JP2013120341A - Production method of recycled resist and recycle usage of resist - Google Patents

Production method of recycled resist and recycle usage of resist Download PDF

Info

Publication number
JP2013120341A
JP2013120341A JP2011269085A JP2011269085A JP2013120341A JP 2013120341 A JP2013120341 A JP 2013120341A JP 2011269085 A JP2011269085 A JP 2011269085A JP 2011269085 A JP2011269085 A JP 2011269085A JP 2013120341 A JP2013120341 A JP 2013120341A
Authority
JP
Japan
Prior art keywords
resist
regenerated
unused
solvent
recycled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011269085A
Other languages
Japanese (ja)
Other versions
JP6222887B2 (en
Inventor
Toshinori Taketsutsumi
俊紀 竹堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2011269085A priority Critical patent/JP6222887B2/en
Priority to TW101126048A priority patent/TWI505045B/en
Publication of JP2013120341A publication Critical patent/JP2013120341A/en
Application granted granted Critical
Publication of JP6222887B2 publication Critical patent/JP6222887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a production method of recycled resist having a high storage stability, and provide a recycle usage of resist.SOLUTION: If a solvent of a used resist is mainly composed of propylene glycol monomethyl ether acetate (PGMEA) and a rinse liquid contains another solvent having the boiling temperature lower than the PGMEA, a used mixture containing the used resist and a waste liquid of the rinse liquid is recovered and concentrated, and then a recycled resist is prepared by adding an unused resist to a concentrated liquid so that a percentage of the unused resist is 20 mass% or more. Consequently, the recycled resist can be produced which is hard to generate foreign matters after a long-term storage and can form a resist film comparable to the unused resist. By using such a method, the resist can be used multiple times.

Description

本発明は、再生レジストの製造方法及びレジストのリサイクル使用方法に関する。   The present invention relates to a method for producing a regenerated resist and a method for recycling the resist.

半導体や液晶パネル等の製造プロセスにおいては、基板上にレジスト(レジスト液)を塗布して露光現像するリソグラフィが行われる。近年の液晶パネル等の大型化に伴い、使用する基板も大型化が進んでいることからレジストの使用量も増大している。代表的な塗布方式にはスピンコート方式やダイコート(スリットコート)方式がある。   In a manufacturing process of a semiconductor, a liquid crystal panel, or the like, lithography is performed in which a resist (resist solution) is applied on a substrate and exposed and developed. With the recent increase in size of liquid crystal panels and the like, the amount of resist used is also increasing because the size of substrates used has been increasing. Typical coating methods include a spin coating method and a die coating (slit coating) method.

基板へのレジストの塗布においては、実際に基板上に被膜として残るレジスト量以上の過剰量のレジストが必要になることから、余剰の使用済レジストが常に発生する。使用済レジストは無視できない量であるため、回収してリサイクル利用することが、経済的、環境的にも望まれる。   In the application of the resist to the substrate, an excessive amount of resist more than the amount of resist actually remaining as a film on the substrate is required, so that an excessive used resist is always generated. Since the amount of used resist is not negligible, it is economically and environmentally desirable to collect and recycle it.

使用済みレジストの回収やリサイクルに関して、いくつかの提案がされている。例えば、回転塗布時に飛散したレジストを捕集し、捕集されたレジストをレジストの溶剤で溶解して回収し、濾過、減圧蒸留処理を行って再生する方法(特許文献1参照)、レジスト塗布装置から回収したレジスト及びレジストの溶剤と同じ成分からなる洗浄液について、溶剤成分を蒸発させて粘度を調整して再生する方法(特許文献2参照)等が提案されている。更に、本発明者らは、レジストの溶剤とリンス液が異なる成分であってもレジストが再利用できる再生レジストの製造方法として、特定の溶剤を所定の濃度以下になるように分留する工程を含む方法(特許文献3参照)を提案している。   Several proposals have been made regarding the collection and recycling of used resist. For example, a method of collecting a resist scattered at the time of spin coating, recovering the collected resist by dissolving it with a resist solvent, performing filtration and vacuum distillation treatment (see Patent Document 1), resist coating apparatus A method of regenerating the cleaning liquid composed of the resist and the cleaning liquid composed of the same components as the resist solvent by adjusting the viscosity by evaporating the solvent component has been proposed (see Patent Document 2). Furthermore, the present inventors, as a method for producing a regenerated resist that can reuse the resist even if the resist solvent and the rinsing liquid are different components, include a step of fractionating a specific solvent to a predetermined concentration or less. The method (refer patent document 3) including is proposed.

特開平9−34121号公報JP-A-9-34121 特開平11−245226号公報JP-A-11-245226 特開2010−237624号公報JP 2010-237624 A

ところが、特許文献3の方法によって、再生レジストを繰り返しリサイクル使用していると、長期保存時に異物が発生する等、保存安定性に問題があることがわかっている。   However, it has been found that when the recycled resist is repeatedly recycled by the method of Patent Document 3, there is a problem in storage stability such as generation of foreign matters during long-term storage.

本発明は、上記課題に鑑みてなされたものであり、保存安定性の高い再生レジストの製造方法及びレジストのリサイクル使用方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a method for producing a regenerated resist having high storage stability and a method for recycling the resist.

本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、使用済みレジストとリンス液の廃液と含む使用済み混合液を回収し、濃縮した後に、未使用レジストを所定量添加することにより、長期保存安定性に優れた再生レジストを製造できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors collect a used mixed solution including a used resist and a waste solution of a rinsing solution, concentrate it, and then add a predetermined amount of an unused resist. Thus, it was found that a regenerated resist having excellent long-term storage stability can be produced, and the present invention has been completed.

