので、かかるボンド磁石部材7が、永久磁石部材11の磁束をステータ側に整流する役割を果たすことから、有効な鎖交磁束成分を増やして、トルク密度を向上させることができるとともに、ロータコア5の外周面で正弦波的な磁束密度波形が得られことから、コギングトルクを低減することができる。これらにより、埋込磁石型同期モータのロータ1において、トルク密度の向上と低コギング化とを両立することが可能となる。
-Effect-
According to the present embodiment, the bonded magnet member 7 is provided so as to cover the outer peripheral surface of the rotor core 5 so that the pole 7 a is poled anisotropically so that the same pole as the pole of the permanent magnet member 11 faces. Therefore, since the bond magnet member 7 plays a role of rectifying the magnetic flux of the permanent magnet member 11 to the stator side, the effective flux linkage component can be increased and the torque density can be improved. Since a sinusoidal magnetic flux density waveform is obtained on the outer peripheral surface, the cogging torque can be reduced. Accordingly, in the rotor 1 of the embedded magnet type synchronous motor, it is possible to achieve both improvement in torque density and reduction in cogging.

また、ボンド磁石部材7は、永久磁石部材11と同数の極7aを有していることから、永久磁石部材11の磁束をステータ側に効率よく整流して、有効な鎖交磁束成分をより一層増やすことができる。   Further, since the bonded magnet member 7 has the same number of poles 7a as the permanent magnet member 11, the magnetic flux of the permanent magnet member 11 is efficiently rectified to the stator side, and an effective flux linkage component is further increased. Can be increased.

(実施形態2)
本実施形態は、ボンド磁石部材7をロータコア5とは独立に成形する点が実施形態1と異なるものである。以下、実施形態1と異なる点について説明する。
(Embodiment 2)
This embodiment is different from Embodiment 1 in that the bonded magnet member 7 is formed independently of the rotor core 5. Hereinafter, differences from the first embodiment will be described.

−ロータの製造方法−
本実施形態に係る回転電機のロータ1の製造方法を、図9に示すフローチャートに基づいて説明する。
-Rotor manufacturing method-
A method for manufacturing the rotor 1 of the rotating electrical machine according to the present embodiment will be described based on the flowchart shown in FIG.

先ず、ロータコア5とボンド磁石部材7とを用意する。なお、ロータコア5は、上記実施形態1のステップSA1と同様に、中央部に形成された円形開口15aと、外周部に等間隔で形成された8つの矩形開口15bとを有する略円環状の磁性鋼板15をプレスで打ち抜き、かかる磁性鋼板15を、矩形開口15bが軸方向に連なるように積層することによって製造することができる。   First, the rotor core 5 and the bonded magnet member 7 are prepared. The rotor core 5 has a substantially annular magnetic shape having a circular opening 15a formed in the center and eight rectangular openings 15b formed at equal intervals in the outer periphery, as in step SA1 of the first embodiment. The steel plate 15 can be punched with a press, and the magnetic steel plate 15 can be manufactured by laminating such that the rectangular openings 15b are continuous in the axial direction.

また、ボンド磁石部材7は、例えば、上記実施形態1で用いた金型9のキャビティ9a内にロータコア5と略同大同形のダミー中子を設置し、図10に示すように、8の極を形成するように、8つの配向用電磁石25から配向磁場を印加しながら、コンパウンド化された永久磁石粉末と樹脂材とをゲート部13から空間9bに射出することにより製造することができる。なお、図10では、図を見易くするために、金型9を図示省略している。   The bonded magnet member 7 includes, for example, a dummy core that is approximately the same size as the rotor core 5 in the cavity 9a of the mold 9 used in the first embodiment, and as shown in FIG. In this manner, the compounded permanent magnet powder and the resin material are injected from the gate portion 13 into the space 9b while applying an orientation magnetic field from the eight orientation electromagnets 25. In FIG. 10, the mold 9 is not shown for easy understanding of the drawing.

そうして、ステップSB1では、ボンド磁石部材7の8つの極と、ロータコア5に埋め込まれた8つの永久磁石部材11の極との同極が対向するように、ロータコア5と永久磁石部材11とを位置決めした後、図11に示すように、ロータコア5をボンド磁石部材7に挿入し、ロータコア5の外周面とボンド磁石部材7の内周面とを例えば接着剤を用いて接合する(接合工程)。   Then, in Step SB1, the rotor core 5 and the permanent magnet member 11 are arranged so that the same poles of the eight poles of the bonded magnet member 7 and the poles of the eight permanent magnet members 11 embedded in the rotor core 5 face each other. 11, the rotor core 5 is inserted into the bonded magnet member 7, and the outer peripheral surface of the rotor core 5 and the inner peripheral surface of the bonded magnet member 7 are bonded using, for example, an adhesive (bonding step). ).

