JP2013116004A - Mobile vehicle and non-contact power transmission apparatus - Google Patents

Mobile vehicle and non-contact power transmission apparatus Download PDF

Info

Publication number
JP2013116004A
JP2013116004A JP2011262609A JP2011262609A JP2013116004A JP 2013116004 A JP2013116004 A JP 2013116004A JP 2011262609 A JP2011262609 A JP 2011262609A JP 2011262609 A JP2011262609 A JP 2011262609A JP 2013116004 A JP2013116004 A JP 2013116004A
Authority
JP
Japan
Prior art keywords
power
coil
amount
power transmission
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011262609A
Other languages
Japanese (ja)
Other versions
JP5966332B2 (en
Inventor
Sunao Niitsuma
素直 新妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011262609A priority Critical patent/JP5966332B2/en
Priority to CN201280057363.8A priority patent/CN103946058B/en
Priority to EP12851490.8A priority patent/EP2783900B1/en
Priority to PCT/JP2012/080122 priority patent/WO2013077340A1/en
Publication of JP2013116004A publication Critical patent/JP2013116004A/en
Priority to US14/284,661 priority patent/US9132739B2/en
Application granted granted Critical
Publication of JP5966332B2 publication Critical patent/JP5966332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a mobile vehicle and non-contact power transmission apparatus, capable of efficiently achieving contactless power transmission even with different sizes or coil mounting positions without causing enlargement, complexity or cost increase.SOLUTION: An electric vehicle 2 as a mobile vehicle includes: a motor 21 that generates power for movement; a storage battery 24 that supplies electric power for driving the motor 21; a power reception coil 25 that receives electric power contactlessly fed from an external feeding coil 14; an electric energy computing unit 30 that determines power reception amount indicating electric energy of electric power received by the power reception coil 25; a radio communication apparatus 31 into which a feeding amount indicating electric energy of electric power fed from the feeding coil 14 is input; an efficiency calculator 32 that determines power transfer efficiency from the feeding coil 14 to the power reception coil 25, using the power reception amount and the feeding amount; and a signal presentation section D1 that presents a signal indicating a moving direction according to the power transfer efficiency determined by the efficiency calculator 32.

Description

本発明は、モータの動力によって移動可能な移動車両、及び該移動車両に対して電力を非接触で伝送可能な非接触電力伝送装置に関する。   The present invention relates to a moving vehicle that can move by the power of a motor, and a non-contact power transmission device that can transmit electric power to the moving vehicle in a non-contact manner.

近年、低炭素社会を実現すべく、動力発生源としてエンジンに代えて又はエンジンとともにモータを備える移動車両が多くなっている。エンジンに代えてモータを備える代表的な移動車両としては電気自動車(EV:Electric Vehicle)が挙げられ、エンジンとともにモータを備える移動車両としてはハイブリッド自動車(HV:Hybrid Vehicle)が挙げられる。このような移動車両は、モータを駆動する電力を供給する再充電が可能な蓄電池(例えば、リチウムイオン電池やニッケル水素電池等の二次電池)を備えており、外部の電源装置から供給される電力によって蓄電池の充電が可能に構成されている。   In recent years, in order to realize a low-carbon society, more and more mobile vehicles are equipped with motors as power generation sources instead of or together with engines. A typical moving vehicle including a motor instead of the engine includes an electric vehicle (EV), and a moving vehicle including a motor together with the engine includes a hybrid vehicle (HV). Such a moving vehicle includes a rechargeable storage battery (for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery) that supplies electric power for driving a motor, and is supplied from an external power supply device. The storage battery can be charged with electric power.

現在実用化されつつある電気自動車やハイブリッド自動車(正確には、プラグイン・ハイブリッド自動車)において、蓄電池を充電するための電力は、電源装置と移動車両とを接続するケーブルを介して伝送されるのが殆どである。これに対し、近年においては、蓄電池を充電するための電力を非接触で移動車両に伝送する方法が提案されている。電力を非接触で効率的に伝送するには、電源装置に設けられる給電コイル(一次側コイル)と移動車両に設けられる受電コイル(二次側コイル)との相対的な位置関係を適切にする必要がある。   In electric vehicles and hybrid vehicles (more precisely, plug-in hybrid vehicles) that are currently being put into practical use, power for charging storage batteries is transmitted via a cable connecting the power supply device and the moving vehicle. Is most. On the other hand, in recent years, a method for transmitting electric power for charging a storage battery to a moving vehicle in a non-contact manner has been proposed. In order to efficiently transmit electric power in a non-contact manner, the relative positional relationship between a power feeding coil (primary coil) provided in the power supply device and a power receiving coil (secondary coil) provided in the moving vehicle is made appropriate. There is a need.

以下の特許文献1〜6には、非接触での電力伝送を効率的に行うために、一次側コイルと二次側コイルとの相対的な位置関係を調整する様々な方法が開示されている。具体的に、以下の特許文献1には、地上に敷設された一次側コイルの位置を検出する磁気センサの検出結果に応じて、二次側コイルの位置を調整する技術が開示されている。以下の特許文献2,3には、二次側コイルの位置に応じて一次側コイルの位置を調整する技術が開示されている。   The following Patent Documents 1 to 6 disclose various methods for adjusting the relative positional relationship between the primary coil and the secondary coil in order to efficiently perform non-contact power transmission. . Specifically, the following Patent Document 1 discloses a technique for adjusting the position of the secondary side coil in accordance with the detection result of the magnetic sensor that detects the position of the primary side coil laid on the ground. The following Patent Documents 2 and 3 disclose techniques for adjusting the position of the primary side coil in accordance with the position of the secondary side coil.

また、以下の特許文献4には、駐車スペースに車両を駐車する際に、車両に設けられたカメラで撮像された位置決めマーカの画像を運転室内の表示装置に表示することによって、二次側コイルが設けられた車両を最適位置に誘導する技術が開示されている。以下の特許文献5には、無人搬送車に設けられた被当接部材が、給電装置に設けられた当接部材に当接することによって、一次側コイルと二次側コイルとの位置合わせを行う技術が開示されている。以下の特許文献6には、充電用の二次側コイルに加えてセンサ用の二次側コイルを設け、これら二次側コイルによって得られる電力の強度の検出結果に基づいて充電用の一次側コイルと充電用の二次側コイルとの位置合わせを行う技術が開示されている。   Further, in the following Patent Document 4, when a vehicle is parked in a parking space, a secondary coil is displayed by displaying an image of a positioning marker imaged by a camera provided in the vehicle on a display device in the cab. A technique for guiding a vehicle provided with a vehicle to an optimal position is disclosed. In Patent Document 5 below, the contacted member provided in the automatic guided vehicle is brought into contact with the contact member provided in the power feeding device, thereby aligning the primary side coil and the secondary side coil. Technology is disclosed. In Patent Document 6 below, a secondary coil for a sensor is provided in addition to a secondary coil for charging, and the primary side for charging is based on the detection result of the power intensity obtained by these secondary coils. A technique for performing alignment between a coil and a secondary coil for charging is disclosed.

特開平8−33112号公報JP-A-8-33112 特開2006−345588号公報JP 2006-345588 A 特開2011−205829号公報JP 2011-205829 A 特開2010−226945号公報JP 2010-226945 A 特開2010−259136号公報JP 2010-259136 A 特開2011−160515号公報JP 2011-160515 A

ところで、上述した特許文献1〜3に開示された技術では、一次側コイルの位置に応じて二次側コイルの位置を調整し、或いは、二次側コイルの位置に応じて一次側コイルの位置を調整している。このため、一次側コイル又は二次側コイルの位置を調整するためのモータと駆動機構とが必要になり、大型化するとともにコストが上昇してしまうという問題があった。   By the way, in the technique disclosed in Patent Documents 1 to 3 described above, the position of the secondary coil is adjusted according to the position of the primary coil, or the position of the primary coil according to the position of the secondary coil. Is adjusted. For this reason, the motor and drive mechanism for adjusting the position of a primary side coil or a secondary side coil are needed, and there existed a problem that cost increased while it enlarged.

上述した特許文献4に開示された技術では、位置合わせマーカの撮像画像を表示して車両を最適位置に誘導しており、上述した特許文献5に開示された技術では、無人搬送車を給電装置に当接させることによって位置合わせを行っている。このため、これらの技術において、大きさや二次側コイルの取り付け位置が異なる様々な車両や無人搬送車に対応するためには、車両や無人搬送車の種類毎に最適な位置合わせマーカや当接部材を用意しておき、車両や無人搬送車の種類に応じて位置合わせマーカや当接部材を選択する必要があり、現実的ではないという問題があった。上述した特許文献6に開示された技術では、車両に設けられる二次側コイル及び回路の構成が複雑化するという問題があった。   In the technique disclosed in Patent Document 4 described above, the captured image of the alignment marker is displayed to guide the vehicle to the optimum position. In the technique disclosed in Patent Document 5 described above, the automatic guided vehicle is used as a power feeding device. Positioning is performed by bringing them into contact with each other. Therefore, in these technologies, in order to cope with various vehicles and automatic guided vehicles having different sizes and attachment positions of the secondary side coils, the optimum alignment marker and contact for each type of automatic vehicle and automatic guided vehicle. There is a problem that it is not realistic to prepare a member and select an alignment marker or a contact member according to the type of the vehicle or the automatic guided vehicle. The technique disclosed in Patent Document 6 described above has a problem that the configuration of the secondary coil and the circuit provided in the vehicle is complicated.

本発明は、上記事情に鑑みてなされたものであり、大型化、複雑化、及びコスト上昇を招くことなく、大きさやコイルの取り付け位置が異なっていても非接触での電力伝送を効率的に行うことができる移動車両及び非接触電力伝送装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can efficiently perform non-contact power transmission even if the size and the mounting position of the coil are different without causing an increase in size, complexity, and cost. An object of the present invention is to provide a mobile vehicle and a non-contact power transmission device that can be performed.