本発明の第一の態様は、レジストを塗布した後に、残余の使用済みレジストを回収し、該使用済レジストから再生レジストを製造する再生レジストの製造方法であって、前記使用済みレジストとリンス液の廃液とを含む、使用済み混合液を回収する回収工程と、前記使用済み混合液を濃縮して濃縮液を調製する濃縮工程と、未使用レジストの割合が20質量%以上となるように前記濃縮液に未使用レジストを添加して再生レジストを調製する再生レジスト調製工程と、を含み、前記使用済みレジストの溶剤が主としてプロピレングリコールモノメチルエーテルアセテートであり、前記リンス液がプロピレングリコールモノメチルエーテルアセテートより低沸点の他の溶剤を含む、再生レジストの製造方法である。   A first aspect of the present invention is a method for producing a regenerated resist in which a remaining used resist is collected after the resist is applied, and a regenerated resist is produced from the used resist. A recovery step for recovering a used mixed solution, a concentration step for concentrating the used mixed solution to prepare a concentrated solution, and a ratio of unused resist to 20% by mass or more. A regenerated resist preparation step of preparing a regenerated resist by adding an unused resist to the concentrate, wherein the solvent of the used resist is mainly propylene glycol monomethyl ether acetate, and the rinse liquid is from propylene glycol monomethyl ether acetate This is a method for producing a regenerated resist containing another solvent having a low boiling point.

また本発明の第二の態様は、レジスト貯蔵タンクからレジスト塗布装置へレジストを供給する供給工程と、前記レジストを前記レジスト塗布装置において基板に塗布する塗布工程と、残余の使用済みレジストとリンス液の廃液とを含む、使用済み混合液を回収する回収工程と、前記使用済み混合液を濃縮して濃縮液を調製する濃縮工程と、未使用レジストの割合が20質量%以上となるように前記濃縮液に未使用レジストを添加して再生レジストを調製する再生レジスト調製工程と、前記再生レジストを前記レジスト貯蔵タンクへ貯蔵する貯蔵工程と、を含み、前記使用済みレジストの溶剤が主としてプロピレングリコールモノメチルエーテルアセテートであり、前記リンス液がプロピレングリコールモノメチルエーテルアセテートより低沸点の他の溶剤を含む、レジストのリサイクル使用方法である。   The second aspect of the present invention includes a supply step of supplying a resist from a resist storage tank to a resist coating device, a coating step of coating the resist on a substrate in the resist coating device, and the remaining used resist and rinsing liquid. A recovery step for recovering a used mixed solution, a concentration step for concentrating the used mixed solution to prepare a concentrated solution, and a ratio of unused resist to 20% by mass or more. A regenerated resist preparation step of preparing a regenerated resist by adding an unused resist to the concentrate, and a storage step of storing the regenerated resist in the resist storage tank, wherein the solvent of the used resist is mainly propylene glycol monomethyl Ether acetate, and the rinse liquid has a lower boiling point than propylene glycol monomethyl ether acetate. Include other solvents, it is recycled use of the resist.

本発明によれば、長期保存しても、異物の発生が起こりにくく、複数回再生利用しても未使用レジストと遜色ないレジスト膜を形成できる再生レジストを製造し、リサイクル使用することができる。   According to the present invention, it is possible to manufacture and recycle a recycled resist that can form a resist film that hardly forms foreign matter even after long-term storage and can form a resist film that is not inferior to an unused resist even after being recycled a plurality of times.

本発明の再生レジストの製造方法の一例を示すフローチャートであるIt is a flowchart which shows an example of the manufacturing method of the reproduction | regeneration resist of this invention. 本発明のレジストのリサイクル使用方法の一例を示すフローチャートである。It is a flowchart which shows an example of the recycling usage method of the resist of this invention. 実施例1の再生レジスト及び参考例のレジストにおける、線幅と露光時間との関係を示したグラフである。6 is a graph showing the relationship between the line width and the exposure time in the regenerated resist of Example 1 and the resist of Reference Example.

以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の再生レジストの製造方法の基本フローチャートである。以下、図1に沿って本発明を説明する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a basic flowchart of a method for producing a regenerated resist according to the present invention. Hereinafter, the present invention will be described with reference to FIG.

[再生レジストの製造方法]
[回収工程]
回収工程S10は、使用済みレジストとリンス液の廃液とを含む、使用済み混合液を回収する工程である。
[Recycled resist manufacturing method]
[Recovery process]
The recovery step S10 is a step of recovering the used mixed liquid including the used resist and the rinsing liquid waste liquid.

基板上にレジストを塗布した際には、基板上に被膜として残らず、塗布用の装置内に飛散したり落下したりすることによって発生する残余のレジストがある。これらを使用済みレジストとして回収する。レジストの塗布は、スピンコート法、ロールコーター法、バーコーター法等公知の方法を用いて行うことができる。   When a resist is applied on the substrate, there is a residual resist that does not remain as a film on the substrate but is generated by scattering or dropping in the coating apparatus. These are collected as used resist. The resist can be applied by using a known method such as a spin coat method, a roll coater method, a bar coater method or the like.

本発明で用いられるレジストとは、少なくともベース樹脂成分を含む従来公知のレジスト成分を、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を主とする有機溶剤に溶解してなる組成物である。もちろんポジ型レジスト、ネガ型レジストいずれでもよく、必要に応じて酸発生剤、増感剤、感光剤、界面活性剤等の従来公知の化合物を含んでいてもよい。PGMEAの濃度は50%以上であればよく、60%以上が好ましく、80%以上がより好ましい。未使用レジストであっても、本発明の方法により製造された再生レジストであってもよい。   The resist used in the present invention is a composition obtained by dissolving a conventionally known resist component including at least a base resin component in an organic solvent mainly composed of propylene glycol monomethyl ether acetate (PGMEA). Of course, either a positive resist or a negative resist may be used, and a conventionally known compound such as an acid generator, a sensitizer, a photosensitizer, and a surfactant may be included as necessary. The concentration of PGMEA may be 50% or more, preferably 60% or more, and more preferably 80% or more. Even if it is an unused resist, the reproduction | regeneration resist manufactured by the method of this invention may be sufficient.

レジストの塗布の後、引き続き行うエッジリンス、バックリンス等の洗浄により発生する、レジスト膜の不要部分とリンス液とを含む廃液を更に回収する。これらの廃液と前記使用済みレジストとを含むものが、使用済み混合液である。リンス方法は、浸漬法、スプレー法等特に限定されず、リンス液処理時間も不要部分の洗浄除去に十分な時間であればよく、特に限定されるものではない。   After the application of the resist, a waste solution containing unnecessary portions of the resist film and a rinse solution, which is generated by subsequent cleaning such as edge rinse and back rinse, is further collected. What contains these waste liquids and the used resist is a used mixed liquid. The rinsing method is not particularly limited, such as a dipping method or a spray method, and the rinsing liquid treatment time is not particularly limited as long as it is a time sufficient for washing and removing unnecessary portions.

