JP2013118096A - Surface processing method for separator for fuel battery - Google Patents

Surface processing method for separator for fuel battery Download PDF

Info

Publication number
JP2013118096A
JP2013118096A JP2011264977A JP2011264977A JP2013118096A JP 2013118096 A JP2013118096 A JP 2013118096A JP 2011264977 A JP2011264977 A JP 2011264977A JP 2011264977 A JP2011264977 A JP 2011264977A JP 2013118096 A JP2013118096 A JP 2013118096A
Authority
JP
Japan
Prior art keywords
stainless steel
fuel cell
steel plate
layer
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011264977A
Other languages
Japanese (ja)
Other versions
JP5806099B2 (en
Inventor
Naoki Nishiyama
直樹 西山
Shin Ishikawa
伸 石川
Yukihiro Suzuki
幸弘 鈴木
Eiichiro Morozumi
英一郎 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Toyota Auto Body Co Ltd
Original Assignee
JFE Steel Corp
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Toyota Auto Body Co Ltd filed Critical JFE Steel Corp
Priority to JP2011264977A priority Critical patent/JP5806099B2/en
Publication of JP2013118096A publication Critical patent/JP2013118096A/en
Application granted granted Critical
Publication of JP5806099B2 publication Critical patent/JP5806099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface processing method for obtaining a stainless steel plate that has superior durability in an actual use environment and is suitable for use with a separator for solid polymer fuel battery.SOLUTION: After anode electrolysis processing in which Cr transpassive dissolution reaction is caused is performed on a base surface of the stainless steel plate, formation processing for a NiSnlayer is immediately performed. The anode electrolysis processing is carried out in a sodium sulfate solution under conditions of a concentration of the sodium sulfate solution of 0.5-2 mol/L, a temperature of 60-80°C, a current density of 3-7 A/dm, and an electrolysis time of 30-120 seconds.

Description

本発明は、耐食性に優れた固体高分子形燃料電池用セパレータの表面処理方法に関するものである。   The present invention relates to a surface treatment method for a polymer electrolyte fuel cell separator having excellent corrosion resistance.

近年、地球環境保全の観点から、発電効率に優れ、CO2を排出しない燃料電池の開発が進められている。この燃料電池はH2とO2から電気化学反応によって電気を発生させるものであり、その基本構造は、電解質膜(イオン交換膜)、2つの電極(燃料極と空気極)、O2(空気)とH2の拡散層および2つのセパレータから構成されている。そして、使用される電解質膜の種類に応じて、リン酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池、アルカリ形燃料電池および固体高分子形燃料電池等に分類され、それぞれ開発が進められている。 In recent years, from the viewpoint of global environmental conservation, development of fuel cells that are excellent in power generation efficiency and do not emit CO 2 has been underway. This fuel cell generates electricity by electrochemical reaction from H 2 and O 2 , and its basic structure is an electrolyte membrane (ion exchange membrane), two electrodes (fuel electrode and air electrode), O 2 (air ) And an H 2 diffusion layer and two separators. And according to the type of electrolyte membrane used, it is classified into phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, alkaline fuel cell, solid polymer fuel cell, etc. Development is underway.

これらの燃料電池のうち、固体高分子形燃料電池は、他の燃料電池に比べて、
(a) 発電温度が80℃程度であり、格段に低い温度で発電できる、
(b) 燃料電池本体の軽量化、小型化が可能である、
(c) 短時間で立上がり、燃料効率、出力密度が共に高い
等の利点を有している。そのため、固体高分子形燃料電池は、電気自動車の搭載用電源や、家庭用あるいは業務用の定置型発電機、携帯用の小型発電機としての利用が期待され、今日最も注目されている燃料電池である。
Among these fuel cells, the polymer electrolyte fuel cell is compared with other fuel cells.
(a) The power generation temperature is about 80 ° C, and power can be generated at a significantly lower temperature.
(b) The fuel cell body can be reduced in weight and size.
(c) It has advantages such as a short rise time, high fuel efficiency and high power density. Therefore, solid polymer fuel cells are expected to be used as power sources for electric vehicles, stationary generators for home use or business use, and portable small generators. It is.

ここで、固体高分子形燃料電池とは、高分子膜を介してH2 とO2 から電気を取り出すものであり、図1に示すように、ガス拡散層2,3(たとえばカーボンペーパ等)およびセパレータ4,5によって膜−電極接合体1を挟み込み、これを単一の構成要素(いわゆる単セル)として、セパレータ4とセパレータ5との間に起電力を生じさせるものである。 Here, the solid polymer fuel cell is one that takes out electricity from H 2 and O 2 through a polymer membrane. As shown in FIG. 1, gas diffusion layers 2 and 3 (for example, carbon paper) The membrane-electrode assembly 1 is sandwiched between the separators 4 and 5, and this is used as a single component (so-called single cell) to generate an electromotive force between the separator 4 and the separator 5.

上記の膜−電極接合体1は、MEA(Membrance-Electrode Assembly )と呼ばれており、高分子膜と白金系触媒を担持したカーボンブラック等の電極材料とを、高分子膜の表裏面で一体化したものであり、厚さは数10μm〜数100μmである。また、ガス拡散層2,3を、膜−電極接合体1と一体化し、単セルとする場合も多い。   The membrane-electrode assembly 1 is called MEA (Membrance-Electrode Assembly), and the polymer film and an electrode material such as carbon black carrying a platinum catalyst are integrated on the front and back surfaces of the polymer film. The thickness is several tens of μm to several hundreds of μm. The gas diffusion layers 2 and 3 are often integrated with the membrane-electrode assembly 1 to form a single cell.

さらに、固体高分子形燃料電池を実用に供する場合には、上記のような単セルを、直列に数十〜数百個とつないで、燃料電池スタックを構成して使用するのが一般的である。   Furthermore, when a polymer electrolyte fuel cell is put into practical use, it is common to use a single unit cell as described above by connecting several tens to several hundreds in series to form a fuel cell stack. is there.