次のステップSB2では、ロータコア5に形成された中央貫通孔5aにロータシャフト3を挿通固定し、次のステップSB3では、8つの貫通孔5b、着磁された8つの永久磁石部材11が径方向外側にN極とS極が交互に並ぶように挿通固定する(挿通固定工程)。   In the next step SB2, the rotor shaft 3 is inserted and fixed in the central through hole 5a formed in the rotor core 5, and in the next step SB3, the eight through holes 5b and the eight magnetized permanent magnet members 11 are in the radial direction. Insertion is fixed so that the N pole and the S pole are alternately arranged on the outside (insertion fixing step).

−効果−
本実施形態によれば、トルク密度の向上と低コギング化とを両立することが可能な埋込磁石型同期モータを、より一層簡単に製造することができる。
-Effect-
According to the present embodiment, an embedded magnet type synchronous motor capable of achieving both an improvement in torque density and a reduction in cogging can be manufactured even more easily.

(その他の実施形態)
本発明は、実施形態に限定されず、その精神又は主要な特徴から逸脱することなく他の色々な形で実施することができる。
(Other embodiments)
The present invention is not limited to the embodiments, and can be implemented in various other forms without departing from the spirit or main features thereof.

上記実施形態1及び2では、バインダー樹脂としてポリアミド、ポリフェニレンサルファイドを、また、永久磁石粉末としてNd焼結磁石、フェライトを挙げたが、これらは例示であり、他のバインダー樹脂及び永久磁石粉末を用いてもよい。   In the first and second embodiments, polyamide and polyphenylene sulfide are used as the binder resin, and Nd sintered magnets and ferrite are used as the permanent magnet powder. These are examples, and other binder resins and permanent magnet powders are used. May be.

また、上記上記実施形態1及び2では、ロータコア5に埋め込まれる永久磁石部材11を8つとしたが、これに限らず、6つ以下や10以上としてもよい。   In the first and second embodiments, the number of permanent magnet members 11 embedded in the rotor core 5 is eight. However, the number is not limited to this, and may be six or less or ten or more.

さらに、上記上記実施形態1及び2では、ボンド磁石部材7の極の数を、永久磁石部材11と同数としたが、これに限らず、永久磁石部材11の数よりも少なくしてもよいし、多くしてもよい。   Furthermore, in the said Embodiment 1 and 2, although the number of the poles of the bond magnet member 7 was made into the same number as the permanent magnet member 11, it may be less than the number of the permanent magnet members 11 not only this but. May be more.

このように、上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   As described above, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

以上説明したように、本発明は、回転中心となる回転軸部材と、その外側に設けられる略円筒形状のロータコアと、を備え、ロータコアの外周部に複数の永久磁石部材が略等間隔で配設された回転電機のロータ及びその製造方法等について有用である。   As described above, the present invention includes a rotary shaft member serving as a rotation center and a substantially cylindrical rotor core provided on the outer side thereof, and a plurality of permanent magnet members are arranged at substantially equal intervals on the outer periphery of the rotor core. It is useful for the rotor of the rotating electrical machine provided and the manufacturing method thereof.

1 ロータ
3 ロータシャフト(回転軸部材)
5 ロータコア
7 ボンド磁石部材
7a 極
9 金型
9a キャビティ
11 永久磁石部材
15 磁性鋼板
15b 矩形開口(開口)
25 配向用電磁石(配向用磁石)
SA1 ロータコア形成工程
SA2 コンパウンド化工程
SA3 設置工程
SA4 磁場配向射出工程
SA6 着磁工程
SA7,SA8,SB2,SB3 挿通固定工程
SB1 接合工程
1 Rotor 3 Rotor shaft (Rotating shaft member)
5 Rotor Core 7 Bonded Magnet Member 7a Pole 9 Mold 9a Cavity 11 Permanent Magnet Member 15 Magnetic Steel Plate 15b Rectangular Opening (Opening)
25 Electromagnet for orientation (magnet for orientation)
SA1 Rotor core formation process SA2 Compounding process SA3 Installation process SA4 Magnetic field orientation injection process SA6 Magnetization process SA7, SA8, SB2, SB3 Insertion fixing process SB1 Joining process

