JP2013119087A - Arc welding control method and arc welding equipment - Google Patents

Arc welding control method and arc welding equipment Download PDF

Info

Publication number
JP2013119087A
JP2013119087A JP2011266576A JP2011266576A JP2013119087A JP 2013119087 A JP2013119087 A JP 2013119087A JP 2011266576 A JP2011266576 A JP 2011266576A JP 2011266576 A JP2011266576 A JP 2011266576A JP 2013119087 A JP2013119087 A JP 2013119087A
Authority
JP
Japan
Prior art keywords
welding
wire
arc
positive polarity
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011266576A
Other languages
Japanese (ja)
Other versions
JP5982628B2 (en
Inventor
Noriyuki Matsuoka
範幸 松岡
Hiroki Yuzawa
大樹 湯澤
Atsuhiro Kawamoto
篤寛 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011266576A priority Critical patent/JP5982628B2/en
Publication of JP2013119087A publication Critical patent/JP2013119087A/en
Application granted granted Critical
Publication of JP5982628B2 publication Critical patent/JP5982628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve such the problem that in a method of welding the vicinity of a welding start point in reverse polarity, in a thin sheet having a sheet thickness of about <1.0 mm, for example, when a welding object having a gap equal to or greater than its sheet thickness is welded, burn through is caused in a reverse polarity section in the vicinity of a welding start point.SOLUTION: In the arc welding control method and arc welding equipment using a welding wire as a consumable electrode, after the start of welding is directed, the contact between the welding wire and a welding object is detected, and, for a prescribed time, D.C. welding with fixed straight polarity is performed or A.C. welding in which the ratio of straight polarity is >50% is performed, and, after the prescribed time, D.C. welding with fixed reverse polarity is performed or A.C. welding in which the ratio of straight polarity is ≤50% is performed to suppress the burn through of the welding object.

Description

本発明は、消耗性電極と溶接対象物との間にアークを発生させて溶接を行う消耗性電極式ガスシールドアーク溶接を行い、特に溶接スタート時に、消耗性電極を負極とし溶接対象物を正極とした正極性溶接、または、正極性比率の高い交流溶接を行う、アーク溶接制御方法およびアーク溶接装置に関する。   The present invention performs consumable electrode type gas shielded arc welding in which an arc is generated between a consumable electrode and an object to be welded, and particularly at the start of welding, the consumable electrode is used as a negative electrode and the welding object is a positive electrode. The present invention relates to an arc welding control method and an arc welding apparatus that perform positive polarity welding or AC welding with a high positive polarity ratio.

消耗性電極と溶接対象物との間にアークを発生させて溶接を行う消耗性電極式ガスシールドアーク溶接方法では、一般に、消耗性電極を正極とし溶接対象物を負極として、両極間において逆極性で溶接を行っている。但し、薄鋼板を重ね合わせ、重ね合わせ端部を溶接する場合のように、いわゆる溶け落ちが発生し易い場合には、消耗性電極を負極とし溶接対象物を正極として、正極性で溶接を行うこともある。   In a consumable electrode type gas shielded arc welding method in which an arc is generated between a consumable electrode and an object to be welded, in general, the consumable electrode is a positive electrode and the welding object is a negative electrode. Welding with However, when so-called burn-out is likely to occur, such as when thin steel plates are overlapped and the overlapping ends are welded, the consumable electrode is used as the negative electrode, the welding object is used as the positive electrode, and welding is performed with positive polarity. Sometimes.

このように、正極性で溶接を行う消耗性電極式ガスシールドアーク溶接方法は、薄鋼板のギャップ裕度を大幅に拡大させることができる。   As described above, the consumable electrode type gas shielded arc welding method in which welding is performed with positive polarity can greatly expand the gap tolerance of the thin steel plate.

なお、一般的に、溶け落ちが発生し易い条件は、薄板でギャップが存在する場合である。   In general, the condition that the burn-out easily occurs is a thin plate with a gap.

ギャップが存在する場合には、双方の溶接対象物をブリッジする溶融プールを形成し、この溶融プール上にアークを発生させることで、ギャップが有っても溶け落ちせずに溶接を行うことができる。つまり、溶接対象物間をブリッジする溶融プールを形成させることができれば、ギャップ対応は可能となる。   When there is a gap, a molten pool that bridges both objects to be welded is formed, and an arc is generated on the molten pool, so that welding can be performed without melting even if there is a gap. it can. In other words, if a molten pool that bridges between the objects to be welded can be formed, gap correspondence is possible.

しかし、溶接開始時の溶融プールが形成されていない箇所では、溶接入熱が溶接対象物の一方に集中してしまうので、溶け落ちが発生する場合が多い。   However, in a portion where a molten pool at the start of welding is not formed, welding heat input is concentrated on one of the objects to be welded.

また、正極性では、溶接開始点付近のビードにおいて溶け込みが不十分なため、融合不良が生じるとして、溶接開始時は逆極性で溶接を行う方法が知られている(例えば、特許文献1や特許文献2参照)。   Further, in the case of positive polarity, since the fusion is insufficient in the bead near the welding start point, a fusion failure occurs, and a method of performing welding with reverse polarity at the start of welding is known (for example, Patent Document 1 and Patents). Reference 2).

特公昭62−19267号公報Japanese Patent Publication No.62-19267 特公平3−49665号公報Japanese Patent Publication No. 3-49665

例えば特許文献1や特許文献2に記載されているような溶接開始点付近を逆極性の溶接出力で溶接を行う方法では、板厚1.0mm程度未満の薄板において、例えばギャップが板厚以上に空いている溶接対象物を溶接すると、溶接開始点付近の逆極性区間において、逆極性のためワイヤの溶融量が少なく、溶接対象物間をワイヤの溶滴(溶融プール)がブリッジせず、一方の溶接対象物に溶接入熱が集中するため、溶け落ちが発生してしまうといった課題がある。   For example, in the method of performing welding with a welding output having a reverse polarity in the vicinity of the welding start point as described in Patent Document 1 or Patent Document 2, in a thin plate having a thickness of less than about 1.0 mm, for example, the gap is greater than the plate thickness. When welding an empty welding object, the amount of melting of the wire is small due to the reverse polarity in the reverse polarity section near the welding start point, and the droplets (melting pool) of the wire do not bridge between the welding objects. Since welding heat input concentrates on the welding object, there is a problem that burn-out occurs.

上記課題を解決するために、本発明のアーク溶接制御方法は、消耗電極として溶接ワイヤを用いるアーク溶接制御方法であって、溶接の開始を指示した後に前記溶接ワイヤと溶接対象物との接触を検出してから所定時間の間は、正極性一定の直流溶接を行う、あるいは、正極性の比率が50%より大きい交流溶接を行い、前記所定時間の後は、逆極性一定の直流溶接を行う、あるいは、正極性比率が50%以下の交流溶接を行うものである。   In order to solve the above problems, an arc welding control method of the present invention is an arc welding control method using a welding wire as a consumable electrode, and after instructing the start of welding, the welding wire and the welding object are contacted. DC welding with constant positive polarity is performed for a predetermined time after detection, or AC welding with a positive polarity ratio greater than 50% is performed, and DC welding with constant reverse polarity is performed after the predetermined time. Alternatively, AC welding with a positive polarity ratio of 50% or less is performed.

