JP2013117016A5 - - Google Patents

Download PDF

Info

Publication number
JP2013117016A5
JP2013117016A5 JP2012237350A JP2012237350A JP2013117016A5 JP 2013117016 A5 JP2013117016 A5 JP 2013117016A5 JP 2012237350 A JP2012237350 A JP 2012237350A JP 2012237350 A JP2012237350 A JP 2012237350A JP 2013117016 A5 JP2013117016 A5 JP 2013117016A5
Authority
JP
Japan
Prior art keywords
snow
wax
sliding
ski
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012237350A
Other languages
Japanese (ja)
Other versions
JP2013117016A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012237350A priority Critical patent/JP2013117016A/en
Priority claimed from JP2012237350A external-priority patent/JP2013117016A/en
Publication of JP2013117016A publication Critical patent/JP2013117016A/en
Publication of JP2013117016A5 publication Critical patent/JP2013117016A5/ja
Pending legal-status Critical Current

Links

Description

やがて合成樹脂技術の発展と共に60年前頃にはポリエチレン素材の滑走面材が生み出された。ポリエチレン製滑走面材はそれまで試みられてきた樹脂製滑走面と比べ耐磨耗性、低摩擦、長寿命という有利点が多く、滑走面材の素材として最適とされて今も世界的に用いられているが、防水性は高いも撥水性はあまり高くはなかった。また高速で硬い雪氷面を滑ると、その表面が削られて摩耗し平滑性が低下することで摩擦抵抗も増加する。Eventually, with the development of synthetic resin technology, a sliding surface material made of polyethylene was created around 60 years ago. Polyethylene sliding surfaces have many advantages in terms of wear resistance, low friction, and long life compared to plastic sliding surfaces that have been attempted so far, and they are still considered to be the best material for sliding surfaces and are still used worldwide. However, the water repellency was not so high although it was highly waterproof. In addition, when sliding on a hard snow ice surface at high speed, the surface is scraped and worn to reduce the smoothness, and the frictional resistance also increases.

次にスケート等の氷上に用いられる滑走移動用具についてみれば、この氷上滑走性はブレード底面にあるエッジ部の平滑状態に大きく左右される。しかし金属製であるブレードは錆びやすい。また構造上滑走者の全体重がブレードに集中した状態で硬い氷面上を滑走するため、この摩擦力によりブレード底面部が磨耗しやすい。これら錆と磨耗はスケートの滑走性に影響するので、滑走後は水分を除去し専ら錆止め効果を期待して油脂がブレードに塗布され、またブレードが磨耗した際は、研磨を行うことで失われた平滑性を回復している。Next, with respect to a sliding movement tool used on ice such as skates, the sliding property on ice greatly depends on the smooth state of the edge portion on the bottom surface of the blade. However, metal blades are prone to rust. In addition, the bottom surface of the blade is easily worn by this frictional force because it slides on a hard ice surface in a state where the overall weight of the glider is concentrated on the blade. Since these rusts and wear affect the sliding performance of the skate, oil is applied to the blades after removing the water and anticipating a rust-preventing effect, and when the blades are worn, they are lost by polishing. The smoothness is restored.

3.擬似液体説もそのルーツは160年前に遡る。しかし「氷の表面には微細な水膜がある」というその説は当時では受け入れられず、その後100年間もの間、2.摩擦熱融解説の影に隠れて注目されていなかった。しかし60年前に北海道大学低温科学研究所の故中谷宇吉郎教授らによる実験で、氷表面には本当に液体層が存在する事が示された。やがて分子レベルの表面解析が可能になると、この氷表面にある温度に依存した擬似液体層の動向が詳しく観察されるようになり、この擬似液体層が雪氷上での摩擦を低減して潤滑剤の役割を果たしていた事が確認された。その提唱から160年間後の現在、この擬似液体層が関わる諸現象の研究が進められている。3. The root of the pseudo liquid theory dates back 160 years. However, the theory that “the surface of the ice has a fine water film” was not accepted at that time, and for the next 100 years, it was not noticed in the shadow of the explanation of frictional heat fusion. However, an experiment by the late Professor Ukichiro Nakatani of the Institute of Low Temperature Science of Hokkaido University 60 years ago showed that a liquid layer really exists on the ice surface. Eventually, when surface analysis at the molecular level becomes possible, the trend of the pseudo liquid layer depending on the temperature on the ice surface will be observed in detail, and this pseudo liquid layer will reduce friction on snow and ice to reduce lubricant. It was confirmed that he played the role of Currently, 160 years after its proposal, research on various phenomena involving this pseudo liquid layer is underway.

この擬似液体層は氷点下100℃もの低温でも存在するとされ、これで2.摩擦熱融解説では説明が難しかった北極圏など氷点下30℃もの極寒地で、
犬ぞりが低速であっても滑走移動できる事実の説明が可能になった。しかしこれら流体潤滑説の基本である雪氷面上の水も、ある量以上になると今度はその張力によって逆に雪氷上滑走移動への抵抗になる事は周知である。
This pseudo-liquid layer is said to exist even at temperatures as low as 100 ° C below freezing point, and in this, 2 .
It became possible to explain the fact that dog sledding can move even at low speed. However, it is well known that when the amount of water on the snow and ice surface, which is the basis of these fluid lubrication theories, exceeds a certain amount, the resistance to sliding movement on the snow and ice is reversed by the tension.

我が国のスキー人気は、上述のとおり1991−1993年頃がピークであったが、ちょうどその頃にスキーワックスに添加剤としてフッ素樹脂を分散させることでその滑走性を格段に向上させる手法が確立していった。これは、フッ素樹脂の分子表面が、水に対して全く親和性のないフッ素基によって覆われていて、スキー滑走面と雪氷面とのミクロ的な相互作用が妨げられて完全な撥水性が実現することによると解釈される。As described above, the popularity of skiing in Japan peaked around 1991-1993, but at that time, a technique for dramatically improving the sliding performance by dispersing a fluororesin as an additive in ski wax was established. It was. This is because the molecular surface of the fluororesin is covered with fluorine groups that have no affinity for water, and the microscopic interaction between the ski running surface and the snow / ice surface is hindered, resulting in complete water repellency. To be interpreted.

なお、フッ素樹脂以外にも多くのスキーワックス用の添加剤が試みられてきた。現在まで取り上げられた主な例を挙げると次の通りである。A:フッ素樹脂系、PTFEなど(例えば、特許文献1。)B:層状構造体、MoS2、BNなど(例えば、特許文献2。)C:軟質金属、Ga、Inなど(例えば、特許文献3。)D: 光触媒、TiO2など(例えば、特許文献4。) E: 球状粒子、ミクロシリカ(例えば、特許文献5。)F: ナノ炭素、C60 など (例えば、特許文献6。)。In addition to the fluororesin, many additives for ski wax have been tried. The main examples taken up to now are as follows. A: Fluororesin, PTFE, etc. (for example, Patent Document 1) B: Layered structure, MoS2, BN, etc. (for example, Patent Document 2) C: Soft metal, Ga, In, etc. (for example, Patent Document 3). ) D: photocatalyst, TiO2, etc. (for example, Patent Document 4) E: spherical particles, microsilica (for example, Patent Document 5) F: nanocarbon , C60, etc. (for example, Patent Document 6).

日本生産性本部編「レジャー白書2010」、165頁、2010.7.生産性出版社Japan Productivity Division, “Leisure White Paper 2010”, 165 pages, 2010.7. Productivity publishers 〔環境省・報道発表〕インターネット<URL:http://www.env.go.jp/press/press.php?serial=11117>[Ministry of the Environment, Press Release] Internet <URL: http://www.env.go.jp/press/press.php?serial=11117> 〔経済産業省・化学物質管理政策〕インターネット<URL:http://www.meti.go.jp/policy/chemical_management/law/prtr/2.html>[METI / Chemical Substance Management Policy] Internet <URL: http://www.meti.go.jp/policy/chemical_management/law/prtr/2.html> 「一桁ナノダイヤモンド粒子の構造と性質」大澤映二、表面科学、2009,30, 258-266“Structure and properties of single-digit nanodiamond particles”, Eiji Osawa, Surface Science, 2009, 30, 258-266 “Chemistry ofSingle-Nano Diamond Particles,” Oosawa, E., in Wudl, F.; Nagase, S.; Akasaka, K. (Ed.), ‘Chemistry of Nanocarbons,’ Chapt. 17, pp. 413-432,John Wiley & Sons, Oxford, 2010.“Chemistry of Single-Nano Diamond Particles,” Oosawa, E., in Wudl, F .; Nagase, S .; Akasaka, K. (Ed.), 'Chemistry of Nanocarbons,' Chapt. 17, pp. 413-432, John Wiley & Sons, Oxford, 2010. “Consequences ofstrong and diverse electrostatic potential field on the surface of detonationnanodiamond particles,” Oosawa, E.; Ho, D.; Huang, H.; Korobov, M. V.; Rozhkova, N. N.Diam. Rel. Mater. 2009, 18, 904-909.“Consequences of strong and diverse electrostatic potential field on the surface of detonation nanodiamond particles,” Oosawa, E .; Ho, D .; Huang, H .; Korobov, MV; Rozhkova, NNDiam. Rel. Mater. 2009, 18, 904- 909. “Cytotoxicity andgenotoxity of carbon nanomaterials”, Schrand, A. M.; Johnson, J.; Dai, L.; Hussain, S. M.; Schlager, J.J.; Zhu, L.; Hong, Y.; Oosawa, E. in Safety of Nanoparticles: FromManufacturing to Medical Applications, Webster, T. J. (Ed.), SpringerScience+Business Media, New York, 2008, Chapter 8, p. 159-188.“Cytotoxicity andgenotoxity of carbon nanomaterials”, Schrand, AM; Johnson, J .; Dai, L .; Hussain, SM; Schlager, JJ; Zhu, L .; Hong, Y .; Oosawa, E. in Safety of Nanoparticles: From to Medical Applications, Webster, TJ (Ed.), SpringerScience + Business Media, New York, 2008, Chapter 8, p. 159-188. Bowden, F. P.;Tabor, D. The friction and lubricating of solids. Oxford University Press,Oxford, 366頁. 第一版は1950年発行Bowden, F. P.; Tabor, D. The friction and lubrication of solids. Oxford University Press, Oxford, 366. First edition published in 1950. “Number effects in nanoparticles,” Liu, W. K. et al., in Ho, D. (Ed.) ‘Nanodiamonds: Applications in Biology and Nanoscale Medicine,’ Chapter 12, pp. 253-255, SpringerScience+Business Media, Inc., Norwell, MA., 2010“Number effects in nanoparticles,” Liu, WK et al., In Ho, D. (Ed.) 'Nanodiamonds: Applications in Biology and Nanoscale Medicine,' Chapter 12, pp. 253-255, SpringerScience + Business Media, Inc. , Norwell, MA., 2010 〔ExxonMobil・SpectraSyn Plus〕インターネット<URL:http://www.exxonmobilchemical.com/Chem-English/brands/spectrasyn-plus-advanced-pao.aspx?ln=productsservices>[ExxonMobil / SpectraSyn Plus] Internet <URL: http://www.exxonmobilchemical.com/Chem-English/brands/spectrasyn-plus-advanced-pao.aspx?ln=productsservices> 〔Kashiwax・KWX〕インターネット<URL:http://www.kashiwax.com/kwx/>[Kashiwax / KWX] Internet <URL: http://www.kashiwax.com/kwx/>