上記課題を解決するために、第1発明の移動車両は、移動のための動力を発生するモータ(21)と、該モータを駆動する電力を供給する蓄電池(24)とを備える移動車両(2)において、外部の一次側コイル(14)から非接触で給電される電力を受電する二次側コイル(25)と、前記二次側コイルで受電された電力の電力量を示す受電量を求める受電量演算部(30)と、前記一次側コイルから給電される電力の電力量を示す給電量が入力される給電量入力部(31)と、前記受電量演算部で求められた受電量と前記給電量入力部に入力された給電量とを用いて、前記一次側コイルから前記二次側コイルへの電力伝送効率を求める効率算出部(32)と、前記効率算出部で求められた前記電力伝送効率に応じて、移動すべき方向を示す信号を提示する信号提示部(D1)とを備えることを特徴としている。
また、第1発明の移動車両は、前記信号提示部が、前記移動すべき方向を示す信号を光又は音により提示することを特徴としている。
また、第1発明の移動車両は、前記二次側コイルで受電された電力が前記モータを駆動する電力として用いられることを特徴としている。
また、第1発明の移動車両は、前記二次側コイルで受電された電力を用いて前記蓄電池を充電する充電装置(27)と、前記充電装置による前記蓄電池の充電が行われている場合に、前記蓄電池から前記モータを電気的に切り離すスイッチ回路(23)とを備えることを特徴としている。
第1発明の非接触電力伝送装置は、上記の第1発明に係る何れかの移動車両が備える前記蓄電池を充電するための電力を、前記一次側コイルから非接触で伝送可能な非接触電力伝送装置(1)であって、前記一次側コイルから給電される電力の電力量を示す給電量を求める給電量演算部(17)と、前記給電量演算部で求められた前記給電量を外部に出力する給電量出力部(18)とを備えることを特徴としている。
上記課題を解決するために、第2発明の移動車両は、移動のための動力を発生するモータ(21)と、該モータを駆動する電力を供給する蓄電池(24)とを備える移動車両(4)において、外部の一次側コイル(14)から非接触で給電される電力を受電する二次側コイル(25)と、前記二次側コイルで受電された電力の電力量を示す受電量を求める受電量演算部(30)と、前記受電量演算部で求められた前記受電量を外部に出力する受電量出力部(31)とを備えることを特徴としている。
また、第2発明の移動車両は、前記二次側コイルで受電された電力が前記モータを駆動する電力として用いられることを特徴としている。
また、第2発明の移動車両は、前記二次側コイルで受電された電力を用いて前記蓄電池を充電する充電装置(27)と、前記充電装置による前記蓄電池の充電が行われている場合に、前記蓄電池から前記モータを電気的に切り離すスイッチ回路(23)とを備えることを特徴としている。
第2発明の非接触電力伝送装置は、上記の第2発明に係る何れかの移動車両が備える前記蓄電池を充電するための電力を、前記一次側コイルから非接触で伝送可能な非接触電力伝送装置(3)であって、前記一次側コイルから給電される電力の電力量を示す給電量を求める給電量演算部(17)と、前記二次側コイルで受電された電力の電力量を示す受電量が入力される受電量入力部(18)と、前記給電量演算部で求められた給電量と前記受電量入力部に入力された受電量とを用いて、前記一次側コイルから前記二次側コイルへの電力伝送効率を求める効率算出部(19)と、前記効率算出部で求められた前記電力伝送効率に応じて、移動すべき方向を示す信号を提示する信号提示部(D2)とを備えることを特徴としている。
また、第2発明の非接触電力伝送装置は、前記信号提示部が、前記移動すべき方向を示す信号を光又は音により提示することを特徴としている。
In order to solve the above problems, a mobile vehicle according to a first aspect of the present invention is a mobile vehicle (2) including a motor (21) that generates power for movement and a storage battery (24) that supplies electric power for driving the motor. ), The secondary side coil (25) that receives power supplied in a non-contact manner from the external primary side coil (14), and the amount of power received that indicates the amount of power received by the secondary side coil. A received power amount calculation unit (30), a power supply amount input unit (31) to which a power supply amount indicating the amount of power supplied from the primary coil is input, and a received power amount obtained by the received power amount calculation unit Using the power supply amount input to the power supply amount input unit, an efficiency calculation unit (32) for determining power transmission efficiency from the primary side coil to the secondary side coil, and the efficiency calculation unit Indicates the direction to move according to the power transfer efficiency. It is characterized by comprising signal presenting unit for presenting a signal and (D1).
Further, the moving vehicle of the first invention is characterized in that the signal presentation unit presents a signal indicating the direction to be moved by light or sound.
In the mobile vehicle of the first invention, the power received by the secondary coil is used as power for driving the motor.
The mobile vehicle according to the first aspect of the invention includes a charging device (27) that charges the storage battery using the power received by the secondary coil, and the storage battery is charged by the charging device. And a switch circuit (23) for electrically disconnecting the motor from the storage battery.
A non-contact power transmission device according to a first aspect of the present invention is a non-contact power transmission capable of non-contact transmission of power for charging the storage battery included in any of the mobile vehicles according to the first aspect of the invention from the primary coil. A device (1), a power supply amount calculation unit (17) for determining a power supply amount indicating the amount of power supplied from the primary coil, and the power supply amount determined by the power supply amount calculation unit to the outside The power supply amount output part (18) to output is provided.
In order to solve the above-mentioned problem, a mobile vehicle according to a second aspect of the present invention is a mobile vehicle (4) including a motor (21) that generates power for movement and a storage battery (24) that supplies electric power for driving the motor. ), The secondary side coil (25) that receives power supplied in a non-contact manner from the external primary side coil (14), and the amount of power received that indicates the amount of power received by the secondary side coil. The power receiving amount calculating unit (30) and a power receiving amount output unit (31) for outputting the power receiving amount obtained by the power receiving amount calculating unit to the outside are provided.
In the mobile vehicle of the second invention, the power received by the secondary coil is used as power for driving the motor.
The mobile vehicle according to the second aspect of the invention includes a charging device (27) that charges the storage battery using the power received by the secondary coil, and the storage battery is charged by the charging device. And a switch circuit (23) for electrically disconnecting the motor from the storage battery.
A non-contact power transmission apparatus according to a second aspect of the present invention is a non-contact power transmission capable of non-contact transmission of power for charging the storage battery included in any of the mobile vehicles according to the second aspect of the invention from the primary coil. A power supply amount calculation unit (17) for obtaining a power supply amount indicating the amount of power supplied from the primary coil, and a power amount of power received by the secondary coil; Using the received power input unit (18) to which the received power is input, the supplied power obtained by the supplied power calculating unit and the received power input to the received power input unit, the second coil from the primary coil. An efficiency calculation unit (19) for obtaining the power transmission efficiency to the secondary coil, and a signal presentation unit (D2) for presenting a signal indicating the direction to move according to the power transmission efficiency obtained by the efficiency calculation unit It is characterized by comprising.
In the non-contact power transmission device according to the second aspect of the invention, the signal presentation unit presents the signal indicating the direction to be moved by light or sound.

本発明によれば、非接触電力伝送装置から移動車両への電力伝送効率を求め、この電力伝送効率に応じて、移動車両の移動すべき方向を示す信号を提示するようにしている。このため、大きさや二次側コイルの取り付け位置が異なる移動車両であっても、運転者の運転によって一次側コイルに対する二次側の位置を正確に調整することができ、効率的に電力を伝送することができるという効果がある。また、一次側コイルや二次側コイルを単独で移動させる機構やセンサ用の二次側コイル等が不要であるため、大型化、複雑化、及びコスト上昇を招くこともないという効果がある。   According to the present invention, the power transmission efficiency from the non-contact power transmission device to the moving vehicle is obtained, and a signal indicating the direction in which the moving vehicle should move is presented according to the power transmission efficiency. For this reason, even for mobile vehicles with different sizes and secondary coil attachment positions, the position of the secondary side relative to the primary coil can be accurately adjusted by the driver's operation, and power can be transmitted efficiently There is an effect that can be done. In addition, since a mechanism for moving the primary side coil and the secondary side coil, a secondary side coil for sensors, and the like are unnecessary, there is an effect that the size, the complexity, and the cost increase are not caused.

本発明の第1実施形態による移動車両及び非接触電力伝送装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the moving vehicle and non-contact electric power transmission apparatus by 1st Embodiment of this invention. 本発明の第1実施形態による移動車両及び非接触電力伝送装置の電気的構成を詳細に示す図である。It is a figure which shows the electrical structure of the moving vehicle and non-contact electric power transmission apparatus by 1st Embodiment of this invention in detail. 本発明の第2実施形態による移動車両及び非接触電力伝送装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the moving vehicle and non-contact electric power transmission apparatus by 2nd Embodiment of this invention. 本発明の第2実施形態による移動車両及び非接触電力伝送装置の電気的構成を詳細に示す図である。It is a figure which shows the electrical structure of the moving vehicle and non-contact electric power transmission apparatus by 2nd Embodiment of this invention in detail. 本発明の実施形態による非接触電力伝送装置に用いて好適な給電コイルの設置例を示す図である。It is a figure which shows the example of installation of the suitable feeding coil used for the non-contact electric power transmission apparatus by embodiment of this invention.

以下、図面を参照して本発明の実施形態による移動車両及び非接触電力伝送装置について詳細に説明する。尚、以下では、移動車両が動力発生源としてモータのみを用いる電気自動車である場合を例に挙げて説明する。   Hereinafter, a mobile vehicle and a non-contact power transmission device according to an embodiment of the present invention will be described in detail with reference to the drawings. In the following, a case where the moving vehicle is an electric vehicle using only a motor as a power generation source will be described as an example.

〔第1実施形態〕
図1は、本発明の第1実施形態による移動車両及び非接触電力伝送装置の要部構成を示すブロック図である。図1に示す通り、本実施形態の非接触電力伝送装置1は、地表面に設置されており、地上を走行する移動車両としての電気自動車2が、予め定められた位置関係(後述する電磁気結合回路が形成される位置関係)で停車しているときに、電気自動車2に対して電力(蓄電池24を充電するための電力)を非接触で伝送可能である。この非接触電力伝送装置1は、外部電源11、整流回路12、給電回路13、及び給電コイル14(一次側コイル)等を備える。
[First Embodiment]
FIG. 1 is a block diagram showing a main configuration of a mobile vehicle and a non-contact power transmission apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the non-contact power transmission device 1 of the present embodiment is installed on the ground surface, and an electric vehicle 2 as a moving vehicle traveling on the ground has a predetermined positional relationship (electromagnetic coupling described later). When the vehicle is stopped at a positional relationship where a circuit is formed, electric power (electric power for charging the storage battery 24) can be transmitted to the electric vehicle 2 in a non-contact manner. The non-contact power transmission device 1 includes an external power source 11, a rectifier circuit 12, a power feeding circuit 13, a power feeding coil 14 (primary side coil), and the like.