また、本発明のアーク溶接制御方法は、消耗電極として溶接ワイヤを用い、溶接用トーチを備えた溶接ロボットを使用して溶接を行うアーク溶接制御方法であって、溶接を開始するために教示された溶接開始ポイントから、溶接出力の制御を切り替えるために教示された所定の溶接ポイントまで、前記溶接用トーチが移動される間は、正極性一定の直流溶接を行う、あるいは、正極性の比率が50%より大きい交流溶接を行い、前記溶接用トーチの移動が前記所定の溶接ポイントを過ぎると、逆極性一定の直流溶接を行う、あるいは、正極性比率が50%以下の交流溶接を行うものである。   The arc welding control method of the present invention is an arc welding control method in which welding is performed using a welding robot using a welding wire as a consumable electrode and equipped with a welding torch, which is taught to start welding. While the welding torch is moved from the welding start point to the predetermined welding point taught to switch the control of the welding output, DC welding with a constant positive polarity is performed, or the positive polarity ratio is AC welding greater than 50% is performed, and when the movement of the welding torch passes the predetermined welding point, DC welding with a constant reverse polarity is performed, or AC welding with a positive polarity ratio of 50% or less is performed. is there.

また、本発明のアーク溶接制御方法は、上記に加えて、溶接ワイヤの送給を、溶接対象物の方向に行う正送と前記正送とは逆方向に行う逆送とに、所定の周期と所定の振幅で周期的に変化させるものである。   Further, in addition to the above, the arc welding control method of the present invention includes a predetermined cycle for feeding the welding wire in the forward direction in which the welding wire is fed in the direction of the object to be welded and in the reverse direction in which the forward feeding is performed in the opposite direction. And periodically changing with a predetermined amplitude.

また、本発明のアーク溶接装置は、アークスタート期間において、消耗電極であるワイヤと溶接対象物との間に電圧を印加した状態で前記ワイヤを前記溶接対象物に接触させてアークスタートを行うアーク溶接装置であって、溶接電流を検出する溶接電流検出部と、前記溶接電流検出部の出力に基づいて前記ワイヤと前記溶接対象物との接触を検出する接触検出部と、前記接触検出部からの信号に基づいて前記ワイヤと前記溶接対象物とが接触した時点からの経過時間をカウントするカウンタ部と、前記カウンタ部からの信号に基づいて所定時間が経過すると溶接出力の制御を切り替える信号を出力する制御切替制御部と、前記制御切替制御部からの信号に基づいて溶接出力を切り替える制御切替スイッチング部とを備え、溶接の開始を指示した後に前記溶接ワイヤと前記溶接対象物との接触を検出してから前記所定時間の間は、正極性一定の直流溶接を行う、あるいは、正極性の比率が50%より大きい交流溶接を行い、前記所定時間の後は、逆極性一定の直流溶接を行う、あるいは、正極性比率が50%以下の交流溶接を行うものである。   Further, the arc welding apparatus according to the present invention is an arc which starts an arc by bringing the wire into contact with the welding object in a state where a voltage is applied between the wire which is a consumable electrode and the welding object during the arc start period. A welding apparatus, comprising: a welding current detection unit that detects a welding current; a contact detection unit that detects contact between the wire and the welding object based on an output of the welding current detection unit; and the contact detection unit A counter unit that counts an elapsed time from the time when the wire and the object to be welded contact each other based on the signal, and a signal that switches the control of the welding output when a predetermined time elapses based on the signal from the counter unit. A control switching control unit for outputting, and a control switching switching unit for switching the welding output based on a signal from the control switching control unit, and instructing the start of welding After detecting the contact between the welding wire and the welding object after the predetermined time, perform DC welding with a constant positive polarity, or perform AC welding with a positive polarity ratio of more than 50%, After the predetermined time, DC welding with a constant reverse polarity is performed, or AC welding with a positive polarity ratio of 50% or less is performed.

また、本発明のアーク溶接装置は、アークスタート期間において、消耗電極であるワイヤと溶接対象物との間に電圧を印加した状態で前記ワイヤを前記溶接対象物に接触させてアークスタートを行うアーク溶接装置であって、溶接用トーチを備えた溶接ロボットと、溶接経路上の溶接ポイントを教示するための教示部と、前記溶接ロボットの動作プログラムや前記教示部を用いて教示された教示ポイントを記憶する記憶部と、前記動作プログラムに基づいて前記溶接ロボットを制御するロボット制御部とを備え、溶接を開始するために教示された溶接開始ポイントから、溶接出力の制御を切り替えるために教示された所定の溶接ポイントまで、前記溶接用トーチが移動される間は、正極性一定の直流溶接を行う、あるいは、正極性の比率が50%より大きい交流溶接を行い、前記溶接用トーチの移動が前記所定の溶接ポイントを過ぎると、逆極性一定の直流溶接を行う、あるいは、正極性比率が50%以下の交流溶接を行うものである。   Further, the arc welding apparatus according to the present invention is an arc which starts an arc by bringing the wire into contact with the welding object in a state where a voltage is applied between the wire which is a consumable electrode and the welding object during the arc start period. A welding apparatus comprising a welding robot having a welding torch, a teaching unit for teaching a welding point on a welding path, and an instruction program taught using the operation program of the welding robot and the teaching unit. A storage unit for storing and a robot control unit for controlling the welding robot based on the operation program are taught to switch control of welding output from a welding start point taught to start welding. While the welding torch is moved to a predetermined welding point, DC welding with constant positive polarity is performed, or the positive polarity ratio is 5 % AC welding is performed, and when the welding torch moves past the predetermined welding point, DC welding with a constant reverse polarity is performed, or AC welding with a positive polarity ratio of 50% or less is performed. .

また、本発明のアーク溶接装置は、上記に加えて、ワイヤの送給を制御するワイヤ送給部を備え、前記ワイヤの送給を、溶接対象物の方向に行う正送と前記正送とは逆方向に行う逆送とに、所定の周期と所定の振幅で周期的に変化させるものである。   In addition to the above, the arc welding apparatus of the present invention further includes a wire feeding unit that controls the feeding of the wire, and the feeding of the wire in the direction of the welding target and the normal feeding are performed. Is a periodic change with a predetermined period and a predetermined amplitude in reverse transmission performed in the reverse direction.

以上のように、本発明によれば、溶接開始時に正極性一定の直流溶接を行う、あるいは、正極性の比率が50%より大きい交流溶接を行うことで、溶接開始時に逆極性を用いる場合と比べて溶着量を増やすことができ、溶接対象物間をワイヤの溶滴(溶融プール)でブリッジさせることができ、これにより、溶接対象物の溶け落ちが発生し難く、ギャップ裕度が高い溶接が可能となる。   As described above, according to the present invention, DC welding with constant positive polarity is performed at the start of welding, or reverse polarity is used at the start of welding by performing AC welding with a positive polarity ratio of greater than 50%. Compared to the welding amount can be increased and the welding objects can be bridged by wire droplets (molten pool). This makes it difficult for the objects to be welded and the gap tolerance to be high. Is possible.

本発明の実施の形態1におけるアーク溶接装置の概略構成を示す図The figure which shows schematic structure of the arc welding apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における制御切替信号の時間変化と所定時間経過までは正極性一定の直流溶接を行いその後は逆極性一定の直流溶接を行う場合の溶接電流の時間変化を示す図The figure which shows the time change of the welding current in the case of performing DC welding with the positive polarity constant until the predetermined time elapses, and thereafter performing DC welding with the constant reverse polarity until the predetermined time elapses in the first embodiment of the present invention. 本発明の実施の形態1における制御切替信号の時間変化と所定時間経過までは正極性一定の直流溶接を行いその後は正極性比率が50%以下の交流溶接を行う場合の溶接電流の時間変化を示す図The time change of the control switching signal in Embodiment 1 of the present invention and the time change of the welding current in the case of performing DC welding with a constant positive polarity until the predetermined time elapses and thereafter performing AC welding with a positive polarity ratio of 50% or less. Illustration 本発明の実施の形態1における制御切替信号の時間変化と所定時間経過までは正極性比率が50%より高い交流溶接を行いその後は逆極性一定の直流溶接を行う場合の溶接電流の時間変化を示す図The time change of the control current in the first embodiment of the present invention and the time change of the welding current in the case of performing the AC welding with the positive polarity ratio higher than 50% until the predetermined time elapses and thereafter performing the DC welding with the constant reverse polarity. Illustration 本発明の実施の形態1における制御切替信号の時間変化と所定時間経過までは正極性比率が50%より高い交流溶接を行いその後は正極性比率が50%以下の交流溶接を行う場合の溶接電流の時間変化を示す図Welding current when AC welding with a positive polarity ratio higher than 50% is performed until the time change of the control switching signal and a predetermined time elapses in Embodiment 1 of the present invention, and thereafter AC welding with a positive polarity ratio of 50% or less is performed. Of change over time 本発明の実施の形態2におけるアーク溶接装置の概略構成を示す図The figure which shows schematic structure of the arc welding apparatus in Embodiment 2 of this invention. 本発明の実施の形態3におけるワイヤ送給速度の時間変化を示す図The figure which shows the time change of the wire feeding speed in Embodiment 3 of this invention.