Claims (4)

回転中心となる回転軸部材と、当該回転軸部材の外側に設けられる略円筒形状のロータコアと、を備え、当該ロータコアの外周部に、当該回転軸部材の軸方向に延びる複数の永久磁石部材が当該ロータコアの円周方向に略等間隔で配設された回転電機のロータであって、
上記ロータコアは、略円環状の磁性鋼板が上記回転軸部材の軸方向に積層されたものであり、
上記ロータコアの外周面を覆う、永久磁石粉末と樹脂材とを含むリング状のボンド磁石部材をさらに備え、
上記ボンド磁石部材は、当該ボンド磁石部材の極が、上記永久磁石部材の極と同極が対向するように、極異方着磁されていることを特徴とする回転電機のロータ。
A rotation shaft member serving as a rotation center; and a substantially cylindrical rotor core provided outside the rotation shaft member; and a plurality of permanent magnet members extending in the axial direction of the rotation shaft member on an outer peripheral portion of the rotor core. A rotor of a rotating electrical machine disposed at substantially equal intervals in the circumferential direction of the rotor core,
The rotor core is formed by laminating a substantially annular magnetic steel plate in the axial direction of the rotary shaft member,
A ring-shaped bonded magnet member including a permanent magnet powder and a resin material covering the outer peripheral surface of the rotor core;
The rotor of a rotating electrical machine, wherein the bond magnet member is poled anisotropically such that the pole of the bond magnet member is opposite to the pole of the permanent magnet member.
請求項1記載の回転電機のロータにおいて、
上記ボンド磁石部材は、上記永久磁石部材と同数の極を有していることを特徴とする回転電機のロータ。
The rotor of the rotating electrical machine according to claim 1,
The rotor of a rotating electrical machine, wherein the bonded magnet member has the same number of poles as the permanent magnet member.
回転中心となる回転軸部材と、当該回転軸部材の外側に設けられる略円筒形状のロータコアと、を備え、当該ロータコアの外周部に、当該回転軸部材の軸方向に延びる複数の永久磁石部材が当該ロータコアの円周方向に略等間隔で配設された回転電機のロータの製造方法であって、
その外周部に、永久磁石部材を挿通可能な開口を複数個有する略円環状の磁性鋼板を、当該開口が上記回転軸部材の軸方向に連なるように積層一体化し、上記ロータコアを形成するロータコア形成工程と、
永久磁石粉末と樹脂材とを混合してコンパウンド化するコンパウンド化工程と、
上記ロータコアを金型に形成されたキャビティ内に設置する設置工程と、
上記開口と径方向に対向するように金型の外側に配置された配向用磁石から、複数の極を形成するように配向磁場を付与しながら、上記ロータコアの外周を囲むキャビティに上記コンパウンド化された材料を射出して、当該ロータコアの外周面を覆うようにリング状のボンド磁石部材を成型する磁場配向射出工程と、
上記ロータコア及び上記ボンド磁石部材を金型から離型した後、当該ボンド磁石部材に含有される永久磁石粉末に極異方着磁を施す着磁工程と、
上記回転軸部材を上記ロータコアに挿通して固定するとともに、上記永久磁石部材を当該ロータコアの上記開口に挿通して固定する挿通固定工程と、を含むことを特徴とする回転電機のロータの製造方法。
A rotation shaft member serving as a rotation center; and a substantially cylindrical rotor core provided outside the rotation shaft member; and a plurality of permanent magnet members extending in the axial direction of the rotation shaft member on an outer peripheral portion of the rotor core. A method for manufacturing a rotor of a rotating electrical machine disposed at substantially equal intervals in the circumferential direction of the rotor core,
A rotor core is formed by laminating and integrating a substantially annular magnetic steel plate having a plurality of openings through which a permanent magnet member can be inserted on its outer peripheral portion so that the openings are continuous in the axial direction of the rotary shaft member. Process,
A compounding step of mixing permanent magnet powder and resin material into a compound;
An installation step of installing the rotor core in a cavity formed in a mold;