本発明で用いられるリンス液とは、PGMEA(沸点146℃)より低沸点の他の溶剤を含むものである。前記他の溶剤は、沸点120℃であるプロピレングリコールモノメチルエーテル、沸点126℃である酢酸ブチル、沸点142℃であるメチル−3−メトキシプロピオネート等が挙げられる。後述する濃縮工程において分留率の低下を防止するために、PGMEAとの沸点差は大きい方が好ましく、10℃以上の沸点差が好ましく、20℃以上の沸点差がより好ましい。これらリンス液は単独で使用しても、複数組み合わせて使用してもよい。   The rinse liquid used in the present invention contains another solvent having a boiling point lower than that of PGMEA (boiling point 146 ° C.). Examples of the other solvent include propylene glycol monomethyl ether having a boiling point of 120 ° C., butyl acetate having a boiling point of 126 ° C., and methyl-3-methoxypropionate having a boiling point of 142 ° C. In order to prevent a fractional distillation rate from decreasing in the concentration step described later, the boiling point difference with PGMEA is preferably large, the boiling point difference of 10 ° C. or higher is preferable, and the boiling point difference of 20 ° C. or higher is more preferable. These rinsing solutions may be used alone or in combination.

[濃縮工程]
濃縮工程S11は、前記使用済み混合液から、前記他の溶剤が所定の濃度以下になるように濃縮して濃縮液を得る工程である。前記他の溶剤はPGMEAよりも沸点が低いため、濃縮により、その濃度を下げることができる。なお、本発明における濃縮とは完全な精留を意味するものではなく、沸点差を利用して所定の割合まで他の溶剤を減少させる化学操作を意味する。この濃縮工程S11は、濃縮後の溶剤組成を管理することが好ましいため、塗布装置のあるユーザーサイドではなく、好ましくはレジストメーカーサイドにて行われる。
[Concentration process]
The concentration step S11 is a step of obtaining a concentrated solution from the used mixed solution by concentrating the other solvent so as to have a predetermined concentration or less. Since the other solvent has a lower boiling point than PGMEA, the concentration can be lowered by concentration. The concentration in the present invention does not mean complete rectification but means a chemical operation in which other solvents are reduced to a predetermined ratio using a difference in boiling points. This concentration step S11 is preferably performed not on the user side with the coating apparatus but on the resist manufacturer side because it is preferable to manage the solvent composition after concentration.

濃縮方法は特に限定されないが、例えば、前記使用済み混合液を攪拌しながら加熱することで前記他の溶剤を蒸発させることにより行う。また、必要に応じて減圧下で前記使用済み混合液を攪拌しながら加熱し、前記他の溶剤を蒸発させるようにしてもよい。また、適宜必要に応じてPGMEAを再添加し、前記他の溶剤を蒸発させやすくしてもよい。   The concentration method is not particularly limited. For example, the concentration is performed by evaporating the other solvent by heating the used mixed liquid while stirring. Further, if necessary, the used mixed solution may be heated while stirring to evaporate the other solvent. Further, PGMEA may be re-added as necessary to facilitate evaporation of the other solvent.

濃縮工程S11では、再生レジストの使用目的に応じて濃縮程度を適宜設定することができるが、全溶剤中に占める前記他の溶剤の濃度が40%以下となるように濃縮することが好ましい。より好ましくは10%以下であり、更に好ましくは1%以下である。前記他の溶剤の濃度が40%以下であれば、必要性能に応じた用途で、再生レジストとして使用可能である。また、同じ理由でPGMEAの濃度は50%以上であることが好ましい。   In the concentration step S11, the degree of concentration can be appropriately set according to the purpose of use of the regenerated resist. However, it is preferable that the concentration is such that the concentration of the other solvent in the total solvent is 40% or less. More preferably, it is 10% or less, More preferably, it is 1% or less. If the concentration of the other solvent is 40% or less, it can be used as a regenerated resist in applications according to the required performance. For the same reason, the concentration of PGMEA is preferably 50% or more.

なお、濃縮工程S11において、一回の濃縮で前記他の溶剤の濃度を40%以下にすることができるが、濃縮工程S11を複数回行うことで、より前記他の溶剤の濃度を低くすることができる。これにより、前記他の溶剤の濃度をある程度自由に変えることができ、様々な形態の再生レジストの製造に利用でき、ユーザーの要求にも応えることができる。   In the concentration step S11, the concentration of the other solvent can be reduced to 40% or less by a single concentration. However, the concentration of the other solvent can be further reduced by performing the concentration step S11 a plurality of times. Can do. As a result, the concentration of the other solvent can be freely changed to some extent, can be used for the production of various forms of regenerated resist, and can meet user requirements.

[再生レジスト調製工程]
再生レジスト調製工程S12は、前記濃縮液に未使用レジストを添加して再生レジストを調製する工程である。未使用レジストを添加することにより、長期保存において異物の発生を抑える効果が得られる。
[Recycled resist preparation process]
The regenerated resist preparation step S12 is a step of preparing a regenerated resist by adding an unused resist to the concentrated solution. By adding an unused resist, an effect of suppressing the generation of foreign matters can be obtained in long-term storage.

