JP2013120553A - Method for evaluating dent resistance - Google Patents

Method for evaluating dent resistance Download PDF

Info

Publication number
JP2013120553A
JP2013120553A JP2011269233A JP2011269233A JP2013120553A JP 2013120553 A JP2013120553 A JP 2013120553A JP 2011269233 A JP2011269233 A JP 2011269233A JP 2011269233 A JP2011269233 A JP 2011269233A JP 2013120553 A JP2013120553 A JP 2013120553A
Authority
JP
Japan
Prior art keywords
load
dent
panel
surface shape
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011269233A
Other languages
Japanese (ja)
Other versions
JP5919782B2 (en
Inventor
Takashi Iwama
隆史 岩間
Yuji Yamazaki
雄司 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011269233A priority Critical patent/JP5919782B2/en
Publication of JP2013120553A publication Critical patent/JP2013120553A/en
Application granted granted Critical
Publication of JP5919782B2 publication Critical patent/JP5919782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Abstract

PROBLEM TO BE SOLVED: To estimate dent resistance at a portion such as a character line where a curvature changes steeply.SOLUTION: A finite element analysis simulation is performed for a panel plate having a surface-shape steep portion in which a curvature changes steeply, using a panel shape condition of the panel plate and a material condition to be applied to the panel plate, so that an applied load in which plastic strain is generated on a plate surface of the surface-shape steep portion is acquired. Dent resistance at the surface-shape steep portion is evaluated based on the applied load.

Description

本発明は、ドアパネル、ルーフパネルなどの自動車外板パネルその他のパネルの耐デント性を評価する方法に関する。特に、本発明は、キャラクターラインなどの急峻なパネル面曲率変化の生じる領域における耐デント性を、設計の段階で予め評価可能な技術に関する。   The present invention relates to a method for evaluating the dent resistance of an automotive outer panel such as a door panel or a roof panel. In particular, the present invention relates to a technique capable of preliminarily evaluating dent resistance in a region where a steep panel surface curvature change such as a character line occurs in a design stage.

近年、自動車など車両の軽量化を実現するため、ドアやフードなど自動車アウター部品においても薄肉軽量化のニーズが高まっている。しかしながら、パネル部品の薄肉化は、耐デント性や張り剛性の低下を招き、人が触れたときの剛性感や、物が当たったときのくぼみ難さに不利な影響がある。そのため、自動車メーカーにとってパネル板の張り剛性や耐デント性の確保と、部品軽量化との両立が大きな課題となっている。   In recent years, in order to reduce the weight of vehicles such as automobiles, there is an increasing need for thinner and lighter automobile outer parts such as doors and hoods. However, the thinning of the panel parts leads to a decrease in dent resistance and tension rigidity, which has a detrimental effect on the rigidity when touched by a person and the difficulty of being depressed when hit by an object. For this reason, it is a major issue for automobile manufacturers to ensure the rigidity of panel panels and the resistance to dents and to reduce the weight of parts.

前記張り剛性は弾性変形挙動に影響されるため、外板のハイテン化(材料強度上昇)では解決しない。そのため近年は、パネル内部に設ける補強部品の変更など、部品全体での対策が主となりつつある。一方、耐デント性は塑性変形のしにくさに影響されるため、基本的にはハイテン化(降伏強度の上昇)による対策がなされる。具体的には、従来、軟鋼板が使用されていた部位に、引張強度TS340MPa級のハイテンおよび焼付け硬化性を持つBH鋼板を適用する対策がなされている。   Since the tension stiffness is affected by the elastic deformation behavior, it cannot be solved by increasing the tensile strength of the outer plate (increased material strength). Therefore, in recent years, countermeasures for the entire part, such as a change of the reinforcing part provided inside the panel, are becoming main. On the other hand, since the dent resistance is affected by the difficulty of plastic deformation, a countermeasure is basically taken by increasing the tensile strength (increasing yield strength). Specifically, measures have been taken to apply high tensile strength TS340 MPa grade high tensile strength and bake hardened BH steel plates to the sites where mild steel plates have been used.

しかし、今後さらなる軽量化が要求される場合、張り剛性に関しては、部品内部構造対策のみでは限界があるため、外板にキャラクターライン(一般にパネル面曲率よりも小さい曲率半径を頂点に持ち、且つ車両前後方向に延びる線状の模様)を付与するなどの意匠面の対策が考えられている。ただし、キャラクターラインを設けた部分については、張り剛性は向上するものの、高い荷重を負荷した場合に、「ペコつき」と呼ばれる顕著な飛び移り現象が発生する場合がある。その飛び移り現象が発生する際または発生する前に、山型のキャラクターラインが塑性変形する(潰れる)ため、キャラクターライン自体が変形(デント発生)し、外観品質を損なう問題も生じる。   However, when further weight reduction is required in the future, there is a limit to the tension rigidity only with measures against the internal structure of the parts, so the character line (generally having a radius of curvature smaller than the panel surface curvature at the top) Design measures such as providing a linear pattern extending in the front-rear direction) have been considered. However, although the tension rigidity is improved in the portion where the character line is provided, there is a case where a noticeable jump phenomenon called “peking” occurs when a high load is applied. When the jumping phenomenon occurs or before it occurs, the mountain-shaped character line is plastically deformed (collapsed), so that the character line itself is deformed (dents are generated), resulting in a problem that the appearance quality is impaired.