外部電源11は、電気自動車2に伝送すべき電力を生成するために必要となる電力を供給する電源であり、例えば電圧が200[V]である三相交流電力を供給する電源である。尚、この外部電源11は、三相交流電源に限られることはなく、商用交流電源のような単相交流電力を供給する電源であっても良い。整流回路12は、外部電源11から供給される交流電力を整流して直流電力に変換する回路である。   The external power source 11 is a power source that supplies power necessary to generate power to be transmitted to the electric vehicle 2, and is a power source that supplies, for example, three-phase AC power having a voltage of 200 [V]. The external power source 11 is not limited to a three-phase AC power source, and may be a power source that supplies single-phase AC power such as a commercial AC power source. The rectifier circuit 12 is a circuit that rectifies AC power supplied from the external power supply 11 and converts it into DC power.

外部電源11として燃料電池や太陽電池など直流電源を利用することも可能である。この場合、整流回路12は省略可能である。   A DC power source such as a fuel cell or a solar cell can be used as the external power source 11. In this case, the rectifier circuit 12 can be omitted.

給電回路13は、整流回路12から供給される電力を、給電コイル14と電気自動車2に設けられる受電コイル25とによって形成される電磁気結合回路を介して非接触で電気自動車2に供給する。具体的に、給電回路13は、整流回路12からの直流電力を交流電力に変換して給電コイル14に与えることにより、電気自動車2に対する非接触給電を実現する。   The power supply circuit 13 supplies the electric power supplied from the rectifier circuit 12 to the electric vehicle 2 in a non-contact manner through an electromagnetic coupling circuit formed by the power supply coil 14 and the power receiving coil 25 provided in the electric vehicle 2. Specifically, the power supply circuit 13 realizes non-contact power supply to the electric vehicle 2 by converting the DC power from the rectifier circuit 12 into AC power and supplying the AC power to the power supply coil 14.

給電コイル14は、地表面に設置されており、給電回路13から供給される交流電力を非接触で電気自動車2に給電するためのコイルである。この給電コイル14と電気自動車2に設けられた受電コイル25とが近接した状態に配置されることで、上記の電磁気結合回路が形成される。この電磁気結合回路は、給電コイル14と受電コイル25とが電磁気的に結合して給電コイル14から受電コイル25への非接触の給電が行われる回路を意味し、「電磁誘導方式」で給電を行う回路と、「電磁界共鳴方式」で給電を行う回路との何れの回路であっても良い。   The power feeding coil 14 is installed on the ground surface and is a coil for feeding AC power supplied from the power feeding circuit 13 to the electric vehicle 2 in a non-contact manner. The power supply coil 14 and the power receiving coil 25 provided in the electric vehicle 2 are arranged in proximity to each other, thereby forming the electromagnetic coupling circuit. This electromagnetic coupling circuit means a circuit in which the power feeding coil 14 and the power receiving coil 25 are electromagnetically coupled and non-contact power feeding from the power feeding coil 14 to the power receiving coil 25 is performed. Either a circuit that performs power supply or a circuit that performs power feeding by an “electromagnetic resonance method” may be used.

図1に示す通り、移動車両としての電気自動車2は、モータ21、インバータ22、コンタクタ23(スイッチ回路)、蓄電池24、受電コイル25(二次側コイル)、受電回路26、充電装置27、及び信号提示器D1(信号提示部)等を備えている。ここで、これらのうちの蓄電池24及び充電装置27は、直流バスB1に接続されており、インバータ22、受電回路26、及び充電装置27は、直流バスB2に接続されている。   As shown in FIG. 1, an electric vehicle 2 as a moving vehicle includes a motor 21, an inverter 22, a contactor 23 (switch circuit), a storage battery 24, a power receiving coil 25 (secondary coil), a power receiving circuit 26, a charging device 27, and A signal presenter D1 (signal presenter) is provided. Here, among these, the storage battery 24 and the charging device 27 are connected to the DC bus B1, and the inverter 22, the power receiving circuit 26, and the charging device 27 are connected to the DC bus B2.

モータ21は、電気自動車2を移動させるための動力を発生する動力発生源として電気自動車2に搭載されており、インバータ22の駆動に応じた動力を発生する。このモータ21としては、永久磁石型同期モータ、誘導モータ等のモータを用いることができる。インバータ22は、制御器33(図1では図示省略、図2参照)の制御の下で、蓄電池24からコンタクタ23を介して供給される電力を用いてモータ21を駆動する。   The motor 21 is mounted on the electric vehicle 2 as a power generation source that generates power for moving the electric vehicle 2, and generates power according to the drive of the inverter 22. As the motor 21, a motor such as a permanent magnet type synchronous motor or an induction motor can be used. The inverter 22 drives the motor 21 using electric power supplied from the storage battery 24 via the contactor 23 under the control of the controller 33 (not shown in FIG. 1, refer to FIG. 2).

コンタクタ23は、直流バスB1と直流バスB2との間に設けられ、電気自動車2に搭載される制御装置(図示省略)の制御の下で直流バスB1と直流バスB2とを接続状態にするか切断状態にするかを切り替える。具体的に、コンタクタ23は、蓄電池24の電力を放電する場合には、直流バスB1と直流バスB2とを接続状態にするよう制御され、これによって蓄電池24とインバータ22及び受電回路26とが接続される。これに対し、蓄電池24を充電する場合には、直流バスB1と直流バスB2とを切断状態にするよう制御され、これによって蓄電池24とインバータ22及び受電回路26とが切断され、蓄電池24からモータ21が電気的に切り離される。   The contactor 23 is provided between the direct current bus B1 and the direct current bus B2. Whether the direct contact bus B1 and the direct current bus B2 are connected to each other under the control of a control device (not shown) mounted on the electric vehicle 2. Switch whether to disconnect. Specifically, when discharging the power of the storage battery 24, the contactor 23 is controlled so that the DC bus B1 and the DC bus B2 are connected to each other, whereby the storage battery 24 is connected to the inverter 22 and the power receiving circuit 26. Is done. On the other hand, when the storage battery 24 is charged, the direct current bus B1 and the direct current bus B2 are controlled to be disconnected, whereby the storage battery 24, the inverter 22 and the power receiving circuit 26 are disconnected. 21 is electrically disconnected.

蓄電池24は、電気自動車2に搭載された再充電が可能な電池(例えば、リチウムイオン電池やニッケル水素電池等の二次電池)であり、モータ21を駆動するための電力を供給する。受電コイル25は、電気自動車2の底部に設けられており、非接触電力伝送装置1に設けられた給電コイル14から供給される電力(交流電力)を非接触で受電するためのコイルである。この受電コイル25が非接触電力伝送装置1の給電コイル14に近接することによって、前述した電磁気結合回路が形成される。   The storage battery 24 is a rechargeable battery (for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery) mounted on the electric vehicle 2 and supplies electric power for driving the motor 21. The power receiving coil 25 is provided at the bottom of the electric vehicle 2 and is a coil for receiving power (AC power) supplied from the power supply coil 14 provided in the non-contact power transmission device 1 in a non-contact manner. When the power receiving coil 25 comes close to the power feeding coil 14 of the non-contact power transmission device 1, the above-described electromagnetic coupling circuit is formed.

受電回路26は、非接触電力伝送装置1の給電コイル14と受電コイル25とによって形成される電磁気結合回路を介して非接触で供給されてくる電力(交流電力)を受電し、受電した電力を直流電力に変換して直流バスB2に供給する。充電装置27は、受電回路26から直流バスB2を介して供給される電力(直流電力)を用いて蓄電池24の充電を行う装置である。   The power receiving circuit 26 receives electric power (AC power) supplied in a non-contact manner through an electromagnetic coupling circuit formed by the power feeding coil 14 and the power receiving coil 25 of the non-contact power transmission device 1 and receives the received power. It is converted into DC power and supplied to the DC bus B2. The charging device 27 is a device that charges the storage battery 24 using electric power (DC power) supplied from the power receiving circuit 26 via the DC bus B2.

尚、上述した給電回路13、給電コイル14、受電コイル25、及び受電回路26の構成と動作の詳細は、例えば特開2009−225551号公報(「電力伝送システム」)或いは特開2008−236916号公報(「非接触電力伝送装置」)に開示されている。   Note that details of the configuration and operation of the power feeding circuit 13, the power feeding coil 14, the power receiving coil 25, and the power receiving circuit 26 described above are disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2009-225551 ("Power Transmission System") or Japanese Unexamined Patent Application Publication No. 2008-236916. This is disclosed in a gazette (“contactless power transmission device”).

信号提示器D1は、非接触電力伝送装置1からの電力を用いて電気自動車2に搭載された蓄電池24を充電する際に、非接触電力伝送装置1の給電コイル14と電気自動車2の受電コイル25との位置調整のために、運転者に対して電気自動車2の移動すべき方向を示す信号を提示する。具体的に、信号提示器D1は、緑色ランプd1と赤色ランプd2とを備えており、非接触電力電送装置1から電気自動車2への電力伝送効率(詳細は後述する)に応じて、緑色ランプd1又は赤色ランプd2を点灯させることによって電気自動車2の移動すべき方向を示す信号を提示する。   When the signal presenter D1 charges the storage battery 24 mounted on the electric vehicle 2 using the power from the non-contact power transmission device 1, the power supply coil 14 of the non-contact power transmission device 1 and the power receiving coil of the electric vehicle 2 For the position adjustment with 25, a signal indicating the direction in which the electric vehicle 2 should move is presented to the driver. Specifically, the signal presenter D1 includes a green lamp d1 and a red lamp d2, and the green lamp is selected according to the power transmission efficiency (details will be described later) from the non-contact power transmission device 1 to the electric vehicle 2. The signal indicating the direction in which the electric vehicle 2 should move is presented by turning on d1 or the red lamp d2.