ここで、長期保存して発生する異物は、パーティクルカウンターにより、単位体積あたりのパーティクルの個数として検出することができるが、パーティクルの数が増えると、均一なレジスト膜を形成できず、レジストとして使用できなくなる。パーティクルの発生しやすさとGPC分析での高分子量成分の濃度には密接な関係があり、レジスト製造直後のGPC高分子量成分ピークの面積百分率が10%を超えると、6ヶ月保存後のレジストにはパーティクルの発生が多く、レジスト感度が低くなる等の性能低下を生じ、レジストとして使用できなくなるという関係を見出している。
ここで、GPC分析での高分子量成分ピークとは、レジストに含まれるベース樹脂成分のメインピークよりも高分子量側に検出されるピークのことである。
GPC分析での高分子量成分ピークは、具体的に、例えば、以下の条件により測定することができ、15.5〜18.3分の位置に現れる。
装置:Shodex SYSTEM 21(昭和電工社製)
ガードカラム:Shodex KF−G
カラム:Shodex KF−801×3
検出器:Shodex UV 41
検出波長:310nm
溶離液:テトラヒドロフラン(THF)
流量:1.0mL/分
サンプル濃度:各レジスト組成物の固形分濃度0.2質量%のTHF溶液
Here, foreign matter generated after long-term storage can be detected as the number of particles per unit volume by a particle counter, but as the number of particles increases, a uniform resist film cannot be formed and used as a resist. become unable. There is a close relationship between the probability of particle generation and the concentration of high molecular weight components in GPC analysis. It has been found that a large number of particles are generated, resulting in performance degradation such as a decrease in resist sensitivity, which makes it impossible to use as a resist.
Here, the high molecular weight component peak in GPC analysis is a peak detected on the higher molecular weight side than the main peak of the base resin component contained in the resist.
Specifically, the high molecular weight component peak in the GPC analysis can be measured, for example, under the following conditions, and appears at a position of 15.5 to 18.3 minutes.
Apparatus: Shodex SYSTEM 21 (manufactured by Showa Denko)
Guard column: Shodex KF-G
Column: Shodex KF-801 × 3
Detector: Shodex UV 41
Detection wavelength: 310 nm
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Sample concentration: THF solution with a solid content concentration of 0.2% by mass for each resist composition

表1に、特許文献3の方法でレジストをリサイクルした例を示す。通常未使用レジストであっても、GPC高分子量成分ピークは4〜6面積%存在するが、特許文献3の方法により、使用済み混合液を濃縮する方法でリサイクルを繰り返すと、3回程度で再生レジスト調製直後のGPC高分子量成分ピークが10面積%を超え、6ヵ月後には0.3μm以上のパーティクルの個数が10,000個/mLを超え、レジストとしての使用に適さなくなる。   Table 1 shows an example of recycling the resist by the method of Patent Document 3. Even if it is a normally unused resist, the GPC high molecular weight component peak is present in 4 to 6 area%, but it is regenerated in about 3 times if recycling is repeated by concentrating the used mixed solution by the method of Patent Document 3. The GPC high molecular weight component peak immediately after the resist preparation exceeds 10 area%, and after 6 months, the number of particles of 0.3 μm or more exceeds 10,000 particles / mL, making it unsuitable for use as a resist.

Figure 2013120341
Figure 2013120341

ところが、前記濃縮液に未使用レジストを添加し、レジスト調製直後のGPC高分子量成分ピークを10面積%以下にすれば、6ヶ月保存後も安定してレジストへの使用が可能となる。未使用レジストの添加量が多いほど、長期保存安定性は高くなるが、コスト高となるため、添加量の下限をシミュレーションにより求めた。未使用レジストのGPC高分子量成分ピークが6面積%であり、濃縮工程を経ると、1面積%増加すると仮定し、リサイクルに伴い、高分子量成分の面積%が変化する様子を算出した。濃縮液に未使用レジストを添加し再生レジスト中の未使用レジストの割合が10%、15%、20%となるように調製する場合をそれぞれ表2〜4に示す。   However, if an unused resist is added to the concentrated solution so that the GPC high molecular weight component peak immediately after the preparation of the resist is 10 area% or less, the resist can be stably used even after storage for 6 months. As the amount of unused resist added increases, long-term storage stability increases, but the cost increases. Therefore, the lower limit of the amount added was determined by simulation. It was assumed that the GPC high molecular weight component peak of the unused resist was 6 area% and increased by 1 area% after the concentration step, and the state in which the area% of the high molecular weight component changed with recycling was calculated. Tables 2 to 4 show cases in which an unused resist is added to the concentrate and the ratio of the unused resist in the recycled resist is 10%, 15%, and 20%.

Figure 2013120341
Figure 2013120341

Figure 2013120341
Figure 2013120341

Figure 2013120341
Figure 2013120341

表4のように、未使用レジストのGPC高分子量成分ピークが6面積%であり再生レジスト中の未使用レジストの割合が20%となるように未使用レジストを添加すれば、再生レジストのGPC高分子量成分ピークの面積%がはじめて10%になるのが、リサイクル40回のときであり、その後もリサイクル可能であることがわかる。一方表2及び表3のように、未使用レジストの添加量が少ないと、リサイクル回数はあまり増えない。未使用レジストのGPC高分子量成分ピークの面積%がもともと6%よりも低ければリサイクル可能回数は増え、また濃縮液への未使用レジストの添加量が多くなればリサイクル可能回数は増える。   As shown in Table 4, if the unused resist is added so that the GPC high molecular weight component peak of the unused resist is 6 area% and the ratio of the unused resist in the recycled resist is 20%, the GPC height of the recycled resist is increased. It is understood that the area% of the molecular weight component peak is 10% for the first time when the recycling is performed 40 times, and the recycling is possible after that. On the other hand, as shown in Tables 2 and 3, when the amount of unused resist added is small, the number of recyclings does not increase so much. If the area percentage of the GPC high molecular weight component peak of the unused resist is originally lower than 6%, the number of recyclables increases. If the amount of unused resist added to the concentrate increases, the number of recyclables increases.

未使用レジストの添加量は、コストも鑑みれば、再生レジスト中の未使用レジストの割合が20質量%以上50質量%以下となる範囲で、各用途の必要性能に応じて適宜設定することが好ましい。未使用レジストを添加した後、再生レジストの固形分濃度を調整するために、未使用レジストに用いられている溶剤を別途添加してもよい。   In view of cost, it is preferable that the amount of the unused resist added is appropriately set according to the required performance of each application within a range where the ratio of the unused resist in the recycled resist is 20% by mass or more and 50% by mass or less. . After the unused resist is added, a solvent used for the unused resist may be added separately in order to adjust the solid content concentration of the regenerated resist.