このような現象は、キャラクターラインのような面形状急峻部位が無い一般曲面では起こらず、山型形状のキャラクターライン部などの曲率が急峻する部位における、特有の顕著な飛び移り現象である。そして、この特有の顕著な飛び移り現象およびその前段階で発生するデント凹みを図面設計段階で予測できれば、新車開発におけるトライアンドエラーに要する工数を削減することが可能である。   Such a phenomenon does not occur on a general curved surface having no steep surface shape portion such as a character line, but is a characteristic remarkable jumping phenomenon in a portion having a sharp curvature such as a mountain-shaped character line portion. If the unique remarkable jumping phenomenon and the dent dent generated in the previous stage can be predicted at the drawing design stage, it is possible to reduce the man-hours required for trial and error in new vehicle development.

自動車外板部品の耐デント性予測および評価方法としては、例えば特許文献1及び特許文献2に記載の方法がある。
特許文献1においては、プレス成形による板厚減少、加工硬化等材料因子の影響を考慮した耐デント性評価方法について記載されている。
また特許文献2には、部品の荷重点を中心に拡大するたわみ面積と部品の曲率、板厚、材質からたわみ量を算出する方法が開示されている。
Examples of methods for predicting and evaluating dent resistance of automobile outer plate parts include methods described in Patent Document 1 and Patent Document 2, for example.
Patent Document 1 describes a dent resistance evaluation method that takes into account the influence of material factors such as plate thickness reduction and work hardening by press molding.
Patent Document 2 discloses a method of calculating a deflection amount from a deflection area that is enlarged around a load point of a component, a curvature of the component, a plate thickness, and a material.

特開2000−249636号公報JP 2000-249636 A 特開2007−33067号公報JP 2007-33067 A

しかし、特許文献1では、適切な材料を選択することが目的であるため、最終とする実部品形状での張り剛性、耐デント性を含めた検討までには至っていない。また特許文献2の技術では、除荷後に永久変形として生じるデント凹みを予測することは出来ない。
また、キャラクターラインのように急峻に曲率が変化する部位では、たわみが非対称形状に成長し、飛び移りとともに急激なたわみ拡大が起きるため、前記従来技術では、急峻に曲率が変化する部位において、初期の部品形状からデントを予測することは困難と考えられる。
However, in Patent Document 1, since it is an object to select an appropriate material, a study including tension rigidity and dent resistance in a final actual part shape has not been reached. In the technique of Patent Document 2, it is impossible to predict a dent dent that occurs as a permanent deformation after unloading.
In addition, in a portion where the curvature changes sharply such as a character line, the deflection grows in an asymmetric shape and abrupt deflection expansion occurs with jumping. Therefore, in the conventional technique, in the portion where the curvature changes sharply, the initial It is considered difficult to predict the dent from the part shape.

ここでキャラクターライン部における耐デント性を事前に予測出来ない場合には、完成車体になった段階で、飛び移り現象に起因するデント発生が明らかになる場合も想定される。その場合、対策として、車体デザインに関与するキャラクターラインを変更することは困難であるため、材料、板厚を変更したり、内部の補強部品、熱硬化型樹脂シートを追加したりなど、工数や材料費の増加および十分な軽量化が達成できないなどデメリットが発生することが考えられる。
本発明は、前記のような点に着目したもので、キャラクターラインなどの急峻に曲率が変化する部位での耐デント性の予測を可能とすることを目的としている。
Here, if the dent resistance in the character line portion cannot be predicted in advance, it may be assumed that the occurrence of dent due to the jumping phenomenon becomes clear at the stage of the completed vehicle body. In that case, as a countermeasure, it is difficult to change the character line involved in the car body design, so the man-hours such as changing the material and thickness, adding internal reinforcing parts, thermosetting resin sheet, etc. It is conceivable that there will be disadvantages such as an increase in material costs and a lack of sufficient weight reduction.
The present invention pays attention to the above points, and an object of the present invention is to enable prediction of dent resistance in a portion where the curvature changes sharply such as a character line.

前記課題を解決するために、本発明のうちの請求項1に記載した発明は、曲率が急峻に変化する面形状急峻部位を有するパネル板における、前記面形状急峻部位の耐デント性の評価方法であって、
前記パネル板のパネル形状条件、前記パネル板に適用する材料条件を用いて、有限要素解析シミュレーションを行なうことにより、前記面形状急峻部位における板表面で塑性ひずみが発生する負荷荷重を求め、当該負荷荷重に基づいて、当該面形状急峻部位での耐デント性を評価することを特徴とする。
次に、請求項2に記載した発明は、請求項1に記載した構成に対し、前記面形状急峻部位における曲率が凸となる側の板表面で塑性ひずみが発生する負荷荷重に基づき、当該面形状急峻部位でのデント発生時点の負荷荷重を算出することを特徴とする。
In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention is a method for evaluating dent resistance of a surface shape steep portion in a panel plate having a surface shape steep portion whose curvature changes steeply. Because
By performing a finite element analysis simulation using the panel shape conditions of the panel plate and the material conditions applied to the panel plate, a load load at which plastic strain occurs on the plate surface at the surface shape steep portion is obtained, and the load Based on the load, the dent resistance at the steep surface shape portion is evaluated.
Next, the invention described in claim 2 is directed to the structure described in claim 1, based on a load applied to generate plastic strain on the plate surface on the side where the curvature of the surface shape steep portion is convex. It is characterized in that a load load at the time of occurrence of a dent at a shape steep portion is calculated.