(実施の形態1)
以下、本発明の実施の形態1について、図1から図5を用いて説明する。図1は、本実施の形態1におけるアーク溶接装置の概略構成を示す図である。図2は、本実施の形態1における制御切替信号の時間変化と所定時間経過までは正極性一定の直流溶接を行いその後は逆極性一定の直流溶接を行う場合の溶接電流の時間変化を示す図である。図3は、本実施の形態1における制御切替信号の時間変化と所定時間経過までは正極性一定の直流溶接を行いその後は正極性比率が50%以下の交流溶接を行う場合の溶接電流の時間変化を示す図である。図4は、本実施の形態1における制御切替信号の時間変化と所定時間経過までは正極性比率が50%より高い交流溶接を行いその後は逆極性一定の直流溶接を行う場合の溶接電流の時間変化を示す図である。図5は、本実施の形態1における制御切替信号の時間変化と所定時間経過までは正極性比率が50%より高い交流溶接を行いその後は正極性比率が50%以下の交流溶接を行う場合の溶接電流の時間変化を示す図である。
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating a schematic configuration of an arc welding apparatus according to the first embodiment. FIG. 2 is a diagram showing the time change of the control current in the first embodiment and the time change of the welding current when DC welding with a constant positive polarity is performed until a predetermined time elapses and thereafter DC welding with a constant reverse polarity is performed. It is. FIG. 3 shows the welding current time in the case of performing DC welding with a constant positive polarity until the predetermined time elapses with the time change of the control switching signal in the first embodiment, and thereafter performing AC welding with a positive polarity ratio of 50% or less. It is a figure which shows a change. FIG. 4 shows the welding current time in the case where AC welding with a positive polarity ratio higher than 50% is performed until a predetermined time elapses, and thereafter DC welding with a constant reverse polarity is performed until a predetermined time elapses in the first embodiment. It is a figure which shows a change. FIG. 5 shows a case in which AC welding with a positive polarity ratio higher than 50% is performed until the time change of the control switching signal and a predetermined time elapse in the first embodiment, and thereafter AC welding with a positive polarity ratio of 50% or less is performed. It is a figure which shows the time change of welding current.

図1において、アーク溶接装置は主に、消耗性電極であるワイヤ12と溶接対象物15との間に電力を供給する溶接電源部16と、溶接トーチ13と、ワイヤ12を送給するワイヤ送給部11から構成される。   In FIG. 1, the arc welding apparatus mainly includes a welding power supply unit 16 that supplies power between a wire 12 that is a consumable electrode and a welding object 15, a welding torch 13, and a wire feed that feeds the wire 12. It is composed of a supply unit 11.

なお、溶接トーチ13は、例えば図示しない溶接ロボットに取り付けられ、溶接ロボットにより溶接が行われる。あるいは、溶接トーチ13は、例えば作業者に把持され、作業者により溶接が行われる。   The welding torch 13 is attached to, for example, a welding robot (not shown), and welding is performed by the welding robot. Alternatively, the welding torch 13 is held by an operator, for example, and welding is performed by the operator.

溶接電源部16において、交流電力を出力する入力電源1から入力した電力は、1次整流部2で整流され、スイッチング部3により交流に変換され、トランス4により降圧され、2次整流部5及びDCL(インダクタンス)6により整流され、ワイヤ12と溶接対象物15との間に印加される。そして、ワイヤ12と溶接対象物15との間で溶接アーク14が発生して溶接が行われる。   In the welding power source 16, the power input from the input power source 1 that outputs AC power is rectified by the primary rectification unit 2, converted to AC by the switching unit 3, stepped down by the transformer 4, and reduced by the secondary rectification unit 5 and Rectified by DCL (inductance) 6 and applied between the wire 12 and the welding object 15. And welding arc 14 generate | occur | produces between the wire 12 and the welding target object 15, and welding is performed.

また、溶接電源部16は、溶接電流を検出する溶接電流検出部7と、溶接電流検出部7の出力に基づいて、ワイヤ12と溶接対象物15との接触を検出するとともに、接触を検出した時点からの経過時間をカウントするカウンタ部8と、カウンタ部8の出力を入力し、ワイヤ12と溶接対象物15との接触を検出した時点から所定時間経過後に、溶接出力の制御を切り替えるための信号を出力する制御切替制御部9と、制御切替制御部9の出力に基づいて溶接出力の制御を切り替える制御切替スイッチング部10と、溶接条件等を設定するための設定部17を備えている。   Further, the welding power source unit 16 detects the contact between the wire 12 and the welding object 15 and the contact based on the output of the welding current detection unit 7 that detects the welding current and the welding current detection unit 7. The counter unit 8 that counts the elapsed time from the time point, and the output of the counter unit 8 are input, and the control of the welding output is switched after a predetermined time has elapsed since the contact between the wire 12 and the welding object 15 was detected. A control switching control unit 9 that outputs a signal, a control switching switching unit 10 that switches the control of the welding output based on the output of the control switching control unit 9, and a setting unit 17 for setting welding conditions and the like are provided.

なお、カウンタ部8は、溶接トーチ13に設けられた図示しないトーチスイッチが操作される、あるいは、溶接ロボットの動作プログラムが実行されることにより、溶接の開始が指示された後に、最初に生じるワイヤ12と溶接対象物15との接触を検出して時間のカウントを行う。また、設定部17は、溶接を行うために設定する設定溶接電流や、溶接を行うために設定する設定溶接電圧や、ワイヤ12の送給速度や、シールドガスの種類や、ワイヤ12の材質や、ワイヤ12の径や、パルス溶接等の溶接法等を設定するためのものである。   The counter unit 8 is a wire that is generated first after the start of welding is instructed by operating a torch switch (not shown) provided on the welding torch 13 or by executing an operation program of a welding robot. The contact between the welding object 12 and the welding object 15 is detected and the time is counted. Further, the setting unit 17 sets the welding current set for performing welding, the set welding voltage set for performing welding, the feeding speed of the wire 12, the type of shield gas, the material of the wire 12, This is for setting the diameter of the wire 12 and a welding method such as pulse welding.

なお、溶接電源部16を構成する各構成部は、必要に応じて各々単独に構成してもよいし、複数の構成部を複合して構成するようにしてもよい。   In addition, each component which comprises the welding power supply part 16 may each be comprised independently as needed, and you may make it comprise combining a some component part.

次に、図1と図2を用いて、アーク溶接装置のアークスタート時の制御切替の例について説明する。   Next, an example of control switching at the time of arc start of the arc welding apparatus will be described with reference to FIGS. 1 and 2.