[レジストのリサイクル使用方法]
本発明のもう一つの実施形態であるレジストのリサイクル使用方法について、図面を参照して説明する。図2は、本発明のレジストのリサイクル使用方法の基本フローチャートである。以下、図2に沿って本発明を説明する。
[Recycling usage of resist]
A method for recycling a resist according to another embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a basic flowchart of a method for recycling a resist according to the present invention. Hereinafter, the present invention will be described with reference to FIG.

[供給工程]
供給工程S20は、レジストを貯蔵するタンクからレジスト塗布装置へレジストを供給する工程である。ここで前記レジストは主に再生レジストであるが、サイクルの開始時は未使用レジストであってもかまわない。
[Supply process]
The supplying step S20 is a step of supplying the resist from the tank storing the resist to the resist coating apparatus. Here, the resist is mainly a recycled resist, but it may be an unused resist at the start of the cycle.

[塗布工程]
塗布工程S21は、前記レジストを前記レジスト塗布装置において基板に塗布する工程である。塗布方法は、スピンコート法、ロールコーター法、バーコーター法等公知の方法を用いることができる。例えば、塗布工程S21は、吐出ノズルと基板とを相対的に移動させる手段を備えた装置によって行うことができる。吐出ノズルは、前記レジストが基板上に塗布されるように構成されているものであればよく特に限定されないが、例えば複数のノズル孔が列状に配列された吐出口を有する吐出ノズルや、スリット状の吐出口を有する吐出ノズルを用いることができる。また、塗布工程S21は、基板上に前記レジストを吐出した後、基板をスピンさせて膜厚を薄く調整する手段を用いることもできる。
[Coating process]
The coating step S21 is a step of coating the resist on the substrate in the resist coating apparatus. As a coating method, a known method such as a spin coat method, a roll coater method, or a bar coater method can be used. For example, the coating step S21 can be performed by an apparatus provided with means for relatively moving the discharge nozzle and the substrate. The discharge nozzle is not particularly limited as long as it is configured so that the resist is applied onto the substrate. For example, a discharge nozzle having a plurality of nozzle holes arranged in a row or a slit A discharge nozzle having a shape-like discharge port can be used. Further, the coating step S21 can use means for adjusting the film thickness to be thin by spinning the substrate after discharging the resist onto the substrate.

この塗布工程S21において、例えば、半導体や液晶パネル製造ライン等の大型のレジスト塗布装置においては、塗布後の残余のレジスト液が多量に発生することになる。   In this coating step S21, for example, in a large resist coating apparatus such as a semiconductor or liquid crystal panel production line, a large amount of residual resist solution after coating is generated.

回収工程S22、濃縮工程S23、再生レジスト調製工程S24は、前記の再生レジストの製造方法において回収工程S10、濃縮工程S11、再生レジスト調製工程S12として説明した通りである。   The collection step S22, the concentration step S23, and the regenerated resist preparation step S24 are as described in the recovery method manufacturing method for the regenerated resist as the recovery step S10, the concentration step S11, and the regenerated resist preparation step S12.

[貯蔵工程]
貯蔵工程S25は、再生レジスト調製工程で調製された再生レジストをレジスト貯蔵タンクへ貯蔵する工程である。再生レジストは、0〜20℃の温度に調整されたレジスト貯蔵タンクで貯蔵することが好ましい。また、貯蔵された再生レジストは通常6ヶ月以内に供給工程S20で用いることが好ましい。
[Storage process]
The storage step S25 is a step of storing the regenerated resist prepared in the regenerated resist preparation step in a resist storage tank. The regenerated resist is preferably stored in a resist storage tank adjusted to a temperature of 0 to 20 ° C. The stored regenerated resist is preferably used in the supplying step S20 usually within 6 months.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.

[再生レジストの製造方法]
(実施例1)
東京応化工業株式会社製のTFR−970PMを用いて基板に塗布した際に発生した使用済みレジストと、リンス液として用いられた酢酸ブチルとを含む使用済み混合液(固形分濃度11%、水分3%、有機溶剤中のPGMEA20%,有機溶剤中の酢酸ブチル80%)を回収した。
使用済み混合液を70〜80℃に加熱して約1/3の量まで濃縮した。これにPGMEAを全体液量と同量添加し、再度70〜80℃に加熱して約1/3の量まで濃縮した。更にPGMEAを全体液量の半量添加し、70〜80℃に加熱して濃縮液(固形分濃度45%、水分0.04%、有機溶剤中のPGMEA98%,有機溶剤中の酢酸ブチル2%、)を得た。この濃縮液に同じ重量の未使用TFR−970PMを添加し、更に固形分濃度23.6%となるようにPGMEAを添加して再生レジストAを調製した。
再生レジストAを用いて基板に塗布した際に発生した使用済みレジストとリンス液の廃液とを含む使用済み混合液を、同様に濃縮して濃縮液(固形分濃度42%、水分0.06%、有機溶剤中のPGMEA99%,有機溶剤中の酢酸ブチル1%、)を得た。この濃縮液に同じ重量の未使用TFR−970PMを添加し、更に固形分濃度を調整するためにPGMEAを添加して再生レジストBを調製した。
同様にして、再生レジストBを基板塗布に使用後、使用済み混合液を回収し、濃縮して、固形分濃度41%、水分0.05%、有機溶剤中のPGMEA99%,有機溶剤中の酢酸ブチル1%、となる濃縮液を調製し、これに同じ重量の未使用TFR−970PMを添加し、更に固形分濃度を調整するためにPGMEAを添加して再生レジストCを調製した。同じ工程を繰り返し、再生レジストD,Eも調製した。
未使用TFR−970PM(参考例)及び再生レジストA〜Eの調製直後の成分濃度、粘度及びGPC高分子量成分ピークの面積%を表5に示す。
[Recycled resist manufacturing method]
Example 1
A used mixed solution (solid content concentration 11%, moisture 3) containing a used resist generated when applied to a substrate using TFR-970PM manufactured by Tokyo Ohka Kogyo Co., Ltd. and butyl acetate used as a rinsing liquid %, PGMEA 20% in organic solvent, 80% butyl acetate in organic solvent).
The used mixture was heated to 70-80 ° C. and concentrated to about 1/3. To this, PGMEA was added in the same amount as the whole liquid, heated again to 70-80 ° C., and concentrated to about 1 /. Furthermore, PGMEA was added in half of the total liquid volume, heated to 70-80 ° C. and concentrated (solid content concentration 45%, moisture 0.04%, PGMEA 98% in organic solvent, butyl acetate 2% in organic solvent, ) To this concentrate, unused TFR-970 PM of the same weight was added, and further, PGMEA was added so as to have a solid content concentration of 23.6% to prepare a regenerated resist A.
The used mixed liquid containing the used resist and the rinse liquid waste generated when the regenerated resist A is applied to the substrate is concentrated in the same manner to obtain a concentrated liquid (solid content 42%, moisture 0.06%). , PGMEA 99% in organic solvent, butyl acetate 1% in organic solvent). To this concentrate, unused TFR-970 PM of the same weight was added, and further, PGMEA was added to adjust the solid content concentration to prepare a regenerated resist B.
Similarly, after using the regenerated resist B for substrate coating, the used mixed solution is recovered and concentrated to a solid content concentration of 41%, moisture of 0.05%, PGMEA in organic solvent 99%, and acetic acid in organic solvent. A concentrated solution of 1% butyl was prepared, and unused TFR-970 PM of the same weight was added thereto. Further, PGMEA was added to adjust the solid content concentration to prepare a regenerated resist C. The same process was repeated to prepare recycled resists D and E.
Table 5 shows the component concentration, viscosity, and area percentage of the GPC high molecular weight component peak immediately after preparation of unused TFR-970PM (reference example) and recycled resists A to E.