本発明によれば、キャラクターライン部等、急峻な面曲率変化部(面形状急峻部位)を含むパネル部品において、急峻な面曲率変化部でのデント発生を正確に評価することが可能となる。
特に、板表面の塑性ひずみが発生する負荷荷重は、シミュレーション解析によって求めることが可能であるので、パネル形状の設計段階でデントが発生する荷重を予測することが可能となる。
すなわち、図面設計の段階で耐デント性を評価出来るので、例えば新車開発におけるトライアンドエラーを低減させることが可能となる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to evaluate accurately the dent generation | occurrence | production in a steep surface curvature change part in panel components containing a steep surface curvature change part (surface shape steep part), such as a character line part.
In particular, since the load that generates plastic strain on the plate surface can be obtained by simulation analysis, it is possible to predict the load at which dent is generated at the design stage of the panel shape.
That is, since dent resistance can be evaluated at the stage of drawing design, for example, trial and error in new vehicle development can be reduced.

曲率が急峻に変化していない部位でのデント発生を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the dent generation | occurrence | production in the site | part where the curvature has not changed sharply. 面形状急峻部位でのデント発生を説明する断面模式図である。It is a cross-sectional schematic diagram explaining dent generation | occurrence | production in a surface shape steep part. シミュレーション解析での解析モデルを説明する図である。It is a figure explaining the analysis model in simulation analysis. 実験に使用する板及びその拘束を説明する図である。It is a figure explaining the board used for experiment, and its restraint. 塑性ひずみ量と負荷荷重との関係を示す図である。It is a figure which shows the relationship between the amount of plastic strains and a load load. 荷重−変位の関係を示す図である。It is a figure which shows the relationship of a load-displacement. 本発明に基づく実施形態に係る処理フローを説明する図である。It is a figure explaining the processing flow which concerns on embodiment based on this invention. 本発明に基づく実施形態に係るFEM解析モデルを説明する図である。It is a figure explaining the FEM analysis model which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る材料の真応力−真ひずみデータを説明する図である。It is a figure explaining the true stress-true strain data of the material which concerns on embodiment based on this invention.

次に、本発明の実施形態について図面を参照しつつ説明する。
まず、本発明に基づくデント予測方法の妥当性について説明する。
図1は、自動車用外板部品のアウターパネルにおける曲率が急峻に変化していない非急峻部位(面形状急峻部位以外の位置)でのデント発生を説明する断面模式図である。図2は、自動車用外板部品のアウターパネルにおける面形状急峻部位2でのデント発生を説明する断面模式図である。
Next, embodiments of the present invention will be described with reference to the drawings.
First, the validity of the dent prediction method based on this invention is demonstrated.
FIG. 1 is a schematic cross-sectional view for explaining the occurrence of dent at a non-steep portion (a position other than a surface shape steep portion) where the curvature of an outer panel of an automotive outer plate component does not change sharply. FIG. 2 is a schematic cross-sectional view for explaining the occurrence of dent at the surface shape steep portion 2 in the outer panel of the automotive outer plate part.

図1のように曲率が急峻に変化する面形状急峻部位とは別の部位である非急峻部位を対象として、パネル1の凸側の面から板厚方向に、圧子によって、当該パネル1に塑性変形が発生するまで荷重を負荷した場合、パネル1のオモテ面1a(曲率の凸側の面、図1では上側)には圧縮ひずみが発生すると共に、ウラ面1b(曲率が凹側の面、図1では下側)には引張ひずみが発生する。アウターパネル形状が基本とする全体のプロフィールの曲率半径は、通常500〜10000mm程度の範囲に設計されているなど比較的緩い場合が多い。また、外板に使用される鋼板の板厚は0.6〜0.8mmと比較的薄い。このために、板厚方向に荷重を負荷した場合、パネル1のオモテ面1aとウラ面1bと間のひずみ量差は小さいことから、板厚方向中心位置または板厚平均のひずみ量で耐デント性を評価しても問題は無い。   As shown in FIG. 1, a non-steep portion that is a different portion from the surface shape steep portion where the curvature sharply changes is targeted, and the panel 1 is plasticized by the indenter in the thickness direction from the convex side surface of the panel 1. When a load is applied until deformation occurs, compressive strain occurs on the front surface 1a of the panel 1 (the surface on the convex side of curvature, the upper side in FIG. 1), and the back surface 1b (the surface on which the curvature is concave), A tensile strain is generated on the lower side in FIG. In many cases, the radius of curvature of the entire profile based on the outer panel shape is relatively loose, such as usually designed in a range of about 500 to 10,000 mm. Moreover, the plate | board thickness of the steel plate used for an outer plate is comparatively thin with 0.6-0.8 mm. For this reason, when a load is applied in the thickness direction, the difference in strain between the front surface 1a and the back surface 1b of the panel 1 is small. There is no problem even if the sex is evaluated.