図1において、例えば作業者が溶接トーチ13を把持して溶接を行う場合、溶接トーチ13に設けられた図示しない起動スイッチを操作して溶接起動信号をONとする。ワイヤ送給部11は溶接起動信号がONされたことを示す信号を入力し、ワイヤ12を溶接対象物15に向かって送給し始める。このとき、溶接電源部16により、ワイヤ12と溶接対象物15との間には、無負荷電圧が印加されている。   In FIG. 1, for example, when an operator grips the welding torch 13 to perform welding, a welding activation signal is turned on by operating an activation switch (not shown) provided on the welding torch 13. The wire feeding unit 11 inputs a signal indicating that the welding activation signal is turned on, and starts feeding the wire 12 toward the welding object 15. At this time, a no-load voltage is applied between the wire 12 and the welding object 15 by the welding power source unit 16.

無負荷電圧が印加された状態でワイヤ12が溶接対象物15に接触すると、ワイヤ12と溶接対象物15を介して溶接電源部16内にも溶接電流が流れ、この溶接電流は溶接電流検出部7により検出される。   When the wire 12 contacts the welding object 15 with no load voltage applied, a welding current also flows in the welding power source 16 via the wire 12 and the welding object 15, and this welding current is detected by the welding current detection unit. 7 is detected.

図2に示す時点T1で溶接電流が検出されたとすると、図2に示すように時点T1で制御切替制御部9が出力する極性切替信号がONとなり、制御切替スイッチング部10の動作により、溶接電源部16からは、正極性一定の溶接電流が出力されることとなる。   If the welding current is detected at time T1 shown in FIG. 2, the polarity switching signal output from the control switching control unit 9 is turned on at time T1 as shown in FIG. The welding current having a constant positive polarity is output from the portion 16.

なお、カウンタ部8は、溶接電流検出部7から溶接電流を検出したことを示す信号を受信すると、溶接電流を検出した時点からの経過時間を計時する。また、制御切替制御部9は、設定部17からの入力に基づいて時間経過の判定基準値となる所定時間を算出して保持している。そして、制御切替制御部9は、カウンタ部8から経過時間を示す信号を入力し、保持している所定時間と比較を行う。制御切替制御部9は、カウンタ部8から入力した経過時間が保持している所定時間になると、図2において時点T2で示すように、溶接出力の制御を切り替える信号、すなわち、制御切替信号がOFFであることを示す信号を制御切替スイッチング部10へ出力する。そして、制御切替スイッチング部10の動作により溶接出力の制御が切り替えられ、溶接電源部16から逆極性一定の溶接電流が出力される。なお、制御切替スイッチング部10は、例えば、複数のスイッチング素子からなるフルブリッジ回路等から構成される。   In addition, if the counter part 8 receives the signal which shows having detected the welding current from the welding current detection part 7, it will measure the elapsed time from the time of detecting a welding current. Further, the control switching control unit 9 calculates and holds a predetermined time that is a determination reference value for the passage of time based on the input from the setting unit 17. Then, the control switching control unit 9 receives a signal indicating the elapsed time from the counter unit 8 and compares it with the predetermined time held. When the elapsed time input from the counter unit 8 reaches a predetermined time, the control switching control unit 9 switches the welding output control, that is, the control switching signal is OFF, as indicated by a time point T2 in FIG. Is output to the control switching unit 10. Then, the control of the welding output is switched by the operation of the control switching unit 10, and a welding current having a constant reverse polarity is output from the welding power source unit 16. Note that the control switching unit 10 includes, for example, a full bridge circuit composed of a plurality of switching elements.

また、所定時間(時点T1から時点T2までの期間)は、例えば50ms〜2000ms程度である。この時間は、実験等から求めた固定値として設定部17を用いて設定するようにしても良いし、上述したように、設定部17により設定される設定溶接電流や、設定溶接電圧や、ワイヤ送給速度や、シールドガス種類や、ワイヤ材質や、ワイヤ径や、溶接法等に基づいて、制御切替制御部9により決定された値としてもよい。   Further, the predetermined time (period from time T1 to time T2) is, for example, about 50 ms to 2000 ms. This time may be set using the setting unit 17 as a fixed value obtained from an experiment or the like. As described above, the set welding current, the set welding voltage, the wire set by the setting unit 17 may be used. It may be a value determined by the control switching control unit 9 based on the feeding speed, shield gas type, wire material, wire diameter, welding method, and the like.

以上のように、溶接の開始を指示してワイヤ12と溶接対象物15とが接触してから所定時間の間(時点T1から時点T2までの期間)では、正極性一定の直流溶接が行われ、所定時間が経過すると逆極性一定の直流溶接が行われる。   As described above, DC welding with constant positive polarity is performed for a predetermined time (period from time T1 to time T2) after the start of welding is instructed and the wire 12 and the welding object 15 come into contact with each other. When a predetermined time elapses, DC welding with a constant reverse polarity is performed.

このように、溶接を開始して所定時間は、正極性一定の直流溶接が行われることで、逆極性の直流溶接を行う場合に比べ、溶接対象物15を同一の板厚とした場合、正極性の方が、溶接対象物に対する入熱が少なく、ワイヤ12が溶け易いので、同じ溶込みを得ようとした場合、ワイヤ12の送給量を高めることができ、それに伴って溶着量を多くすることができる。すなわち、溶着量が多いことで、溶接開始時点で確実に2つの溶接対象物15間をワイヤ12の溶滴(溶融プール)でブリッジさせることができ、溶接対象物15の溶け落ちを抑制することができる。そして、所定時間後は逆極性一定の直流溶接が行われることで、適切な溶け込みの溶接を行うことができる。すなわち、所定時間における正極性一定の直流溶接は、溶接開始時に溶接対象物15間を溶滴(溶融プール)でブリッジさせて溶接対象物15の溶け落ちを抑制するための制御である。   In this way, when the welding object 15 has the same plate thickness as compared with the case where the reverse polarity DC welding is performed, the positive polarity constant DC welding is performed for a predetermined time after starting welding. Since the heat input to the object to be welded is less and the wire 12 is likely to melt, the feeding amount of the wire 12 can be increased and the welding amount is increased accordingly. can do. That is, since the welding amount is large, the two welding objects 15 can be reliably bridged by the droplets (melting pool) of the wire 12 at the start of welding, and the welding objects 15 are prevented from being burned out. Can do. And after predetermined time, the welding of appropriate penetration can be performed by performing DC welding with constant reverse polarity. That is, DC welding with constant positive polarity for a predetermined time is control for suppressing welding of the welding object 15 by bridging between the welding objects 15 with droplets (molten pool) at the start of welding.

なお、所定時間後の溶接制御は、図2に示すように逆極性一定の直流溶接ではなく、図3に示すように正極性比率が50%以下の交流溶接を行うようにしてもよい。そして、溶接対象物15の板厚や材質等々の溶接条件に適するように、図2の制御を行うようにしてもよいし、図3の制御を行うようにしてもよい。なお、深い溶け込みを得たい場合には、図2に示すように逆極性一定の直流溶接を行うことが望ましい。また、図3に示す正極性比率が50%以下の交流溶接に関し、正極性比率を変更することで、溶け込みを調整することができる。   The welding control after the predetermined time may be AC welding with a positive polarity ratio of 50% or less as shown in FIG. 3 instead of DC welding with constant reverse polarity as shown in FIG. Then, the control of FIG. 2 may be performed or the control of FIG. 3 may be performed so as to suit the welding conditions such as the plate thickness and material of the welding object 15. In order to obtain deep penetration, it is desirable to perform DC welding with a constant reverse polarity as shown in FIG. Further, regarding AC welding with a positive polarity ratio of 50% or less shown in FIG. 3, the penetration can be adjusted by changing the positive polarity ratio.