The compounding is performed in a cavity surrounding the outer periphery of the rotor core while applying an orientation magnetic field from an orientation magnet arranged outside the mold so as to face the opening in the radial direction so as to form a plurality of poles. A magnetic field orientation injection step of molding a ring-shaped bonded magnet member so as to cover the outer peripheral surface of the rotor core.
After releasing the rotor core and the bonded magnet member from the mold, a magnetizing step of applying polar anisotropic magnetization to the permanent magnet powder contained in the bonded magnet member;
A method of manufacturing a rotor of a rotating electrical machine, comprising: an insertion fixing step of inserting and fixing the rotating shaft member through the rotor core and fixing the permanent magnet member through the opening of the rotor core. .
回転中心となる回転軸部材と、当該回転軸部材の外側に設けられる略円筒形状のロータコアと、を備え、当該ロータコアの外周部に、当該回転軸部材の軸方向に延びる複数の永久磁石部材が当該ロータコアの円周方向に略等間隔で配設された回転電機のロータの製造方法であって、
その外周部に、永久磁石部材を挿通可能な開口を複数個有する略円環状の磁性鋼板を、当該開口が上記回転軸部材の軸方向に連なるように積層一体化した上記ロータコアと、
永久磁石粉末と樹脂材とを含有し、且つ、当該永久磁石粉末に極異方着磁が施されたボンド磁石部材と、を用意し、
上記ボンド磁石部材の極と上記永久磁石部材の極との同極が対向するように、上記ロータコアの外周面と当該ボンド磁石部材の内周面とを接合する接合工程と、
上記回転軸部材を上記ロータコアに挿通して固定するとともに、上記永久磁石部材を当該ロータコアの上記開口に挿通して固定する挿通固定工程と、を含むことを特徴とする回転電機のロータの製造方法。
A rotation shaft member serving as a rotation center; and a substantially cylindrical rotor core provided outside the rotation shaft member; and a plurality of permanent magnet members extending in the axial direction of the rotation shaft member on an outer peripheral portion of the rotor core. A method for manufacturing a rotor of a rotating electrical machine disposed at substantially equal intervals in the circumferential direction of the rotor core,
The rotor core obtained by laminating and integrating a substantially annular magnetic steel plate having a plurality of openings into which the permanent magnet member can be inserted on the outer peripheral portion so that the openings are continuous in the axial direction of the rotating shaft member;
A bond magnet member containing a permanent magnet powder and a resin material and having the anisotropic magnet powder subjected to polar anisotropic magnetization;
A joining step of joining the outer peripheral surface of the rotor core and the inner peripheral surface of the bond magnet member so that the same polarity of the pole of the bond magnet member and the pole of the permanent magnet member opposes;
A method of manufacturing a rotor of a rotating electrical machine, comprising: an insertion fixing step of inserting and fixing the rotating shaft member through the rotor core and fixing the permanent magnet member through the opening of the rotor core. .
JP2011268274A 2011-12-07 2011-12-07 Rotor for rotating electrical machine and method for manufacturing the same Active JP5929146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011268274A JP5929146B2 (en) 2011-12-07 2011-12-07 Rotor for rotating electrical machine and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011268274A JP5929146B2 (en) 2011-12-07 2011-12-07 Rotor for rotating electrical machine and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2013121263A true JP2013121263A (en) 2013-06-17
JP5929146B2 JP5929146B2 (en) 2016-06-01

Family

ID=48773672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011268274A Active JP5929146B2 (en) 2011-12-07 2011-12-07 Rotor for rotating electrical machine and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5929146B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276801A1 (en) * 2016-07-25 2018-01-31 Askoll Holding S.r.l. Method of manufacturing a rotor assembly, in particular for an electric motor of the ipm-pmasr type
EP3386075A1 (en) * 2017-04-06 2018-10-10 LG Electronics Inc. Electric motor with permament magnet and compressor having the same
KR101918065B1 (en) * 2017-04-06 2018-11-13 엘지전자 주식회사 Electric motor with permanent magnet and compressor having the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153000A (en) * 2000-11-10 2002-05-24 Sankyo Seiki Mfg Co Ltd Permanent magnet embedded motor and method of manufacturing the same
JP2004215395A (en) * 2002-12-27 2004-07-29 Koyo Seiko Co Ltd Rotor and motor
JP2005044820A (en) * 2002-06-18 2005-02-17 Neomax Co Ltd Pole anisotropic ring magnet and its producing process
JP2005057955A (en) * 2003-08-07 2005-03-03 Toyoda Mach Works Ltd Motor and process for manufacturing its rotor
JP2006180677A (en) * 2004-12-24 2006-07-06 Hitachi Metals Ltd Integrated skew magnetic rotor with core, and its manufacturing method
JP2006288200A (en) * 2006-07-24 2006-10-19 Matsushita Electric Ind Co Ltd Production and motor of permanent-magnet rotor
JP2006320036A (en) * 2005-05-10 2006-11-24 Hitachi Ltd Motor
JP2008172965A (en) * 2007-01-15 2008-07-24 Matsushita Electric Ind Co Ltd Permanent magnet rotor, motor and electrical apparatus
JP2010283978A (en) * 2009-06-04 2010-12-16 Kayaba Ind Co Ltd Electric motor and rotor therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153000A (en) * 2000-11-10 2002-05-24 Sankyo Seiki Mfg Co Ltd Permanent magnet embedded motor and method of manufacturing the same
JP2005044820A (en) * 2002-06-18 2005-02-17 Neomax Co Ltd Pole anisotropic ring magnet and its producing process
JP2004215395A (en) * 2002-12-27 2004-07-29 Koyo Seiko Co Ltd Rotor and motor
JP2005057955A (en) * 2003-08-07 2005-03-03 Toyoda Mach Works Ltd Motor and process for manufacturing its rotor
JP2006180677A (en) * 2004-12-24 2006-07-06 Hitachi Metals Ltd Integrated skew magnetic rotor with core, and its manufacturing method
JP2006320036A (en) * 2005-05-10 2006-11-24 Hitachi Ltd Motor
JP2006288200A (en) * 2006-07-24 2006-10-19 Matsushita Electric Ind Co Ltd Production and motor of permanent-magnet rotor
JP2008172965A (en) * 2007-01-15 2008-07-24 Matsushita Electric Ind Co Ltd Permanent magnet rotor, motor and electrical apparatus
JP2010283978A (en) * 2009-06-04 2010-12-16 Kayaba Ind Co Ltd Electric motor and rotor therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276801A1 (en) * 2016-07-25 2018-01-31 Askoll Holding S.r.l. Method of manufacturing a rotor assembly, in particular for an electric motor of the ipm-pmasr type
EP3386075A1 (en) * 2017-04-06 2018-10-10 LG Electronics Inc. Electric motor with permament magnet and compressor having the same
KR101918065B1 (en) * 2017-04-06 2018-11-13 엘지전자 주식회사 Electric motor with permanent magnet and compressor having the same
US10840757B2 (en) 2017-04-06 2020-11-17 Lg Electronics Inc. Electric motor with permanent magnet and compressor having the same

Also Published As

Publication number Publication date
JP5929146B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
US9099905B2 (en) Radially embedded permanent magnet rotor and methods thereof
JP5398512B2 (en) Axial gap type permanent magnet motor, rotor used therefor, and method for manufacturing the rotor
CN103779995B (en) It is radially inserted into formula PM rotor and its manufacture method
JP5096705B2 (en) Crotice type synchronous machine
US9882440B2 (en) Radially embedded permanent magnet rotor and methods thereof
US9831727B2 (en) Permanent magnet rotor and methods thereof
EP2680403B1 (en) Electric motor and production method for the electric motor
JP5274302B2 (en) Rotating electric machine
US20140103772A1 (en) Radially embedded permanent magnet rotor and methods thereof
KR20140002508A (en) Permanent magnet motor
JP6545393B2 (en) Conscious pole rotor, motor and air conditioner
JP2019075952A (en) Axial gap type rotary electric machine
JP2015186366A (en) axial gap type rotary electric machine
JPWO2018025407A1 (en) Consecutive pole type rotor, electric motor and air conditioner
JP5929146B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP6121914B2 (en) Synchronous motor
JP2011087393A (en) Rotor of synchronous motor
JP2013121262A (en) Rotor of rotary electric machine and method for manufacturing the same
JP5929147B2 (en) Rotor structure of rotating electrical machine
CN110720170A (en) Rotor for a brushless direct current motor, in particular for an internal rotor motor, and motor with such a rotor
JP2020115728A (en) motor
JP5309609B2 (en) Axial gap type rotating electrical machine and field element core
KR102019127B1 (en) A rotor and a motor including the same
JP6311274B2 (en) Manufacturing method of rotor for rotating electrical machine
JP2016082686A (en) motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150