また、セパレータ4,5には、
(A) 単セル間を隔てる隔壁
としての役割に加え、
(B) 発生した電子を運ぶ導電体、
(C) O2(空気)とH2が流れる空気流路、水素流路、
(D) 生成した水やガスを排出する排出路
としての機能が求められる。
従って、固体高分子形燃料電池には、耐久性や電気伝導性に優れたセパレータを使用する必要がある。
In addition, the separators 4 and 5 include
(A) In addition to serving as a partition wall that separates single cells,
(B) a conductor that carries the generated electrons,
(C) Air flow path, hydrogen flow path through which O 2 (air) and H 2 flow,
(D) A function as a discharge path for discharging generated water and gas is required.
Therefore, it is necessary to use a separator having excellent durability and electrical conductivity for the polymer electrolyte fuel cell.

ここに、耐久性に関して述べると、電気自動車の搭載用電源として使用される場合には約5000時間が想定され、また家庭用の定置型発電機等として使用される場合には、約40000時間が想定される。従って、セパレータには、上記の耐久性を確保するために、長時間の発電に耐えられる耐食性が要求されることになる。というのは、腐食によって金属イオンが溶出すると電解質膜のプロトン伝導性が低下するからである。   Here, regarding durability, about 5000 hours are assumed when used as a power source for mounting an electric vehicle, and about 40,000 hours when used as a stationary generator for home use. is assumed. Therefore, the separator is required to have corrosion resistance that can withstand long-time power generation in order to ensure the durability described above. This is because proton conductivity of the electrolyte membrane decreases when metal ions are eluted by corrosion.

一方、電気伝導性に関しては、セパレータとガス拡散層との接触抵抗が極力低いことが望まれる。というのは、セパレータとガス拡散層との接触抵抗が増大すると、固体高分子形燃料電池の発電効率が低下するからである。それ故、セパレータとガス拡散層との接触抵抗が小さいほど、発電特性に優れていることになる。   On the other hand, regarding electrical conductivity, it is desired that the contact resistance between the separator and the gas diffusion layer is as low as possible. This is because as the contact resistance between the separator and the gas diffusion layer increases, the power generation efficiency of the polymer electrolyte fuel cell decreases. Therefore, the smaller the contact resistance between the separator and the gas diffusion layer, the better the power generation characteristics.

現在までに、セパレータ4,5としては、グラファイトを用いた固体高分子形燃料電池が実用化されている。このグラファイトからなるセパレータ4,5は、接触抵抗が比較的低く、しかも腐食しないという利点がある。しかしながら、衝撃に弱いため、小型化が困難であり、しかも空気流路6や水素流路7を形成するための加工コストが高いという欠点がある。それ故、グラファイトからなるセパレータ4,5が有するこれらの欠点は、固体高分子形燃料電池の普及を妨げている。   To date, as the separators 4 and 5, solid polymer fuel cells using graphite have been put into practical use. The separators 4 and 5 made of graphite have an advantage that they have a relatively low contact resistance and do not corrode. However, since it is vulnerable to impact, it is difficult to reduce the size, and the processing cost for forming the air channel 6 and the hydrogen channel 7 is high. Therefore, these disadvantages of the separators 4 and 5 made of graphite hinder the spread of solid polymer fuel cells.

そこで、セパレータ4,5の素材として、グラファイトに替えて金属素材を適用する試みがなされている。特に、耐久性向上の観点から、ステンレス鋼板や、チタンまたはチタン合金を素材とした板からなるセパレータ4,5の実用化に向けて、種々の検討がなされている。   Therefore, an attempt is made to apply a metal material instead of graphite as a material for the separators 4 and 5. In particular, from the viewpoint of improving durability, various studies have been made toward the practical application of separators 4 and 5 made of a stainless steel plate or a plate made of titanium or a titanium alloy.

例えば、特許文献1には、ステンレス鋼またはチタン合金等の不動態皮膜を形成しやすい金属をセパレータとして用いる技術が開示されている。しかし、不動態皮膜の形成は、接触抵抗の上昇を招くことになって発電効率の低下につながる。このため、これらの金属素材は、グラファイト素材と比べて接触抵抗が大きい等の改善すべき問題点が指摘されていた。   For example, Patent Document 1 discloses a technique in which a metal that easily forms a passive film such as stainless steel or a titanium alloy is used as a separator. However, the formation of a passive film leads to an increase in contact resistance, leading to a decrease in power generation efficiency. For this reason, it has been pointed out that these metal materials have problems to be improved such as a contact resistance larger than that of the graphite material.

また、特許文献2には、オーステナイト系ステンレス鋼板(SUS304)等の金属セパレータの表面に金めっきを施すことにより、接触抵抗を低減し、高出力を確保する技術が開示されている。しかし、薄い金めっきではピンホールの発生防止が困難であり、逆に厚い金めっきではコストの問題が残っていた。   Patent Document 2 discloses a technique for reducing contact resistance and ensuring high output by performing gold plating on the surface of a metal separator such as an austenitic stainless steel plate (SUS304). However, it is difficult to prevent the occurrence of pinholes with thin gold plating, and conversely, the problem of cost remains with thick gold plating.

特開平8-180883号公報Japanese Patent Laid-Open No. 8-180883 特開平10-228914号公報Japanese Patent Laid-Open No. 10-228914

本発明は、上記した種々の問題点を解決し、実使用環境下において耐久性に優れる固体高分子形燃料電池用セパレータを得るための表面処理方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned various problems and to provide a surface treatment method for obtaining a polymer electrolyte fuel cell separator that is excellent in durability under an actual use environment.

発明者らは、上記の目的を達成すべく、固体高分子形燃料電池用セパレータの素材であるステンレス鋼板に対して種々の表面処理方法の検討を行った。以下、本発明の解明経緯について説明する。
まず、ステンレス鋼板の表面に0.5μmのNiストライク処理を行った後、上層にNi3Sn2層を8μm程度形成することで、セパレータ使用環境下での耐久性が向上することが分かった。ここで、Niストライク処理は上層のNi3Sn2層の密着性を確保するために行われるものである。
In order to achieve the above object, the inventors have studied various surface treatment methods for a stainless steel plate as a material for a separator for a polymer electrolyte fuel cell. The elucidation process of the present invention will be described below.
First, it was found that after the Ni strike treatment of 0.5 μm was performed on the surface of the stainless steel plate, the Ni 3 Sn 2 layer was formed on the upper layer to a thickness of about 8 μm, thereby improving the durability in the environment where the separator was used. Here, the Ni strike treatment is performed in order to ensure adhesion of the upper Ni 3 Sn 2 layer.