日本生産性本部編「レジャー白書2010」、165頁、2010.7.生産性出版社Japan Productivity Division, “Leisure White Paper 2010”, 165 pages, 2010.7. Productivity publishers 〔環境省・報道発表〕インターネット<URL:http://www.env.go.jp/press/press.php?serial=11117>[Ministry of the Environment, Press Release] Internet <URL: http://www.env.go.jp/press/press.php?serial=11117> 〔経済産業省・化学物質管理政策〕インターネット<URL:http://www.meti.go.jp/policy/chemical_management/law/prtr/2.html>[METI / Chemical Substance Management Policy] Internet <URL: http://www.meti.go.jp/policy/chemical_management/law/prtr/2.html> 「一桁ナノダイヤモンド粒子の構造と性質」大澤映二、表面科学、2009,30, 258-266“Structure and properties of single-digit nanodiamond particles”, Eiji Osawa, Surface Science, 2009, 30, 258-266 “Chemistry ofSingle-Nano Diamond Particles,” Oosawa, E., in Wudl, F.; Nagase, S.; Akasaka, K. (Ed.), ‘Chemistry of Nanocarbons,’ Chapt. 17, pp. 413-432,John Wiley & Sons, Oxford, 2010.“Chemistry of Single-Nano Diamond Particles,” Oosawa, E., in Wudl, F .; Nagase, S .; Akasaka, K. (Ed.), 'Chemistry of Nanocarbons,' Chapt. 17, pp. 413-432, John Wiley & Sons, Oxford, 2010. “Consequences ofstrong and diverse electrostatic potential field on the surface of detonationnanodiamond particles,” Oosawa, E.; Ho, D.; Huang, H.; Korobov, M. V.; Rozhkova, N. N.Diam. Rel. Mater. 2009, 18, 904-909.“Consequences of strong and diverse electrostatic potential field on the surface of detonation nanodiamond particles,” Oosawa, E .; Ho, D .; Huang, H .; Korobov, MV; Rozhkova, NNDiam. Rel. Mater. 2009, 18, 904- 909. “Cytotoxicity andgenotoxity of carbon nanomaterials”, Schrand, A. M.; Johnson, J.; Dai, L.; Hussain, S. M.; Schlager, J.J.; Zhu, L.; Hong, Y.; Oosawa, E. in Safety of Nanoparticles: FromManufacturing to Medical Applications, Webster, T. J. (Ed.), SpringerScience+Business Media, New York, 2008, Chapter 8, p. 159-188.“Cytotoxicity andgenotoxity of carbon nanomaterials”, Schrand, AM; Johnson, J .; Dai, L .; Hussain, SM; Schlager, JJ; Zhu, L .; Hong, Y .; Oosawa, E. in Safety of Nanoparticles: From to Medical Applications, Webster, TJ (Ed.), SpringerScience + Business Media, New York, 2008, Chapter 8, p. 159-188. Bowden, F. P.;Tabor, D. The friction and lubricating of solids. Oxford University Press,Oxford, 366頁. 第一版は1950年発行Bowden, F. P.; Tabor, D. The friction and lubrication of solids. Oxford University Press, Oxford, 366. First edition published in 1950. “Number effects in nanoparticles,” Liu, W. K. et al., in Ho, D. (Ed.) ‘Nanodiamonds: Applications in Biology and Nanoscale Medicine,’ Chapter 12, pp. 253-255, SpringerScience+Business Media, Inc., Norwell, MA., 2010“Number effects in nanoparticles,” Liu, WK et al., In Ho, D. (Ed.) 'Nanodiamonds: Applications in Biology and Nanoscale Medicine,' Chapter 12, pp. 253-255, SpringerScience + Business Media, Inc. , Norwell, MA., 2010 〔ExxonMobil・SpectraSyn Plus〕インターネット<URL:http://www.exxonmobilchemical.com/Chem-English/brands/spectrasyn-plus-advanced-pao.aspx?ln=productsservices>[ExxonMobil / SpectraSyn Plus] Internet <URL: http://www.exxonmobilchemical.com/Chem-English/brands/spectrasyn-plus-advanced-pao.aspx?ln=productsservices> 〔Kashiwax・KWX〕インターネット<URL:http://www.kashiwax.com/kwx/>[Kashiwax / KWX] Internet <URL: http://www.kashiwax.com/kwx/> 〔SWIX・catalog、P2-4〕インターネット<URL:http://www.swix.co.jp/pdf_catalog/12-13swix_pdf_catalog.htm>[SWIX / catalog, P2-4] Internet <URL: http://www.swix.co.jp/pdf_catalog/12-13swix_pdf_catalog.htm> 〔TOKO・catalog〕インターネット<URL:http://www.tokowax.co.jp/index/index/category/wax >[TOKO / catalog] Internet <URL: http://www.tokowax.co.jp/index/index/category/wax> 〔GALLIUMWEBカタログ、P3-7〕インターネット<URL:http://www.galliumwax.co.jp/catalog/2012snowboard/index.html>[GALLIUMWEB catalog, P3-7] Internet <URL: http://www.galliumwax.co.jp/catalog/2012snowboard/index.html>


しかし用品市場におけるスキーワックス商品では、今やフッ素樹脂の含有率がHF(ハイフッ素=フッ素樹脂高濃度添加の意)、LF(ローフッ素=同低濃度添加の意)そしてNF(ノンフッ素=同無添加の意、100%ハイドロカーボンも呼ばれる。)といった、スキーワックスの商品価値を表す基準にすらなっているので、フッ素樹脂を含有しない商品は「NF」という安価低性能品に位置づけされてしまう実態がある。そして実際に「NF」商品の滑走性などが「HF」商品に代わることも無かった(例えば、非特許文献12、非特許文献 13参照。)

However, in the ski wax products in the goods market, the content of fluororesin is now HF (high fluorine = meaning that high concentration of fluororesin), LF (low fluorine = meaning that low concentration is added) and NF (non-fluorine = same value) Since it is even a standard that represents the commercial value of ski wax, such as 100% hydrocarbon, the product that does not contain fluororesin is positioned as a low-cost, low-performance product called "NF". There is. Actually, the “NF” product did not replace the “NF” product in terms of sliding performance (see, for example, Non-Patent Document 12 and Non-Patent Document 13) .

このため現在の用品市場では、環境問題や生体有害性よりも商業的な理由が優先され、とにかくスキーワックスについてはフッ素樹脂を添加し、「当商品はフッ素入りなので良く滑ります」旨を表示し、購買者側への宣伝文句とする行為が普通になされている。特にスキー・スノーボードなどのアルペン系競技においては「HF」商品やフッ素樹脂そのものの使用が勝利のための常用物とされており、まさに「必要悪」の典型となっている(例えば 、非特許文献14。)For this reason, in the current goods market, commercial reasons are given priority over environmental issues and biohazards, and anyway, fluororesin is added to ski wax and the message “This product slips well because it contains fluorine” is displayed. The act of advertising to buyers is usually done. Especially in alpine competitions such as skiing and snowboarding, the use of “HF” products and fluororesin itself is regarded as a regular use for victory, which is a typical “necessary evil” (for example , non-patent literature). 14.)

よって、このワックスがけをしなくても十分な滑走性を得るために、滑走面材中にスキーワックス同様に添加剤を混合する試みもされてきた。現在まで取り上げられた主な例を挙げると、上述のC:軟質金属、Ga、Inなど、D: 光触媒、TiO2など 、E: 球状粒子、ミク ロシリカ、F:ナノ炭素、C60 など、である(0026項参照)。しかしながらこれら滑走面用添加物としては、現状では安価層状構造体である黒鉛のみが唯一市場に浸透しているだけであり、それ以外の数々の試みは市場浸透度からみれば成功した例がない。Therefore, attempts have been made to mix additives in the sliding surface material in the same manner as the ski wax in order to obtain sufficient sliding properties without the wax being removed. And Key examples that are taken up to now, the above-described C: soft metal, Ga, In, etc., D: a photocatalyst, such as TiO2, E: spherical particles, Miku Roshirika, F: nanocarbon, such as C60, is ( (See paragraph 0026) . However, as these sliding surface additives, only graphite, which is a low-priced layered structure, currently penetrates the market, and there are no other successful attempts from the viewpoint of market penetration. .

市販されている上記C(軟質金属)混合滑走面材を観察してみると、Ga(ガリウム)粒子が不均一なダマとなって硬質ポリエチレン製シート内に三次元的に点在しているのが見えるだけである。これでは実際に雪氷面と接触できるのは表層に露出している一部の添加剤だけであり、ワックスがけに代替するような十分な潤滑効果が望めるはずもない。また配合された添加剤の多くはシート表層下に埋没されたままで、用具寿命が尽きるまで利用されることも無いため、生産効率やコスト的にみても無駄が多い。Looking at the commercially available C (soft metal) mixed sliding surface material , the Ga (gallium) particles are unevenly distributed and are scattered three-dimensionally in the hard polyethylene sheet. Is only visible. In this case, only a part of the additive exposed on the surface layer can actually come into contact with the snow and ice surface, and a sufficient lubrication effect to replace waxing cannot be expected. Further, many of the blended additives remain buried under the surface layer of the sheet and are not used until the end of the tool life, so that there is a lot of waste in terms of production efficiency and cost.

黒鉛が唯一市場に浸透している理由は、主な滑走面材の原料である超高分子量ポリエチレン(UHMWPE)は熱塑性樹脂であるもその融解時の動粘度が極めて高いため、標準的なスクリュー射出式や高圧高温成型式のいずれの製造法においても添加剤を滑走面材の中に均一に分散させる事が困難である事が要因としてある。そこで黒鉛ならば原料コストが安価なために、大量投入によりこの問題を量で対処的に解消出来るからである。Why graphite is penetrated into only the market is the raw material of the main planing surface material ultra-high molecular weight polyethylene (UHMWPE) is a thermoplastic resin also has an extremely high kinematic viscosity at its melting, standard screw The reason is that it is difficult to uniformly disperse the additive in the sliding surface material in any of the injection type and high pressure / high temperature molding type production methods . In view of this, since the raw material cost is low for graphite, this problem can be solved in a large amount by dealing with it .

第二は、我が国固有の重要課題と思われるが、スキーヤー・スノーボーダーら余暇活動参加者にとって対処不能な不快現象を解消し、索道および関連事業者にとっては実質営業期間の延長にもつながるもので、この新添加剤は春の「掴み雪」現象を解消し、たとえ黄砂に覆われた雪氷面であっても滑走移動効果を持続して発揮できることが強く求められる。The second issue, which seems to be an important issue unique to Japan, is to eliminate the unpleasant phenomenon that skiers and snowboarders and other leisure activities cannot handle, leading to the extension of the actual operating period for cableway and related operators. This new additive eliminates the “gripping snow” phenomenon in spring, and it is strongly demanded that the sliding effect can be continuously exerted even on snow and ice covered with yellow sand.

第三は、雪氷上で用いられる用具として本質的に避けられない課題であるが、雪山の特徴でもある不安定で急変する気象への対応、そして冬季から春季までの気候変化への追随のために、この新添加剤は現在の全容不明な雪氷上潤滑理論に依存した条件限定の潤滑機構などではなく、その作用が明解な新規の雪氷上潤滑理論に基づいた摩擦低減メカニズムにある事も求められる。The third issue is essentially an inevitable issue as a tool used on snow and ice, but it is necessary to respond to unstable and suddenly changing weather, which is also a feature of snowy mountains, and to follow climate change from winter to spring. In addition, the new additive is not required to be based on the limited lubrication mechanism that depends on the current theory of snow and ice lubrication , but is also required to have a friction reduction mechanism based on the new snow and ice lubrication theory. It is done.

これら上記「四つの条件」を満たすためには、以下に示す「十二の具体的手段」を用いる事が必要である。この十二の具体的手段こそが本発明の課題解決手段に相当する。In order to satisfy these “four conditions”, it is necessary to use “twelve specific means” described below. These twelve specific means correspond to the problem solving means of the present invention.

以降、請求項ごとにその構成の特徴を記述する。先ず請求項1と2に係る潤滑剤組成物の基本構成とその中心であるナノダイヤモンド粒子からなる添加剤は、本発明において最も重要な特徴であり、本発明の課題を解決するための手段として、ナノダイヤモンド粒子に水溶性高硬度ナノ粒子の「ころ」としての機能をもたせて、新たな雪氷上潤滑理論を発現させるために必要な上述のナノサイズ「ころ」作用の四条件のうち、最初の形状条件と個数条件の二条件を満たせる唯一の方法である。Hereinafter, the characteristics of the configuration will be described for each claim. First, the basic composition of the lubricant composition according to claims 1 and 2 and the additive composed of nanodiamond particles as the center thereof are the most important features in the present invention, and as means for solving the problems of the present invention. The first of the above four conditions for the nano-sized "roller" action necessary to make nanodiamond particles function as "rollers" of water-soluble, high-hardness nanoparticles and to develop a new lubrication theory on snow and ice. This is the only method that can satisfy the two conditions of shape and number.

この新しいナノダイヤモンド一次単結晶粒子は、大きさは動的光散乱法(Dynamic light scattering=DLS法)にて計測された体積平均粒子径が(以下、平均粒子径と略称す)、3.7±0.6nmで、形状は球に近い擬球形である。This new nanodiamond primary single crystal grains, the size dynamic light scattering method The volume average particle diameter as measured by (Dynamic light scattering = DLS method) (hereinafter to referred to as the average particle diameter), 3.7 ± 0.6 At nm, the shape is a pseudo-sphere close to a sphere.