次に、図4を用いて、所定時間の間(時点T1から時点T2までの期間)は、正極性の比率が高い交流溶接を行う場合の例について説明する。なお、基本的な動作について図2を用いて説明した動作と同様なので、図2と異なる点について説明する。図2と異なる点は、図2に示すように所定時間の間に正極性一定の直流溶接を行うのではなく、図4に示すように所定時間の間は正極性の比率が高い交流溶接を行う点である。   Next, an example in which AC welding with a high positive polarity ratio is performed for a predetermined time (period from time T1 to time T2) will be described with reference to FIG. Since the basic operation is the same as that described with reference to FIG. 2, only differences from FIG. 2 will be described. 2 is different from FIG. 2 in that DC welding with a constant positive polarity is not performed during a predetermined time as shown in FIG. 2, but AC welding with a high positive polarity ratio is performed during a predetermined time as shown in FIG. It is a point to do.

溶接の開始指示が行われた後、図4に示す時点T1でワイヤ12と溶接対象物15とが接触したことにより流れる溶接電流が溶接電流検出部7で検出されると、図4に示すように時点T1で制御切替信号がONとなり、溶接電源部16からは正極性の比率が高い、例えば正極性の比率が50%より大きい交流が出力される。   When the welding current detector 7 detects the welding current that flows due to the contact between the wire 12 and the welding object 15 at the time T1 shown in FIG. 4 after the welding start instruction is given, as shown in FIG. At time T1, the control switching signal is turned ON, and the welding power supply unit 16 outputs an alternating current having a high positive polarity ratio, for example, a positive polarity ratio larger than 50%.

なお、カウンタ部8は、溶接電流検出部7から溶接電流を検出したことを示す信号を受信すると、溶接電流を検出した時点からの経過時間を計時する。制御切替制御部9は、設定部17からの入力に基づいて時間経過の判定基準値となる所定時間を算出して保持している。そして、制御切替制御部9は、カウンタ部8から経過時間を示す信号を入力し、保持している所定時間と比較を行う。制御切替制御部9は、カウンタ部8から入力した経過時間が保持している所定時間になると、図4において時点T2で示すように、溶接出力の制御を切り替える信号、すなわち、極性切替信号がOFFであることを示す信号を制御切替スイッチング部10へ出力する。そして、制御切替スイッチング部10の動作により溶接出力の制御が切り替えられ、溶接電源部16から逆極性一定の溶接出力が出力される。   In addition, if the counter part 8 receives the signal which shows having detected the welding current from the welding current detection part 7, it will measure the elapsed time from the time of detecting a welding current. The control switching control unit 9 calculates and holds a predetermined time as a determination reference value for the passage of time based on the input from the setting unit 17. Then, the control switching control unit 9 receives a signal indicating the elapsed time from the counter unit 8 and compares it with the predetermined time held. When the elapsed time input from the counter unit 8 reaches a predetermined time, the control switching control unit 9 turns off the signal for switching the control of the welding output, that is, the polarity switching signal is turned off as shown at time T2 in FIG. Is output to the control switching unit 10. Then, the control of the welding output is switched by the operation of the control switching switching unit 10, and a welding output with a constant reverse polarity is output from the welding power source unit 16.

以上のように、溶接の開始を指示してワイヤ12と溶接対象物15とが接触してから所定時間の間(時点T1から時点T2までの期間)では、正極性の比率が50%より大きい交流溶接が行われ、所定時間が経過すると逆極性一定の直流溶接が行われる。   As described above, the positive polarity ratio is larger than 50% during a predetermined time (period from the time T1 to the time T2) after the start of welding is instructed and the wire 12 and the welding object 15 come into contact with each other. AC welding is performed, and when a predetermined time elapses, DC welding with a constant reverse polarity is performed.

このように、溶接を開始して所定時間の間は、正極性の比率が50%より大きい交流溶接が行われることで、逆極性一定の場合に比べ、溶接対象物15を同一の板厚とした場合、正極性の方が、ワイヤ12が溶け易いことから、ワイヤ12の送給量を高めることができ、それに伴ってワイヤ12の溶着量を多くすることができる。すなわち、溶着量が多いことで、溶接開始時点で確実に2つの溶接対象物15間をワイヤ12の溶滴(溶融プール)でブリッジさせることができ、溶接対象物15の溶け落ちを抑制することができる。そして、所定時間後は逆極性一定の直流溶接が行われることで、適切な溶け込みの溶接を行うことができる。すなわち、所定時間における正極性の比率が50%より大きい交流溶接は、溶接開始時に溶接対象物15間を溶滴(溶融プール)でブリッジさせて溶接対象物15の溶け落ちを抑制するための制御である。   In this way, during the predetermined time after starting welding, AC welding with a positive polarity ratio of greater than 50% is performed, so that the welding object 15 has the same plate thickness as compared with the case of constant reverse polarity. In this case, since the wire 12 is easier to melt in the positive polarity, the feeding amount of the wire 12 can be increased, and the welding amount of the wire 12 can be increased accordingly. That is, since the welding amount is large, the two welding objects 15 can be reliably bridged by the droplets (melting pool) of the wire 12 at the start of welding, and the welding objects 15 are prevented from being burned out. Can do. And after predetermined time, the welding of appropriate penetration can be performed by performing DC welding with constant reverse polarity. That is, in AC welding in which the positive polarity ratio at a predetermined time is greater than 50%, control for bridging the welding object 15 with a droplet (molten pool) at the start of welding to suppress the welding object 15 from being burned out. It is.

ここで、正極性比率が高ければ、溶接対象物15の溶け落ちを防ぐことができるので、所定時間の間の正極性比率は50%より大きいことが望ましい。   Here, if the positive polarity ratio is high, it is possible to prevent the welding object 15 from being melted down. Therefore, it is desirable that the positive polarity ratio during a predetermined time is greater than 50%.

また、所定時間の間の制御に関し、図2のように、正極性一定の直流溶接を行うか、図4のように正極性比率が50%より大きい交流溶接を行うかは、溶接条件に基づいて決定すればよい。なお、溶接対象物15間のギャップが大きい場合には、図2に示すように正極性一定の直流溶接を行うことが望ましい。また、図4に示す正極性比率が50%以下の交流溶接に関し、正極性比率を変更することで、小さなギャップから大きなギャップに対応することができる。   In addition, regarding control during a predetermined time, whether to perform DC welding with a constant positive polarity as shown in FIG. 2 or whether to perform AC welding with a positive polarity ratio of more than 50% as shown in FIG. 4 is based on the welding conditions. To decide. In addition, when the gap between the welding objects 15 is large, it is desirable to perform DC welding with constant positive polarity as shown in FIG. In addition, regarding AC welding with a positive polarity ratio of 50% or less shown in FIG. 4, by changing the positive polarity ratio, it is possible to deal with a small gap to a large gap.

なお、所定時間後の溶接制御は、図4に示すように逆極性一定の直流溶接ではなく、図5に示すように正極性比率が50%以下の交流溶接を行うようにしてもよい。そして、溶接条件に適するように、図4の制御を行うようにしてもよいし、図5の制御を行うようにしてもよい。なお、深い溶け込みを得たい場合には、図4に示すように逆極性一定の直流溶接を行うことが望ましい。また、図4に示す正極性比率が50%以下の交流溶接に関し、正極性比率を変更することで、溶け込みを調整することができる。   The welding control after a predetermined time may be AC welding with a positive polarity ratio of 50% or less as shown in FIG. 5 instead of DC welding with constant reverse polarity as shown in FIG. Then, the control of FIG. 4 may be performed so as to suit the welding conditions, or the control of FIG. 5 may be performed. In order to obtain deep penetration, it is desirable to perform DC welding with a constant reverse polarity as shown in FIG. Further, regarding AC welding with a positive polarity ratio of 50% or less shown in FIG. 4, the penetration can be adjusted by changing the positive polarity ratio.