例えば、信号提示器D1は、電力伝送効率が上昇する方向に電気自動車2が移動している場合には緑色ランプd1を点灯させ、電力伝送効率が下降する方向に電気自動車2が移動している場合には赤色ランプd2を点灯させる。尚、信号提示器D1は、電気自動車2の移動すべき方向を示す信号を光により提示しても良く、或いは音(例えば、短い音の繰り返し)により提示しても良い。   For example, the signal presenter D1 turns on the green lamp d1 when the electric vehicle 2 is moving in the direction in which the power transmission efficiency increases, and the electric vehicle 2 is moving in the direction in which the power transmission efficiency decreases. In this case, the red lamp d2 is turned on. The signal presenter D1 may present a signal indicating the direction in which the electric vehicle 2 should move with light, or may present with sound (for example, repetition of short sounds).

図2は、本発明の第1実施形態による移動車両及び非接触電力伝送装置の電気的構成を詳細に示す図である。尚、図2において、図1に示す構成と同じ構成については同一の符号を付している。図2に示す通り、上述した非接触電力伝送装置1の整流回路12は、三相全波整流回路(ブリッジ整流回路)で実現されている。また、非接触電力伝送装置1の給電回路13は、スイッチングレッグL1,L2(直列接続された2つのトランジスタと、これら2つのトランジスタにそれぞれ並列接続されたダイオードとからなる回路)が並列接続された回路で実現されている。   FIG. 2 is a diagram showing in detail the electrical configuration of the mobile vehicle and the non-contact power transmission device according to the first embodiment of the present invention. In FIG. 2, the same components as those shown in FIG. As shown in FIG. 2, the rectifier circuit 12 of the contactless power transmission device 1 described above is realized by a three-phase full-wave rectifier circuit (bridge rectifier circuit). In addition, the power feeding circuit 13 of the non-contact power transmission apparatus 1 has switching legs L1 and L2 (a circuit composed of two transistors connected in series and a diode connected in parallel to each of these two transistors) connected in parallel. It is realized with a circuit.

尚、給電回路13と給電コイル14との間には2つのコンデンサ14aが設けられている。このコンデンサ14aは、給電コイル14とともに直列共振回路を形成する。給電コイル14の一端は、一方のコンデンサ14aを介して給電回路13のスイッチングレッグL1に接続されており、給電コイル14の他端は、他方のコンデンサ14aを介して給電回路13のスイッチングレッグL2に接続されている。   Two capacitors 14 a are provided between the power feeding circuit 13 and the power feeding coil 14. This capacitor 14 a forms a series resonance circuit together with the feeding coil 14. One end of the feeding coil 14 is connected to the switching leg L1 of the feeding circuit 13 via one capacitor 14a, and the other end of the feeding coil 14 is connected to the switching leg L2 of the feeding circuit 13 via the other capacitor 14a. It is connected.

非接触電力伝送装置1は、上記の外部電源11〜給電コイル14に加えて、電圧測定器15、電流測定器16、電力量演算器17(給電量算出部)、及び無線通信装置18(給電量出力部)を備える。電圧測定器15及び電流測定器16は、整流回路12と給電回路13との間に設けられており、給電回路13の入力電圧V1(t)及び入力電流I1(t)をそれぞれ測定する。   The non-contact power transmission device 1 includes a voltage measuring device 15, a current measuring device 16, a power amount calculator 17 (power supply amount calculation unit), and a wireless communication device 18 (power supply) in addition to the external power source 11 to the power supply coil 14 described above. A quantity output unit). The voltage measuring device 15 and the current measuring device 16 are provided between the rectifier circuit 12 and the power feeding circuit 13 and measure the input voltage V1 (t) and the input current I1 (t) of the power feeding circuit 13, respectively.

電力量演算器17は、電圧測定器15で測定された入力電圧V1(t)と電流測定器16で測定された入力電流I1(t)とを用いて給電回路13に供給される電力の電力量P1を求める。具体的には、V1(t)とI1(t)を乗じて電力量P1を算出する。尚、給電回路13及び給電コイル14の損失が零であれば、給電回路13に供給される電力の電力量P1は、給電コイル14から給電される電力の電力量(給電量)と等しくなる。   The power amount calculator 17 uses the input voltage V1 (t) measured by the voltage measuring device 15 and the input current I1 (t) measured by the current measuring device 16 to supply power to the power feeding circuit 13. The amount P1 is obtained. Specifically, the electric energy P1 is calculated by multiplying V1 (t) and I1 (t). If the loss of the power supply circuit 13 and the power supply coil 14 is zero, the power amount P1 of power supplied to the power supply circuit 13 is equal to the power amount of power supplied from the power supply coil 14 (power supply amount).

無線通信装置18は、電気自動車2に設けられた無線通信装置31と各種情報の無線通信が可能であり、例えば電力量演算器17で求められた電力量P1を示す情報を無線通信装置31に送信する。尚、無線通信装置18は、その設置位置を中心として半径が数メートル程度のエリア内に電気自動車2の無線通信装置31が位置する場合に無線通信装置31との通信が可能である。   The wireless communication device 18 can wirelessly communicate various information with the wireless communication device 31 provided in the electric vehicle 2. For example, information indicating the power amount P <b> 1 obtained by the power amount calculator 17 is stored in the wireless communication device 31. Send. The wireless communication device 18 can communicate with the wireless communication device 31 when the wireless communication device 31 of the electric vehicle 2 is located in an area having a radius of about several meters with the installation position as a center.

また、図2に示す通り、電気自動車2の受電回路26は、4つのダイオードからなるブリッジ整流回路と、ブリッジ整流回路の出力端に並列接続されたコンデンサとによって実現されている。尚、受電コイル25と受電回路26との間にはコンデンサ25aが並列接続されており、モータ21にはモータ21の回転角を検出するレゾルバやエンコーダ等の回転角検出器21aが取り付けられている。   As shown in FIG. 2, the power receiving circuit 26 of the electric vehicle 2 is realized by a bridge rectifier circuit including four diodes and a capacitor connected in parallel to the output terminal of the bridge rectifier circuit. A capacitor 25 a is connected in parallel between the power receiving coil 25 and the power receiving circuit 26, and a rotation angle detector 21 a such as a resolver or encoder that detects the rotation angle of the motor 21 is attached to the motor 21. .

電気自動車2は、上記のモータ21〜充電装置27及び信号提示器D1に加えて、電圧測定器28、電流測定器29、電力量演算器30(受電量演算部)、無線通信装置31(給電量入力部)、効率計算器32(効率算出部)、及び制御器33を備える。電圧測定器28及び電流測定器29は、受電回路26と充電装置27との間(図1に示す直流バスB2)に設けられており、受電回路26の出力電圧V2(t)及び出力電流I2(t)をそれぞれ測定する。   In addition to the motor 21 to the charging device 27 and the signal presenter D1, the electric vehicle 2 includes a voltage measuring device 28, a current measuring device 29, a power amount calculator 30 (a received power amount calculating unit), and a wireless communication device 31 (power feeding). A quantity input unit), an efficiency calculator 32 (efficiency calculation unit), and a controller 33. The voltage measuring device 28 and the current measuring device 29 are provided between the power receiving circuit 26 and the charging device 27 (DC bus B2 shown in FIG. 1). The output voltage V2 (t) and the output current I2 of the power receiving circuit 26 are provided. (T) is measured respectively.

電力量演算器30は、電圧測定器28で測定された出力電圧V2(t)と電流測定器29で測定された出力電流I2(t)とを用いて受電回路26で受電された電力の電力量P2を求める。具体的には、V2(t)とI2(t)を乗じて電力量P2を算出する。尚、受電コイル25及び受電回路26の損失が零であれば、受電回路26で受電された電力の電力量P2は、受電コイル25で受電される電力の電力量(受電量)と等しくなる。   The power amount calculator 30 uses the output voltage V2 (t) measured by the voltage measuring device 28 and the output current I2 (t) measured by the current measuring device 29 to obtain the power of the power received by the power receiving circuit 26. The amount P2 is obtained. Specifically, the electric energy P2 is calculated by multiplying V2 (t) and I2 (t). If the losses of the power receiving coil 25 and the power receiving circuit 26 are zero, the power amount P2 of the power received by the power receiving circuit 26 is equal to the power amount (power received amount) of the power received by the power receiving coil 25.

無線通信装置31は、非接触電力伝送装置1に設けられた無線通信装置18と各種情報の無線通信が可能であり、例えば無線通信装置18から送信されてくる電力量P1を示す情報を受信する。尚、無線通信装置31は、自身を中心として半径が数メートル程度のエリア内に非接触電力伝送装置1の無線通信装置18が位置する場合に無線通信装置18との通信が可能である。   The wireless communication device 31 can wirelessly communicate various information with the wireless communication device 18 provided in the non-contact power transmission device 1, and receives, for example, information indicating the power amount P1 transmitted from the wireless communication device 18. . The wireless communication device 31 can communicate with the wireless communication device 18 when the wireless communication device 18 of the non-contact power transmission device 1 is located in an area having a radius of about several meters centered on itself.

効率計算器32は、電力量演算器30で求められた電力量P2と無線通信装置31で受信された電力量P1を示す情報とに基づいて、非接触電力伝送装置1から電気自動車2への電力伝送効率εを算出する。具体的には、電力量P2を電力量P1で除算することによって電力伝送効率εを算出する。制御器33は、運転者のオペレーション(運転操作)に応じたモータ21の回転角指令値に基づいて、回転角検出器21aの検出結果をモニタしつつ、インバータ22に対してトルク指令値を出力する。   The efficiency calculator 32 is based on the power amount P2 obtained by the power amount calculator 30 and the information indicating the power amount P1 received by the wireless communication device 31 from the non-contact power transmission device 1 to the electric vehicle 2. The power transmission efficiency ε is calculated. Specifically, the power transmission efficiency ε is calculated by dividing the power amount P2 by the power amount P1. The controller 33 outputs a torque command value to the inverter 22 while monitoring the detection result of the rotation angle detector 21a based on the rotation angle command value of the motor 21 according to the driver's operation (driving operation). To do.

ここで、モータ21は、減速比が既知の減速機(図示省略)を介して半径が既知のタイヤを回転させるため、モータ21の回転角と電気自動車2の移動量は一定の関係にある。具体的には、タイヤの半径をr、減速機の減速比をnとすると、モータが1回転したときに電気自動車2は距離(2πr/n)だけ移動する。このため、モータ21の回転角を制御することにより、電気自動車2の移動量を制御することができる。   Here, since the motor 21 rotates a tire with a known radius via a speed reducer (not shown) with a known reduction ratio, the rotation angle of the motor 21 and the amount of movement of the electric vehicle 2 are in a fixed relationship. Specifically, assuming that the tire radius is r and the reduction gear reduction ratio is n, the electric vehicle 2 moves by a distance (2πr / n) when the motor makes one revolution. For this reason, the movement amount of the electric vehicle 2 can be controlled by controlling the rotation angle of the motor 21.