この新しいナノダイヤモンド粒子のコアは、モース硬度10、ヤング率 1050GPaと地球上で、最も硬く、変形しにくいダイヤモンド単結晶であるために、黄砂成分中でもっとも硬い石英(モース硬度7)よりもはるかに硬く、黄砂によってさえ磨耗することがない。この唯一の物性によりにナノサイズ「ころ」としてミクロレベルの真実接触面の高い圧力の下で転がるための理想的素材である。一方シェルは薄いグラフェン層であるが、コア部に比較し遥かに柔軟であるので容易に層間滑りを起こし、コア部と滑走面および雪氷面との間の恰好の緩衝帯となり、僅かな応力によって「ころ」作用の転がりを誘発すると考えた(例えば、非特許文献5参照。)。The core of this new nanodiamond particle is Mohs hardness 10 and Young's modulus 1050 GPa, which is the hardest and most resistant diamond single crystal on earth. It is hard and does not wear even with yellow sand. This unique property makes it an ideal material for rolling under high pressure at the micro level true contact surface as a nano-sized “roller”. On the other hand, the shell is a thin graphene layer , but it is much more flexible than the core part, so it easily slips between the layers and becomes a good buffer zone between the core part and the sliding and snow / ice surfaces . It was considered to induce rolling of the “roller” action (see, for example, Non-Patent Document 5).

そこで、ハードコア・ソフトシェル二重構造でありながら、擬球形により、僅かな応力による転がり効果も期待されるこの新しいナノダイヤモンド粒子を、予め疎水性スキーワックス基材に分散させておくと、滑走時に雪氷面との摩擦によって遥かに軟質であるワックス基材が剥ぎ取られるにつれて、ナノダイヤモンド粒子が、雪氷上滑走移動用具直下にこぼれ出し、雪氷面の融水層に溶解することで、無数のナノサイズ「ころ」粒子となり、その転がり作用によって摩擦を低減させて新たな雪氷上の潤滑効果を発現すると考えた。Therefore, when this new nanodiamond particle, which has a hard core / soft shell double structure and is expected to have a rolling effect due to a slight stress due to its pseudo-spherical shape, is dispersed in a hydrophobic ski wax substrate in advance, As the wax substrate, which is much softer due to friction with the snow and ice surface, is peeled off, the nanodiamond particles spill directly under the sliding device on the snow and ice, and dissolve in the melt layer on the snow and ice surface. It was thought that it became a size “roller” particle, and its rolling action reduced friction to develop a new lubricating effect on snow and ice .

然し、この雪氷上摩擦力発生抑制メカニズムによる新たな雪氷上潤滑理論の発現には、前提条件としてその界面の真実接触面領域に常に多数のナノサイズの「ころ」が十分に供給されなくてはならない。この真実接触面は発生する時期と場所は予測不可能であるので、結局は雪氷上滑走移動用具の潤滑組成物の基材中には非常に多くの個数のナノサイズの「ころ」作用を持つ粒子が存在しなくてはならない。これがナノサイズ「ころ」作用の条件に個数条件が必要な理由である。 However, in order to develop a new theory of on-snow / ice lubrication through this mechanism for suppressing the generation of frictional forces on snow / ice, as a prerequisite , a large number of nano-sized “rollers” must always be sufficiently supplied to the real contact area of the interface. Don't be. The time and place where this true contact surface occurs is unpredictable, so in the end, it has a very large number of nano-sized "rollers" in the base material of the lubricating composition of the sliding tool on snow and ice. There must be particles. This is the reason why the number condition is necessary for the nano-sized “roller” action.

ここでは一般的なスキー板をモデルとしてその寸法から上下の湾曲部を除き、幅100 mm、長さ1500 mm、みかけの滑走面面積を1.5×10の
5乗 mm2とする。別の実験で、軟鉄板2枚を用いて、初期真実接触点の総面積を求めた結果があり、それよると、初期真実接触面積はみかけ接触面積の0.001%である(例えば、非特許文献8参照。)。
Here, using a general ski as a model, the upper and lower curved parts are excluded from the dimensions, the width is 100 mm, the length is 1500 mm, and the apparent sliding surface area is 1.5 × 10.
The power is 5 mm2. In another experiment, there was a result of calculating the total area of the initial true contact point using two soft iron plates. According to this result, the initial true contact area is 0.001% of the apparent contact area (for example, non-patent literature) 8).

以上までの計算上からの推定は、実際に、極めて僅かの濃度のナノダイヤモンド粒子を分散させたスキーワックスを用いたスキー等で雪氷上を滑走させてみるのが最も確実な検証になるが、実施例に示すようにこの推定は実証された。As for the estimation from the above calculation, it is actually the most reliable verification to try skiing on snow and ice with skis etc. using ski wax in which nano diamond particles with a very slight concentration are dispersed, This estimation was verified as shown in the examples.

本発明のナノダイヤモンド一次単結晶粒子と、上述のナノダイヤモンド凝膠体二次粒子とを区別するために、以降はこれらのナノダイヤモンド凝膠体二次粒子商品群を「CD/UDD」と呼称する。また、以降「ナノダイヤモンド粒子」とは、基本的に本発明のナノダイヤモンド一次単結晶粒子(分散体)を指すものとする。In order to distinguish the nanodiamond primary single crystal particles of the present invention from the nanodiamond agglomerate secondary particles described above, these nanodiamond agglomerate secondary particles are hereinafter referred to as “CD / UDD”. To do. Further, hereinafter, “nanodiamond particles” basically refers to the nanodiamond primary single crystal particles (dispersion) of the present invention.

請求項3からと7に係る様々な基材も本発明において欠かせな重要な構成であり、本発明の課題を解決するための手段として用いるナノダイヤモンド粒子からなる新添加剤を、実際に雪氷上滑走移動において予測不可能に発生する上述の真実接触面に対して供給をするために、この添加剤を無数に蓄えそして十分な個数を供給し続けるために必要なナノサイズ「ころ」作用の四条件のうち遍在条件を満たす。The various substrates according to claims 3 and 7 are also an important configuration essential in the present invention, and a new additive comprising nanodiamond particles used as a means for solving the problems of the present invention is actually applied to snow and ice. Four of the nano-sized “roller” action required to store an infinite number of this additive and continue to supply a sufficient number to feed the above-mentioned true contact surfaces that occur unpredictably in sliding movement . Satisfy the ubiquitous condition among the conditions.

請求項8から11に係る製造方法は、本発明に不可欠なその製造法であり、本発明の課題を解決するための手段として、ナノダイヤモンド粒子からなる添加剤を、上述のナノサイズ「ころ」作用四条件のうち形状条件と個数条件と遍在条件とに適合させながら潤滑剤組成物の基材などに分散させるための唯一の方法である。The manufacturing method according to claims 8 to 11 is the manufacturing method indispensable for the present invention, and as means for solving the problems of the present invention, an additive comprising nanodiamond particles is added to the nano-sized “roller” described above. It is the only method for dispersing the lubricant composition on the base material while adapting to the shape condition, the number condition, and the ubiquitous condition among the four conditions of action.

次にこの請求項8から11に係る製造方法がどのように本発明に不可欠かを従来技術と対比して詳細に解説する。Next, how the manufacturing method according to claims 8 to 11 is indispensable for the present invention will be described in detail in comparison with the prior art.

よって、ナノ粒子を使った潤滑アイデア自体は、有名なサッカーボール型分子C60フラーレンやfumed silicaが発見された際にも多くの人が思いつき、ナノベアリング応用を期待して熱心に適用が試みられた。しかしこれらナノサイズの限界に近く、単純均一構造を持つナノ粒子においては、凝集性があまりにも高く実際に最少粒子自体がナノポアを持つ高次凝集体である。よっていかなる既知の界面活性剤を分散に用いても、溶媒中で一次粒子分散を作ることが困難であり、C60フラーレンなどでは本発明のような高い潤滑性を得ることが出来ていない。Therefore, many people came up with the idea of lubrication using nanoparticles, even when the famous soccer ball type molecule C60 fullerene or fumed silica was discovered, and they were eagerly applied in anticipation of nano bearing applications. . However, the nanoparticles having a simple uniform structure close to the limit of the nano size are too high in agglomeration property, and the smallest particles are actually higher-order aggregates having nanopores. Therefore, even if any known surfactant is used for dispersion, it is difficult to make primary particle dispersion in a solvent, and C60 fullerene or the like cannot achieve high lubricity as in the present invention.

具体的には請求項8から11に係る製造方法に共通した特徴である、先ずナノダイヤモンド粒子をその分散先基材毎の極性に適合したコロイド状態の分散媒として安定させたことである。コロイド状態を経由させることで、ナノダイヤモンド粒子はその特徴的なシェル層が溶媒と相互作用を起こし凝集性を失い安定するのであり、本発明の製造方法において不可欠である。Specifically, it is a feature common to the production methods according to claims 8 to 11, and first, nanodiamond particles are stabilized as a dispersion medium in a colloidal state suitable for the polarity of each dispersion destination substrate. By passing through the colloidal state, the nanodiamond particles have a characteristic shell layer that interacts with the solvent, loses cohesion, and becomes stable, which is essential in the production method of the present invention.

本発明の技術思想の中心はナノサイズ「ころ」作用四条件であり、これを考慮せずに構成されまた従来技術で製造されたC60添加スキーワックスと、本発明によるナノサイズ「こ ろ」作用四条件の発現を目的に構成されたナノダイヤモンド分散スキーワックスとの技術思想の差は、実際に黄砂が降下した雪氷上で滑走比較すれば明らかである。Center of technical idea of the present invention is a nano-sized "When" effect four conditions, and C60 added ski wax produced in consists Further prior art without considering this, nano-sized "This filtrate" action according to the invention The difference in technical idea from the nano-diamond-dispersed ski wax, which was constructed for the purpose of expressing the four conditions , is obvious when sliding on snow and ice where yellow sand actually falls.

例えばスキー・スノーボード等が備えるポリエチレン製滑走面材であれば現在も広く使われている固形パラフィンがその普及度から有利であるが、その固形パラフィンもスキー用アイロンで加熱溶解させて塗布するホットワクシング、そのまま直接擦り付けるコールドワクシング(生塗り)では適した基材は異なる。またその滑走面の両端にあるエッジ、さ らにスケートのブレードは金属製であり固形パラフィンは定着しないので、金属素材に定着が優れた液体を用いるなどの形態変更が必要となる。なお基材の素材にも前述の「安全性条件」に適合するものが用いられるべきである。For example, hard paraffin which is still widely used, if polyethylene running surface material snowboard or the like provided it is advantageous from the prevalence, hot vaccinia Thing to applied the solid paraffin is also dissolved by heating with an iron ski In the case of cold waxing (raw coating), which is directly rubbed as it is, suitable substrates are different. The edges at the ends of the running surface, skating blades in the al is made of metal so hard paraffin is not established, it is necessary to form changing, such as with an excellent liquid fixing the metallic material. In addition, a material that meets the above-mentioned “safety conditions” should be used for the base material.

炭化水素系合成ワックスには、上述の利点がある反面で石油由来人工パラフィンよりも融点が高い欠点がある。例えばホットワクシングでは高いスキー用アイロン温度設定での作業が要求されるので、仮に作業ミスが発生した時の滑走面材に対するダメージが懸念される。この点ではFT法ワックスの方がより低融点で加熱融解時の流動性も高いために施工性に富む点で有利である。一方で施工に成功した後の耐磨耗性では低分子量ポリオレフィンの方が有利である。よって施工者のワクシングの技量によって、適当な種類を選択または併用すればよい。なお低分子量ポリオレフィンの扱いづらさを軽減するために低融点固形パラフィンなどを混和する事もできる。Hydrocarbon synthetic waxes have the above-mentioned advantages, but have a disadvantage that their melting point is higher than that of petroleum-derived artificial paraffin . For example, in hot waxing, work at a high ski iron temperature setting is required, so there is a concern about damage to the sliding surface material when a work mistake occurs. In this respect, the FT wax is advantageous in that it has a lower melting point and higher fluidity at the time of heating and melting, and is therefore more workable. On the other hand, low molecular weight polyolefin is more advantageous in terms of wear resistance after successful construction. Therefore, an appropriate type may be selected or used in combination depending on the worker's skill in waxing. In order to reduce the difficulty of handling low molecular weight polyolefin, low melting point solid paraffin or the like can be mixed.

また基材としてスキー用資材である滑走面材の原料(超高分子量ポリエチレン、UHMWPE)にナノダイヤモンド粒子を添加する形態も考えられる。しかしUHMWPE は融点まで加熱しても全く流動しないために、一般的な混合操作で添加剤分散を試みた過去の例がみな目的を未達成に終わっている事をまず考慮すべきである(0036−0038項参照)。また滑走面材の中に添加剤を分散させるには、添加剤使用量はスキーワックス形態での数十倍以上にも達するので相応の生産設備やコストも必要となる。よって本形態の実施にはまずこれらの点が十分考慮されるべきである。In addition, a form in which nanodiamond particles are added to a raw material (ultra high molecular weight polyethylene, UHMWPE) of a sliding surface material that is a ski material as a base material is also considered. However, since UHMWPE does not flow at all even when heated to the melting point, it should first be taken into account that all past examples of attempts to disperse additives in a general mixing operation have failed to achieve their purpose (0036). See paragraph -0038). Further, in order to disperse the additive in the sliding surface material, the amount of the additive used reaches several tens of times that in the form of ski wax, so that corresponding production facilities and costs are required. Therefore, these points should be fully considered in the implementation of this embodiment.

なおナノダイヤモンド粒子は一般に水溶性を示すために、そのままではPAOなど炭化水素系合成油媒質に分散しない。このため、媒質への分散剤として非イオン性グリセリンモノオレエート、ポリオキシエチレンステアリルエーテルリン酸などの界面活性剤分子を利用することができる。もちろんこの分散の目的を達成するために用いることの出来る媒質分散剤はこれらに限定されない。本実施形態においては濃度0.1w/v%程度の安定した炭化水素系合成油コロイドを得ることが可能であったが、濃度1w/v%の高濃度コロイドでは1.5ヶ月程度でコロイドに異常が見られたので有る程度の濃度上限がある。炭化水素系合成油 コロイドの保管は、密閉容器にてアルゴンガスなどの不活性ガスを封入し冷暗所での保管が必要である。Since nanodiamond particles generally exhibit water solubility, they are not dispersed in a hydrocarbon-based synthetic oil medium such as PAO as it is. For this reason, surfactant molecules such as nonionic glycerin monooleate and polyoxyethylene stearyl ether phosphate can be used as a dispersant in the medium. Of course, the medium dispersant that can be used to achieve the purpose of the dispersion is not limited thereto. In this embodiment, it was possible to obtain a stable hydrocarbon-based synthetic oil colloid having a concentration of about 0.1 w / v%. However, in the case of a high concentration colloid having a concentration of 1 w / v%, an abnormality was observed in the colloid in about 1.5 months. Therefore, there is a certain upper limit of concentration. Storage of the hydrocarbon-based synthetic oil colloid requires storage in a cool and dark place by sealing an inert gas such as argon gas in a sealed container.

次に上記基材がシリコーン製品である場合には、エチレングリコール、プロピレングリコール、2-メトキシエタノールまたはエタノール、メタノールなどの低級アルコールなど極性を有す媒質を利用する事が出来るが、特にエチレングリコール、プロピレングリコールはナノダイヤモンド粒子への飽和溶解度が3%と高濃度であるので有利である。よってポリエチレングリコール(PEG)、ポリプロピレングリコールなどのポリマーを中間物質として経由し変性シリコーンを基材として様々なシリコーン製品に展開する事が可能である。もちろんこの展開の目的を達成するために用いることの出来るコロイド媒質、中間物質はこれらに限定されない。本実施形態においては、コロイドではなく、コロイド溶媒を一部蒸発させることによって得られるハードゲルを得ることができるので保管上で有利である。Next, when the base material is a silicone product, a polar medium such as ethylene glycol, propylene glycol, 2-methoxyethanol or lower alcohol such as ethanol and methanol can be used. Propylene glycol is advantageous because its saturation solubility in nanodiamond particles is as high as 3%. Therefore, it can be developed into various silicone products using modified silicone as a base material through polymers such as polyethylene glycol (PEG) and polypropylene glycol as intermediate substances. Of course, colloidal media and intermediate materials that can be used to achieve the purpose of this development are not limited to these. In the present embodiment, a hard gel obtained by partially evaporating the colloid solvent instead of the colloid can be obtained, which is advantageous in terms of storage.

「炭化水素系合成油による分散媒」実施例1に示すナノダイヤモンド粒子「ND」を、直接型の操作でパラフィン系炭化水素、オレフィン系炭化水素などの基材に分散させるためには、非極性溶媒として炭化水素系合成油の中から、Exxon-Mobil社製ポリアルファオレフィン(PAO)の改良品SpectraSyn Plus6を用いた。これはPourPointが氷点下50℃以下であるため低温気象条件下で使用される雪氷上滑走移動用具での使用にも用いることが出来る。またその動粘度は6cStと国内で一般市販されているPAO素材の動粘度(50-127 mm2/s)に比べ相当低く、またこの動粘度値は後述する固形パラフィン基材の加熱融解時の動粘度値(6 mm2/s程度)とほぼ同じである事でその分散性が極めて優れ、本実施形態の分散媒として最適なものである(例えば、非特許文献10参照。)。“Dispersion medium with hydrocarbon-based synthetic oil” In order to disperse the nanodiamond particles “ND” shown in Example 1 on a substrate such as paraffinic hydrocarbon and olefinic hydrocarbon by direct operation, it is nonpolar. As a solvent, a modified polyalphaolefin (PAO) SpectraSyn Plus 6 manufactured by Exxon-Mobil was used from among hydrocarbon synthetic oils. Since PourPoint is below 50 ° C below freezing, it can also be used for snow and ice sliding equipment used under low-temperature weather conditions. The movement of the corresponding low, when heated to melt the paraffin wax base which will be described later in this kinematic viscosity value than the dynamic viscosity of the PAO materials that kinematic viscosity which is generally commercially available in 6cSt and domestic (50-127 mm2 / s) The dispersibility is extremely excellent because it is almost the same as the viscosity value (about 6 mm2 / s), and it is optimal as a dispersion medium of this embodiment (for example, see Non-Patent Document 10).

具体的な分散媒の調製について記す。1L三角フラスコに、炭化水素系合成油として上述のPAO改良品SpectraSyn Plus6を1L、ナノダイヤモンド粒子「ND」を1.0g (0.1w/v%)、媒質分散剤としてエンジンオイルに添加剤を分散させる際に良く使われる非イオン性のグリセリンモノオレエートとして花王株式会社製、レオドールMO-60を10.0g、さらに弱酸性のポリオキシエチレンステアリルエーテルリン酸として東邦化学工業株式会社製、LB400、フォスファノールを10.0g 、すなわち両媒質分散剤それぞれ1.0w/v%を、この順に加え、室温環境下、不活性ガスとして窒素雰囲気下、磁気撹拌装置を使用して2日間の磁気攪拌を継続した。半日後から「ND」の溶解が始まり、1日後には、固形物がほぼ完全に消滅し、2日後には薄い藍色を帯びた淡黒色透明溶液が得られた。なおこの操作によって得られた分散媒を以降の実施例では「ND-PAO」と称する。The preparation of a specific dispersion medium will be described. In 1L Erlenmeyer flask, 1L of the above-mentioned PAO modified SpectraSyn Plus6 as a hydrocarbon-based synthetic oil, 1.0g (0.1w / v%) of nanodiamond particles “ND”, and additives are dispersed in engine oil as a medium dispersant. As a non-ionic glycerin monooleate that is often used, Kao Co., Ltd., 10.0 g of Rhedol MO-60, and as weakly acidic polyoxyethylene stearyl ether phosphate, Toho Chemical Industries Co., Ltd., LB400, Phosphor 10.0 g of diol, that is, 1.0 w / v% of both medium dispersants were added in this order, and magnetic stirring was continued for 2 days using a magnetic stirring apparatus in a nitrogen atmosphere as an inert gas at room temperature. The dissolution of “ND” started after half a day, and solids disappeared almost completely after one day, and a light blackish transparent solution with a light indigo color was obtained after two days. The dispersion medium obtained by this operation is referred to as “ND-PAO” in the following examples.

「低級アルコールによる分散媒」実施例1に示す「ND」を、間接型の操作でシリコーン製品基材に分散させるために、極性溶媒としての低級アルコールの中からエチレングリコールを用いた。本実施例ではエチレングリコールを重合させたPEGを中間物質として経由した。これらは和光純薬株式会社、東京化成工業株式会社などの試験用試薬取り扱い会社から容易に入手可能である。今回は中間物質に和光純薬株式会社製、ポリエチレングリコール4000 (PEG4000)平均分子量3000、mp50-60℃、を用意し中間物質とした。 "Dispersion medium with lower alcohol" In order to disperse "ND" shown in Example 1 on a silicone product substrate by an indirect operation, ethylene glycol was used from lower alcohols as a polar solvent. In this example, PEG polymerized with ethylene glycol was used as an intermediate substance. These are easily available from test reagent handling companies such as Wako Pure Chemical Industries, Ltd. and Tokyo Chemical Industry Co., Ltd. This time, Wako Pure Chemical Industries, Ltd., polyethylene glycol 4000 (PEG4000) average molecular weight 3000, mp50-60 ° C. was prepared as an intermediate substance .

NDについては分散系であるナノ炭素研究所製ナノアマンド水性コロイドから直接溶媒置換 によって同エチレングリコールコロイドを得た。DLS法によってこのコロイドの粒度分布を測定したところ、粒径 4.1±0.6nm(100.00vol%)であり、本発明の課題解決手段の条件を満たしていた。コロイド濃度は2.00w/v%、ゼータ電位+47.6mであった。このナノアマンド・エチレングリコールコロイドは以降「ND-EG」と略称する。 For ND, the same ethylene glycol colloid was obtained by direct solvent displacement from a nanoamand aqueous colloid made by Nanocarbon Laboratory, which is a dispersion . When the particle size distribution of this colloid was measured by the DLS method, the particle size was 4.1 ± 0.6 nm (100.00 vol%), which satisfied the conditions of the problem solving means of the present invention. The colloid concentration was 2.00 w / v% and the zeta potential was +47.6 m. This nanoamand ethylene glycol colloid is hereinafter abbreviated as “ND-EG”.

具体的な分散媒の調製について記す。先ず中間物質PEG4000を57g秤量し、ビーカーに入れ上部をラップで覆った状態で加熱撹拌した。液温62.4℃で溶解し、完全に透明となったのを確認した後に、前記ND-EG2.5ml(ND=0.05g)を滴下後、約30分間磁気攪拌装置により加熱撹拌を続けた。加熱攪拌中に渦流により大気中の酸素を引き込みナノダイヤモンド粒子に特有の表面構造を酸化させないように、実験用高純度N2ガスをビーカー上のラップを貫通させたガラス管を通じて導入し、滴下撹拌を行った。The preparation of a specific dispersion medium will be described. First, 57 g of the intermediate substance PEG4000 was weighed, placed in a beaker, and heated and stirred with the top covered with a wrap. After confirming that the solution was melted at a liquid temperature of 62.4 ° C. and became completely transparent, 2.5 ml of the ND-EG (ND = 0.05 g) was added dropwise, and the stirring was continued with a magnetic stirrer for about 30 minutes. In order not to oxidize atmospheric oxygen by vortex during heating and stirring and oxidize the surface structure peculiar to nanodiamond particles, high-purity N2 gas for experiment was introduced through a glass tube penetrating a lap on a beaker and dripping stirring was performed. went.

具体的な分散媒の調製について記す。はじめに機器類の事前準備としてはドラフトチャンバー内に磁気攪拌装置、アーム類、冷却水配管を設置し、磁気攪拌装置の加熱盤上にはシリコーンオイルバスを置いて80℃に加熱し、温度計と還流冷却器を備え磁気回転子を入れた300ml三口フラスコを取り付けた。The preparation of a specific dispersion medium will be described. First, as a preliminary preparation of equipment, a magnetic stirrer , arms, and cooling water piping are installed in the draft chamber. A silicone oil bath is placed on the heating plate of the magnetic stirrer and heated to 80 ° C. A 300 ml three-necked flask equipped with a reflux condenser and a magnetic rotor was attached.

この操作によって得られた混合液のND濃度は0.2w/v%、水分含量は約0.4%、である。この混合液は以下の実施例で「ND-H2O-tBu」と略称する。The ND concentration of the liquid mixture obtained by this operation is 0.2 w / v %, and the water content is about 0.4%. This mixed solution is abbreviated as “ND-H 2 O-tBu” in the following examples.

具体的な基材の調製について述べる。先ずは基材となる固形パラフィンの主成分、副成分を定め予め混合調整する。本操作では上記ParaffinWax-140(以下、P140と略称する。)を全量使用した。次にビーカーにP140を約130g入れ電熱器で完全に加熱溶解させて、一度濾紙を通し不純物を濾過した後、100g分を秤量して300mlビーカーに移した。このビーカーを磁気攪拌装置上に定置して紙製蓋を被せ84℃まで加熱後、保温させた。実験用高純度N2ガスをビーカー上の紙蓋切れ目からシリコーン製耐熱チューブを通じて導入を続け、実施例2の「ND-PAO」を1g秤量しホールピペットで滴下させ磁気攪拌を17分間行った。最後にチンダル現象 による散乱が、ビーカー内で万遍なくおきることを確かめた後、直ちにビーカー内容物を冷却成形用のシリコーン製容器に移し、冷水槽に浸して冷却した。Specific preparation of the substrate will be described. First, main components and subcomponents of solid paraffin serving as a base material are determined and mixed and adjusted in advance. In this operation, the entire amount of ParaffinWax-140 (hereinafter abbreviated as P140) was used. Next, about 130 g of P140 was placed in a beaker and completely heated and dissolved with an electric heater. After filtering the impurities through a filter paper, 100 g was weighed and transferred to a 300 ml beaker. The beaker was placed on a magnetic stirrer , covered with a paper lid, heated to 84 ° C., and kept warm. High-purity N2 gas for experiment was continuously introduced through a heat resistant tube made of silicone from a break in the paper lid on the beaker, 1 g of “ND-PAO” of Example 2 was weighed and dropped with a whole pipette, and magnetic stirring was performed for 17 minutes. Finally, after confirming that scattering due to the Tyndall phenomenon occurred uniformly in the beaker, the contents of the beaker were immediately transferred to a silicone container for cooling molding and cooled in a cold water bath.