Figure 2013120341
Figure 2013120341

[レジスト膜評価]
(実施例2)
未使用TFR−970PM(参考例)及び調製直後の再生レジストA〜Eについて、HMDS処理されたシリコン基板上に塗布後、プレベークを90℃×90秒間施し、厚さ1.6μmのレジスト膜を形成した。その後、露光装置(商品名:キャノン製MPA−600FA)により、ラインアンドスペース1:1で、3μmライン/3μmスペースのマスクパターンを介して露光した後、ポストベークを90℃×90秒間施した。次いで、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で100秒間現像処理し、純水でのリンス洗浄を経て不要部分を除去し、パターンを得た。
照度を500mW/cmで一定にし、露光した時間(ms)を変化させ、得られた実測線幅との関係を評価した。結果を図3に示す。再生レジストA〜Eは未使用レジストと有意差がなく、十分使用可能であることがわかる。
[Resist film evaluation]
(Example 2)
Unused TFR-970PM (reference example) and regenerated resists A to E immediately after preparation were applied on a HMDS-treated silicon substrate and then pre-baked at 90 ° C. for 90 seconds to form a 1.6 μm thick resist film did. Then, after exposing with the exposure apparatus (brand name: MPA-600FA made from Canon) by the line and space 1: 1 through the mask pattern of 3 micrometers line / 3 micrometers space, the post-baking was performed 90 degreeC * 90 second. Next, development was performed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 100 seconds, and unnecessary portions were removed through rinsing with pure water to obtain a pattern.
The illuminance was kept constant at 500 mW / cm 2 , the exposure time (ms) was changed, and the relationship with the obtained measured line width was evaluated. The results are shown in FIG. It can be seen that the regenerated resists A to E are not significantly different from the unused resist and can be used sufficiently.

[保存安定性評価]
(実施例3)
未使用TFR−970PM(参考例)及び再生レジストA〜Eについて、調製直後及び、20℃で3ヵ月後及び6ヵ月後保存した場合の各種性能評価を行った。
[Storage stability evaluation]
(Example 3)
The unused TFR-970PM (reference example) and the regenerated resists A to E were evaluated for various performances immediately after preparation and when stored at 20 ° C. after 3 months and after 6 months.

表6には、パーティクルカウンターで検出した1mL当たりの0.3μm以上のパーティクルの個数(個/mL)を示す。   Table 6 shows the number of particles of 0.3 μm or more per 1 mL (number / mL) detected by the particle counter.

表7には、レジスト感度(Eth)(mJ/cm)の変化を示す。未使用TFR−970PM(参考例)及び調製直後の再生レジストA〜Eについて、HMDS処理されたシリコン基板上に塗布後、プレベークを110℃×90秒間施し、厚さ1.52μmのレジスト膜を形成した。その後、露光装置(商品名:ニコン製G7E)により、パターンを介して露光した。次いで、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で65秒間現像処理し、純水でのリンス洗浄を経て不要部分を除去し、パターンを得た。不要部分が無くなる露光量とSTD値(スタンダードサンプルの露光量)との相対値を%で示す。なお、スタンダードサンプルとして使用したレジストは、TFR−970PMの冷凍サンプルである。表7中、調製直後の結果とは、調製直後の再生レジスト等の露光量とスタンダードサンプルの露光量とを比較したものである。その後再生レジスト等は20℃で保存し、スタンダードサンプルは冷凍保存して、3ヵ月後、6ヵ月後に同様の評価を行った。 Table 7 shows changes in resist sensitivity (E th ) (mJ / cm 2 ). Unused TFR-970PM (reference example) and regenerated resists A to E immediately after preparation were applied on a HMDS-treated silicon substrate and then pre-baked at 110 ° C. for 90 seconds to form a resist film having a thickness of 1.52 μm. did. Then, it exposed through the pattern with the exposure apparatus (brand name: G7E made from Nikon). Next, development was performed for 65 seconds with an aqueous 2.38 mass% tetramethylammonium hydroxide solution, and unnecessary portions were removed through rinsing with pure water to obtain a pattern. The relative value between the exposure amount at which the unnecessary portion disappears and the STD value (standard sample exposure amount) is shown in%. The resist used as the standard sample is a frozen sample of TFR-970PM. In Table 7, the result immediately after the preparation is a comparison between the exposure amount of the regenerated resist immediately after the preparation and the exposure amount of the standard sample. Thereafter, the regenerated resist and the like were stored at 20 ° C., and the standard sample was stored frozen, and the same evaluation was performed after 3 months and 6 months.