しかしながら、上記した形成処理等では、例えば、板厚:50μmのステンレス鋼板を使用した場合、両面で17μm程度のコーティング処理が必要となり、結果的に板厚の増加率が34%程度となる。これを、数百ものセルをスタックして使用する燃料電池に使用した場合、全体の厚みが極めて大きく、また自動車等に使用すると搭載スペースが過大になって、搭載重量も大きくなるという問題が生じる。   However, in the above-described forming process, for example, when a stainless steel plate having a plate thickness of 50 μm is used, a coating process of about 17 μm is required on both sides, resulting in an increase rate of the plate thickness of about 34%. When this is used for a fuel cell in which hundreds of cells are stacked, the overall thickness is extremely large, and when it is used in an automobile or the like, the mounting space becomes excessive and the mounting weight increases. .

上記の問題を解決するために、発明者らは、Ni3Sn2層の薄膜化を試みた。しかしながら、単にNi3Sn2層を薄膜化した場合には、Ni3Sn2層から素地に通ずる欠陥量が多くなる。その結果、上記の欠陥を通じて、耐食性の悪いNiストライク中間層が腐食してしまうため、その上層のNi3Sn2層が剥離してしまうという問題が発生することが分かった。 In order to solve the above problem, the inventors tried to reduce the thickness of the Ni 3 Sn 2 layer. However, when the Ni 3 Sn 2 layer is simply thinned, the amount of defects that pass from the Ni 3 Sn 2 layer to the substrate increases. As a result, it was found that the Ni strike intermediate layer having poor corrosion resistance was corroded through the above-described defects, so that the upper Ni 3 Sn 2 layer was peeled off.

次に、発明者らは、Niストライク中間層を形成せずに、Ni3Sn2層を直接ステンレス鋼板に形成することを試みた。しかしながら、低Crステンレス鋼板の場合、Ni3Sn2層の密着性は確保できるものの、薄膜化により発生する素地に通じた欠陥によって、低Crステンレス鋼板自身が腐食する問題が発生した。 Next, the inventors tried to form the Ni 3 Sn 2 layer directly on the stainless steel plate without forming the Ni strike intermediate layer. However, in the case of a low Cr stainless steel sheet, although the adhesion of the Ni 3 Sn 2 layer can be ensured, a problem that the low Cr stainless steel sheet itself corrodes due to a defect connected to the substrate generated by thinning.

一方、高Crステンレス鋼板に、Niストライク中間層を形成せずに、直接Ni3Sn2層を形成した場合には、Ni3Sn2層の密着性が悪く、板表面から剥離してしまうという問題が発生した。 On the other hand, if the Ni 3 Sn 2 layer is formed directly on the high Cr stainless steel plate without forming the Ni strike intermediate layer, the adhesion of the Ni 3 Sn 2 layer is poor and it will peel off from the plate surface. Problem has occurred.

以上の検討を受け、発明者らは、高Crステンレス鋼板に対して、Ni3Sn2層の密着性を改善することができる表面処理方法そのものの検討を行った。
その結果、高Crステンレス鋼板において、Ni3Sn2層の密着性が悪い理由は、高Crステンレス鋼板の表面に存在するCr含有率の高い不動態皮膜による影響であることが究明された。
In response to the above examination, the inventors examined the surface treatment method itself that can improve the adhesion of the Ni 3 Sn 2 layer to the high Cr stainless steel sheet.
As a result, it was found that the reason why the adhesion of the Ni 3 Sn 2 layer was poor in the high Cr stainless steel sheet was the effect of the passive film having a high Cr content present on the surface of the high Cr stainless steel sheet.

そこで、発明者らは、高Crステンレス鋼板の表面だけを低Cr化することで、Ni3Sn2層の密着性を確保できるのではないかと考えて、さらに検討を行った。その結果、高Crステンレス鋼板の素地表面に、Cr過不動態溶解反応が生じるアノード電解処理を施すことによって、素地表面が効果的に低Cr化し、素地表面に直接形成したNi3Sn2層の剥離を防止できる高Crステンレス鋼板が得られることを知見した。 Therefore, the inventors have further studied by considering that the adhesion of the Ni 3 Sn 2 layer can be secured by reducing the Cr content only on the surface of the high Cr stainless steel sheet. As a result, the base surface of the high Cr stainless steel sheet is subjected to anodic electrolytic treatment that causes a Cr transpassive dissolution reaction, so that the base surface is effectively reduced in Cr, and the Ni 3 Sn 2 layer directly formed on the base surface It was found that a high Cr stainless steel sheet capable of preventing peeling can be obtained.

本発明は、以上の知見に基づいてなされたものであって、要旨構成は次のとおりである。
1.Crを21質量%以上含有するステンレス鋼板の素地表面に対し、Cr過不動態溶解反応が生じるアノード電解処理を施した後、直ちにNi3Sn2層の形成処理を行うことを特徴とする燃料電池用セパレータの表面処理方法。
The present invention has been made based on the above knowledge, and the gist configuration is as follows.
1. A fuel cell characterized in that a Ni 3 Sn 2 layer formation treatment is immediately performed after an anode electrolytic treatment that causes a Cr transpassive dissolution reaction on the surface of a stainless steel plate containing 21 mass% or more of Cr For separator surface treatment.

2.前記アノード電解処理が、硫酸ナトリウム水溶液中でのアノード電解処理であることを特徴とする前記1に記載の燃料電池用セパレータの表面処理方法。 2. 2. The surface treatment method for a fuel cell separator as described in 1 above, wherein the anodic electrolysis is an anodic electrolysis in an aqueous sodium sulfate solution.

3.前記硫酸ナトリウム水溶液中でのアノード電解処理を、濃度:0.5〜2mol/Lの硫酸ナトリウム水溶液中にて、温度:60〜80℃、電流密度:3〜7A/dmおよび電解時間:30〜120秒の各条件下で行うことを特徴とする前記2に記載の燃料電池用セパレータの表面処理方法。 3. The anodic electrolysis treatment in the aqueous sodium sulfate solution was conducted at a temperature of 60 to 80 ° C., a current density of 3 to 7 A / dm 2 and an electrolysis time of 30 to 120 in a sodium sulfate aqueous solution having a concentration of 0.5 to 2 mol / L. 3. The surface treatment method for a fuel cell separator as described in 2 above, wherein the method is carried out under each condition of seconds.