次に、上記構成における非接触電力伝送装置1及び電気自動車2の動作について説明する。尚、以下では、主に電気自動車2に搭載された蓄電池24を、非接触電力伝送装置1から供給される電力を用いて充電する場合の動作について説明する。   Next, the operation of the non-contact power transmission device 1 and the electric vehicle 2 in the above configuration will be described. In the following, the operation when the storage battery 24 mounted mainly on the electric vehicle 2 is charged using the power supplied from the non-contact power transmission device 1 will be described.

まず、ユーザが電気自動車2を運転して、電気自動車2を非接触電力伝送装置1の設置場所又はその近くに移動させて停車させる。すると、非接触電力伝送装置1は電気自動車2が電力伝送可能エリア内にいるか否かを判断する。例えば、非接触電力伝送装置1の無線通信装置18が、電気自動車2の無線通信装置31と無線通信が可能であるか否かによって、電気自動車2が電力伝送可能エリア内にいるか否かを判断する。   First, the user drives the electric vehicle 2 and moves the electric vehicle 2 to or near the place where the non-contact power transmission device 1 is installed. Then, the non-contact power transmission device 1 determines whether or not the electric vehicle 2 is in the power transmission possible area. For example, it is determined whether or not the electric vehicle 2 is in the power transferable area depending on whether or not the wireless communication device 18 of the non-contact power transmission device 1 can wirelessly communicate with the wireless communication device 31 of the electric vehicle 2. To do.

電気自動車2が電力伝送可能エリア内にいると判断した場合には、非接触電力伝送装置1は給電回路13を動作させて電力の伝送を開始する。尚、電気自動車2が電力伝送可能エリア内にいる場合には、非接触電力伝送装置1の給電コイル14と電気自動車2の受電コイル25とによって電磁気結合回路が形成される。   When it is determined that the electric vehicle 2 is in the power transmission possible area, the non-contact power transmission device 1 operates the power supply circuit 13 to start power transmission. In addition, when the electric vehicle 2 is in an area where electric power can be transmitted, an electromagnetic coupling circuit is formed by the feeding coil 14 of the non-contact power transmission device 1 and the receiving coil 25 of the electric vehicle 2.

電気自動車2を非接触電力伝送装置1の設置場所又はその近くに移動させて停車させた後に、ユーザが電気自動車2に対して充電指示を行うと、電気自動車2に搭載された不図示の制御装置は、まずコンタクタ23を制御して直流バスB1と直流バスB2とを切断状態にし、受電回路26を制御して動作を開始させる一方で充電装置27を制御して動作を停止させる。   When the user gives a charge instruction to the electric vehicle 2 after moving the electric vehicle 2 to or near the place where the non-contact power transmission device 1 is installed, the control (not shown) mounted on the electric vehicle 2 is performed. The apparatus first controls the contactor 23 to disconnect the DC bus B1 and the DC bus B2, and controls the power receiving circuit 26 to start the operation while controlling the charging device 27 to stop the operation.

非接触電力伝送装置1からの電力伝送がなされていない場合には、電流測定器29で出力電流I2(t)が測定されず、電力量演算器30で求められる電力量P2が零である。このため、効率計算器32で算出される電力伝送効率εも零になり、信号提示器D1に設けられた緑色ランプd1及び赤色ランプd2は、何れも点灯されない。   When power transmission from the non-contact power transmission device 1 is not performed, the output current I2 (t) is not measured by the current measuring device 29, and the power amount P2 obtained by the power amount computing unit 30 is zero. For this reason, the power transmission efficiency ε calculated by the efficiency calculator 32 is also zero, and neither the green lamp d1 nor the red lamp d2 provided in the signal presenter D1 is lit.

これに対し、非接触電力伝送装置1からの電力伝送がなされると、電流測定器29で出力電流I2(t)が測定され、測定された出力電流I2(t)に応じた電力量P2が電力量演算器30で求められる。尚、非接触電力伝送装置1が電力の伝送を行っている間は、給電回路13に供給される電力の電力量P1が電力量演算器17で常時求められ、その電力量P1を示す情報が無線通信装置18から送信されている。   On the other hand, when power is transmitted from the non-contact power transmission device 1, the output current I2 (t) is measured by the current measuring device 29, and the power amount P2 corresponding to the measured output current I2 (t) is obtained. It is obtained by the electric energy calculator 30. While the non-contact power transmission device 1 is transmitting power, the power amount P1 of power supplied to the power feeding circuit 13 is always obtained by the power amount calculator 17, and information indicating the power amount P1 is obtained. It is transmitted from the wireless communication device 18.

電力量演算器30で求められた電力量P2と無線通信装置31で受信された電力量P1を示す情報は効率計算器32に入力され、効率計算器32は、これら電力量P1,P2を用いて非接触電力伝送装置1から電気自動車2への電力伝送効率εを算出する。効率計算器32で算出された電力伝送効率εは信号提示器D1に入力され、信号提示器D1は一定の時間間隔(例えば1/10秒)毎に電力伝送効率εが上昇しているか否かを判断する。   Information indicating the power amount P2 obtained by the power amount calculator 30 and the power amount P1 received by the wireless communication device 31 is input to the efficiency calculator 32, and the efficiency calculator 32 uses these power amounts P1 and P2. Then, the power transmission efficiency ε from the non-contact power transmission device 1 to the electric vehicle 2 is calculated. The power transmission efficiency ε calculated by the efficiency calculator 32 is input to the signal presenter D1, and the signal presenter D1 determines whether the power transmission efficiency ε increases at regular time intervals (for example, 1/10 second). Judging.

ここで、ユーザがセレクターをDレンジに設定してアクセルを操作すると、非接触電力伝送装置1から伝送された電力がモータ21を駆動する電力として用いられ、電気自動車2がゆっくりと前進する。電気自動車2の前進によって電力伝送効率εが上昇したと判断した場合には、信号提示器D1は緑色ランプd1を点灯し、電気自動車2の運転者に対して移動(前進)の継続を促す。   Here, when the user sets the selector to the D range and operates the accelerator, the power transmitted from the non-contact power transmission device 1 is used as power for driving the motor 21, and the electric vehicle 2 moves forward slowly. When it is determined that the power transmission efficiency ε has increased due to the forward movement of the electric vehicle 2, the signal presenter D1 lights up the green lamp d1, and prompts the driver of the electric vehicle 2 to continue moving (forward).

これに対し、電気自動車2の前進によって電力伝送効率εが一定であるか或いは下降したと判断した場合には、信号提示器D1は赤色ランプd2を点灯し、電気自動車2の運転者に対して停止或いは移動方向の変更(後進)を促す。電力伝送効率εは、信号提示器D1の緑色ランプd1が一旦点灯した後に、赤色ランプd2の点灯に切り替わった時点で最大になるため、運転者はこの時点で電気自動車2を停車させる。   On the other hand, when it is determined that the power transmission efficiency ε is constant or has decreased due to the forward movement of the electric vehicle 2, the signal presenter D1 lights up the red lamp d2 to the driver of the electric vehicle 2. Prompt to stop or change the direction of movement (backward). Since the power transmission efficiency ε is maximized when the green lamp d1 of the signal presenter D1 is once turned on and then switched to the lighting of the red lamp d2, the driver stops the electric vehicle 2 at this time.

電気自動車2が停止すると、不図示の制御装置が充電装置27を制御して動作を開始させる一方でインバータ22を制御して動作を停止させて、蓄電池24の充電を開始させる。具体的に、非接触電力伝送装置1からの交流電力は、給電コイル14と受電コイル25とによって形成される電磁気結合回路を介して電気自動車2に非接触で伝送されて受電回路26で受電される。受電回路26で受電された交流電力は直流電力に変換され、この変換された直流電力が充電装置27に供給される。そして、この直流電流を用いた蓄電池24の充電が充電装置27によって行われる。受電装置27による充電によって蓄電池24が満状態になると、不図示の制御装置は充電装置27を停止させて蓄電池24の充電を停止させる。   When the electric vehicle 2 stops, a control device (not shown) controls the charging device 27 to start operation, while controlling the inverter 22 to stop the operation and start charging the storage battery 24. Specifically, AC power from the contactless power transmission device 1 is transmitted to the electric vehicle 2 in a contactless manner through an electromagnetic coupling circuit formed by the power feeding coil 14 and the power receiving coil 25 and is received by the power receiving circuit 26. The The AC power received by the power receiving circuit 26 is converted into DC power, and the converted DC power is supplied to the charging device 27. The charging device 27 charges the storage battery 24 using the direct current. When the storage battery 24 becomes full due to charging by the power receiving device 27, a control device (not shown) stops the charging device 27 and stops charging the storage battery 24.

非接触電力伝送装置1は、電力の伝送を開始した後に、電気自動車2に搭載された蓄電池24の充電が完了したか否かを判断する。例えば、電気自動車2の無線通信装置31から蓄電池24の充電完了を示す信号が送信されてきたか否かを判断する。充電が完了したと判断した場合には、非接触電力伝送装置1は、給電回路13を停止させて電力伝送を停止する。   The non-contact power transmission device 1 determines whether or not the charging of the storage battery 24 mounted on the electric vehicle 2 has been completed after starting the power transmission. For example, it is determined whether a signal indicating completion of charging of the storage battery 24 has been transmitted from the wireless communication device 31 of the electric vehicle 2. When it is determined that the charging is completed, the non-contact power transmission device 1 stops the power transmission by stopping the power feeding circuit 13.