(実施の形態2)
本実施の形態2において、実施の形態1と同様の箇所については、同一の符号を付して詳細な説明を省略する。図6は、本実施の形態2におけるアーク溶接装置の概略構成を示す図である。
(Embodiment 2)
In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 6 is a diagram showing a schematic configuration of the arc welding apparatus in the second embodiment.

図6において、ロボット制御装置18は、マニピュレータ19の動作を制御するものである。なお、溶接トーチ13は、マニピュレータ19に取り付けられるものである。また、ロボット制御装置18は、動作プログラムや教示部20により入力された教示情報等を記憶する記憶部21と、記憶部21に記憶されている情報等に基づいてマニピュレータ19の動作の制御等を行うロボット制御部22を備えている。また、ロボット制御部22は溶接電源部16と情報の通信を行う機能を有しており、後述のように、溶接電源部16の制御切替制御部9に対して溶接出力の制御信号を出力する機能も有している。   In FIG. 6, the robot control device 18 controls the operation of the manipulator 19. The welding torch 13 is attached to the manipulator 19. In addition, the robot control device 18 stores an operation program, teaching information input by the teaching unit 20, and the like, and controls the operation of the manipulator 19 based on the information stored in the storage unit 21. A robot control unit 22 is provided. The robot control unit 22 has a function of communicating information with the welding power source unit 16 and outputs a control signal for welding output to the control switching control unit 9 of the welding power source unit 16 as will be described later. It also has a function.

なお、実施の形態1と異なる主な点は、マニピュレータ19により溶接トーチ13が教示された溶接開始ポイントに移動してきたときに制御切替信号をONにして溶接出力を行い、マニピュレータ19により溶接トーチ13が教示された所定の溶接ポイントに移動してきたときに制御切替信号をOFFにして溶接出力を切り替えるようにした点である。すなわち、時間ではなく、教示されたポイントにより溶接出力を切り替えるようにした点である。   The main difference from the first embodiment is that when the manipulator 19 moves the welding torch 13 to the welding start point taught, the control switching signal is turned ON to perform welding output, and the manipulator 19 performs the welding torch 13. Is that the control output signal is turned off to switch the welding output when moving to the predetermined welding point taught. That is, the welding output is switched according to the taught point instead of the time.

図6において、ロボット制御装置18のロボット制御部22は、記憶部21に記憶されている動作プログラムに基づいてマニピュレータ19の動作を制御する。そして、動作プログラムに含まれ、教示部20で教示された溶接開始ポイントに移動する命令を実行すると、マニピュレータ19の動作を制御することで溶接トーチ13を溶接開始ポイントに移動させる。そして、溶接トーチ13を溶接開始ポイントに移動させると、ロボット制御部22は、制御切替制御部9に溶接トーチ13が溶接開始ポイントに移動したことを示す信号を出力する。ロボット制御部22からの信号を受信した制御切替制御部9は、出力する極性切替信号がONとなり(時点T1に相当)、制御切替スイッチング部10の動作により、溶接電源部16からは、図2に示すように、正極性一定の溶接電流が出力されることとなる。さらに、動作プログラムが実行され、溶接トーチ13が教示部20により教示された所定の溶接ポイントに移動すると、ロボット制御部22は、制御切替制御部9に溶接トーチ13が所定の溶接ポイントに移動したことを示す信号を出力する。ロボット制御部22からの信号を受信した制御切替制御部9は、出力する極性切替信号がOFFとなり(時点T2に相当)、制御切替スイッチング部10の動作により、溶接電源部16からは、図2に示すように、逆極性一定の溶接電流が出力されることとなる。   In FIG. 6, the robot control unit 22 of the robot control device 18 controls the operation of the manipulator 19 based on the operation program stored in the storage unit 21. When a command to move to the welding start point that is included in the operation program and taught by the teaching unit 20 is executed, the welding torch 13 is moved to the welding start point by controlling the operation of the manipulator 19. When the welding torch 13 is moved to the welding start point, the robot control unit 22 outputs a signal indicating that the welding torch 13 has moved to the welding start point to the control switching control unit 9. The control switching control unit 9 that has received the signal from the robot control unit 22 turns on the output polarity switching signal (corresponding to the time point T1), and the operation of the control switching switching unit 10 causes the welding power source unit 16 to display FIG. As shown in FIG. 3, a welding current having a constant positive polarity is output. Further, when the operation program is executed and the welding torch 13 moves to a predetermined welding point taught by the teaching unit 20, the robot control unit 22 causes the control switching control unit 9 to move the welding torch 13 to the predetermined welding point. The signal which shows that is output. The control switching control unit 9 that has received the signal from the robot control unit 22 turns off the output polarity switching signal (corresponding to the time T2), and the operation of the control switching switching unit 10 causes the welding power source unit 16 to display FIG. As shown in FIG. 4, a welding current having a constant reverse polarity is output.

以上のように、教示された溶接開始ポイントおよび所定の溶接ポイントにより溶接制御を切り替えるようにしてもよい。このようにすることで、実施の形態1と同様に、溶接開始時点で確実に2つの溶接対象物15間をワイヤ12の溶滴(溶融プール)でブリッジさせることができ、溶接対象物15の溶け落ちを抑制することができる。そして、所定の溶接ポイントを過ぎると逆極性一定の直流溶接が行われることで、適切な溶け込みの溶接を行うことができる。   As described above, the welding control may be switched by the taught welding start point and the predetermined welding point. By doing in this way, like the first embodiment, the two welding objects 15 can be reliably bridged by the droplets (molten pool) of the wires 12 at the start of welding. Melting-down can be suppressed. Then, when a predetermined welding point is passed, DC welding with constant reverse polarity is performed, so that appropriate penetration welding can be performed.

なお、実施の形態1と同様に、溶接制御は、図2から図5に示す制御を溶接条件等に基づいて適切に使い分けるようにすればよい。   Similar to the first embodiment, the welding control may be performed by appropriately using the controls shown in FIGS. 2 to 5 based on welding conditions and the like.

また、溶接開始ポイントから所定の溶接ポイントまでの距離は、例えば、0.5mmから20mm程度である。   The distance from the welding start point to the predetermined welding point is, for example, about 0.5 mm to 20 mm.

なお、溶接の開始時だけでなく、溶接の途中においても、制御切替信号をONにして正極性一定の直流溶接や正極性比率が50%より大きい交流溶接を行うようにしてもよい。例えば、溶接経路の途中に大きなギャップが存在する場合、そのギャップの始めのポイントと終了のポイントを予め教示しておき、始めのポイントにおいて制御切替信号をONにして正極性一定の直流溶接や正極性比率が50%より大きい交流溶接を行い、終了のポイントにおいて制御切替信号をOFFにして制御信号をONする前の溶接制御に戻すようにしてもよい。そして、ギャップのポイントは確認が比較的容易であり、教示を行い易いので、実施の形態1のように所定時間で溶接制御を切り替えるのではなく、本実施の形態2のように溶接ポイントで溶接制御を切り替えるようにした方が、対応が容易である。   Note that not only at the start of welding but also during the welding, the control switching signal may be turned ON to perform DC welding with a constant positive polarity or AC welding with a positive polarity ratio greater than 50%. For example, if there is a large gap in the middle of the welding path, the starting point and the ending point of the gap are taught in advance, and the control switching signal is turned ON at the first point to make positive polarity DC welding or positive electrode AC welding with a sex ratio greater than 50% may be performed, and the control switching signal may be turned off at the end point to return to the welding control before the control signal was turned on. Since the gap point is relatively easy to check and easy to teach, welding control is not switched at a predetermined time as in the first embodiment, but welding is performed at the welding point as in the second embodiment. It is easier to switch the control.