4.前記Ni3Sn2層の形成処理によるステンレス鋼板の板厚増加率が1〜20%であることを特徴とする前記1〜3のいずれかに記載の燃料電池用セパレータの表面処理方法。 4). 4. The surface treatment method for a fuel cell separator as described in any one of 1 to 3 above, wherein the thickness increase rate of the stainless steel plate by the formation treatment of the Ni 3 Sn 2 layer is 1 to 20%.

本発明によれば、耐食性に優れた燃料電池用セパレータを、効果的に薄く製造することができるので、コンパクトかつ低重量で、さらに耐久性にも優れた固体高分子形燃料電池を得ることができる。   According to the present invention, since a fuel cell separator having excellent corrosion resistance can be produced effectively and thinly, it is possible to obtain a polymer electrolyte fuel cell which is compact and low in weight and further excellent in durability. it can.

燃料電池の基本構造を示す模式図である。It is a schematic diagram which shows the basic structure of a fuel cell. めっき皮膜の薄膜X線回折パターンを示したグラフである。It is the graph which showed the thin film X-ray diffraction pattern of the plating film.

以下、本発明について具体的に説明する。
本発明において、基材として用いるステンレス鋼は、Crを21質量%以上含有する高Crステンレス鋼とする必要がある。Crが21質量%未満の低Crステンレス鋼では、Ni3Sn2層の薄膜化により発生する素地に通ずる欠陥を通して、耐食性の悪い低Crステンレス鋼が腐食してしまうからである。
Hereinafter, the present invention will be specifically described.
In the present invention, the stainless steel used as the base material needs to be a high Cr stainless steel containing 21 mass% or more of Cr. This is because, in a low Cr stainless steel having a Cr content of less than 21% by mass, the low Cr stainless steel having poor corrosion resistance is corroded through defects connected to the substrate generated by thinning the Ni 3 Sn 2 layer.

また、基材として用いるステンレス鋼は、例えばSUS447J1(Cr:30質量%)、SUS445J1(Cr:22質量%)などを好適に使用することができる。特に、Crを30質量%程度含有するSUS447J1は、耐食性が高いため、厳しい耐食性が要求される環境下で使用される固体高分子形燃料電池用セパレータ基材としてとりわけ有利に適合する。   As the stainless steel used as the base material, for example, SUS447J1 (Cr: 30% by mass), SUS445J1 (Cr: 22% by mass), or the like can be preferably used. In particular, SUS447J1 containing about 30% by mass of Cr is particularly suitable as a separator base material for a polymer electrolyte fuel cell used in an environment where strict corrosion resistance is required because of its high corrosion resistance.

本発明では、Crを21質量%以上含有する高Crステンレス鋼板に、Cr過不動態溶解反応が生じるアノード電解処理を施すことによって、高Crステンレス鋼板の素地表面のみを低Cr化することが重要である。すなわち、高Crステンレス鋼板の表面のみを低Cr化することで、Ni3Sn2層の剥離を防止できる高Crステンレス鋼板を得ることが可能となるのである。なお、本発明は、上記高Crステンレス鋼板のように、高Crステンレス鋼板に対して燃料電池用セパレータ向けの通常の加工を施した、いわゆる高Crステンレス鋼板の加工品を用いても、本発明の効果が得られる。 In the present invention, it is important to reduce only the base surface of the high Cr stainless steel sheet by subjecting the high Cr stainless steel sheet containing 21% by mass or more of Cr to anodic electrolytic treatment that causes a Cr transpassive dissolution reaction. It is. That is, by reducing the Cr only on the surface of the high Cr stainless steel plate, it is possible to obtain a high Cr stainless steel plate that can prevent the Ni 3 Sn 2 layer from peeling off. In addition, the present invention can be applied to a so-called high Cr stainless steel plate processed product obtained by subjecting a high Cr stainless steel plate to normal processing for a fuel cell separator, such as the high Cr stainless steel plate. The effect is obtained.

ここに、Cr過不動態溶解反応が生じるアノード電解処理を施すことにより、Crステンレス鋼板の表面が効果的に低Cr化するのは、以下に示すクロム不動態皮膜の過不動態溶解反応により、脱クロム反応が起こるためと考えられる。
Cr2O3 + 5H2O → 2CrO4 2- + 10H+ + 6e-
Here, the surface of the Cr stainless steel sheet is effectively reduced in Cr by performing an anodic electrolysis treatment in which Cr transpassive dissolution reaction occurs, due to the transpassive dissolution reaction of the chromium passive film shown below. This is thought to be due to the dechromation reaction.
Cr 2 O 3 + 5H 2 O 2CrO 4 2- + 10H + + 6e -

ここで、Cr過不動態溶解反応が生じるアノード電解処理としては、過不動態溶解反応によるアノード電解が行えればよく、水溶液の種類やpHは、特に限定されるものではないが、好適な例として硫酸ナトリウムがあげられる。   Here, as the anodic electrolysis treatment in which Cr perpassive dissolution reaction occurs, it is only necessary to be able to perform anodic electrolysis by perpassive dissolution reaction, and the type and pH of the aqueous solution are not particularly limited, but a suitable example As sodium sulfate.

また、アノード電解処理の条件は、硫酸ナトリウム水溶液を用いた場合、溶液温度が60〜80℃、電流密度が3〜7A/dm2、電解時間が30〜120秒の範囲でそれぞれ設定することが好ましい。それぞれ、上記範囲とすることで、過不動態溶解反応が効果的に生じるからである。 In addition, the conditions for the anodic electrolytic treatment can be set in the range of 60 to 80 ° C., current density of 3 to 7 A / dm 2 , and electrolysis time of 30 to 120 seconds, respectively, when an aqueous sodium sulfate solution is used. preferable. This is because, in each of the above ranges, a hyperpassive dissolution reaction occurs effectively.

上述した処理条件をそれぞれ満足することで、ステンレス鋼板の素地表面は、基材に比べて、30%程度以上Crの含有率が低下した低Cr層となる。好ましくは、50%以上のCr低下率である。   By satisfying each of the processing conditions described above, the base surface of the stainless steel plate becomes a low Cr layer having a Cr content reduced by about 30% or more compared to the base material. Preferably, the Cr reduction rate is 50% or more.