表8には、膜べりの変化を示す。未使用TFR−970PM(参考例)及び調製直後の再生レジストA〜Eについて、HMDS処理されたシリコン基板上に塗布後、プレベークを110℃×90秒間施し、厚さ1.52μmのレジスト膜を形成した。その後、露光装置(商品名:ニコン製G7E)により、パターンを介して露光した。次いで、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で65秒間現像処理し、純水でのリンス洗浄を経て不要部分を除去し、パターンを得た。次に未露光部の膜厚を測定した。その膜厚値とSTD値(スタンダードサンプルの膜厚値)との相対値を%で示す。なお、スタンダードサンプルとして使用したレジストは、TFR−970PMの冷凍サンプルである。表8中、調製直後の結果とは、調製直後の再生レジスト等の膜厚とスタンダードサンプルの膜厚とを比較したものである。その後再生レジスト等は20℃で保存し、スタンダードサンプルは冷凍保存して、3ヵ月後、6ヵ月後に同様の評価を行った。   Table 8 shows changes in film slip. Unused TFR-970PM (reference example) and regenerated resists A to E immediately after preparation were applied on a HMDS-treated silicon substrate and then pre-baked at 110 ° C. for 90 seconds to form a resist film having a thickness of 1.52 μm. did. Then, it exposed through the pattern with the exposure apparatus (brand name: G7E made from Nikon). Next, development was performed for 65 seconds with an aqueous 2.38 mass% tetramethylammonium hydroxide solution, and unnecessary portions were removed through rinsing with pure water to obtain a pattern. Next, the film thickness of the unexposed part was measured. The relative value between the film thickness value and the STD value (standard film thickness value) is shown in%. The resist used as the standard sample is a frozen sample of TFR-970PM. In Table 8, the result immediately after the preparation is a comparison between the film thickness of the regenerated resist immediately after the preparation and the film thickness of the standard sample. Thereafter, the regenerated resist and the like were stored at 20 ° C., and the standard sample was stored frozen, and the same evaluation was performed after 3 months and 6 months.

再生レジストA〜Eは6ヶ月保存後も、パーティクルの発生が少なく、感度の変化、膜べりの変化が小さく、レジストとして使用可能であることがわかる。   It can be seen that the regenerated resists A to E are less likely to generate particles even after storage for 6 months, have little change in sensitivity and film slip, and can be used as resists.

Figure 2013120341
Figure 2013120341

Figure 2013120341
Figure 2013120341

Figure 2013120341
Figure 2013120341

S10 回収工程
S11 濃縮工程
S12 再生レジスト調製工程
S20 供給工程
S21 塗布工程
S22 回収工程
S23 濃縮工程
S24 再生レジスト調製工程
S25 貯蔵工程
S10 Recovery process S11 Concentration process S12 Regenerated resist preparation process S20 Supply process S21 Application process S22 Recovery process S23 Concentration process S24 Regenerated resist preparation process S25 Storage process

Claims (4)

レジストを塗布した後に、残余の使用済みレジストを回収し、該使用済レジストから再生レジストを製造する再生レジストの製造方法であって、
前記使用済みレジストとリンス液の廃液とを含む、使用済み混合液を回収する回収工程と、
前記使用済み混合液を濃縮して濃縮液を調製する濃縮工程と、
未使用レジストの割合が20質量%以上となるように前記濃縮液に未使用レジストを添加して再生レジストを調製する再生レジスト調製工程と、
を含み、
前記使用済みレジストの溶剤が主としてプロピレングリコールモノメチルエーテルアセテートであり、
前記リンス液がプロピレングリコールモノメチルエーテルアセテートより低沸点の他の溶剤を含む、
再生レジストの製造方法。
After applying the resist, the remaining used resist is collected, and a regenerated resist manufacturing method for manufacturing a regenerated resist from the used resist,
A recovery step of recovering a used mixed solution, including the used resist and a rinsing liquid waste solution;
A concentration step of concentrating the used mixed solution to prepare a concentrated solution;
A regenerated resist preparation step of preparing a regenerated resist by adding an unused resist to the concentrate so that the ratio of the unused resist is 20% by mass or more;
Including
The solvent of the used resist is mainly propylene glycol monomethyl ether acetate,
The rinse liquid contains another solvent having a boiling point lower than that of propylene glycol monomethyl ether acetate,
A method for producing a regenerated resist.
前記他の溶剤がプロピレングリコールモノメチルエーテル、酢酸ブチル、メチル−3−メトキシプロピオネートから選択される1種以上の溶剤である、請求項1に記載の再生レジストの製造方法。   The method for producing a regenerated resist according to claim 1, wherein the other solvent is one or more solvents selected from propylene glycol monomethyl ether, butyl acetate, and methyl-3-methoxypropionate. 前記濃縮工程では、全溶剤中に占める前記他の溶剤の割合が40質量%以下となるように前記使用済み混合液を濃縮する請求項1又は2に記載の再生レジストの製造方法。   3. The method for producing a regenerated resist according to claim 1, wherein in the concentration step, the used mixed solution is concentrated so that a ratio of the other solvent in the total solvent is 40% by mass or less. レジスト貯蔵タンクからレジスト塗布装置へレジストを供給する供給工程と、
前記レジストを前記レジスト塗布装置において基板に塗布する塗布工程と、
残余の使用済みレジストとリンス液の廃液とを含む、使用済み混合液を回収する回収工程と、
前記使用済み混合液を濃縮して濃縮液を調製する濃縮工程と、
未使用レジストの割合が20質量%以上となるように前記濃縮液に未使用レジストを添加して再生レジストを調製する再生レジスト調製工程と、
前記再生レジストを前記レジスト貯蔵タンクへ貯蔵する貯蔵工程と、
を含み、
前記使用済みレジストの溶剤が主としてプロピレングリコールモノメチルエーテルアセテートであり、
前記リンス液がプロピレングリコールモノメチルエーテルアセテートより低沸点の他の溶剤を含む、
レジストのリサイクル使用方法。
A supply process for supplying the resist from the resist storage tank to the resist coating apparatus;
A coating step of coating the resist on a substrate in the resist coating apparatus;
A recovery step for recovering the used mixed solution including the remaining used resist and the waste liquid of the rinse solution;
A concentration step of concentrating the used mixed solution to prepare a concentrated solution;
A regenerated resist preparation step of preparing a regenerated resist by adding an unused resist to the concentrate so that the ratio of the unused resist is 20% by mass or more;
Storing the recycled resist in the resist storage tank;
Including
The solvent of the used resist is mainly propylene glycol monomethyl ether acetate,
The rinse liquid contains another solvent having a boiling point lower than that of propylene glycol monomethyl ether acetate,
How to recycle resist.
JP2011269085A 2011-12-08 2011-12-08 Recycled resist manufacturing method and resist recycling method Active JP6222887B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011269085A JP6222887B2 (en) 2011-12-08 2011-12-08 Recycled resist manufacturing method and resist recycling method
TW101126048A TWI505045B (en) 2011-12-08 2012-07-19 Production method of regenerative photoresist and method of recycling of photoresist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269085A JP6222887B2 (en) 2011-12-08 2011-12-08 Recycled resist manufacturing method and resist recycling method

Publications (2)

Publication Number Publication Date
JP2013120341A true JP2013120341A (en) 2013-06-17
JP6222887B2 JP6222887B2 (en) 2017-11-01

Family

ID=48772990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269085A Active JP6222887B2 (en) 2011-12-08 2011-12-08 Recycled resist manufacturing method and resist recycling method

Country Status (2)

Country Link
JP (1) JP6222887B2 (en)
TW (1) TWI505045B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384811B1 (en) * 2013-08-16 2014-04-14 덕산실업(주) Thinner for rinsing photoresist

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203804A (en) * 1995-01-25 1996-08-09 Hitachi Ltd Manufacture of flat panel display apparatus
JPH0934121A (en) * 1995-07-20 1997-02-07 Hitachi Ltd Recycling type resist process
JPH09213608A (en) * 1996-02-01 1997-08-15 Hitachi Ltd Method and device for coating photoresist
JPH11133619A (en) * 1997-05-01 1999-05-21 Shipley Co Llc Method for recycling photoresist
JPH11245226A (en) * 1998-02-27 1999-09-14 Miyazaki Oki Electric Co Ltd Resist regenerating system and resist regenerating method
JP2010069478A (en) * 2008-09-19 2010-04-02 Tsti Tech Co Ltd Coating liquid recycling device and method
JP2010237624A (en) * 2009-03-31 2010-10-21 Tokyo Ohka Kogyo Co Ltd Recycled resist and method of manufacturing recycled resist

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM366166U (en) * 2009-05-13 2009-10-01 Hong Integration Ltd Circulating and recycling apparatus for photoresist

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203804A (en) * 1995-01-25 1996-08-09 Hitachi Ltd Manufacture of flat panel display apparatus
JPH0934121A (en) * 1995-07-20 1997-02-07 Hitachi Ltd Recycling type resist process
JPH09213608A (en) * 1996-02-01 1997-08-15 Hitachi Ltd Method and device for coating photoresist
JPH11133619A (en) * 1997-05-01 1999-05-21 Shipley Co Llc Method for recycling photoresist
JPH11245226A (en) * 1998-02-27 1999-09-14 Miyazaki Oki Electric Co Ltd Resist regenerating system and resist regenerating method
JP2010069478A (en) * 2008-09-19 2010-04-02 Tsti Tech Co Ltd Coating liquid recycling device and method
JP2010237624A (en) * 2009-03-31 2010-10-21 Tokyo Ohka Kogyo Co Ltd Recycled resist and method of manufacturing recycled resist

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384811B1 (en) * 2013-08-16 2014-04-14 덕산실업(주) Thinner for rinsing photoresist

Also Published As

Publication number Publication date
TW201324063A (en) 2013-06-16
JP6222887B2 (en) 2017-11-01
TWI505045B (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5433279B2 (en) Method for producing recycled resist
TWI495967B (en) Photoresist stripping solution, stripping liquid recovery system and operation method and stripping liquid recovery method
CN102169994B (en) Negative electrode base member
TWI684825B (en) Chemical amplification type positive photosensitive resin composition, thick film photosensitive dry film, thick film photoresist pattern manufacturing method, manufacturing method of substrate with mold, and manufacturing method of plating molded body
CN101065709B (en) Process for producing resist pattern and conductor pattern
JP2007178589A (en) Cleaning liquid for photolithography and cyclic usage of the same
TWI497216B (en) Method and materials for double patterning
TW200832087A (en) Method for producing a miniaturised pattern and treatment liquid for resist substrate using therewith
KR101936566B1 (en) Composition for forming overlay film, and resist pattern formation method using same
JP3933576B2 (en) Development method and development apparatus for photosensitive resin relief printing plate
JPH10104847A (en) Thinner composition for washing photoresist in semiconductor producing process
CN101248390A (en) Positive photoresist composition, thick film photoresist laminate, method for producing thick film resist pattern, and method for producing connecting terminal
JP6222887B2 (en) Recycled resist manufacturing method and resist recycling method
CN1702560B (en) Diluent composition for removing photosensitive resin
KR100636583B1 (en) Positive photoresist composition for discharge nozzle-coating method and formation method of resist pattern
TW201631398A (en) Chemical amplification positive photosensitive resin composition for thick film
TWI566057B (en) Method for treating resist pattern and method for producing resist pattern using thereof, and composition for forming cover layer used in the same
TWI299818B (en) Positive photoresist composition
JP5924760B2 (en) Method for producing resist for spinless coating
KR101574830B1 (en) Positive resist composition and method of forming resist pattern
JP4554599B2 (en) Resist composition and organic solvent for removing resist
CN104969129A (en) Thinner composition and use thereof
CN108475021A (en) LWR ameliorative ways and composition in the Patternized technique using negative photoresist
JP3787323B2 (en) Positive photoresist coating liquid and display element substrate using the same
JP4762867B2 (en) Cleaning liquid for photolithography and substrate cleaning method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160719

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6222887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150