以上の通り、本実施形態では、非接触電力伝送装置1から電気自動車2への電力伝送効率εを求め、この電力伝送効率εに応じて電気自動車2が移動すべき方向を示す信号を信号提示器D1により運転者に提示している。このため、大きさや受電コイル25の取り付け位置が異なる電気自動車2であっても運転者の運転によって正確に位置を調整することができ、効率的に電力を伝送することができる。また、給電コイル14や受電コイル25を単独で移動させる機構やセンサ用の二次側コイル等が不要であるため、大型化、複雑化、及びコスト上昇を招くこともない。   As described above, in the present embodiment, the power transmission efficiency ε from the non-contact power transmission device 1 to the electric vehicle 2 is obtained, and a signal indicating the direction in which the electric vehicle 2 should move according to the power transmission efficiency ε is presented as a signal. Presented to the driver by the device D1. For this reason, even if it is the electric vehicle 2 from which a magnitude | size and the attachment position of the receiving coil 25 differ, a position can be adjusted correctly by a driver | operator's driving | operation and electric power can be transmitted efficiently. In addition, since a mechanism for moving the power feeding coil 14 and the power receiving coil 25 alone, a secondary coil for sensors, and the like are unnecessary, there is no increase in size, complexity, and cost.

また、本実施形態では、非接触電力伝送装置1の給電回路13に供給される電力の電力量P1と、電気自動車2の受電回路26で受電された電力の電力量P2とに基づいて、非接触電力伝送装置1から電気自動車2への電力伝送効率εを求めている。この電力伝送効率εは、給電コイル14と受電コイル25との間の電力伝送効率だけではなく、給電回路13と受電回路26とを含めた電力伝送効率であり、実際の電力伝送効率とほぼ同じである。このため、実際の電力伝送効率が最大となるように、非接触電力伝送装置1の給電コイル14と電気自動車2の受電コイル25との位置をより適切な位置に調整することができる。   Further, in the present embodiment, based on the power amount P1 of the power supplied to the power feeding circuit 13 of the contactless power transmission device 1 and the power amount P2 of the power received by the power receiving circuit 26 of the electric vehicle 2, The power transmission efficiency ε from the contact power transmission device 1 to the electric vehicle 2 is obtained. The power transmission efficiency ε is not only the power transmission efficiency between the feeding coil 14 and the power receiving coil 25 but also the power transmission efficiency including the power feeding circuit 13 and the power receiving circuit 26, and is substantially the same as the actual power transmission efficiency. It is. For this reason, the position of the power feeding coil 14 of the non-contact power transmission device 1 and the power receiving coil 25 of the electric vehicle 2 can be adjusted to a more appropriate position so that the actual power transmission efficiency is maximized.

更に、本実施形態では、電気自動車2を前後に移動させて非接触電力伝送装置1の給電コイル14と電気自動車2の受電コイル25との位置調整を行う際に、非接触電力伝送装置1から伝送された電力を、モータ21を駆動する電力として用いている。このため、蓄電池24の残容量が零であっても上記の位置調整を行うことができる。   Furthermore, in this embodiment, when the electric vehicle 2 is moved back and forth to adjust the position of the power supply coil 14 of the non-contact power transmission device 1 and the power reception coil 25 of the electric vehicle 2, the contactless power transmission device 1 The transmitted power is used as power for driving the motor 21. For this reason, even if the remaining capacity of the storage battery 24 is zero, the above position adjustment can be performed.

〔第2実施形態〕
図3は、本発明の第2実施形態による移動車両及び非接触電力伝送装置の要部構成を示すブロック図である。また、図4は、本発明の第2実施形態による移動車両及び非接触電力伝送装置の電気的構成を詳細に示す図である。上述した第1実施形態では、電気自動車の移動すべき方向を示す信号を提示する信号提示器が電気自動車側に設けられていたが、本実施形態では、その信号提示器が電気自動車の外部(非接触電力伝送装置)に設けられている。
[Second Embodiment]
FIG. 3 is a block diagram showing the main configuration of the mobile vehicle and the non-contact power transmission device according to the second embodiment of the present invention. FIG. 4 is a diagram showing in detail the electrical configuration of the mobile vehicle and the non-contact power transmission device according to the second embodiment of the present invention. In the first embodiment described above, the signal presenter that presents a signal indicating the direction in which the electric vehicle should move is provided on the electric vehicle side. However, in this embodiment, the signal presenter is provided outside the electric vehicle ( Non-contact power transmission device).

つまり、図3,図4に示す通り、本実施形態の非接触電力伝送装置3は、図1,図2に示す非接触電力伝送装置1が備える外部電源11〜無線通信装置18に効率計算器19(効率算出部)及び信号提示器D2(信号提示部)を加えた構成である。また、本実施形態の電気自動車4は、図1,図2に示す電気自動車2が備える効率計算器32及び信号提示器D1を省略した構成である。尚、非接触電力伝送装置3の無線通信装置18(受電量入力部)は、電気自動車4の無線通信装置31(受電量出力部)から送信されてくる電力量P2を示す情報を受信し、電気自動車4の無線通信装置31は、電力量P2を示す情報を送信する。   That is, as shown in FIGS. 3 and 4, the non-contact power transmission device 3 of the present embodiment includes an efficiency calculator in the external power supply 11 to the wireless communication device 18 included in the non-contact power transmission device 1 shown in FIGS. 1 and 2. 19 (efficiency calculation unit) and signal presenter D2 (signal presentation unit). Moreover, the electric vehicle 4 of this embodiment is the structure which abbreviate | omitted the efficiency calculator 32 and the signal presentation device D1 with which the electric vehicle 2 shown to FIG. 1, FIG. 2 is provided. The wireless communication device 18 (power reception amount input unit) of the non-contact power transmission device 3 receives information indicating the power amount P2 transmitted from the wireless communication device 31 (power reception amount output unit) of the electric vehicle 4, The wireless communication device 31 of the electric vehicle 4 transmits information indicating the amount of power P2.

効率計算器19は、電力量演算器17で求められた電力量P1と無線通信装置18で受信された電力量P2を示す情報とに基づいて、非接触電力伝送装置3から電気自動車4への電力伝送効率εを算出する。具体的には、電力量P2を電力量P1で除算することによって電力伝送効率εを算出する。信号提示器D2は、信号提示器D1と同様のものであるが、防水処理等が施されて例えばポール40上に設置される。   Based on the information indicating the electric energy P1 obtained by the electric energy calculator 17 and the electric energy P2 received by the wireless communication device 18, the efficiency calculator 19 sends information from the non-contact power transmission device 3 to the electric vehicle 4. The power transmission efficiency ε is calculated. Specifically, the power transmission efficiency ε is calculated by dividing the power amount P2 by the power amount P1. The signal presenter D2 is the same as the signal presenter D1, but is installed on the pole 40, for example, after being waterproofed.

上記構成における非接触電力伝送装置3及び電気自動車4では、非接触電力伝送装置3において、非接触電力伝送装置3から電気自動車4への電力伝送効率εが算出され、その電力伝送効率εの算出結果に応じて信号提示器D2に設けられた緑色ランプd1又は赤色ランプd2の点灯がなされる。電気自動車4の位置調整時の動作及び電気自動車4に搭載された蓄電池24の充電時の動作は、前述した第1実施形態と同様であるため、ここでの説明は省略する。   In the non-contact power transmission device 3 and the electric vehicle 4 having the above-described configuration, the power transmission efficiency ε from the non-contact power transmission device 3 to the electric vehicle 4 is calculated in the non-contact power transmission device 3 and the power transmission efficiency ε is calculated. Depending on the result, the green lamp d1 or the red lamp d2 provided in the signal presenter D2 is turned on. Since the operation at the time of position adjustment of the electric vehicle 4 and the operation at the time of charging the storage battery 24 mounted on the electric vehicle 4 are the same as those in the first embodiment described above, description thereof is omitted here.

以上の通り、本実施形態では、非接触電力伝送装置3から電気自動車4への電力伝送効率εを求め、この電力伝送効率εに応じて電気自動車4が移動すべき方向を示す信号を信号提示器D2により運転者に提示している。このため、大きさや受電コイル25の取り付け位置が異なる電気自動車4であっても運転者の運転によって正確に位置を調整することができ、効率的に電力を伝送することができる。また、給電コイル14や受電コイル25を単独で移動させる機構やセンサ用の二次側コイル等が不要であるため、大型化、複雑化、及びコスト上昇を招くこともない。   As described above, in the present embodiment, the power transmission efficiency ε from the non-contact power transmission device 3 to the electric vehicle 4 is obtained, and a signal indicating the direction in which the electric vehicle 4 should move according to the power transmission efficiency ε is presented as a signal. Presented to the driver by the device D2. For this reason, even if it is the electric vehicle 4 from which a magnitude | size and the attachment position of the receiving coil 25 differ, a position can be adjusted correctly by a driver | operator's driving | operation and electric power can be transmitted efficiently. In addition, since a mechanism for moving the power feeding coil 14 and the power receiving coil 25 alone, a secondary coil for sensors, and the like are unnecessary, there is no increase in size, complexity, and cost.

また、本実施形態においても、非接触電力伝送装置3の給電回路13に供給される電力の電力量P1と、電気自動車4の受電回路26で受電された電力の電力量P2とに基づいて、非接触電力伝送装置3から電気自動車4への電力伝送効率εを求めている。この電力伝送効率εは、給電コイル14と受電コイル25との間の電力伝送効率だけではなく、給電回路13と受電回路26とを含めた電力伝送効率であり、実際の電力伝送効率とほぼ同じである。このため、実際の電力伝送効率が最大となるように、非接触電力伝送装置3の給電コイル14と電気自動車4の受電コイル25との位置をより適切な位置に調整することができる。   Also in the present embodiment, based on the power amount P1 of power supplied to the power feeding circuit 13 of the contactless power transmission device 3 and the power amount P2 of power received by the power receiving circuit 26 of the electric vehicle 4, The power transmission efficiency ε from the non-contact power transmission device 3 to the electric vehicle 4 is obtained. The power transmission efficiency ε is not only the power transmission efficiency between the feeding coil 14 and the power receiving coil 25 but also the power transmission efficiency including the power feeding circuit 13 and the power receiving circuit 26, and is substantially the same as the actual power transmission efficiency. It is. For this reason, the position of the power feeding coil 14 of the non-contact power transmission device 3 and the power receiving coil 25 of the electric vehicle 4 can be adjusted to a more appropriate position so that the actual power transmission efficiency is maximized.

更に、本実施形態においても、電気自動車4を前後に移動させて非接触電力伝送装置3の給電コイル14と電気自動車4の受電コイル25との位置調整を行う際に、非接触電力伝送装置3から伝送された電力を、モータ21を駆動する電力として用いている。このため、蓄電池24の残容量が零であっても上記の位置調整を行うことができる。   Furthermore, also in the present embodiment, when the electric vehicle 4 is moved back and forth to adjust the position of the feeding coil 14 of the non-contact power transmission device 3 and the power receiving coil 25 of the electric vehicle 4, the non-contact power transmission device 3. The electric power transmitted from is used as electric power for driving the motor 21. For this reason, even if the remaining capacity of the storage battery 24 is zero, the above position adjustment can be performed.