本発明では、基材に、Cr過不動態溶解反応が生じるアノード電解処理を施した後、中間層形成処理を行うことなく、直ちにNi3Sn2層を形成処理する必要がある。かかる手順とすることで、耐食性の悪いNiストライク中間層を存在させず、耐食性に優れた固体高分子形燃料電池用セパレータを得ることができるのである。 In the present invention, it is necessary to form a Ni 3 Sn 2 layer immediately after performing an anodic electrolysis treatment that causes a Cr transpassive dissolution reaction on the substrate, without performing an intermediate layer formation treatment. By adopting such a procedure, it is possible to obtain a polymer electrolyte fuel cell separator having excellent corrosion resistance without the presence of a Ni strike intermediate layer having poor corrosion resistance.

Cr過不動態溶解反応が生じるアノード電解処理を施した基材の表面に、Ni3Sn2層を形成するには、従来公知のめっき方法で、適切な組成に調整しためっき浴中で電気めっきを施せばよい。なお、具体的なめっき浴の組成は、NiCl2・2H2O:0.15mol/L,SnCl2・2H2O:0.15mol/L,K2P2O7:0.45mol/L,グリシン:0.15mol/Lが例示される。
また、Ni3Sn2層の厚みは、耐食性の確保および燃料電池をスタックした時の搭載性の観点から、ステンレス鋼板の板厚の増加率で、1〜20%程度の範囲とすることが好ましい。なお、上記Ni3Sn2層の厚みは、めっき浴中の滞留時間、すなわち電解(めっき)時間で調整することができる。
In order to form a Ni 3 Sn 2 layer on the surface of an anodic electrolyzed substrate that causes a Cr transpassive dissolution reaction, electroplating in a plating bath adjusted to an appropriate composition by a conventionally known plating method Can be applied. The specific plating bath composition is as follows: NiCl 2 · 2H 2 O: 0.15 mol / L, SnCl 2 · 2H 2 O: 0.15 mol / L, K 2 P 2 O 7 : 0.45 mol / L, Glycine: 0.15 An example is mol / L.
The thickness of the Ni 3 Sn 2 layer is preferably in the range of about 1 to 20% in terms of the increase rate of the thickness of the stainless steel plate from the viewpoint of ensuring corrosion resistance and mounting properties when the fuel cell is stacked. . The thickness of the Ni 3 Sn 2 layer can be adjusted by the residence time in the plating bath, that is, the electrolysis (plating) time.

ここに、以下に示すめっき浴組成、めっき条件で作製しためっき皮膜の薄膜X線回折パターンを図2に示す。なお、X線回折の測定はCu-Kα線を用い、入射角:5度で行った。
同図から明らかなように、表面にNi3Sn2からなる皮膜が形成されていることが分かる。
<めっき浴組成>
NiCl2・2H2O:0.15mol/L
SnCl2・2H2O:0.15mol/L
K2P2O7:0.45mol/L
グリシン:0.15mol/L
<めっき条件>
・pH:8.1,温度:60℃,電流密度:5A/dm2,電解(めっき)時間:120秒
FIG. 2 shows a thin film X-ray diffraction pattern of a plating film produced under the following plating bath composition and plating conditions. X-ray diffraction was measured using Cu-Kα rays at an incident angle of 5 degrees.
As is apparent from the figure, a film made of Ni 3 Sn 2 is formed on the surface.
<Plating bath composition>
NiCl 2・ 2H 2 O : 0.15mol / L
SnCl 2 · 2H 2 O: 0.15 mol / L
K 2 P 2 O 7 : 0.45 mol / L
Glycine: 0.15mol / L
<Plating conditions>
-PH: 8.1, temperature: 60 ° C, current density: 5A / dm 2 , electrolysis (plating) time: 120 seconds

なお、本発明において、上記で定めたもの以外であって、材料や使用設備、その運転条件等の製造方法は、燃料電池用セパレータの表面処理方法の常法に従えば良い。   In the present invention, manufacturing methods such as materials, equipment used, operating conditions, etc., other than those defined above, may be in accordance with conventional methods of surface treatment methods for fuel cell separators.

〔実施例1〕
板厚:0.05mmのステンレス鋼板で、基材は、SUS447J1(Cr:30質量%)、SUS445J1(Cr:22質量%)およびSUS430(Cr:16質量%)を使用して、硫酸ナトリウム水溶液濃度:1mol/L、温度:70℃、電流密度:5A/dm2、電解時間:60秒のアノード電解処理を行った。ついで、Niストライク中間層を形成せずに、下記のめっき浴組成、めっき条件で、上記基材の素地表面に、厚み:1〜8μmのNi3Sn2層を形成したサンプルを作製し、下記の特性評価試験を実施した。なお、めっき層の厚みは、あらかじめ電解(めっき)時間と厚さの関係を調べておくことにより制御した。
得られた特性の評価結果を表1に示す。
<めっき浴組成>
NiCl2・2H2O:0.15mol/L
SnCl2・2H2O:0.15mol/L
K2P2O7:0.45mol/L
グリシン:0.15mol/L
<めっき条件>
・pH:8.1、温度:60℃、電流密度:5A/dm2
[Example 1]
Plate thickness: 0.05mm stainless steel plate, using SUS447J1 (Cr: 30% by mass), SUS445J1 (Cr: 22% by mass) and SUS430 (Cr: 16% by mass) as the base material. The anode electrolytic treatment was performed at 1 mol / L, temperature: 70 ° C., current density: 5 A / dm 2 , and electrolysis time: 60 seconds. Next, a sample in which a Ni 3 Sn 2 layer having a thickness of 1 to 8 μm was formed on the substrate surface of the base material with the following plating bath composition and plating conditions without forming the Ni strike intermediate layer was prepared. A characteristic evaluation test was conducted. The thickness of the plating layer was controlled by examining the relationship between the electrolysis (plating) time and thickness in advance.
Table 1 shows the evaluation results of the obtained characteristics.
<Plating bath composition>
NiCl 2・ 2H 2 O : 0.15mol / L
SnCl 2 · 2H 2 O: 0.15 mol / L
K 2 P 2 O 7 : 0.45 mol / L
Glycine: 0.15mol / L
<Plating conditions>
-PH: 8.1, temperature: 60 ° C, current density: 5A / dm 2