具体的な基材の調製について述べる。先ずは基材となる炭化水素系合成ワックスを準備し必要に応じ予め添加調整する。本操作では上記三井ハイワックス400P(以下、PE400と略称する。)をそのまま全量使用した。次にビーカーにPE400を200g入れ完全に加熱溶解させて、このビーカーを磁気攪拌装置上に定置して樹脂蓋を被せ150℃まで加熱後、磁気攪 し全量溶解させた。実験用高純度N2ガスをビーカー上蓋隙間からシリコーン製耐熱チューブを通じて導入した状態で、実施例2の「ND-PAO」を10g秤量しホールピペットから磁気 攪拌下、ビーカー内に滴下した。操作温度が高いため攪拌中に基材中のND分散状態を、常時レーザーポインターを複数方向から当てながら、チンダル現象
による散乱光を観察し均一分散を確認した。24分間撹拌継続後、操作を終了し、ビーカー内容物を冷却成形用のシリコーン製容器に移し、冷水槽に浸して急冷却した。
Specific preparation of the substrate will be described. First, a hydrocarbon-based synthetic wax as a base material is prepared and added and adjusted in advance as necessary. In this operation, the entire amount of Mitsui High Wax 400P (hereinafter abbreviated as PE400) was used as it was. Then PE 400 200 g purse was completely dissolved by heating the beaker, after heating the beaker to 0.99 ° C. covered with a resin lid was placed on a magnetic stirrer, it was the total amount dissolved magnetically攪 拌. 10 g of “ND-PAO” of Example 2 was weighed and dropped into a beaker under magnetic stirring from a hole pipette in a state where high purity N 2 gas for experiment was introduced from a beaker top lid through a silicone heat-resistant tube. Due to the high operating temperature, the ND dispersion state in the substrate during stirring was constantly observed with scattered light due to the Tyndall phenomenon while confirming uniform dispersion while applying a laser pointer from multiple directions. After stirring for 24 minutes, the operation was terminated, and the contents of the beaker were transferred to a silicone container for cooling molding, and immersed in a cold water tank for rapid cooling.

特に動粘度が6 mm2/s at100℃とND-PAO(SpectraSyn Plus6)の動粘度(@ 100°C 6cst )と同じであるので固形基材としては最もND-PAOの分散性に優れると考えられる。融点は73.5℃でワクシング作業温度を80℃とすれば動粘度は9mm2/Sと低粘度でもある。難点としては滑走面材(UHMWPE/HDPEなど)への浸透性、定着性が劣るので、ホットワクシング手法による滑走用ワックスとして全量を成分に用いるのが最良形態である。従来技術としては滑走性に特化させて、ベースワックスの上からワクシングする滑走用ワックスに相当する。In particular, the kinematic viscosity is 6 mm2 / s at 100 ° C, which is the same as the ND-PAO (SpectraSyn Plus6) kinematic viscosity (@ 100 ° C 6cst ). . If the melting point is 73.5 ° C and the waxing operation temperature is 80 ° C, the kinematic viscosity is 9mm2 / S and low viscosity. The difficulty is that the penetrating and fixing properties of sliding surfaces (UHMWPE / HDPE, etc.) are poor, so the best mode is to use the entire amount as a wax for sliding by the hot waxing technique. The prior art corresponds to a sliding wax that is waxed from above the base wax, specializing in sliding performance.

具体的な基材の調製について述べる。先ずは基材となるFT法ワックスの主成分、副成分を定め予め添加調整する。本操作では上記FT-0165を全量使用したが、もちろん他のFT法ワックス同士と混合させて調整しても良い。次にビーカーAにFT-0165を入れて、電熱器で完全に加熱溶解させて総量400g分となるよう900ml耐熱ガラス容器Bに移した。この容器Bを磁気攪拌装置上に定置し、樹脂蓋を被せて、以降の分散操作が最適となるように130℃温度設定で加熱し、非接触型温度計を使い容器B中のFT-0165溶解液温度が100℃に保たれるように調整した。次に実験用高純度N2ガスを上部から噴出を続けた状態で以降の操作を行った。基材へのNDの分散を簡易確認出来る様に容器Bに複数のレーザーポインターを当てておいた。この状態で実施例2の「ND-PAO」を4g秤量し容器B上部から注ぐと、直ちにただちに複数方向からチンダル現象を確認できた。7分間磁気攪拌を続けた後、容器B内容物を冷却成形用のシリコーン製容器に移し、冷水槽に浸して冷却固化させた。Specific preparation of the substrate will be described. First, the main component and subcomponent of the FT method wax as the base material are determined and added and adjusted in advance. In this operation, the entire amount of the above FT-0165 was used, but of course, it may be adjusted by mixing with other FT waxes. Next, FT-0165 was put into a beaker A and completely heated and dissolved with an electric heater, and transferred to a 900 ml heat-resistant glass container B so that the total amount was 400 g. Place this container B on a magnetic stirrer , cover it with a resin lid, heat it at a temperature setting of 130 ° C so that the subsequent dispersion operation is optimal, and use a non-contact type thermometer to FT-0165 in container B The solution temperature was adjusted to be kept at 100 ° C. Next, the subsequent operations were carried out in a state where the high purity N2 gas for experiment was continuously blown out from the top. A plurality of laser pointers were placed on the container B so that the dispersion of ND on the substrate could be easily confirmed. In this state, when 4 g of “ND-PAO” of Example 2 was weighed and poured from the upper part of the container B , the Tyndall phenomenon was immediately confirmed from a plurality of directions. After the magnetic stirring was continued for 7 minutes, the contents of Container B were transferred to a silicone container for cooling molding and immersed in a cold water tank to be cooled and solidified.

「FT法により生成するワックスによる基材その2」上述の通り「ND-PAO-FT」はホットワクシング用途であるので次にコールドワクシング用の調整について記述する。先ずは基材となるFT法ワックスの主成分、副成分を定め予め添加調整しておく。本操作では上記FT-0165を全量使用したが、もちろん他のFT法ワックス同士と混合させて調整しても良い。次に上記の実施例4の操作を行い、NDとしてナノアマンド5%水性コロイドを240ml、中間物質としてt-BuOhを59.5gを用いて、ND濃度0.2w/v%、の混合液「ND-H2O-tBu 」を調整した。三番目に、このND-H2O-tBu を4.7g(比重0.78581として5.98ml)取り、三口フラスコ中で31.5gのFT-0165を加熱融解させた液体中に注入して、アルゴン雰囲気下で磁気 攪拌を行った。基材中のND分散状態はレーザーポインターを複数方向から当てて、チンダル現象により検査し、散乱が万遍なくおきることを確認できた約30分後にこの操作を中止し、三口フラスコ複合組成物をPP製容器に移し、強い水流を当てながらPP製容器を回転させて均一に急冷させてPP容器内に凝固物を得た。“Substrate by wax produced by FT method 2” As described above, since “ND-PAO-FT” is used for hot waxing, adjustment for cold waxing will be described next. First, the main component and subcomponent of the FT method wax as the base material are determined and added and adjusted in advance. In this operation, the entire amount of the above FT-0165 was used, but of course, it may be adjusted by mixing with other FT waxes. Next, the operation of Example 4 was performed, and a mixed solution “ND-H 2 O having an ND concentration of 0.2 w / v% using 240 ml of nanoamand 5% aqueous colloid as ND and 59.5 g of t-BuOh as an intermediate substance was used. -tBu "was adjusted. Third, 4.7 g of this ND-H2O-tBu (5.998 ml as a specific gravity of 0.78581) was taken and poured into a liquid in which 31.5 g of FT-0165 was heated and melted in a three-necked flask, and magnetically stirred in an argon atmosphere. Went. The ND dispersion state in the base material was inspected by the Tyndall phenomenon by applying a laser pointer from multiple directions, and after about 30 minutes when it was confirmed that the scattering occurred uniformly, this operation was stopped, and the three-necked flask composite composition was The product was transferred to a PP container, and the PP container was rotated while applying a strong water flow to be rapidly cooled to obtain a solidified product in the PP container.

冷却固化した複合組成物には、0.028wt%のNDが分散されている。最後に四番目の操作で、このND分散済み複合組成物を5.1g秤量し、上記FT-0165を10.2g秤量したものとそれぞれ加熱溶解させ磁気攪拌させて最終基材を得た。最終基材には0.009wt%のNDが分散されている。以上までの操作で得られたこの最終基材を以降の実施例においては「ND-tBu-FT」と称する。In the composite composition cooled and solidified, 0.028 wt% of ND is dispersed. Finally, in the fourth operation, 5.1 g of this ND-dispersed composite composition was weighed, and 10.2 g of the above FT-0165 was weighed and dissolved, and magnetically stirred to obtain a final substrate. In the final substrate, 0.009 wt% of ND is dispersed. This final substrate obtained by the above operation is referred to as “ND-tBu-FT” in the following examples.

具体的な基材の調製について述べる。先ずは基材を選定するが本実施例では上述の通りエルクリスタCPAO gradeXF4100(以下CPAO と略称す)を全量使用した。次に100ml三角フラスコにCPAOを50g秤量して入れ電熱盤上で完全に加熱溶解させた。この三角フラスコを磁 気攪拌装置上で95℃まで加熱後、保温させた。アルゴンガスを三角フラス上からガラス製先細管経由で三角フラスコ内に流出を続けた状態で、実施例2の「ND-PAO」を5g秤量し、ホールピペットで滴下し、続いて37分間電磁攪拌を行った。この時点におけるチンダル現象を調べ(図7、A参照)、その後、三角フラスコ内容物を冷却成形用の樹脂ペトリ皿容器に移し(図7、B参照)、そのまま室内にて空冷した。以上までの操作で得られたこの固形物を以降の実施例において「ND-PAO-CPAO」と称する。Specific preparation of the substrate will be described. First, the base material was selected, but in this example, as described above, the entire amount of ELCRYSTA CPAO grade XF4100 (hereinafter abbreviated as CPAO) was used. Next, 50 g of CPAO was weighed into a 100 ml Erlenmeyer flask and completely heated and dissolved on an electric heating board. After heating the Erlenmeyer flask to 95 ° C. on a magnetic stirrer, it was kept. Weighed 5g of "ND-PAO" of Example 2 while continuing to flow into the Erlenmeyer flask from the Erlenmeyer flask via the glass tapered tube, and dropped with a whole pipette, followed by 37 minutes of electromagnetic stirring. Went. The Tyndall phenomenon at this point was examined (see FIG. 7, A), and then the contents of the Erlenmeyer flask were transferred to a resin petri dish container for cooling molding (see FIG. 7, B), and air-cooled as it was. This solid obtained by the above operation is referred to as “ND-PAO-CPAO” in the following examples.

「シロキサン結合骨格を持つポリマーによる基材その1」NDを分散媒経由でその中に含有させるための潤滑組成物の基材として、ポリオキシエチレン変性の水分散性低融点シリコーンワックスを用いた。これは化粧品材料でありスキンケア用途で用いられている親水性ソフトワックスであり、東レ・ダウコーニング株式会社製DOWCORNING 2501COSMETICWAXである。本実施例ではこれをそのままコールドワクシング用のソフトワックス状の基材としてエッジまたはブレード及びサイドウォル用に用いた。“Substrate with Polymer Having Siloxane Bonding, Part 1” A polyoxyethylene-modified water-dispersible low-melting-point silicone wax was used as a base material of a lubricating composition for incorporating ND therein via a dispersion medium. This is a hydrophilic soft wax which is used in skin care applications is a cosmetic material, a DOWCORNING 2501COSMETICWAX manufactured by Dow Corning Toray Co., Ltd.. In this example, this was used as it is for the edge or blade and side wall as a soft wax-like base material for cold waxing.

具体的な基材の調製について述べる。先ずは基材を選定するが本実施例では上述の通りDOWCORNING 2501COSMETICWAX(以下2501 と略称する)を全量使用した。耐熱ガラスカップ内に2501を18.5g秤量し、電熱盤上で加熱溶解させた。このカップを磁気攪拌装置上に定置して76℃まで加熱後、この温度に保持した。この中に実施例3の「ND-EG-PEG」を0.37g秤量して投入し磁気攪拌を約17分間行った。チンダル現象による散乱にてNDの遍在を検査して、後カップ内容物を冷却成形用のPP樹脂容器に移し、そのまま室内にて空冷した。Specific preparation of the substrate will be described. First, a substrate was selected, but in this example, as described above, DOWCORNING 2501COSMETICWAX (hereinafter abbreviated as 2501) was used in its entirety. 18.5g of 2501 was weighed in a heat-resistant glass cup and dissolved by heating on an electric heating board. The cup was placed on a magnetic stirrer and heated to 76 ° C. and then kept at this temperature. In this, 0.37 g of “ND-EG-PEG” of Example 3 was weighed and added, and magnetic stirring was performed for about 17 minutes. The ND was inspected by scattering due to the Tyndall phenomenon, and the contents of the back cup were transferred to a PP resin container for cooling molding and air-cooled as it was.

「シロキサン結合骨格を持つポリマーによる基材その2」NDを分散媒経由でその中に含有させるための潤滑組成物の基材としては、高級脂肪酸エステル変性シリコーンオイルを用いた。これは潤滑性に優れた変性シリコーンの一種で潤滑油添加剤としてモメンティブ・パフォーマンス・マテリアルズ・ジャパン社製TSF411(以下411と略称す)として市販されている。これは流動点が0℃であるので本実施例ではその仕様環境で同TSF431(メチル フェニルシリコーンオイル、以下431と略称する)と混合して液体状の基材としてエッジまたはブレード及びサイドウォル用に用いた。“Substrate with polymer having siloxane bond skeleton, part 2” High fatty acid ester-modified silicone oil was used as the base material of the lubricating composition for incorporating ND therein via a dispersion medium. This is a kind of modified silicone excellent in lubricity and is commercially available as TSF411 (hereinafter abbreviated as 411) manufactured by Momentive Performance Materials Japan as a lubricant additive. Since the pour point is 0 ° C., in this embodiment, it is mixed with the same TSF431 ( methylphenyl silicone oil, hereinafter abbreviated as 431) in the specified environment and used as a liquid base material for edge or blade and side wall. Using.

具体的な基材の調製について記す。先ずは基材を選定するが本実施例では上述の通り411 を431と混合して使用した。滅菌樹脂カップ内に411を80.3g秤量して入れカップを磁気攪 装置上に定置しておき、この中に実施例2の「ND-PAO」を2.4g秤量して滴下し、その42分間磁気攪拌を続けた。次にこの混合液を16gとなるように秤取し、431を84g加えて磁気 攪拌をさらに40分間続けた。チンダル現象による散乱にて基材中のND遍在を簡易に検査し、後カップ内混合液を濾紙で濾過した。Specific preparation of the substrate will be described. First, a base material is selected. In this example, 411 was mixed with 431 as described above. Placed sterile resin cup 411 by 80.3g weighed cups leave placed in magnetic攪 device on, the "ND-PAO" in Example 2 was added dropwise to 2.4g weighed into this, its 42 minutes Magnetic stirring was continued. Next, this mixed solution was weighed to 16 g, 84 g of 431 was added, and magnetic stirring was further continued for 40 minutes. The ND ubiquity in the substrate was simply inspected by scattering due to the Tyndall phenomenon, and the mixed solution in the back cup was filtered with a filter paper.

以上の操作で得られた液体状の基材は0.0006w/v%のNDが分散している。以上までの操作で得られた液体状基材を以降の実施例において「ND-PAO-411+431」と称する。In the liquid base material obtained by the above operation, ND of 0.0006 w / v% is dispersed. The liquid substrate obtained by the above operation is referred to as “ND-PAO-411 + 431” in the following examples.

具体的な基材の調製について記す。ビーカーに上述のKWX-3を75g秤量して入れ、電熱盤上で85度付近まで加熱溶解させた。このKWX-3溶融体を、シリコンカップに注ぎ保温し、実験用高純度N2ガスを上部から吹き付けながら以降の操作を行った。次に実施例2の「ND-PAO」を0.87g秤量して投入し磁気攪拌を約17分間行った。チンダル現象による散乱にて基材中のND遍在を簡易に検査し、基材中のND遍在条件を満たすかを、レーザーポインターを複数方向から当てTyndall effect による散乱にて簡易検査し、シリコンカップをそのまま室内にて空冷した。Specific preparation of the substrate will be described. 75 g of the above-mentioned KWX-3 was weighed into a beaker and dissolved by heating to around 85 degrees on an electric heating board. This KWX-3 melt was poured into a silicon cup and kept warm, and the subsequent operations were performed while blowing high-purity N2 gas for experiment from above. Next, 0.87 g of “ND-PAO” of Example 2 was weighed and added, and magnetic stirring was performed for about 17 minutes. Simplified inspection of ND ubiquity in the base material by scattering due to Tyndall phenomenon, whether the ND ubiquity condition in the base material is satisfied, by directing the laser pointer from multiple directions, and simple inspection by scattering by Tyndall effect, silicon The cup was air-cooled as it was.

なおND-PAO-P140は単体での滑走性能は劣るため、滑走面材への定着が弱い「ND-PAO-FT」の前処理用として従来技術でいう下地(定着用またはベース)ワックスとして用いるのが望ましい。ND-PAO-PE400は単体では施工が困難であるため、同合成ワックス系でより低融点低粘度であるFT法ワックスに混合させて従来技術で言う硬質ベースワックスとして用いるのが望ましい。なおND-PAO-KWX3はKashiwaxの商品群であるのでKashiwaxの推奨する用法と手順とで用いる。Since ND-PAO-P140 is inferior in sliding performance as a single unit, it is used as a base (fixing or base) wax in the prior art for pretreatment of “ND-PAO-FT”, which is weakly fixed on the sliding surface. Is desirable. Since ND-PAO-PE400 is difficult to construct by itself, it is desirable to use ND-PAO-PE400 as a hard base wax referred to in the prior art by mixing it with an FT method wax having a lower melting point and lower viscosity. Since ND-PAO-KWX3 is a product group of Kashiwax, it is used in the usage and procedure recommended by Kashiwax.

最後に、「ND-PAO-411+431」は、コールドワクシングの中に分類されるが、従来の液体系スキーワックスと同手法で施工する。すなわち液体をそのまま滑走面材に垂らしてクロスなどで塗り広げる、またはスポンジなどに垂らしてエッジやサイドウォルなどの狭い部分に塗る。なおスケートのブレードに用いる場合は、雪氷と接触するブレードの底面だけでなく側面全体にも塗ることで、底面側に垂れて補給されるようにする事もできる。これの実施の形態をとるものは、以降の実施例において「/Liquid」を付し、「ND-PAO-411+431/Liquid」の様に呼称し上述のWAX類とは区別する。Finally, “ND-PAO-411 + 431”, which is classified as cold waxing, is applied in the same way as conventional liquid ski wax. That is, the liquid is dropped on the sliding surface as it is and spread with a cloth or the like, or is dropped on a sponge or the like and applied to a narrow portion such as an edge or a side wall. When used for skate blades, it can be applied to the bottom side of the blade as well as the bottom surface of the blade that comes into contact with snow and ice, so that it can be replenished to the bottom side . Those that take this embodiment are given “/ Liquid” in the following examples, and are called “ND-PAO-411 + 431 / Liquid” to distinguish them from the above-mentioned WAXs.

滑走面の状態では、市販フッ素樹脂含有スキーワックスを塗った滑走面は、ワックスがかなり剥落しており、更に雪面を黒褐色に変色させている黄砂付着物質が、滑走面に吸着され染みていた(図3B、奥のスノーボード参照)。一方、本発明のND分散WAXLub適用滑走面は、ワックス剥落、黒褐色の黄砂付着物資の吸着がともに認められず、このような環境下でも黄砂、黄砂付着物質などの影響を受けていない(図3B、手前のスノーボード)。In the state of the sliding surface, the sliding surface coated with commercially available fluororesin-containing ski wax had the wax considerably peeled off, and the yellow sand adhering substance that changed the snow surface to black-brown was adsorbed and stained on the sliding surface. (See FIG. 3B, snowboard in the back). On the other hand, the ND-dispersed WAXLub-applied sliding surface of the present invention is not affected by wax peeling or black-brown yellow sand adhering material, and is not affected by yellow sand or yellow sand adhering substances even in such an environment (FIG. 3B). Snowboard in front.

試験概要日付:平成23年4月23日、場所:苗場かぐらスキー場、気象:雨。試験方法:1k m程度の滑走コースを数本スノーボードで滑走して滑走性評価、また滑走面の状態を総合評価する。Test Summary Date: April 23, 2011, Location: Naeba Kagura Ski Area, Weather: Rain. Test method: skated in several snowboard gliding course of about 1k m and glide assessment, also comprehensive evaluation of the state of the running surface.

試験環境:まず2012シーズン初日であり、コース上はブランク明けの滑走者で混雑してい たので試験方法は上記の簡易法とした。なお当スキー場は前日に営業開始したばかりであり、このため雪氷面は人工雪独特の硬くワックス磨耗消費も激しい状況であったため試験体ごとの差が明確であった。Test environment: First of all , it was the first day of the 2012 season, and the test method was the above simple method because it was crowded with blankers on the course . This ski resort was just opened the day before, so the snow and ice surface was unique to artificial snow and the consumption of wax was intense, so the difference between specimens was clear.

「滑走試験7:市販爆発法ナノダイヤモンドとの比較2」本実施例では、本発明の製造上の重要特徴である、まずナノダイヤモンド粒子からなる添加剤を基材に応対したコロイド溶液からなる分散媒にしておき、次に基材の極性に応対した直接型または間接型操作で基材に分散させる製造方法と、この重要特徴を欠いてナノダイヤモンド粒子や本質的には同 じナノ炭素であるC60フラーレンからなる添加剤を目に見える微粉末状態のまま加熱溶解させた基材に入れる従来型製造法(例えば0117項参照)との比較のための滑走試験を行った。“Sliding test 7: Comparison 2 with commercially available nano-diamond method” In this example, a dispersion consisting of a colloidal solution in which an additive composed of nano-diamond particles is first applied to a substrate, which is an important feature of the present invention. leave medium, the manufacturing method of dispersing the base material in the following direct or indirect operations that wait on the polarity of the substrate is the same nano-carbon nano diamond particles and essentially lack this important feature A sliding test was conducted for comparison with a conventional manufacturing method (see, for example, 0117) in which an additive composed of C60 fullerene was put into a base material which was heated and dissolved in a visible fine powder state.

試験環境:まず当スキー場は首都圏で最も早くOPENする室内スキー場であり、前日に2013 シーズンの開業を迎えたばかりなので、初滑りを待ち焦がれた大勢のスキー・スノーボード客で非常に混雑していた。このため発明者は周囲のスキー・スノーボード客への安全配慮を第一とし、滑走試験をゲレンデ端を利用した上記の簡易式とした。なお当スキー場 雪質は、ICSによる人工雪で、これは雪というよりはかき氷に近い特性であり、コース長300m程度とはいえそのワックス磨耗は意外と早い。また、室内スキー場とはいえ一部は側壁が無く開放しているのでここからの外気の舞い込み、または雪面整備車両からだと思われる様々な汚れがコース上に観察された。Test environment: First, this ski resort was the first indoor ski resort to open in the Tokyo metropolitan area, and since it just opened in the 2013 season the previous day, it was very crowded with many ski and snowboarders waiting for the first slide. . For this reason, the inventor puts safety considerations for the surrounding ski and snowboard customers first, and the sliding test is made the above-described simplified method using the edge of the slope. The snow quality of our ski area, with artificial snow by the ICS, which is a characteristic close to the shaved ice rather than snow, surprisingly fast is the wax wear Although the course length 300m about. In addition, some say that the indoor ski area is believed to it from the outside air had warned or snow surface maintenance vehicle, from here because it is open there is no side wall, a variety of dirt was observed on the course.