(実施の形態3)
本実施の形態3において、実施の形態1や実施の形態2と同様の箇所については、同一の符号を付して詳細な説明を省略する。
(Embodiment 3)
In the third embodiment, the same parts as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態3では、図7に示すように、ワイヤ12の送給を、溶接対象物15の方向に行う正送とこの正送とは逆方向に行う逆送とに、所定の周期と所定の振幅で周期的に変化させるものである。   In the third embodiment, as shown in FIG. 7, the feeding of the wire 12 is performed in a predetermined cycle between normal feeding performed in the direction of the welding object 15 and reverse feeding performed in the direction opposite to the normal feeding. It is changed periodically with a predetermined amplitude.

ワイヤ12を周期的に正送および逆送させる短絡移行溶接では、ワイヤ12が正送する場合に短絡状態を形成し、逆送する場合にはワイヤ12を引き上げるので短絡状態が開放してアーク状態を形成する溶接法となる。この場合、短絡の時間比率は、一般的な短絡移行溶接の場合の比率である約15〜30%に比べ、30〜50%と高くなる。そのため、一般的な短絡移行溶接より入熱が低くなり、溶接対象物15の溶け落ちを抑制することが可能となる。このため、溶接開始の指示後に溶接電流を検出した時点である時点T1から所定時間後であり制御の切り替え指示を行う時点T2までの間を、溶け落ちを抑制する区間とする溶接法として、ワイヤ12を周期的に正送および逆送する短絡移行溶接を実施することで、さらに溶け落ちを防止する効果が高まる。   In short-circuit transfer welding in which the wire 12 is periodically forwarded and reversely fed, a short-circuit state is formed when the wire 12 is forward-fed, and when the wire 12 is fed backward, the wire 12 is pulled up so that the short-circuit state is opened and an arc state It becomes the welding method which forms. In this case, the time ratio of short circuit is as high as 30 to 50% compared to about 15 to 30% which is a ratio in the case of general short circuit transfer welding. Therefore, heat input becomes lower than general short circuit transfer welding, and it is possible to suppress the welding object 15 from being burned out. For this reason, as a welding method in which a section between a time T1 when a welding current is detected after an instruction to start welding and a time T2 after a predetermined time and when a control switching instruction is given is used as a section for suppressing burnout, By performing short-circuit transfer welding in which 12 is periodically forwarded and reversely fed, the effect of preventing burnout is further increased.

なお、ワイヤ12の送給は、図7に示すように正弦波状でもよいし、あるいは台形波状でもよく、周期的であることが望ましい。   The wire 12 may be fed in a sine wave shape as shown in FIG. 7 or a trapezoidal wave shape, and is preferably periodic.

本発明のアーク溶接制御方法およびアーク溶接装置は、溶接開始時に溶け落ちが発生し難く、またギャップ裕度が高く、溶接条件調整を容易にするため条件調整時間を短縮することが可能となり、溶接対象物間にギャップがある場合に用いるアーク溶接制御方法およびアーク溶接装置として産業上有用である。   The arc welding control method and the arc welding apparatus of the present invention are unlikely to cause burn-off at the start of welding, have a high gap tolerance, and make it easy to adjust welding conditions. This is industrially useful as an arc welding control method and an arc welding apparatus used when there is a gap between objects.

1 入力電源
2 1次整流部
3 スイッチング部
4 トランス
5 2次整流部
6 DCL(インダクタンス)
7 溶接電流検出部
8 カウンタ部
9 制御切替制御部
10 制御切替スイッチング部
11 ワイヤ送給部
12 ワイヤ
13 溶接トーチ
14 溶接アーク
15 溶接対象物
16 溶接電源部
17 設定部
18 ロボット制御装置
19 マニピュレータ
20 教示部
21 記憶部
22 ロボット制御部
DESCRIPTION OF SYMBOLS 1 Input power supply 2 Primary rectification part 3 Switching part 4 Transformer 5 Secondary rectification part 6 DCL (inductance)
DESCRIPTION OF SYMBOLS 7 Welding current detection part 8 Counter part 9 Control switching control part 10 Control switching switching part 11 Wire feeding part 12 Wire 13 Welding torch 14 Welding arc 15 Welding object 16 Welding power supply part 17 Setting part 18 Robot controller 19 Manipulator 20 Teaching Unit 21 Storage unit 22 Robot control unit

Claims (6)