以上、本発明の実施形態による移動車両及び非接触電力伝送装置について説明したが、本発明は上記実施形態に制限されず、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では、非接触電力伝送装置1,3から電気自動車2,4への電力伝送効率εに応じて移動すべき方向を示す信号を提示していたが、電力伝送効率εに代えて電力量演算器30で求められた電力量P2(受電回路26で受電された電力)に応じて移動すべき方向を示す信号を提示しても良い。   As mentioned above, although the mobile vehicle and non-contact electric power transmission apparatus by embodiment of this invention were demonstrated, this invention is not restrict | limited to the said embodiment, It can change freely within the scope of the present invention. For example, in the above embodiment, the signal indicating the direction to move in accordance with the power transmission efficiency ε from the contactless power transmission devices 1 and 3 to the electric vehicles 2 and 4 is presented. Thus, a signal indicating the direction of movement may be presented in accordance with the power amount P2 obtained by the power amount calculator 30 (power received by the power receiving circuit 26).

非接触電力伝送装置1,3及び給電コイル14は、厳密に地表面に一致して設置されていなくてもよい。例えば、非接触電力伝送の効率を著しく低下させない範囲で埋め込んで地表面より低く設置してもよいし、電気自動車2,4の走行に著しく支障しない範囲で突出させて地表面より高く設置してもよい。   The non-contact power transmission devices 1 and 3 and the feeding coil 14 do not have to be installed in exact agreement with the ground surface. For example, it may be installed lower than the ground surface by embedding within a range that does not significantly reduce the efficiency of non-contact power transmission, or may be installed higher than the ground surface by projecting within a range that does not significantly interfere with the running of the electric vehicles 2 and 4 Also good.

また、上述した実施形態では、電気自動車2を前後に移動させて位置調整を行う場合を例に挙げて説明したが、左右方向に直線的に移動可能な移動車両であれば、左右方向に移動させて位置調整を行うことができる。ここで、移動車両は、ステアリングを操作しなければ前後にのみ移動可能であり、左右方向に直線的に移動することはできないものが殆どである。このため、左右方向の位置ずれが生じても伝送効率の大幅な低下を招くことのない給電コイルを用いるのが望ましい。   In the above-described embodiment, the case where the position adjustment is performed by moving the electric vehicle 2 back and forth has been described as an example. However, in the case of a moving vehicle that can move linearly in the left-right direction, the vehicle moves in the left-right direction. To adjust the position. Here, most of the moving vehicles can move only forward and backward unless the steering is operated, and cannot move linearly in the left-right direction. For this reason, it is desirable to use a power feeding coil that does not cause a significant decrease in transmission efficiency even when a lateral displacement occurs.

図5は、本発明の実施形態による非接触電力伝送装置に用いて好適な給電コイルの設置例を示す図である。図5に示す通り、非接触電力伝送装置1,3の給電コイル14は、平面視形状が長方形状のコイルであって、例えば駐車場Wにおいて、その長手方向が区画線Wに直交し、車止めSTから1メートル程度離間するように区画線Wの間に設置される。このように設置された給電コイル14の電力伝送可能エリアは、区画線Wに直交する方向に長いため、区画線Wの間における電気自動車2,4の左右方向の多少のずれが生じたとしても伝送効率の大幅な低下を招くことはない。   FIG. 5 is a diagram illustrating an installation example of a feeding coil suitable for use in the contactless power transmission device according to the embodiment of the present invention. As shown in FIG. 5, the feeding coil 14 of the non-contact power transmission apparatuses 1 and 3 is a coil having a rectangular shape in plan view. For example, in a parking lot W, its longitudinal direction is perpendicular to the lane marking W, It is installed between lane markings W so as to be separated from ST by about 1 meter. Since the power transmission area of the feeding coil 14 installed in this way is long in the direction orthogonal to the lane marking W, even if there is a slight shift in the left-right direction of the electric vehicles 2 and 4 between the lane markings W, There is no significant decrease in transmission efficiency.

尚、電気自動車2,4の移動方向が一方向に制限される場所(例えば、前進のみに制限される場所)に非接触電力伝送装置1,3が設置されている場合には、電気自動車2,4が電力伝送可能エリアに進入した直後に電気自動車2,4を停車させれば良い。つまり、受電コイル25が電力伝送可能エリアの外縁の近くに配置されるように電気自動車2を停車させれば良い。これにより、電気自動車2,4を前進させれば電力伝送効率εが上昇することになるため、電気自動車2,4が後進するのを防止することができる。   In the case where the non-contact power transmission devices 1 and 3 are installed in a place where the moving direction of the electric vehicles 2 and 4 is restricted to one direction (for example, a place restricted to forward movement only), the electric vehicle 2 , 4 may be stopped immediately after entering the area where electric power can be transmitted. That is, the electric vehicle 2 may be stopped so that the power receiving coil 25 is disposed near the outer edge of the power transferable area. As a result, if the electric vehicles 2 and 4 are moved forward, the power transmission efficiency ε increases, so that the electric vehicles 2 and 4 can be prevented from moving backward.

また、位置調整を行っている最中に電力伝送効率εが著しく低下した場合には、第1実施形態であれば信号提示器D1の赤色ランプd2を点灯して運転者に停止を促し、無線通信装置31,18を介して電力伝送効率εが著しく低下した旨を非接触電力伝送装置1に通知して、電力の伝送を停止させるのが望ましい。また、第2実施形態であれば信号提示器D2の赤色ランプd2を点灯して運転者に停止を促し、非接触電力伝送装置3に電力の伝送を停止させるのが望ましい。これにより、位置調整を行っている最中に生ずる想定外の事故を防止することができる。   In addition, when the power transmission efficiency ε is significantly reduced during the position adjustment, the red lamp d2 of the signal presenter D1 is turned on in the first embodiment to prompt the driver to stop the wireless transmission. It is desirable to notify the non-contact power transmission device 1 that the power transmission efficiency ε has significantly decreased via the communication devices 31 and 18 and stop the transmission of power. In the second embodiment, it is desirable that the red lamp d2 of the signal presenter D2 is lit to prompt the driver to stop and the non-contact power transmission device 3 stops power transmission. Thereby, it is possible to prevent an unexpected accident that occurs during the position adjustment.

また、信号提示器D1,D2を複数箇所に設け、同一の信号を提示するようにしても良い。例えば、第2実施形態では、電気自動車4が停車すべき位置の前後に同一の信号を提示する信号提示器D2を設けることにより、運転者が認知しやすくなる。また、上記実施形態では、給電対象が蓄電池を搭載した電気自動車である場合を例に挙げて説明したが、本発明はプラグイン・ハイブリッド自動車に適用することもでき、搬送車にも適用することができる。更には、無人式移動車両にも適用することができる。   Moreover, the signal presenters D1 and D2 may be provided at a plurality of locations to present the same signal. For example, in the second embodiment, by providing the signal presenter D2 that presents the same signal before and after the position where the electric vehicle 4 should stop, the driver can easily recognize. In the above-described embodiment, the case where the power supply target is an electric vehicle equipped with a storage battery has been described as an example. However, the present invention can also be applied to a plug-in hybrid vehicle and can also be applied to a transport vehicle. Can do. Furthermore, the present invention can be applied to an unmanned mobile vehicle.

1,3 非接触電力伝送装置
2,4 電気自動車
14 給電コイル
17 電力量演算器
18 無線通信装置
19 効率計算器
21 モータ
23 コンタクタ
24 蓄電池
25 受電コイル
27 充電装置
30 電力量演算器
31 無線通信装置
32 効率計算器
D1,D2 信号提示器
DESCRIPTION OF SYMBOLS 1,3 Non-contact electric power transmission apparatus 2,4 Electric vehicle 14 Feeding coil 17 Electric energy calculator 18 Wireless communication apparatus 19 Efficiency calculator 21 Motor 23 Contactor 24 Storage battery 25 Receiving coil 27 Charging apparatus 30 Electric energy calculator 31 Wireless communication apparatus 32 Efficiency calculator D1, D2 Signal presenter

Claims (10)