1)めっき密着性
セロテープ(登録商標)(「CT24」,ニチバン(株)製)を用い、指の腹で密着させた後、剥離した。
○:めっき剥離なし
×:めっき剥離あり
1) Plating adhesion The cellophane tape (registered trademark) ("CT24", manufactured by Nichiban Co., Ltd.) was used for adhesion with the abdomen of the finger and then peeled off.
○: No plating peeling ×: Plating peeling

2)板厚増加率
以下の計算式によって板厚増加率を算出した。
板厚増加率(%)=[{(片面コーティング膜厚)×2}/ステンレス鋼板厚]×100
また、燃料電池スタック時のコンパクト性として、以下の基準で評価した。
○:板厚増加率 20%以下
△:板厚増加率 20%超
2) Plate thickness increase rate The plate thickness increase rate was calculated by the following formula.
Thickness increase rate (%) = [{(single-side coating film thickness) × 2} / stainless steel plate thickness] × 100
Moreover, the following criteria evaluated as the compactness at the time of a fuel cell stack.
○: Plate thickness increase rate 20% or less △: Plate thickness increase rate> 20%

3)耐食性
試料を、温度:80℃、pH:3の硫酸水溶液中に浸漬し、参照電極に飽和KCl−Ag/AgClを用いて200mV/minの掃引速度で0〜1.2V(vs.SHE)のサイクリックボルタモグラム(電位−電流曲線)を5サイクル印加し、5サイクル目の電圧上昇時0.9Vでの電流密度の値でセパレータ環境での安定度を評価し、電流密度が小さいほどセパレータ使用環境下での耐食性に優れるとした。
5サイクル目の電圧上昇時0.9Vの電流密度の値
◎:電流密度 2μA/cm2以下
○:電流密度 2超〜5μA/cm2以下
×:電流密度 5μA/cm2
3) Corrosion resistance The sample is immersed in a sulfuric acid aqueous solution at a temperature of 80 ° C and a pH of 3, and 0 to 1.2 V (vs.SHE) at a sweep rate of 200 mV / min using saturated KCl-Ag / AgCl as a reference electrode. The cyclic voltammogram (potential-current curve) of 5 cycles was applied, and the stability in the separator environment was evaluated by the current density value at 0.9 V when the voltage rises in the fifth cycle. The smaller the current density, the more the separator usage environment It is said that it has excellent corrosion resistance at the bottom.
The value of the current density at the fifth cycle of the voltage rising time of 0.9V ◎: Current density 2 .mu.A / cm 2 or less ○: a current density of 2 super ~5μA / cm 2 or less ×: current density 5 .mu.A / cm 2 than

Figure 2013118096
Figure 2013118096

同表より、SUS447J1(Cr:30質量%)、SUS445J1(Cr:22質量%)の高Crステンレス鋼板を使用し、Ni3Sn2層膜厚を1〜5μmの範囲としたものが、めっき密着性、板厚増加率、耐食性共に優れていることが分かった。また、SUS430(Cr:16質量%)の低Crステンレス鋼板を使用した場合は、めっき密着性に優れるものの、板厚増加率と耐食性を両立させることができないことが分かる。 From the same table, high-Cr stainless steel sheets of SUS447J1 (Cr: 30% by mass) and SUS445J1 (Cr: 22% by mass), with a Ni 3 Sn 2 layer thickness in the range of 1 to 5 μm, are plated. It was found that the properties, the plate thickness increase rate, and the corrosion resistance were excellent. Further, it can be seen that when a low Cr stainless steel plate of SUS430 (Cr: 16% by mass) is used, although the plating adhesion is excellent, it is impossible to achieve both the plate thickness increase rate and the corrosion resistance.

なお、試料No.1のステンレス鋼板の素地表面は、オージェ電子分光法により測定した結果、基材に比べて、80%程度Crの含有率が低下した表面となっていた。   Sample No. The base surface of the stainless steel plate 1 was measured by Auger electron spectroscopy, and as a result, the Cr content was reduced by about 80% compared to the base material.

〔実施例2〕
比較例として、板厚:0.05mmのステンレス鋼板で、基材は、SUS447J1(Cr:30質量%),SUS445J1(Cr:22質量%)およびSUS430(Cr:16質量%)を使用して、塩酸濃度:3mol/L、温度:70℃、時間:60秒の酸洗処理を行った後、下記のめっき浴組成、めっき条件でNiストライク中間層を0.5μm形成した後、実施例1と同じ条件でNi3Sn2層を厚み:1〜8μm形成したサンプルを作製し、実施例1と同じ条件で特性評価を実施した。
得られた特性の評価結果を表2に示す。
<めっき浴組成>
・NiCl2・2H2O:1mol/L、塩酸:1mol/L
<めっき条件>
・温度:25℃、電流密度:10A/dm2
[Example 2]
As a comparative example, a stainless steel plate with a plate thickness of 0.05 mm, and the base material is hydrochloric acid using SUS447J1 (Cr: 30% by mass), SUS445J1 (Cr: 22% by mass) and SUS430 (Cr: 16% by mass). After pickling treatment at a concentration of 3 mol / L, temperature: 70 ° C., time: 60 seconds, after forming a Ni strike intermediate layer of 0.5 μm with the following plating bath composition and plating conditions, the same conditions as in Example 1 A sample in which a Ni 3 Sn 2 layer was formed with a thickness of 1 to 8 μm was prepared, and the characteristics were evaluated under the same conditions as in Example 1.
Table 2 shows the evaluation results of the obtained characteristics.
<Plating bath composition>
・ NiCl 2・ 2H 2 O: 1 mol / L, hydrochloric acid: 1 mol / L
<Plating conditions>
・ Temperature: 25 ℃, Current density: 10A / dm 2

Figure 2013118096
Figure 2013118096

同表より、Niストライク中間層を形成した場合はSUS447J1(Cr:30質量%)、SUS445J1(Cr:22質量%)、SUS430(Cr:16質量%)のいずれの鋼種を使用しても、めっき密着性に優れてはいるものの、板厚増加率と耐食性とを両立させることができていないことが分かる。   According to the table, when the Ni strike intermediate layer is formed, plating is possible regardless of the steel type of SUS447J1 (Cr: 30% by mass), SUS445J1 (Cr: 22% by mass), or SUS430 (Cr: 16% by mass). Although it is excellent in adhesiveness, it turns out that the plate | board thickness increase rate and corrosion resistance are not able to be made compatible.

〔実施例3〕
比較例として、さらに板厚:0.05mmのステンレス鋼板で、基材は、SUS447J1(Cr:30質量%),SUS445J1(Cr:22質量%)およびSUS430(Cr:16質量%)を使用して、塩酸濃度:3mol/L、温度:70℃、時間:60秒の酸洗処理を行った後、Niストライク中間層を形成せず、直接に実施例1と同じ条件で、Ni3Sn2層を、厚み:1〜8μmの範囲で形成したサンプルを作製し、実施例1と同じ条件で特性評価を実施した。
得られた特性の評価結果を表3に示した。
Example 3
As a comparative example, a stainless steel plate with a thickness of 0.05 mm is further used. The base material is SUS447J1 (Cr: 30% by mass), SUS445J1 (Cr: 22% by mass) and SUS430 (Cr: 16% by mass). After pickling treatment with hydrochloric acid concentration: 3 mol / L, temperature: 70 ° C., time: 60 seconds, Ni strike layer was not formed, and Ni 3 Sn 2 layer was directly formed under the same conditions as in Example 1. Samples formed in a thickness range of 1 to 8 μm were prepared, and the characteristics were evaluated under the same conditions as in Example 1.
The evaluation results of the obtained characteristics are shown in Table 3.

Figure 2013118096
Figure 2013118096

同表より、酸洗処理を行った後、Niストライク中間層なしで直接Ni3Sn2層を形成した場合、SUS447J1(Cr:30質量%)およびSUS445J1(Cr:22質量%)の高Crステンレス鋼板では、Cr過不動態溶解反応が生じるアノード電解処理を施していないため、めっき密着性が不良であり、他方、SUS430(Cr:16質量%)の低Crステンレス鋼板を使用した場合は、めっき密着性に優れるものの、板厚増加率と耐食性を両立させることはできないことが分かる。なお、上記実施例では、ステンレス鋼板の例を示したが、ステンレス鋼板を加工した後に、本発明に従う処理を行っても、同等の効果が得られることを確認している。
また、本実施例では、クロム不働態皮膜のCr過不動態溶解反応によるアノード電解処理に好適な硫酸ナトリウム水溶液を用いたが、本発明は、過不動態溶解反応によるアノード電解が行えればよく、水溶液の種類やpHはこれに限定されるものではないのは、前述したとおりである。
From the same table, after pickling treatment, when Ni 3 Sn 2 layer is formed directly without Ni strike intermediate layer, high Cr stainless steel of SUS447J1 (Cr: 30 mass%) and SUS445J1 (Cr: 22 mass%) Since the steel plate is not subjected to anodic electrolytic treatment that causes a Cr transpassive dissolution reaction, plating adhesion is poor. On the other hand, if a low-Cr stainless steel plate of SUS430 (Cr: 16% by mass) is used, plating Although it is excellent in adhesiveness, it turns out that a plate | board thickness increase rate and corrosion resistance cannot be made compatible. In addition, although the example of the stainless steel plate was shown in the said Example, even if it processes by the present invention after processing a stainless steel plate, it has confirmed that an equivalent effect is acquired.
Further, in this example, a sodium sulfate aqueous solution suitable for anodic electrolysis by Cr perpassive dissolution reaction of the chromium passive film was used, but the present invention only needs to be able to perform anodic electrolysis by perpassive dissolution reaction. As described above, the type and pH of the aqueous solution are not limited thereto.

本発明に従うことで、Crを21質量%以上含有するステンレス鋼板あるいはその加工品に、Cr過不動態溶解反応が生じるアノード電解処理を施した後、中間層形成処理を行わず、直ちにNi3Sn2層を形成することで、めっき密着性や耐食性に優れ、板厚増加率が低く軽量かつコンパクトな固体高分子形燃料電池用のセパレータ材料を提供することができる。 By following the present invention, a stainless steel plate or a processed product thereof containing Cr 21% by weight or more, after being subjected to anode electrolytic treatment Cr excessive passivation dissolution reaction occurs, without an intermediate layer formation process, immediately Ni 3 Sn By forming the two layers, it is possible to provide a light and compact separator material for a polymer electrolyte fuel cell that is excellent in plating adhesion and corrosion resistance, has a low thickness increase rate, and is compact.

1 膜−電極接合体
2,3 ガス拡散層
4,5 セパレータ
6 O(空気)流路
7 水素流路
1 membrane - electrode assembly 2 gas diffusion layers 4 and 5 separator 6 O 2 (air) passage 7 hydrogen flow path

Claims (4)

Crを21質量%以上含有するステンレス鋼板の素地表面に対し、Cr過不動態溶解反応が生じるアノード電解処理を施した後、直ちにNi3Sn2層の形成処理を行うことを特徴とする燃料電池用セパレータの表面処理方法。 A fuel cell characterized in that a Ni 3 Sn 2 layer formation treatment is immediately performed after an anode electrolytic treatment that causes a Cr transpassive dissolution reaction on the surface of a stainless steel plate containing 21 mass% or more of Cr For separator surface treatment. 前記アノード電解処理が、硫酸ナトリウム水溶液中でのアノード電解処理であることを特徴とする請求項1に記載の燃料電池用セパレータの表面処理方法。   The surface treatment method for a fuel cell separator according to claim 1, wherein the anodic electrolysis is an anodic electrolysis in an aqueous sodium sulfate solution. 前記硫酸ナトリウム水溶液中でのアノード電解処理を、濃度:0.5〜2mol/Lの硫酸ナトリウム水溶液中にて、温度:60〜80℃、電流密度:3〜7A/dmおよび電解時間:30〜120秒の各条件下で行うことを特徴とする請求項2に記載の燃料電池用セパレータの表面処理方法。 The anodic electrolysis treatment in the aqueous sodium sulfate solution was conducted at a temperature of 60 to 80 ° C., a current density of 3 to 7 A / dm 2 and an electrolysis time of 30 to 120 in a sodium sulfate aqueous solution having a concentration of 0.5 to 2 mol / L. 3. The method for surface treatment of a fuel cell separator according to claim 2, wherein the method is performed under each condition of seconds. 前記Ni3Sn2層の形成処理によるステンレス鋼板の板厚増加率が1〜20%であることを特徴とする請求項1〜3のいずれかに記載の燃料電池用セパレータの表面処理方法。 The surface treatment method for a fuel cell separator according to any one of claims 1 to 3, wherein the thickness increase rate of the stainless steel plate due to the formation treatment of the Ni 3 Sn 2 layer is 1 to 20%.
JP2011264977A 2011-12-02 2011-12-02 Surface treatment method for fuel cell separator Active JP5806099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264977A JP5806099B2 (en) 2011-12-02 2011-12-02 Surface treatment method for fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264977A JP5806099B2 (en) 2011-12-02 2011-12-02 Surface treatment method for fuel cell separator

Publications (2)

Publication Number Publication Date
JP2013118096A true JP2013118096A (en) 2013-06-13
JP5806099B2 JP5806099B2 (en) 2015-11-10

Family

ID=48712523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264977A Active JP5806099B2 (en) 2011-12-02 2011-12-02 Surface treatment method for fuel cell separator

Country Status (1)

Country Link
JP (1) JP5806099B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059857A1 (en) 2013-10-22 2015-04-30 Jfeスチール株式会社 Stainless steel foil for separators of solid polymer fuel cells
JP5796694B1 (en) * 2014-04-15 2015-10-21 Jfeスチール株式会社 Stainless steel foil for separator of polymer electrolyte fuel cell
WO2017026104A1 (en) * 2015-08-12 2017-02-16 Jfeスチール株式会社 Metal plate for separator of polymer electrolyte fuel cell, and metal plate for producing same
KR20170129916A (en) 2015-04-14 2017-11-27 제이에프이 스틸 가부시키가이샤 Metal plate for use as separator of solid polymer fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174493A (en) * 1981-04-20 1982-10-27 Arakawa Kako Kk Noble metal plating method of austenitic stainless steel
JPH0310095A (en) * 1989-06-06 1991-01-17 Nisshin Steel Co Ltd Production of zn or zn alloy plated stainless steel sheet
JP2002129377A (en) * 2000-10-19 2002-05-09 Nisshin Steel Co Ltd Method for manufacturing sn-ni alloy plated stainless steel-sheet with low contact resistance and superior surface luster
JP2011047041A (en) * 2009-07-23 2011-03-10 Jfe Steel Corp Stainless steel for fuel cell having excellent corrosion resistance and method for producing the same
WO2011132797A1 (en) * 2010-04-23 2011-10-27 Jfeスチール株式会社 Metal plate for use as solid polymer fuel cell separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174493A (en) * 1981-04-20 1982-10-27 Arakawa Kako Kk Noble metal plating method of austenitic stainless steel
JPH0310095A (en) * 1989-06-06 1991-01-17 Nisshin Steel Co Ltd Production of zn or zn alloy plated stainless steel sheet
JP2002129377A (en) * 2000-10-19 2002-05-09 Nisshin Steel Co Ltd Method for manufacturing sn-ni alloy plated stainless steel-sheet with low contact resistance and superior surface luster
JP2011047041A (en) * 2009-07-23 2011-03-10 Jfe Steel Corp Stainless steel for fuel cell having excellent corrosion resistance and method for producing the same
WO2011132797A1 (en) * 2010-04-23 2011-10-27 Jfeスチール株式会社 Metal plate for use as solid polymer fuel cell separator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059857A1 (en) 2013-10-22 2015-04-30 Jfeスチール株式会社 Stainless steel foil for separators of solid polymer fuel cells
US9799896B2 (en) 2013-10-22 2017-10-24 Jfe Steel Corporation Stainless steel foil for separators of polymer electrolyte fuel cells
JP5796694B1 (en) * 2014-04-15 2015-10-21 Jfeスチール株式会社 Stainless steel foil for separator of polymer electrolyte fuel cell
WO2015159467A1 (en) * 2014-04-15 2015-10-22 Jfeスチール株式会社 Stainless-steel foil for separator of polymer electrolyte fuel cell
KR20160131098A (en) 2014-04-15 2016-11-15 제이에프이 스틸 가부시키가이샤 Stainless-steel foil for separator of polymer electrolyte fuel cell
US10431832B2 (en) 2014-04-15 2019-10-01 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
EP3133682A4 (en) * 2014-04-15 2017-02-22 JFE Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
EP3483967A1 (en) 2015-04-14 2019-05-15 JFE Steel Corporation Metal sheet for separators of polymer electrolyte fuel cells
KR20170129916A (en) 2015-04-14 2017-11-27 제이에프이 스틸 가부시키가이샤 Metal plate for use as separator of solid polymer fuel cell
JP6108054B1 (en) * 2015-08-12 2017-04-05 Jfeスチール株式会社 Metal plate for separator of polymer electrolyte fuel cell and metal plate for manufacturing the same
KR20180022869A (en) 2015-08-12 2018-03-06 제이에프이 스틸 가부시키가이샤 Metal plate for separator of polymer electrolyte fuel cell, and metal plate for producing same
WO2017026104A1 (en) * 2015-08-12 2017-02-16 Jfeスチール株式会社 Metal plate for separator of polymer electrolyte fuel cell, and metal plate for producing same
US10516174B2 (en) 2015-08-12 2019-12-24 Jfe Steel Corporation Metal sheet for separators of polymer electrolyte fuel cells, and metal sheet for manufacturing the same

Also Published As

Publication number Publication date
JP5806099B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
US10516174B2 (en) Metal sheet for separators of polymer electrolyte fuel cells, and metal sheet for manufacturing the same
ES2733036T3 (en) Metal plate for use as solid polymer fuel cell separator
EP3062376B1 (en) Stainless steel foil for separators of solid polymer fuel cells
EP3133682B1 (en) Stainless-steel foil for separator of polymer electrolyte fuel cell
JP5806099B2 (en) Surface treatment method for fuel cell separator
JP5699624B2 (en) Metal plate for polymer electrolyte fuel cell separator and method for producing the same
JP5700183B1 (en) Stainless steel foil for separator of polymer electrolyte fuel cell
EP3252856B1 (en) Stainless steel sheet for separator of polymer electrolyte fuel cell
US10714764B2 (en) Stainless steel sheet for fuel cell separators and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250