消耗電極として溶接ワイヤを用いるアーク溶接制御方法であって、
溶接の開始を指示した後に前記溶接ワイヤと溶接対象物との接触を検出してから所定時間の間は、正極性一定の直流溶接を行う、あるいは、正極性の比率が50%より大きい交流溶接を行い、前記所定時間の後は、逆極性一定の直流溶接を行う、あるいは、正極性比率が50%以下の交流溶接を行うアーク溶接制御方法。
An arc welding control method using a welding wire as a consumable electrode,
DC welding with a constant positive polarity is performed for a predetermined time after contact between the welding wire and the welding object is detected after instructing the start of welding, or AC welding with a positive polarity ratio of more than 50%. Arc welding control method in which DC welding with a constant reverse polarity or AC welding with a positive polarity ratio of 50% or less is performed after the predetermined time.
消耗電極として溶接ワイヤを用い、溶接用トーチを備えた溶接ロボットを使用して溶接を行うアーク溶接制御方法であって、
溶接を開始するために教示された溶接開始ポイントから、溶接出力の制御を切り替えるために教示された所定の溶接ポイントまで、前記溶接用トーチが移動される間は、正極性一定の直流溶接を行う、あるいは、正極性の比率が50%より大きい交流溶接を行い、前記溶接用トーチの移動が前記所定の溶接ポイントを過ぎると、逆極性一定の直流溶接を行う、あるいは、正極性比率が50%以下の交流溶接を行うアーク溶接制御方法。
An arc welding control method using a welding wire as a consumable electrode and performing welding using a welding robot equipped with a welding torch,
While the welding torch is moved from a welding start point taught to start welding to a predetermined welding point taught to switch control of welding output, DC welding with constant positive polarity is performed. Alternatively, AC welding with a positive polarity ratio of greater than 50% is performed, and when the movement of the welding torch passes the predetermined welding point, DC welding with a constant reverse polarity is performed, or the positive polarity ratio is 50%. An arc welding control method for performing the following AC welding.
溶接ワイヤの送給を、溶接対象物の方向に行う正送と前記正送とは逆方向に行う逆送とに、所定の周期と所定の振幅で周期的に変化させる請求項1または2に記載のアーク溶接制御方法。 3. The welding wire according to claim 1 or 2, wherein feeding of the welding wire is periodically changed at a predetermined cycle and a predetermined amplitude between a normal feed performed in the direction of the welding object and a reverse feed performed in a direction opposite to the normal feed. The arc welding control method described. アークスタート期間において、消耗電極であるワイヤと溶接対象物との間に電圧を印加した状態で前記ワイヤを前記溶接対象物に接触させてアークスタートを行うアーク溶接装置であって、
溶接電流を検出する溶接電流検出部と、
前記溶接電流検出部の出力に基づいて前記ワイヤと前記溶接対象物との接触を検出する接触検出部と、
前記接触検出部からの信号に基づいて前記ワイヤと前記溶接対象物とが接触した時点からの経過時間をカウントするカウンタ部と、
前記カウンタ部からの信号に基づいて所定時間が経過すると溶接出力の制御を切り替える信号を出力する制御切替制御部と、
前記制御切替制御部からの信号に基づいて溶接出力を切り替える制御切替スイッチング部とを備え、
溶接の開始を指示した後に前記溶接ワイヤと前記溶接対象物との接触を検出してから前記所定時間の間は、正極性一定の直流溶接を行う、あるいは、正極性の比率が50%より大きい交流溶接を行い、前記所定時間の後は、逆極性一定の直流溶接を行う、あるいは、正極性比率が50%以下の交流溶接を行うアーク溶接装置。
In the arc start period, an arc welding apparatus that performs an arc start by bringing the wire into contact with the welding object in a state where a voltage is applied between the wire that is a consumable electrode and the welding object,
A welding current detector for detecting a welding current;
A contact detection unit that detects contact between the wire and the welding object based on an output of the welding current detection unit;
A counter unit that counts an elapsed time from the time when the wire and the welding object contact based on a signal from the contact detection unit;
A control switching control unit for outputting a signal for switching the control of the welding output when a predetermined time elapses based on a signal from the counter unit;
A control switching switching unit that switches the welding output based on a signal from the control switching control unit,
Direct current welding with positive polarity is performed for a predetermined time after contact between the welding wire and the welding object is detected after instructing the start of welding, or the positive polarity ratio is greater than 50%. An arc welding apparatus that performs AC welding and performs DC welding with a constant reverse polarity after the predetermined time or AC welding with a positive polarity ratio of 50% or less.
アークスタート期間において、消耗電極であるワイヤと溶接対象物との間に電圧を印加した状態で前記ワイヤを前記溶接対象物に接触させてアークスタートを行うアーク溶接装置であって、
溶接用トーチを備えた溶接ロボットと、
溶接経路上の溶接ポイントを教示するための教示部と、
前記溶接ロボットの動作プログラムや前記教示部を用いて教示された教示ポイントを記憶する記憶部と、
前記動作プログラムに基づいて前記溶接ロボットを制御するロボット制御部とを備え、
溶接を開始するために教示された溶接開始ポイントから、溶接出力の制御を切り替えるために教示された所定の溶接ポイントまで、前記溶接用トーチが移動される間は、正極性一定の直流溶接を行う、あるいは、正極性の比率が50%より大きい交流溶接を行い、前記溶接用トーチの移動が前記所定の溶接ポイントを過ぎると、逆極性一定の直流溶接を行う、あるいは、正極性比率が50%以下の交流溶接を行うアーク溶接装置。
In the arc start period, an arc welding apparatus that performs an arc start by bringing the wire into contact with the welding object in a state where a voltage is applied between the wire that is a consumable electrode and the welding object,
A welding robot with a welding torch;
A teaching unit for teaching a welding point on the welding path;
A storage unit for storing teaching points taught using the welding robot operation program and the teaching unit;
A robot controller that controls the welding robot based on the operation program,
While the welding torch is moved from a welding start point taught to start welding to a predetermined welding point taught to switch control of welding output, DC welding with constant positive polarity is performed. Alternatively, AC welding with a positive polarity ratio of greater than 50% is performed, and when the movement of the welding torch passes the predetermined welding point, DC welding with a constant reverse polarity is performed, or the positive polarity ratio is 50%. Arc welding equipment that performs the following AC welding.
ワイヤの送給を制御するワイヤ送給部を備え、前記ワイヤの送給を、溶接対象物の方向に行う正送と前記正送とは逆方向に行う逆送とに、所定の周期と所定の振幅で周期的に変化させる請求項4または5に記載のアーク溶接装置。 A wire feeding unit for controlling the feeding of the wire, and feeding the wire in a predetermined cycle and a predetermined period in a forward feeding performed in the direction of the welding object and a reverse feeding performed in a direction opposite to the normal feeding. The arc welding apparatus according to claim 4 or 5, wherein the arc welding apparatus is periodically changed with an amplitude of.
JP2011266576A 2011-12-06 2011-12-06 Arc welding control method and arc welding apparatus Active JP5982628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266576A JP5982628B2 (en) 2011-12-06 2011-12-06 Arc welding control method and arc welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266576A JP5982628B2 (en) 2011-12-06 2011-12-06 Arc welding control method and arc welding apparatus

Publications (2)

Publication Number Publication Date
JP2013119087A true JP2013119087A (en) 2013-06-17
JP5982628B2 JP5982628B2 (en) 2016-08-31

Family

ID=48772008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266576A Active JP5982628B2 (en) 2011-12-06 2011-12-06 Arc welding control method and arc welding apparatus

Country Status (1)

Country Link
JP (1) JP5982628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229175A (en) * 2014-06-05 2015-12-21 株式会社安川電機 Arc-welding system, arc-welding method, and welded article manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219267B2 (en) * 1980-03-19 1987-04-27 Mitsubishi Electric Corp
JPH0349665B2 (en) * 1981-12-25 1991-07-30 Matsushita Electric Ind Co Ltd
JPH03297560A (en) * 1990-04-17 1991-12-27 Hitachi Seiko Ltd Method for starting ac arc
JPH1034332A (en) * 1996-07-29 1998-02-10 Matsushita Electric Ind Co Ltd Arc welding equipment
JP2010172953A (en) * 2009-02-02 2010-08-12 Panasonic Corp Arc start control method, and welding robot system
WO2011004586A1 (en) * 2009-07-10 2011-01-13 パナソニック株式会社 Arc welding control method and arc welding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219267B2 (en) * 1980-03-19 1987-04-27 Mitsubishi Electric Corp
JPH0349665B2 (en) * 1981-12-25 1991-07-30 Matsushita Electric Ind Co Ltd
JPH03297560A (en) * 1990-04-17 1991-12-27 Hitachi Seiko Ltd Method for starting ac arc
JPH1034332A (en) * 1996-07-29 1998-02-10 Matsushita Electric Ind Co Ltd Arc welding equipment
JP2010172953A (en) * 2009-02-02 2010-08-12 Panasonic Corp Arc start control method, and welding robot system
WO2011004586A1 (en) * 2009-07-10 2011-01-13 パナソニック株式会社 Arc welding control method and arc welding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229175A (en) * 2014-06-05 2015-12-21 株式会社安川電機 Arc-welding system, arc-welding method, and welded article manufacturing method
US9855619B2 (en) 2014-06-05 2018-01-02 Kabushiki Kaisha Yaskawa Denki Arc welding system, method for performing arc welding, and method for producing welded product

Also Published As

Publication number Publication date
JP5982628B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP4807479B2 (en) Arc welding control method and arc welding apparatus
US10870161B2 (en) Arc welding control method
US8901454B2 (en) Arc welding control method
EP2732901B1 (en) Arc welding control method and arc welding device
EP3342521B1 (en) Arc welding device
CN109715335B (en) Arc welding control method
US9393636B2 (en) Systems and methods to facilitate the starting and stopping of arc welding processes
JP5278542B2 (en) Arc welding control method and arc welding control apparatus
JP2006142317A (en) Polarity switching short circuiting arc welding method
JP2012081501A (en) Arc welding control method, and arc welding equipment
EP2897754A2 (en) Welding power sources with a bridge circuit providing high/low impedance for controlling ac arc welding processes
JPWO2016075871A1 (en) Control method of arc welding
JP4702375B2 (en) Arc welding control method and arc welding apparatus
JP5120073B2 (en) AC pulse arc welding apparatus and control method
JP6019387B2 (en) Arc welding control method and arc welding apparatus
JP2013022593A (en) Method for controlling arc welding, and arc welding equipment
JP5982628B2 (en) Arc welding control method and arc welding apparatus
JP6019380B2 (en) Arc welding control method and arc welding apparatus
JP2013094850A (en) Method of controlling arc welding and apparatus for arc welding
KR20130112691A (en) Short arc welding system
JP4211724B2 (en) Arc welding control method and arc welding apparatus
CN113727800B (en) Arc welding control method and arc welding device
JP2013132658A (en) Method of controlling arc start of consumable electrode arc welding
JPH1177304A (en) Output controller for consumable electrode type arc welding equipment
JP4643236B2 (en) Polarity switching short-circuit arc welding method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R151 Written notification of patent or utility model registration

Ref document number: 5982628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151