一方、曲率が急峻に変化する面形状急峻部位2となるキャラクターライン部に対し、図2に示すように、キャラクターラインの凸部側のオモテ面1a(図2では上面)から、図1と同様に、圧子によって、キャラクターラインを中心に荷重を負荷した場合、上述の非急峻部位と同様に、オモテ面1aに圧縮ひずみが、ウラ面1bには引張ひずみが発生する。   On the other hand, as shown in FIG. 2, from the front surface 1a (upper surface in FIG. 2) on the convex side of the character line to the character line portion that becomes the surface shape steep portion 2 where the curvature sharply changes, as in FIG. In addition, when a load is applied around the character line by the indenter, a compressive strain is generated on the front surface 1a and a tensile strain is generated on the back surface 1b as in the non-steep portion described above.

しかし、図1のような非急峻部位と比較し、面形状急峻部位2でのデント発生は、一種の曲げ戻し変形に近い状態と考えられるため、デント(永久凹み)が発生するだけの荷重を負荷した場合、パネル1のオモテ面1aに発生するひずみ量とウラ面1bに発生するひずみ量との差であるひずみ量差は大きいと考えられる。このため、面形状急峻部位2におけるデント量は、オモテ面1aの圧縮ひずみ量およびウラ面1bの引張ひずみ量に応じて変化すると思われるため、板厚中心または板厚平均のひずみ量で評価すると、実際のデント生成現象をシミュレーションできないと推定される。   However, compared with a non-steep portion as shown in FIG. 1, the occurrence of dent in the surface shape steep portion 2 is considered to be a state close to a kind of bending back deformation, so a load sufficient to generate dent (permanent dent) is applied. When a load is applied, it is considered that the strain difference, which is the difference between the strain generated on the front surface 1a of the panel 1 and the strain generated on the back surface 1b, is large. For this reason, the amount of dent in the surface shape steep portion 2 seems to change according to the amount of compressive strain of the front surface 1a and the amount of tensile strain of the back surface 1b. It is estimated that the actual dent generation phenomenon cannot be simulated.

次に、前記推定を検証するため、図3に示す、キャラクターラインを模擬した単純形状モデルを設定して、FEM解析によるシミュレーション、及び実験を行った。
まずFEM解析について説明する。
前記モデルは、平板2枚を170度の角度で突合せにて組み合わせ、その2枚の平板間の連結部分にR=5mmの曲率半径の曲率曲面形状を形成した三角屋根形状のモデルである。ここで、平面部分の大きさは400mm×600mmとした。そして、この三角屋根形状のモデルの稜線部分がキャラクターラインを模擬したものとなる。
Next, in order to verify the estimation, a simple shape model simulating a character line shown in FIG. 3 was set, and a simulation and experiment by FEM analysis were performed.
First, FEM analysis will be described.
The model is a triangular roof shape model in which two flat plates are combined at an angle of 170 degrees and a curved curved surface shape having a radius of curvature of R = 5 mm is formed at a connecting portion between the two flat plates. Here, the size of the planar portion was 400 mm × 600 mm. The ridge line portion of the triangular roof shape model simulates the character line.

FEM解析では、荷重負荷の圧子は剛体(サイズ20mm幅×60mm長さ×5mm厚さ)に設定し、荷重負荷位置をキャラクターライン直上のパネル中央部に設定した。FEM解析では、図8のFEMモデルに示すように、メッシュサイズを5mm(但し、圧子接触部とその近傍100mm角ではメッシュサイズを2mm)に設定し、ソルバーとしてLSTC社(Livermore Software Technology Corporation)のLS−DYNA ver9.71を使用して、静的陰解法にて実施した。また、飛び移り現象を計算するため、圧子を0.01mmピッチで押し込む変位増分による解析にて行った。このとき境界条件として、モデルの4辺をX、Y、Z方向に対し並進方向の移動のみ拘束した。
材料条件としては、以下に説明する実験で使用した鋼板(降伏強度YP163MPa、引張強度TS293MPa、伸びEl50%)の引張試験結果から得られた、図9に示す真応力−真ひずみデータを使用した。ヤング率は206GPa、板厚は0.8mmである。
そして、FEM解析にて、圧子が接触するパネル部分(キャラクターライン稜線部分)のメッシュ20個についての塑性ひずみ量を、板厚中心部、板表面(オモテ側、及びウラ側)について、それぞれ算出した。
In the FEM analysis, the load indenter was set to a rigid body (size 20 mm width × 60 mm length × 5 mm thickness), and the load load position was set to the center of the panel directly above the character line. In the FEM analysis, as shown in the FEM model in FIG. 8, the mesh size is set to 5 mm (however, the mesh size is set to 2 mm at the indenter contact portion and the vicinity 100 mm square), and the solver is LSTC (Livermore Software Corporation). It was performed by static implicit method using LS-DYNA ver9.71. Further, in order to calculate the jumping phenomenon, analysis was performed by an incremental displacement in which the indenter was pushed at a pitch of 0.01 mm. At this time, as a boundary condition, the four sides of the model were restricted only in translation in the X, Y, and Z directions.
As the material conditions, the true stress-true strain data shown in FIG. 9 obtained from the tensile test results of the steel sheet (yield strength YP 163 MPa, tensile strength TS 293 MPa, elongation El 50%) used in the experiments described below were used. The Young's modulus is 206 GPa and the plate thickness is 0.8 mm.
And in FEM analysis, the plastic strain amount about 20 meshes of the panel part (character line ridge line part) that the indenter contacts was calculated for the plate thickness center part and the plate surface (front side and back side), respectively. .

次に、実験について説明する。
実験では、前記FEM解析で設定した圧子の条件と同様のサイズの鋼製圧子を使用した。材料は前記に述べた特性であり、鋼板(降伏強度YP163MPa、引張強度TS293MPa、伸びEl50%)の約400mm×600mmの平板(板厚0.8mm)を採用した。
そして、図4に示すように、前記平板の板中央部を予曲げした後、その予曲げによって稜線部分(頂角170度)を形成した板の4辺を治具に拘束することで、FEM解析で設定したモデルと同じ構成を実現した。なお、鋼板の4辺を治具に溶接にて接合することで拘束した。そして、前記予曲げによって形成された稜線部分に当該稜線の凸側(図4では上側)から、前記圧子で板厚方向に荷重負荷を実施した。荷重の負荷条件は、負荷する荷重を10Nピッチで増加させながら、各荷重毎に、荷重の負荷、除荷、及び除荷後の凹み量測定を繰り返し、前記凹み量が10μm発生した時点の負荷荷重をデント発生荷重とした。なお、凹み量は、ゲージ長さ50mmの3点ゲージを使用して測定した。
Next, experiments will be described.
In the experiment, a steel indenter having the same size as the indenter conditions set in the FEM analysis was used. The material has the characteristics described above, and a steel plate (yield strength YP163 MPa, tensile strength TS293 MPa, elongation El50%) of about 400 mm × 600 mm flat plate (plate thickness 0.8 mm) was adopted.
Then, as shown in FIG. 4, after pre-bending the plate center portion of the flat plate, the four sides of the plate on which the ridge line portion (vertical angle 170 degrees) is formed by the pre-bending are constrained by a jig. The same configuration as the model set in the analysis was realized. In addition, it restrained by joining 4 sides of a steel plate to a jig | tool by welding. Then, a load was applied to the ridge line portion formed by the pre-bending from the convex side of the ridge line (upper side in FIG. 4) in the plate thickness direction with the indenter. The load conditions are as follows: load load is increased at 10N pitch, load load, unloading, and measurement of the dent amount after unloading are repeated for each load. The load was the dent generation load. The dent amount was measured using a three-point gauge having a gauge length of 50 mm.

図5に、FEM解析によって求めた板厚中心部、板表面(オモテ側、及びウラ側)における塑性ひずみ量と負荷荷重との関係を示す。また、実験で求められたデント発生荷重は350Nであったので、図5には、その数値(デント発生荷重)も追記している。
また図6に、その時の実験で求めた荷重−変位の曲線を示す。この図6から分かるように、この実験では、飛び移り荷重が470Nであった。
以上の結果から分かるように、FEM解析によるシミュレーション解析において、板厚ウラ面1bでは、飛び移り荷重(470N)に到達するとともに塑性ひずみが発生しているが、板厚オモテ面1aではそれよりも低い約320Nで塑性ひずみが発生し始めていることが分かる。
実際にデントが発生したときのデント発生荷重が350Nであることから、キャラクターライン部では、板厚オモテ面1aの塑性ひずみが重要であることが分かった。
FIG. 5 shows the relationship between the amount of plastic strain and the load applied at the center of the plate thickness and the plate surface (front side and back side) determined by FEM analysis. Moreover, since the dent generation load calculated | required by experiment was 350 N, the numerical value (dent generation load) is also written in FIG.
FIG. 6 shows a load-displacement curve obtained in the experiment at that time. As can be seen from FIG. 6, in this experiment, the jumping load was 470N.
As can be seen from the above results, in the simulation analysis by the FEM analysis, the plate thickness back surface 1b reaches the jumping load (470N) and the plastic strain is generated, but the plate thickness front surface 1a is more than that. It can be seen that plastic strain starts to occur at a low value of about 320N.
Since the dent generation load when the dent was actually generated was 350 N, it was found that the plastic strain of the plate thickness front surface 1a is important in the character line portion.

更に、前記稜線部分の曲率半径を5mmから100mmに変更(組み合わせる平板間の角度は170度である)し、他の条件を上述と同じ条件として、FEM解析によるシミュレーション及び実験について実施してみた。この実験では、デント発生荷重は320Nであり、飛び移り荷重が460Nであった。そして、前記と同様に、FEM解析による板厚オモテ面1aでの塑性ひずみの発生荷重は約320Nであり、板厚ウラ面1bでの塑性ひずみ開始荷重が約460Nであった。
以上のようなシミュレーション解析及び実験から、発明者らは、曲率が急峻に変化するキャラクターライン部などの面形状急峻部位2にあっては、シミュレーション解析におけるオモテ面1aでの塑性ひずみが発生し始めるときの負荷荷重が、その部位によるデントが初めて発生したときの荷重であるとの知見を得た。
Furthermore, the curvature radius of the ridge line portion was changed from 5 mm to 100 mm (the angle between the flat plates to be combined was 170 degrees), and other conditions were the same as described above, and simulations and experiments by FEM analysis were performed. In this experiment, the dent generation load was 320 N and the jump load was 460 N. In the same manner as described above, the generation load of plastic strain on the plate thickness front surface 1a by FEM analysis was about 320N, and the plastic strain start load on the plate thickness back surface 1b was about 460N.
From the simulation analysis and experiment as described above, the inventors start to generate plastic strain on the front surface 1a in the simulation analysis in the surface shape steep portion 2 such as the character line portion where the curvature changes sharply. It was found that the load at the time was the load when the dent was generated for the first time.

すなわち、対象とするパネル1の材料条件とパネル形状とに基づき、面形状急峻部位2について荷重負荷による板オモテ面1aでの塑性ひずみが発生する最小負荷荷重である第1負荷荷重を求める事で、その面形状急峻部位2については、第1負荷荷重以上の荷重を負荷するとデントが発生し、デント発生荷重が設計段階で予測することが出来るという知見を得た。
なお、面形状急峻部位2以外、つまり曲率が急峻に変化していない部分についても、FEM解析におけるオモテ面1aでの塑性ひずみが発生し始めるときの負荷荷重をデント発生荷重としても良い。
That is, based on the material conditions and panel shape of the target panel 1, the first load load that is the minimum load load that causes plastic strain on the plate front surface 1 a due to the load on the surface shape steep portion 2 is obtained. The surface shape steep portion 2 was found to generate dent when a load greater than or equal to the first load is applied, and the dent generated load can be predicted at the design stage.
It should be noted that the load generated when the plastic strain on the front surface 1a in the FEM analysis begins to occur may also be used as the dent generation load for portions other than the surface shape steep portion 2, that is, the portion where the curvature does not change sharply.

次に、本発明に基づく耐デント性評価方法について説明する。
図7は、耐デント性予測の処理手順を説明する図である。
まず、ステップS10にて、対象とするパネル1の材料条件及び、目的とするパネル形状に対応するモデルを解析者が設定する。例えば、材料条件としては、真応力−真ひずみ曲線、ヤング率、板厚、圧子情報(形状)を、パネル形状の条件としては、パネルサイズ(長さ、幅)パネル面の曲率半径、面形状急峻部位の頂点曲率半径、頂角、さらに拘束条件(並進移動の可否、回転移動の可否)を設定する。
Next, the dent resistance evaluation method based on this invention is demonstrated.
FIG. 7 is a diagram illustrating a processing procedure for dent resistance prediction.
First, in step S10, an analyst sets a model corresponding to the material conditions of the target panel 1 and the target panel shape. For example, the material conditions are true stress-true strain curve, Young's modulus, plate thickness, indenter information (shape), and panel shape conditions are panel size (length, width) radius of curvature of the panel surface, surface shape The apex radius of curvature and apex angle of the steep part and further constraint conditions (whether translational movement is possible, whether rotational movement is possible) are set.

次に、ステップS20にて、前記モデルについてコンピューターがシミュレーション解析を行い、面形状急峻部位2に対し、曲率が凸となる側の面から板厚方向に荷重を負荷したときの、荷重負荷側の面であるオモテ面1aで塑性ひずみが発生し始めるときの負荷荷重を第1負荷荷重として解析者が求める。
シミュレーション解析は、例えば、上述のように静的陰解法を用いたFEM解析等を採用すればよい。
Next, in step S20, the computer performs a simulation analysis on the model, and when the load is applied to the surface shape steep portion 2 from the surface on which the curvature is convex in the plate thickness direction, The analyst obtains the load applied when the plastic strain starts to occur on the front surface 1a, which is the surface, as the first load load.
For the simulation analysis, for example, FEM analysis using the static implicit method as described above may be employed.

次に、ステップS30では、デント発生荷重である第1負荷荷重が予め設定した目標デント発生荷重T1未満であるか否かを解析者が判定する。
前記ステップS30の条件を満足する場合(つまり、第1負荷荷重が目標デント発生荷重T1未満である場合)には、目標とする耐デント性を得ることが出来ないとして、ステップS40に移行する。一方、前記条件を満足しない場合(つまり、第1負荷荷重が目標デント発生荷重T1以上である場合)には、目標とする耐デント性を得ることが出来るとして、ステップS50に移行する。
Next, in step S30, the analyst determines whether or not the first load load that is a dent generation load is less than a preset target dent generation load T1.
When the condition of step S30 is satisfied (that is, when the first load load is less than the target dent generation load T1), the target dent resistance cannot be obtained, and the process proceeds to step S40. On the other hand, when the above condition is not satisfied (that is, when the first load load is equal to or greater than the target dent generation load T1), it is determined that the target dent resistance can be obtained, and the process proceeds to step S50.

ステップS40では、前記第1負荷荷重を対象とする面形状急峻部位2のデント発生荷重、飛び移り現象発生荷重として表示すると共に、解析者がパネルの条件変更の要求を行い、その要求に応じて設定されたパネル形状や材料条件の変更情報の入力を取得して更新する処理をコンピューターが行った後に、前記ステップS20に移行して、前記処理をコンピューターおよび解析者が繰り返す。例えば、材料条件の変更情報として、真応力−真ひずみ曲線、板厚などを、パネル形状の条件の変更情報として、パネル面の曲率半径、面形状急峻部位の頂点の曲率半径、頂角などを入力する。
ステップS50では、前記第1負荷荷重を対象とする面形状急峻部位2のデント発生荷重として表示して、終了する。
なお、前記処理は、面形状急峻部位2毎に実施するが、面形状急峻部位2が連続する場合には、その代表点や予め設定した距離間隔に評価点を解析者が設定し、その各評価点毎に実施すれば良い。
In step S40, the first load load is displayed as a dent generation load and a jump phenomenon generation load of the surface shape steep portion 2 and the analyst requests a panel condition change, and according to the request After the computer performs a process of acquiring and updating the input of the set panel shape and material condition change information, the process proceeds to step S20, and the computer and the analyst repeat the process. For example, the change information of material conditions is true stress-true strain curve, plate thickness, etc., and the change information of panel shape conditions is the radius of curvature of the panel surface, the radius of curvature of the apex of the steep surface shape, the apex angle, etc input.
In step S50, the first load load is displayed as a dent generation load of the surface shape steep portion 2 and the process ends.
The above processing is performed for each surface shape steep portion 2, but when the surface shape steep portion 2 is continuous, the analyst sets evaluation points at the representative points or preset distance intervals. What is necessary is just to implement for every evaluation point.

以上のように、本実施形態では、キャラクターライン部等、急峻な面曲率変化部を含むパネル1において、急峻な面曲率変化部でのデント発生を正確に予測することが可能となる。しかも、シミュレーション解析の時点で予測することが可能である。
そして、予測したデント発生荷重によって、図面の設計段階で目的とするデント発生荷重以上となるように、設計の変更が可能となる。
なおこのとき、シミュレーション解析において、弾性変形挙動に関する評価値である張り剛性の解析および飛び移り現象発生荷重の評価にも適用するようにしても良い。
As described above, in the present embodiment, in the panel 1 including the steep surface curvature changing portion such as the character line portion, it is possible to accurately predict the occurrence of dent at the steep surface curvature changing portion. Moreover, prediction can be made at the time of simulation analysis.
Then, the design can be changed so that the predicted dent generation load becomes equal to or higher than the target dent generation load at the design stage of the drawing.
At this time, the simulation analysis may be applied to an analysis of the tension rigidity, which is an evaluation value related to the elastic deformation behavior, and an evaluation of the jump phenomenon occurrence load.

1 パネル
1a オモテ面
1b ウラ面
2 面形状急峻部位
1 Panel 1a Front side 1b Back side 2 Surface shape steep part

Claims (2)

曲率が急峻に変化する面形状急峻部位を有するパネル板における、前記面形状急峻部位の耐デント性の評価方法であって、
前記パネル板のパネル形状条件、前記パネル板に適用する材料条件を用いて、有限要素解析シミュレーションを行なうことにより、前記面形状急峻部位における板表面で塑性ひずみが発生する負荷荷重を求め、当該負荷荷重に基づいて、当該面形状急峻部位での耐デント性を評価することを特徴とする耐デント性評価方法。
In a panel plate having a surface shape steep portion where the curvature changes sharply, the method for evaluating dent resistance of the surface shape steep portion,
By performing a finite element analysis simulation using the panel shape conditions of the panel plate and the material conditions applied to the panel plate, a load load at which plastic strain occurs on the plate surface at the surface shape steep portion is obtained, and the load A dent resistance evaluation method, wherein the dent resistance at a steep portion of the surface shape is evaluated based on a load.
前記面形状急峻部位における曲率が凸となる側の板表面で塑性ひずみが発生する負荷荷重に基づき、当該面形状急峻部位でのデント発生時点の負荷荷重を算出することを特徴とする請求項1に記載した耐デント性評価方法。
2. The load at the time of occurrence of a dent at the surface shape steep portion is calculated based on a load load at which plastic strain occurs on the surface of the plate having a convex curvature at the surface shape steep portion. Dent resistance evaluation method described in 1.
JP2011269233A 2011-12-08 2011-12-08 Dent resistance evaluation method Active JP5919782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011269233A JP5919782B2 (en) 2011-12-08 2011-12-08 Dent resistance evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269233A JP5919782B2 (en) 2011-12-08 2011-12-08 Dent resistance evaluation method

Publications (2)

Publication Number Publication Date
JP2013120553A true JP2013120553A (en) 2013-06-17
JP5919782B2 JP5919782B2 (en) 2016-05-18

Family

ID=48773155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269233A Active JP5919782B2 (en) 2011-12-08 2011-12-08 Dent resistance evaluation method

Country Status (1)

Country Link
JP (1) JP5919782B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697863A (en) * 2015-01-05 2015-06-10 武汉华威专用汽车检测有限责任公司 Rigidity test device and method of vehicle interior ornament
JP2016218785A (en) * 2015-05-21 2016-12-22 Jfeスチール株式会社 Panel inversion prediction method for vehicle opening/closing component and vehicle opening/closing component prepared for panel inversion using the method
CN107045567A (en) * 2017-01-24 2017-08-15 同济大学 A kind of window frame structure design method based on the fine equivalent model of door sealing
JP2019090657A (en) * 2017-11-13 2019-06-13 Jfeスチール株式会社 Method for predicting dent resistance of panel component
CN111400825A (en) * 2020-04-08 2020-07-10 重庆金康赛力斯新能源汽车设计院有限公司 Anti-concavity performance simulation method and device, storage medium and computer equipment
JP2021001754A (en) * 2019-06-20 2021-01-07 Jfeスチール株式会社 Formability evaluation method for metal sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305160A (en) * 1994-05-11 1995-11-21 Nippon Steel Corp Production of dent resistant cold rolled steel sheet for deep drawing excellent in bulging property
JPH10320432A (en) * 1997-05-16 1998-12-04 Nec Corp Method and system for plasticity analysis using finite element method, and recording medium where plasticity analyzing program using finite element method is recorded
US20040172224A1 (en) * 2003-02-25 2004-09-02 Sriram Sadagopan System and method for prediction of panel performance under localized loading conditions
JP2011158270A (en) * 2010-01-29 2011-08-18 Daihatsu Motor Co Ltd Method of estimating dent rigidity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305160A (en) * 1994-05-11 1995-11-21 Nippon Steel Corp Production of dent resistant cold rolled steel sheet for deep drawing excellent in bulging property
JPH10320432A (en) * 1997-05-16 1998-12-04 Nec Corp Method and system for plasticity analysis using finite element method, and recording medium where plasticity analyzing program using finite element method is recorded
US20040172224A1 (en) * 2003-02-25 2004-09-02 Sriram Sadagopan System and method for prediction of panel performance under localized loading conditions
JP2011158270A (en) * 2010-01-29 2011-08-18 Daihatsu Motor Co Ltd Method of estimating dent rigidity

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697863A (en) * 2015-01-05 2015-06-10 武汉华威专用汽车检测有限责任公司 Rigidity test device and method of vehicle interior ornament
JP2016218785A (en) * 2015-05-21 2016-12-22 Jfeスチール株式会社 Panel inversion prediction method for vehicle opening/closing component and vehicle opening/closing component prepared for panel inversion using the method
CN107045567A (en) * 2017-01-24 2017-08-15 同济大学 A kind of window frame structure design method based on the fine equivalent model of door sealing
CN107045567B (en) * 2017-01-24 2020-06-02 同济大学 Window frame structure design method based on vehicle door sealing fine equivalent model
JP2019090657A (en) * 2017-11-13 2019-06-13 Jfeスチール株式会社 Method for predicting dent resistance of panel component
JP2021001754A (en) * 2019-06-20 2021-01-07 Jfeスチール株式会社 Formability evaluation method for metal sheet
JP7031640B2 (en) 2019-06-20 2022-03-08 Jfeスチール株式会社 How to evaluate the formability of metal plates
CN111400825A (en) * 2020-04-08 2020-07-10 重庆金康赛力斯新能源汽车设计院有限公司 Anti-concavity performance simulation method and device, storage medium and computer equipment

Also Published As

Publication number Publication date
JP5919782B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5919782B2 (en) Dent resistance evaluation method
JP5582010B2 (en) Tension stiffness evaluation indenter model, tension stiffness analysis apparatus and analysis method using the indenter model
JP5445381B2 (en) Method and apparatus for predicting bending fracture of material, program, and recording medium
US9773077B2 (en) System and method for prediction of snap-through buckling of formed steel sheet panels
JP4386294B2 (en) Food Dent Performance Evaluation Method
KR101622584B1 (en) Panel part evaluation method, panel part evaluation device, and method for manufacturing panel part for automobiles
JP5505295B2 (en) Surface shape design method for automotive outer plate parts with excellent dent resistance and the parts
JP5073611B2 (en) Method for evaluating collision-resistant reinforcing material for vehicle using finite element method, computer program, and computer-readable storage medium
JP5210085B2 (en) Deformation forecasting method
JP5673636B2 (en) Panel component evaluation method, panel component evaluation apparatus, and automotive panel component manufacturing method
US11731187B2 (en) Press forming method, rigidity-improvement-position specifying method, press forming system, and press-formed product
JP5382104B2 (en) Panel evaluation method
JP5673635B2 (en) Panel component evaluation method, panel component evaluation apparatus, and automotive panel component manufacturing method
Chen et al. Springback prediction improvement using new simulation technologies
CN111655391B (en) Compression molding method, rigidity-improving position determining method, compression molding system, and compression molded article
JP7264116B2 (en) Method for evaluating rigidity of press-formed product, method for determining shape, and method for manufacturing press-formed product
JP2012214212A (en) Structural member design method
JP2019090657A (en) Method for predicting dent resistance of panel component
Addis Automobile roof panel forming: prediction and compensation of springback and application of numerical simulation based on dynaform
JP2023054563A (en) Molding analysis method, and program
Zeng et al. Stretch Flanging Formability Prediction and Shape Optimization
Xinhai et al. A Review of Numerical Simulation in Sheet Metal Forming Process
Sohmshetty et al. Forming Effects to Product Attribute Coupled CAE Process and Benefits Investigation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5919782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250