試験結果:滑走評価では、ワックスがけ直後の停止状態からの滑り出し感を比較すれば、もっとも滑り出し感が優れていたのはND-tBu-FT/ColdWAXであり、次にND-PAO-FT/HotWAXと市販品Dが同程度、以降は市販品C、市販品A、CD/UDDスキーワックス2号の順であった。CD/UDDスキーワックス2号はワックスがけ直後はひっかかり感があり、ワックス消耗によってこれが次第に消えていくのがわかる状況であった。また、高濃度フッ素系(市販品C、市販品D)はワックスがけ直後からの初期の滑走感の弱まりが早かった。次に二点間通過時間対比では、スキーワックス無施工の6.88秒を基準通過時間として、CD/UDDスキーワックス2号
-0.06秒、市販品C
-0.28秒、市販品A
-0.29秒、市販品D
-0.30秒、ND-tBu-FT/ColdWAX
-0.63秒、ND-PAO-FT/HotWAX
-0.69秒、のそれぞれ時間短縮となった。
Test results: In the sliding evaluation, ND-tBu-FT / ColdWAX showed the best sliding feeling when compared to the feeling of starting from the stopped state immediately after waxing, followed by ND-PAO-FT / HotWAX. And commercial product D were comparable, and thereafter, commercial product C, commercial product A, and CD / UDD ski wax No. 2 in that order. CD / UDD Ski Wax No. 2 had a feeling of being caught immediately after waxing, and it was found that this gradually disappeared due to wax consumption. In addition, the high-concentration fluorine-based (commercial product C, commercial product D) had a weak initial gliding feeling immediately after waxing . Next, in the comparison of the passing time between the two points, CD / UDD ski wax No. 2 was set with 6.88 seconds without ski wax as the reference passing time.
-0.06 seconds, commercial product C
-0.28 seconds, commercial product A
-0.29 seconds, commercial product D
-0.30 seconds, ND-tBu-FT / ColdWAX
-0.63 seconds, ND-PAO-FT / HotWAX
-0.69 seconds, each time shortened .

考察:本発明の製造上の重要特徴を欠いては、ナノ粒子からなる添加剤をスキーワックス基材中に遍在させることは出来ず寧ろ逆効果でさえあることが確認できた。数的評価ではCD/UDDスキーワックス2号は僅かにワックス無施工を上回ったが、これは上述の通りワッ クス消耗による影響が大きく、ワックスがけ直後であれば、ひっかかり感があるので明らかに及ばなかった。また本質的には同じナノ炭素であるC60とフッ素系潤滑剤を「超」高含有させたとする市販品Dも、本発明のND分散WAXLubと大きな効果差が生じた。これも 販品Dが従来技術の延長上の製造法であるのがその理由だと考えられる。DISCUSSION: Without the important manufacturing features of the present invention, it was confirmed that the additive consisting of nanoparticles could not be ubiquitous in the ski wax substrate, but was even counterproductive. Although the No. 2 CD / UDD ski wax is the number evaluation exceeds the slightly wax-free construction, which is greatly affected by the street-watt box exhaustion of the above, if it is immediately after waxing, inferior to clear because there is caught feeling There wasn't. In addition, the commercial product D, which essentially contains the same nanocarbon C60 and a fluorine-based lubricant, has a large effect difference from the ND-dispersed WAXLub of the present invention. This is also the city Commercially available products D is in the range of extension on the production method of the prior art is considered that it is the reason.

試験結果:
まず全体評価では、山頂からの滑走において本発明のND分散WAXLubには低温渋りは発生せず、特に厳冬期用に特化して基材を構成した試験体NDCP44(オレフィン系炭化水素系基材)は山頂付近で良好な滑走性能を発揮した。次に到達距離試験においてはホットワックス用ではまず一番手前に市販品Fが停止し、試験体NDCPFTはその先3.3mの位置に、試験体Eはさらに2.2m先の位置に停止した。コールドワクシング用では試験体Fの4.5m手前に試験体NDCP44は停止し、市販品Gはそのさらに手前3.6mにそれぞれ停止した。
Test results:
First the overall evaluation, the ND dispersion WAXLub of the present invention in a gliding from the summit without cold reluctant generation, especially specimens were constituting the substrate specifically for midwinter NDCP44 (olefinic hydrocarbon base materials) Showed good sliding performance near the summit. Next, in the reach distance test, the commercial product F stopped first for hot wax, the specimen NDCPFT stopped at a position 3.3 m ahead, and the specimen E stopped a further 2.2 m ahead. For cold waxing, the specimen NDCP44 stopped 4.5m before the specimen F, and the commercial product G stopped 3.6m before that.

試験概要:日付:平成24年1月1日、場所:北海道札幌国際スキー場、気象:曇天から小雪、風ややあり、気温氷点下8から氷点下11 ℃、。雪質:パウダースノー、積雪量195cm。試験方法:スキー場下部からリフトで上がり実施例18で使用したウッディー第三リフト脇斜面にて定位置から直滑降し停止位置までの到達距離で計測した。この試験においては試験者を小学生と大学生のスキー初心者兄弟として、また用具は一般実態に沿い保管されたものにて、本発明のND分散WAXLubがいわゆるファミリースキー層でも効果発現可能かを確認した。Test Summary: Date: January 1, 2012, Location: Sapporo International Ski Resort, Hokkaido, Weather: Cloudy to light snow, wind slightly, temperature below freezing to 11 ° C below freezing. Snow quality: powder snow, snowfall 195cm. Test method: The vehicle was lifted from the bottom of the ski area and measured by the distance reached from the fixed position on the third side of the woody lift used in Example 18 to the stop position. In this test, it was confirmed that the tester was a ski beginner brother of elementary school students and college students, and that the tools were stored in accordance with the general reality, and that the ND-dispersed WAXLub of the present invention could be effective even in a so-called family ski layer.

試験体:用具は一般実態に沿い、試験者両名がそれまで物置に放置の無手入れのスキー板をあえて使用した。但し子供の怪我防止のためこの板のバリやささくれなどは発明者が手直しを行い除去した。本発明のND分散WAXLubの中から最も軟質な「ND-EG-PEG-2501/SoftWAX」(実施例9。以下、ND2501と略称す)を用いた。また対比用として市販の安価柔軟NF商品としてHolmenkol製NaturalSkiwaxStick(以下市販品Hと略称す)を、市販安価HF商品としてTOKO製DiblocHighFluoro Rub-onWax(以下市販品Iと略称す)とを、それぞれ用意した。滑走試験前に先ずコルードワックスでのワックスがけの手順を発明者が実演して せた後に、試験者両名に行わせその作業精度も観察した。Specimen: The equipment was in line with the general situation, and both testers dared to use unmaintained skis that had been left in the storeroom. However, in order to prevent children's injury, the inventor repaired and removed the burrs and burrs on the plate. Among the ND-dispersed WAXLubs of the present invention, the softest “ND-EG-PEG-2501 / SoftWAX” (Example 9, hereinafter abbreviated as ND2501) was used. For comparison, Holmenkol's Natural SkiwaxStick (hereinafter abbreviated as commercial product H) is available as a commercially available low-cost flexible NF product, and TOKO's DiblocHighFluoro Rub-onWax (hereinafter abbreviated as commercial product I) is available as a commercially available low-cost HF product. did. After the procedure the inventor of waxing at first co Rude wax before sliding test was observed by demonstration was also observed that working accuracy was performed testers both persons.

試験概要:試験概要:日付:平成24年2月25日、場所:長野県アサマ2000スキー場、気象:天候:雪、気温:氷点下4から0℃、雪温:氷点下5から氷点下2℃。雪質:新雪でやや湿り。試験方法:試験者はGSレースに出場するため、そのインスペクション(競技要項説明後に実施されるレースコース下見滑走)やウォームアップ等において本発明によるND分散WAXLubと市販競技用ワックス群とのそれぞれ複数構成とを施工したスキー板の両方を比較した結果、本発明によるND分散WAXLub複数構成の競技性能が優れるため、レース本戦では一本目からこれを使用した。もちろん本戦では両方のタイム比較はできないので、競技者が有す競技速度域における当日全体での体感判定に基づいて考察する。Test Description: Test Description: Date: 2012 February 25, Location: Nagano Prefecture Asama 2000 Ski, weather: weather: snow, temperature: from below freezing 4 0 ℃, snow temperature: below freezing 2 ℃ from below freezing 5. Snow quality: Slightly wet with fresh snow. Test method: In order for the tester to participate in the GS race, the ND dispersed WAXLub according to the present invention and the commercially available wax group for the competition are inspected (the race course preview run after explanation of the competition guide) and warm-up, etc. As a result of comparing both the skis with the construction, the performance of the ND-dispersed WAXLub multiple configuration according to the present invention is excellent, so this was used from the first in the race. Of course, since it is not possible to compare both times in the main game, we will consider based on the sensation of the entire day in the competition speed range of the competitor .

考察としては、本発明のND分散WAXLubはこのようなレースコンディションにおいても有効であり、また金属素材であるスキーエッジに対しても効果を示すことが確認できた。これも本発明の潤滑方式が「ころ」回転に依存しているので、実施例18に示す通り低密度のパウダースノー上ではその密度低下に下に応じて「ころ」回転作用も低下するのと同じ理屈で、雪面硬化剤(スノーセメント、硫安ともいわれる)を散布し高密度を維持されているレース用バーンでは「ころ」回転作用が強まるためと理解できる。またスキーエッジ用ワックスとしての対比でも同様な効果がみられたと思われる。As a consideration, it was confirmed that the ND-dispersed WAXLub of the present invention is effective even in such a race condition and also has an effect on a ski edge that is a metal material. Again, since the lubrication system of the present invention depends on the “roller” rotation, as shown in Example 18 , on the low density powder snow, the “roller” rotation action decreases as the density decreases. With the same reasoning, it can be understood that the "roller" rotating action is strengthened in a race burner in which a snow surface hardener (also called snow cement or ammonium sulfate) is sprayed to maintain a high density. In addition, it seems that the same effect was seen in contrast as wax for ski edges.

試験概要:試験概要:日付:平成24年3月18日、場所:長野県野麦峠スキー場、気象:曇天、気温1から5℃、雪温:0.7℃、雪質:湿雪。試験方法:試験者はGSレースに出場するため、本戦板は前回使用の本発明によるND分散WAXLub適用板をその使用磨耗に応じ補給したものを、インスペクションやウォームアップ用の予備板には市販競技用ワックス群をそれぞれ複数構成で施工したスキー板を、それぞれ準備し比較を行った。もちろん本戦では両方のタイム比較はできないので、競技者が有す競技速度域における当日全体での体感判定に基づいて考察する。Test Description: Test Description: Date: March 2012 18 days, Location: Nagano Prefecture Nomugitoge ski resorts, weather: cloudy, 5 ℃ from the temperature 1, snow temperature: 0.7 ℃, snow: wet snow. Test method: Since the tester participates in the GS race, this battle board is a ND-dispersed WAXLub application board according to the present invention that was used last time, replenished according to its wear, and a preliminary competition board for inspection and warm-up. Each of the skis with a plurality of wax groups was prepared and compared. Of course, since it is not possible to compare both times in the main game, we will consider based on the sensation of the entire day in the competition speed range of the competitor .

試験体:本発明によるND分散WAXLubとしては、前回レース使用した板に(0274項参照)、ND分散WAXLubが残存していたため、試験者はこれをブラッシングで簡易クリーニングしその使用磨耗に応じてND-PAO-PE400/Hotwax(実施例6、以下ND400と略称す。)を、さらにスキーエッジを含むスキーサイド部には下地固形としてND-EG-PEG-2501/SoftWAX、その上にND-PAO-411+431/Liquid(双方実施例9)をそれぞれワクシングした。また対比物は予備板に市販競技用ワックス群として、滑走面にはチームレスキュー製「無双」(LDPE素材のいわゆる硬質ベースワックス。以下市販品Kと略称す。)を下地にドミネーター製オーバレイワックス(いわゆるスタート用固形HFワックス)の「Q5」および「Q7」をそれぞれ使い分けてワクシングし比較した。またスキーサイドには前回と同様に市販品J(0274項参照)が使われた。Specimen: The ND-dispersed WAXLub according to the present invention had the ND-dispersed WAXLub remaining on the board that was used in the previous race (see Section 0274). -PAO-PE400 / Hotwax (Example 6, hereinafter abbreviated as ND400), ND-EG-PEG-2501 / SoftWAX as the base solid on the ski side including the ski edge, and ND-PAO- 411 + 431 / Liquid (both Example 9) was respectively waxed. Contrasting products are a group of commercially available waxes on a spare board, and the rescue surface is a “Musou” made by Team Rescue (a so-called hard base wax made of LDPE, hereinafter abbreviated as “K”). "Q5" and "Q7" of so-called solid HF wax for starting) were used separately for comparison. On the ski side, a commercial product J (see 0274) was used as before.

試験結果:滑走評価では、スタート地点での試し滑りでは、Q5>Q7≧ND400の順に滑走性 が優れ、Q7とND400とはほぼ互角であった。しかし上述の通りレースコースの雪氷面コンディション不良の中での使用においてその滑走性が変化し、市販競技用ワックス群をワクシングしていた予備板はインスペクションだけで滑走性がかなりダウンし、その原因としてQ5、Q7が雪氷上の汚れを多く拾い吸着していたことが観察された。一方で本発明によるND分散WAXLub (ND400)は、レース本戦そしてその後の2〜3本の滑走においてもさほど滑走性を損なわなかった。なおスキーエッジワックスとしては今回の構成では下地固形として用いたND-EG-PEG-2501/SoftWAXが抵抗になり対比の市販品Jの方が振動が収まりより滑らかに滑走した。Test results: In the sliding evaluation, in the trial sliding at the start point, the sliding performance was excellent in the order of Q5> Q7 ≧ ND400 , and Q7 and ND400 were almost equal. However, as described above, the sliding performance of the race course changed due to poor snow and ice surface conditions, and the preliminary board that was waxing the commercially available wax group significantly decreased the sliding performance by inspection alone. It was observed that Q5 and Q7 picked up and adsorbed much dirt on snow and ice. On the other hand, the ND dispersed WAXLub (ND400) according to the present invention did not significantly impair the sliding performance even in the final race and the subsequent two or three runs. In this configuration, ND-EG-PEG-2501 / SoftWAX, which was used as the base solid, became a resistance for the ski edge wax, and the comparison commercial product J slid more smoothly because the vibration was reduced.

考察としては、本発明のND分散WAXLubはこのような春季のレースコンディションには相当有効であり、特に今回の対比物であるドミネーター製Q5、Q7が、現在の市販競技用ワックスの中でもっとも高価(18900円)高性能な部類とされ、その下層にLDPEワックス層があったことを考慮すれば、本発明のND400は単体でその市販競技用ワックス群複数構成と互角の性能も示したことになる。またスキーエッジワックスでの試験結果は、市販スキーワ ックス商品のほぼ全てが撥水性重視の潤滑構想である共通点があり、他メーカーや他品種 亘る複数構成で使用されても増強効果が得られやすいと考えられる一方で、本発明のND分散WAXLubの場合は、NDからなる添加剤の基材中濃度は0.001wt%前後の超希薄濃度であるためその主成分としてはほぼ100%が基材である。よって今回のように親水性、疎水性の相反する基材による複合構成で使用された場合、その滑走効果を減衰する可能性を示した。As a consideration, the ND-dispersed WAXLub of the present invention is quite effective in such spring race conditions, and in particular, the contrasting products Q5 and Q7 made by Dominator are the most expensive among the current commercial competition waxes. is a (18900 yen) high-performance class, in particular given that there was a LDPE wax layer thereunder, ND400 of the present invention has also shown that commercially available athletic wax consists of a plurality configuration and evenly matched performance alone Become. The test results in the ski edge wax, commercially available Sukiwa box almost all products have in common is a lubricating initiative repellent emphasis be used in multiple configurations over other manufacturers and other varieties obtained enhancing effect On the other hand, in the case of the ND-dispersed WAXLub of the present invention, the concentration of the additive consisting of ND in the substrate is an ultra-dilute concentration of around 0.001 wt%, so almost 100% is the main component. It is. Therefore, when it was used in a composite configuration with the opposite bases of hydrophilicity and hydrophobicity as in this case, the possibility that the sliding effect was attenuated was shown.

試験概要:試験概要:第一試験日は日付:平成24年3月20日、場所:岐阜県ほうのきスキー、気象:晴天、気温氷点下3から3℃、雪温:氷点下7から氷点下5℃、雪質:人工雪と天然雪とが混合された締まり雪。第二試験日は日付:平成24年4月14-15両日、場所:長野県奥志賀高原スキー場、気象:14日みぞれ雪、15日晴天、気温:氷点下1から8℃、雪温:氷点下2から0℃、雪質:春の残雪上に黄砂降下、雪面硬化剤散布。試験方法:試験者は延べ三日間のレース出場のため、練習、ウォームアップ、予選、本戦の各シーンにおいて、本発明によるND分散WAXLub適用板と対比市販品をその効果および使用磨耗に応じ補給しながらそれぞれ比較を行った。Outline of the test: Outline of the test: Date of the first test : Date: March 20, 1990 Location: Honoki ski, Gifu Prefecture, Weather: Sunny weather, Temperature below 3 to 3 ° C, Snow temperature: Below 7 to 5 ° C 、 Snow quality: Tight snow mixed with artificial snow and natural snow. The second test date is the date: April 2012 14-15 both days, Location: Nagano Prefecture back Shiga Kogen ski area, weather: 14 days sleet snow, 15 days fine weather, temperature: 8 ℃ from minus 1, snow temperature: below freezing 2 To 0 ° C, snow quality: yellow sand fall on snow remaining in spring, snow surface hardener sprayed. Test method: The tester will be supplied with the ND-dispersed WAXLub application board according to the present invention and the commercially available product according to the effect and wear in each scene of practice, warm-up, qualifying, and main battle for the race for a total of three days. Each was compared.

試験体:本発明によるND分散WAXLubとしては、試験者のレース本戦用および予備板からなる複数のスキーサイドに、ND-PAO-411+431/Liquid(実施例9。以下、ND411と略称する)(以下ND411と略称する)、また対比物としては市販スキーエッジワックスとして実施例 20−21と同一の市販品J、および同性能向上型の「スケート用侍」(以下、市販品Kと略称する)を、それぞれ使い分けてワクシングした。この市販品Kはスケートでの使用環境に対応するために市販品Jの粘性を高めWs2系固体潤滑剤を加えたものとされる。Specimen: ND-dispersed WAXLub according to the present invention includes ND-PAO-411 + 431 / Liquid (Example 9; hereinafter abbreviated as ND411) on a plurality of ski sides composed of testers' race races and spare plates. (Hereinafter abbreviated as ND411), and as a comparison, commercially available ski edge wax, the same commercial product J as Example 20-21 , and the same performance-enhanced “skate cage” (hereinafter abbreviated as commercial product K) ) Were used separately for each. This commercial product K is considered to be obtained by increasing the viscosity of the commercial product J and adding a Ws2-based solid lubricant in order to cope with the skate use environment.

試験結果:滑走評価では、使用環境がマイナス環境では、振動吸収が理由と思われる滑走性向上では、市販品K>市販品J>ND411の順に優れ、単純な滑走速度では、ND411>市販 品K>市販品Jの順に優れていた。耐久性では市販品Kは約3000m、ND411は約2000m程度の効果を感じた。次に使用環境がプラス環境では、それぞれの滑走感は異なるも総合的な滑走性能としては市販品KとND411がほぼ同レベルであり市販品Jは両者からは数段劣る。特徴としてはND411は湿雪、雪温が高まるほどその効果を増し特に雪氷面の汚れへの耐性が高かった。Test results: In the sliding evaluation, when the usage environment is negative , the improvement in sliding performance, which seems to be due to vibration absorption, is excellent in the order of commercial product K> commercial product J> ND411, and ND411> commercial product K for simple sliding speed. > Commercial product J was excellent in this order . In terms of durability, I felt that the commercial product K was about 3000m and the ND411 was about 2000m. Next, when the usage environment is a plus environment, the commercial products K and ND411 have almost the same level as the overall sliding performance, although the respective sliding feelings are different. Characteristically, ND411 increased its effect as wet snow and snow temperature increased, and was especially resistant to dirt on snow and ice.

考察としては、本発明のND分散WAXLubは金属製や樹脂製などの雪氷上滑走移動用具に備わる様々な部材部位に用いても有効であることが確認できた。また対比させたスキー用エッジワックス市販品Jは公開情報によればシリコーンオイル及びパーフルオロポリエーテル等のいわゆる真空用フッ素系潤滑剤からなるとされるが、ND411も同様にシリコーンオ イルを主成分にNDを添加剤としたものであるので、その対比はこれら高性能なフッ素系潤滑剤と本発明によるナノダイヤモンド一次単結晶粒子NDとの対比に相当するが、上述の通り本発明によるND分散WAXLubはこれら高性能フッ素系潤滑剤とも互角性能であり、本発明の第一の解決課題を満たすものであることが確認できた。As a consideration, it was confirmed that the ND-dispersed WAXLub of the present invention is effective even when used for various member parts provided on a snow and ice sliding / moving device made of metal or resin. The ski edge wax commercially J which contrasted is are made of so-called vacuum fluorine-based lubricant such as silicone oil and perfluoropolyethers according to public information, the main component similarly silicone OIL also ND411 Since ND is used as an additive, the contrast corresponds to the contrast between these high-performance fluorine-based lubricants and nanodiamond primary single crystal particles ND according to the present invention. It was confirmed that WAXLub is equivalent to these high-performance fluorine-based lubricants and satisfies the first problem to be solved by the present invention.

試験環境1:当日の気象は温暖な春の日であったが、すでに4月下旬で試験コースの前半は雪氷面は汚れた湿雪の平地であり、特に平地移動能力が劣るスノーボード初心者には酷な状況であった。中間部のブナの原生林においてはこれに加え周辺植生の枝葉や花粉類が飛散していた。後半の雑木林では立ち木間の狭い滑走通過箇所に黄砂、花粉、枝葉等が大量に散乱し、もはや雪氷面とは言えないような箇所の通過を強いられる劣悪な環境であった。Test environment 1: On the day of the weather was the day of the warm spring, the first half of the already test course at the end of April is the plain of wet snow that dirty snow and ice surfaces, cruel to the snowboard beginners especially inferior level ground movement ability It was a serious situation. In addition to this, beech leaves and pollen from surrounding vegetation were scattered in the middle beech virgin forest. In the latter half of the wooded forest , a lot of yellow sand, pollen, leaves and leaves were scattered in the narrow sliding passages between the standing trees , and it was an inferior environment where it was forced to pass through places that were no longer snowy and ice.

JP2012237350A 2011-11-02 2012-10-28 Lubricant composition of gliding-moving tool on snow ice and method of manufacturing the same Pending JP2013117016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012237350A JP2013117016A (en) 2011-11-02 2012-10-28 Lubricant composition of gliding-moving tool on snow ice and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011254397 2011-11-02
JP2011254397 2011-11-02
JP2012237350A JP2013117016A (en) 2011-11-02 2012-10-28 Lubricant composition of gliding-moving tool on snow ice and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2013117016A JP2013117016A (en) 2013-06-13
JP2013117016A5 true JP2013117016A5 (en) 2013-08-01

Family

ID=48711784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237350A Pending JP2013117016A (en) 2011-11-02 2012-10-28 Lubricant composition of gliding-moving tool on snow ice and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013117016A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101928175B1 (en) 2017-03-29 2018-12-11 서울대학교산학협력단 High performance gliding ski wax composition and a method for preparing thereof
CN107653040B (en) * 2017-09-29 2020-07-10 上海永玺环境科技有限公司 Lubricant for sports track on land ice and application thereof, and sports track on land ice
WO2020054337A1 (en) * 2018-09-11 2020-03-19 株式会社ダイセル Lubricant composition
WO2020241404A1 (en) * 2019-05-30 2020-12-03 株式会社ダイセル Nanodiamond dispersion composition
CN116761779A (en) * 2020-10-30 2023-09-15 株式会社大赛璐 Nanodiamond dispersion composition

Similar Documents

Publication Publication Date Title
JP2013117016A5 (en)
Kreder et al. Design of anti-icing surfaces: smooth, textured or slippery?
Rapoport et al. Inorganic fullerene-like material as additives to lubricants: structure–function relationship
Kietzig et al. Ice friction: The effects of surface roughness, structure, and hydrophobicity
Kogovšek et al. Various MoS 2-, WS 2-and C-based micro-and nanoparticles in boundary lubrication
Alberts et al. An investigation of graphite nanoplatelets as lubricant in grinding
JP2013117016A (en) Lubricant composition of gliding-moving tool on snow ice and method of manufacturing the same
Li et al. Preparation of nanoscale liquid metal droplet wrapped with chitosan and its tribological properties as water-based lubricant additive
Thottackkad et al. Tribological analysis of surfactant modified nanolubricants containing CeO2 nanoparticles
Mohammed et al. Improving the friction and wear of poly-ether-etherketone (PEEK) by using thin nano-composite coatings
Galas et al. The role of constituents contained in water–based friction modifiers for top–of–rail application
US6465398B1 (en) Lubricant composition for use in snow sliders
Huang et al. Mechanical and tribological properties of hybrid fabric–modified polyetherimide composites
Zhang et al. Abrasion properties of self-suspended hairy titanium dioxide nanomaterials
Rapoport et al. Load bearing capacity of bronze, iron and iron–nickel powder composites containing fullerene-like WS2 nanoparticles
EP2292704B1 (en) Lubricant for winter sport devices with improved tribological friction characteristics and longer life, method for producing same and use
Li et al. Self-assembly membrane on textured surface for enhancing lubricity of graphene oxide nano-additive
Liu et al. Synthesis of polyethylene glycol modified carbon dots as a kind of excellent water-based lubricant additives
Luo et al. Efficient fabrication of wear-resistant PEEK matrix composite coating with superhydrophobicity for self-cleaning and anti-icing applications
CN103396731A (en) Anti-scratching writing coating
Tada et al. Rubber-ice friction
EP3301139B1 (en) Ski wax
US20200131375A1 (en) Anti-icing coatings
US10604679B2 (en) High performance ski wax composition and preparation method thereof
CA2498447A1 (en) Vegetable glyceride based snow ski wax/lubricant