移動のための動力を発生するモータと、該モータを駆動する電力を供給する蓄電池とを備える移動車両において、
外部の一次側コイルから非接触で給電される電力を受電する二次側コイルと、
前記二次側コイルで受電された電力の電力量を示す受電量を求める受電量演算部と、
前記一次側コイルから給電される電力の電力量を示す給電量が入力される給電量入力部と、
前記受電量演算部で求められた受電量と前記給電量入力部に入力された給電量とを用いて、前記一次側コイルから前記二次側コイルへの電力伝送効率を求める効率算出部と、
前記効率算出部で求められた前記電力伝送効率に応じて、移動すべき方向を示す信号を提示する信号提示部と
を備えることを特徴とする移動車両。
In a mobile vehicle comprising a motor that generates power for movement and a storage battery that supplies electric power for driving the motor,
A secondary coil that receives electric power fed in a non-contact manner from an external primary coil;
A received power amount calculation unit for obtaining a received power amount indicating the amount of power received by the secondary coil;
A power supply amount input unit to which a power supply amount indicating the amount of power supplied from the primary coil is input;
An efficiency calculation unit for obtaining power transmission efficiency from the primary side coil to the secondary side coil, using the received power amount obtained by the received power amount calculation unit and the feeding amount input to the feeding amount input unit;
A moving vehicle comprising: a signal presenting unit that presents a signal indicating a direction to move according to the power transmission efficiency obtained by the efficiency calculating unit.
前記信号提示部は、前記移動すべき方向を示す信号を光又は音により提示することを特徴とする請求項1記載の移動車両。   The moving vehicle according to claim 1, wherein the signal presenting unit presents a signal indicating the direction to be moved by light or sound. 前記二次側コイルで受電された電力が前記モータを駆動する電力として用いられることを特徴とする請求項1又は請求項2記載の移動車両。   The mobile vehicle according to claim 1 or 2, wherein electric power received by the secondary coil is used as electric power for driving the motor. 前記二次側コイルで受電された電力を用いて前記蓄電池を充電する充電装置と、
前記充電装置による前記蓄電池の充電が行われている場合に、前記蓄電池から前記モータを電気的に切り離すスイッチ回路と
を備えることを特徴とする請求項1から請求項3の何れか一項に記載の移動車両。
A charging device for charging the storage battery using the power received by the secondary coil;
4. The switch circuit according to claim 1, further comprising a switch circuit that electrically disconnects the motor from the storage battery when the storage battery is charged by the charging device. 5. Moving vehicles.
請求項1から請求項4の何れか一項に記載の移動車両が備える前記蓄電池を充電するための電力を、前記一次側コイルから非接触で伝送可能な非接触電力伝送装置であって、
前記一次側コイルから給電される電力の電力量を示す給電量を求める給電量演算部と、
前記給電量演算部で求められた前記給電量を外部に出力する給電量出力部と
を備えることを特徴とする非接触電力伝送装置。
A non-contact power transmission device capable of non-contact transmission of electric power for charging the storage battery included in the moving vehicle according to any one of claims 1 to 4, from the primary coil,
A power supply amount calculation unit for obtaining a power supply amount indicating the amount of power supplied from the primary coil;
A non-contact power transmission device comprising: a power supply amount output unit that outputs the power supply amount obtained by the power supply amount calculation unit to the outside.
移動のための動力を発生するモータと、該モータを駆動する電力を供給する蓄電池とを備える移動車両において、
外部の一次側コイルから非接触で給電される電力を受電する二次側コイルと、
前記二次側コイルで受電された電力の電力量を示す受電量を求める受電量演算部と、
前記受電量演算部で求められた前記受電量を外部に出力する受電量出力部と
を備えることを特徴とする移動車両。
In a mobile vehicle comprising a motor that generates power for movement and a storage battery that supplies electric power for driving the motor,
A secondary coil that receives electric power fed in a non-contact manner from an external primary coil;
A received power amount calculation unit for obtaining a received power amount indicating the amount of power received by the secondary coil;
A mobile vehicle comprising: a power reception amount output unit that outputs the power reception amount obtained by the power reception amount calculation unit to the outside.
前記二次側コイルで受電された電力が前記モータを駆動する電力として用いられることを特徴とする請求項6記載の移動車両。   The mobile vehicle according to claim 6, wherein electric power received by the secondary coil is used as electric power for driving the motor. 前記二次側コイルで受電された電力を用いて前記蓄電池を充電する充電装置と、
前記充電装置による前記蓄電池の充電が行われている場合に、前記蓄電池から前記モータを電気的に切り離すスイッチ回路と
を備えることを特徴とする請求項6又は請求項7記載の移動車両。
A charging device for charging the storage battery using the power received by the secondary coil;
The mobile vehicle according to claim 6, further comprising: a switch circuit that electrically disconnects the motor from the storage battery when the storage battery is charged by the charging device.
請求項6から請求項8の何れか一項に記載の移動車両が備える前記蓄電池を充電するための電力を、前記一次側コイルから非接触で伝送可能な非接触電力伝送装置であって、
前記一次側コイルから給電される電力の電力量を示す給電量を求める給電量演算部と、
前記二次側コイルで受電された電力の電力量を示す受電量が入力される受電量入力部と、
前記給電量演算部で求められた給電量と前記受電量入力部に入力された受電量とを用いて、前記一次側コイルから前記二次側コイルへの電力伝送効率を求める効率算出部と、
前記効率算出部で求められた前記電力伝送効率に応じて、移動すべき方向を示す信号を提示する信号提示部と
を備えることを特徴とする非接触電力伝送装置。
A non-contact power transmission device capable of non-contact transmission of electric power for charging the storage battery included in the mobile vehicle according to any one of claims 6 to 8, from the primary coil,
A power supply amount calculation unit for obtaining a power supply amount indicating the amount of power supplied from the primary coil;
A received power amount input unit to which a received power amount indicating a power amount of power received by the secondary coil is input;
An efficiency calculation unit that calculates power transmission efficiency from the primary side coil to the secondary side coil, using the power supply amount obtained by the power supply amount calculation unit and the power reception amount input to the power reception amount input unit;
A contactless power transmission device comprising: a signal presenting unit that presents a signal indicating a direction to move according to the power transmission efficiency obtained by the efficiency calculating unit.
前記信号提示部は、前記移動すべき方向を示す信号を光又は音により提示することを特徴とする請求項9記載の非接触電力伝送装置。   The contactless power transmission device according to claim 9, wherein the signal presentation unit presents a signal indicating the direction to be moved by light or sound.
JP2011262609A 2011-11-25 2011-11-30 Mobile vehicle and non-contact power transmission device Expired - Fee Related JP5966332B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011262609A JP5966332B2 (en) 2011-11-30 2011-11-30 Mobile vehicle and non-contact power transmission device
CN201280057363.8A CN103946058B (en) 2011-11-25 2012-11-21 Mobile vehicle and non-contact power transmission device
EP12851490.8A EP2783900B1 (en) 2011-11-25 2012-11-21 Mobile vehicle and non-contact power transmission device
PCT/JP2012/080122 WO2013077340A1 (en) 2011-11-25 2012-11-21 Mobile vehicle and non-contact power transmission device
US14/284,661 US9132739B2 (en) 2011-11-25 2014-05-22 Vehicle and wireless power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262609A JP5966332B2 (en) 2011-11-30 2011-11-30 Mobile vehicle and non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2013116004A true JP2013116004A (en) 2013-06-10
JP5966332B2 JP5966332B2 (en) 2016-08-10

Family

ID=48711051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262609A Expired - Fee Related JP5966332B2 (en) 2011-11-25 2011-11-30 Mobile vehicle and non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP5966332B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116023A (en) * 2013-12-11 2015-06-22 三菱電機株式会社 Non-contact power supply system and power receiver
JP2015201914A (en) * 2014-04-04 2015-11-12 トヨタ自動車株式会社 Power reception device and vehicle having the same
JP2016208836A (en) * 2013-12-11 2016-12-08 トヨタ自動車株式会社 Guiding system, vehicle, and power transmission device
JP2017529823A (en) * 2014-09-18 2017-10-05 クアルコム,インコーポレイテッド Apparatus and method for power loss detection
CN109532570A (en) * 2019-01-09 2019-03-29 西南交通大学 A kind of short stator train three phase supply control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458084B2 (en) 2017-05-24 2019-01-23 本田技研工業株式会社 Non-contact power transmission system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112902A (en) * 1996-10-04 1998-04-28 Suzuki Motor Corp Power supply for electric vehicle
JP2008289273A (en) * 2007-05-17 2008-11-27 Toyota Motor Corp Power supply system, and vehicle
WO2010052785A1 (en) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 Feeding system for vehicle, electric vehicle, and feeding facility for vehicle
JP2010172184A (en) * 2008-12-22 2010-08-05 Aisin Aw Co Ltd Power reception guidance device
JP2010252497A (en) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd Radio power transfer device and radio power transfer method
JP2011188679A (en) * 2010-03-10 2011-09-22 Toyota Motor Corp Vehicle parking assist system, and vehicle including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112902A (en) * 1996-10-04 1998-04-28 Suzuki Motor Corp Power supply for electric vehicle
JP2008289273A (en) * 2007-05-17 2008-11-27 Toyota Motor Corp Power supply system, and vehicle
WO2010052785A1 (en) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 Feeding system for vehicle, electric vehicle, and feeding facility for vehicle
JP2010172184A (en) * 2008-12-22 2010-08-05 Aisin Aw Co Ltd Power reception guidance device
JP2010252497A (en) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd Radio power transfer device and radio power transfer method
JP2011188679A (en) * 2010-03-10 2011-09-22 Toyota Motor Corp Vehicle parking assist system, and vehicle including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116023A (en) * 2013-12-11 2015-06-22 三菱電機株式会社 Non-contact power supply system and power receiver
JP2016208836A (en) * 2013-12-11 2016-12-08 トヨタ自動車株式会社 Guiding system, vehicle, and power transmission device
JP2015201914A (en) * 2014-04-04 2015-11-12 トヨタ自動車株式会社 Power reception device and vehicle having the same
US10017065B2 (en) 2014-04-04 2018-07-10 Toyota Jidosha Kabushiki Kaisha Power reception device and vehicle including the same
JP2017529823A (en) * 2014-09-18 2017-10-05 クアルコム,インコーポレイテッド Apparatus and method for power loss detection
CN109532570A (en) * 2019-01-09 2019-03-29 西南交通大学 A kind of short stator train three phase supply control system
CN109532570B (en) * 2019-01-09 2023-04-28 西南交通大学 Three-phase power supply control system of short stator train

Also Published As

Publication number Publication date
JP5966332B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5966407B2 (en) Mobile vehicle and non-contact power transmission device
WO2013077340A1 (en) Mobile vehicle and non-contact power transmission device
US10562396B2 (en) Parking assistance apparatus and system
RU2557647C2 (en) Help system for vehicle parking, vehicle with said system and help process for vehicle parking
US9365104B2 (en) Parking assist device for vehicle and electrically powered vehicle including the same
US9421868B2 (en) Electrical powered vehicle and power feeding device for vehicle
JP5966332B2 (en) Mobile vehicle and non-contact power transmission device
US9379572B2 (en) Contactless power transmitting device, contactless power receiving device, and contactless power transfer system
EP3103673B1 (en) Parking assistance device and parking assistance method
US20160082848A1 (en) Power receiving device, parking assist system, and power transfer system
US9994255B2 (en) Vehicle guidance apparatus and vehicle guidance method
JP2011160515A (en) Radio charging apparatus for vehicle
RU2666773C2 (en) Charging device and contactless power supply device
JP2013236524A (en) Non-contact power feeding system
JP2011250498A (en) Non-contact power feeding device
JP5974460B2 (en) Mobile vehicle and non-contact power transmission device
JP2013169109A (en) Mobile vehicle and non contact power transmission apparatus
JP6044124B2 (en) Mobile vehicle and non-contact power transmission device
KR101974714B1 (en) Resonant magnetic induction charging system using wheel-type SRM for electric vehicle drive
JP6860430B2 (en) Contactless power transfer system
CN103552478A (en) Power supply system for vehicle, electric vehicle and power supply device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R151 Written notification of patent or utility model registration

Ref document number: 5966332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees