JP2013115675A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2013115675A
JP2013115675A JP2011261187A JP2011261187A JP2013115675A JP 2013115675 A JP2013115675 A JP 2013115675A JP 2011261187 A JP2011261187 A JP 2011261187A JP 2011261187 A JP2011261187 A JP 2011261187A JP 2013115675 A JP2013115675 A JP 2013115675A
Authority
JP
Japan
Prior art keywords
pixel
defect
target pixel
determination processing
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011261187A
Other languages
Japanese (ja)
Other versions
JP5694907B2 (en
Inventor
Yuichi Nonaka
雄一 野中
Akihito Nishizawa
明仁 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Consumer Electronics Co Ltd
Original Assignee
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Consumer Electronics Co Ltd
Priority to JP2011261187A priority Critical patent/JP5694907B2/en
Publication of JP2013115675A publication Critical patent/JP2013115675A/en
Application granted granted Critical
Publication of JP5694907B2 publication Critical patent/JP5694907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent the event that a defect cannot be corrected and a defective pixel correction is made even in the absence of a defective pixel because of a long distance to a pixel of an identical color and a different weighting factor onto an adjacent pixel brightness in a color imaging apparatus having a plurality of color filters disposed therein.SOLUTION: In a pixel defect detection algorithm, pixel defect determination processing with respect to pixels of an identical color (for example, a target pixel is red [R]) is performed as a first determination processing (GS1). Further, pixel defect determination processing with respect to pixels of a different color (pixels of a color other than the color used in the first determination processing) is performed as a second determination processing (GS2). Furthermore, final determination processing (GS3) is performed as a final pixel defect determination on the basis of the results of the first determination processing and the second determination processing.

Description

本発明は、撮像装置に関する。   The present invention relates to an imaging apparatus.

本技術分野の背景技術として、特許文献1がある。該公報には、「レンズ11が非合焦状態にあるときの撮像素子13の輝度レベルを用いて欠陥検出回路24で欠陥検出を行い、その検出した欠陥画素のアドレスをシステムコントローラ26内に保持し、そのアドレス位置で欠陥補正を行うようにする。」と記載されている(要約参照)。   As a background art of this technical field, there is Patent Document 1. According to this publication, “the defect detection circuit 24 detects a defect using the luminance level of the image sensor 13 when the lens 11 is out of focus, and the address of the detected defective pixel is held in the system controller 26. The defect correction is performed at the address position ”(refer to the summary).

特開2005−328134号公報JP-A-2005-328134

撮像素子においては、製造工程において生じる画素欠陥と、温度変化や宇宙線などの放射線による経時変化で生じる画素欠陥とがあり、画素欠陥には欠陥箇所の輝度が高くなるいわゆる「白欠陥」と欠陥箇所の輝度が低くなるいわゆる「黒欠陥」とがある。   In image sensors, there are pixel defects that occur during the manufacturing process and pixel defects that occur due to changes over time due to radiation, such as temperature changes and cosmic rays. Pixel defects have so-called “white defects” and defects that increase the brightness of the defect location. There is a so-called “black defect” in which the brightness of the portion is lowered.

製造工程において生じる画素欠陥は固定位置であるため、工場出荷時に欠陥画素の出力を近隣画素の出力を補間した値で補正する欠陥補正を施してから出荷することがおこなわれている。   Since the pixel defect that occurs in the manufacturing process is a fixed position, shipping is performed after performing defect correction that corrects the output of the defective pixel with a value obtained by interpolating the output of the neighboring pixel at the time of factory shipment.

しかしながら、温度変化や経時変化で生じた撮像素子の画素欠陥には補間できないため画質を損なう問題があった。   However, there is a problem that the image quality is impaired because interpolation cannot be performed for pixel defects of the image sensor caused by temperature change or change with time.

この問題を解決する例として、特許文献1では、レンズが非合焦状態にあるときの固体撮像素子の出力信号に基づいて画素欠陥検出を行うことにより、経時変化で現れる欠陥画素にも対応できることが記載されている。   As an example for solving this problem, in Patent Document 1, pixel defect detection is performed based on an output signal of a solid-state imaging device when a lens is in an out-of-focus state, so that it is possible to deal with defective pixels that appear with time. Is described.

しかしながら、特許文献1では、白欠陥は、隣り合う画素の信号との差分があらかじめ設定した差幅よりも大きく、かつ当該差分が正の場合に白欠陥と判定し、黒欠陥は、隣り合う画素の信号との差分があらかじめ設定した差幅よりも大きく、かつ当該差分が負の場合に黒欠陥であると判定している。   However, in Patent Document 1, a white defect is determined to be a white defect when a difference between adjacent pixel signals is larger than a preset difference width and the difference is positive, and a black defect is determined as an adjacent pixel. When the difference from the above signal is larger than the difference width set in advance and the difference is negative, it is determined that there is a black defect.

このため、白黒の撮像装置であれば正しく判定できるが、複数の色フィルタを配置したカラー撮像装置においては、同一色の画素との距離が離れていたり、隣の画素の輝度への重み係数が異なっているために、固定の閾値では、欠陥を補正できながったり、欠陥画素で無いにもかかわらず欠陥画素として補正してしまう問題があった。 本発明は、上記課題を解決し、カラー撮像装置においても、より精度の高い画素結果検出及び画素欠陥補正が可能な撮像装置を提供するものである。   For this reason, a monochrome imaging device can correctly determine, but in a color imaging device in which a plurality of color filters are arranged, the distance from a pixel of the same color is increased, or the weighting factor for the luminance of the adjacent pixel is Due to the difference, there is a problem that the fixed threshold cannot correct the defect, or the pixel is corrected as a defective pixel even though it is not a defective pixel. The present invention solves the above-described problems and provides an imaging apparatus capable of detecting a pixel result and correcting a pixel defect with higher accuracy even in a color imaging apparatus.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。
(1)被写体を撮像する撮像手段と、前記撮像手段からの画像信号を用いて注目画素の欠陥判定を行う欠陥判定手段と、を有し、前記欠陥判定手段は、前記注目画素の信号レベルと、前記注目画素と同色で前記注目画素の周囲にある比較対象画素の信号レベルと、を比較して欠陥を判定する第一判定処理手段と、前記注目画素の信号レベルと、前記注目画素と異なる色で前記注目画素の周囲にある比較対象画素の信号レベルと、を比較して欠陥を判定する第二判定処理手段と、前記第一判定処理手段による欠陥判定結果と前記第二判定処理手段による欠陥判定結果とを用いて画素欠陥か否かを判定する第三判定処理手段と、を有することを特徴とする撮像装置である。
(2)(1)記載の撮像装置であって、前記画像信号は原色ベイヤの画素配列であり、前記第二判定処理手段は、注目画素がGrであった場合は異色の周囲画素はGbとして信号レベルを比較することで画素欠陥を判定し、注目画素がGbであった場合は異色の周囲画素はGrとして信号レベルを比較することで画素欠陥を判定すること、を特徴とした撮像装置である。
(3)(1)記載の撮像装置であって、前記画像信号は原色ベイヤの画素配列であり、前記第二判定処理手段は、注目画素がRまたはBであった場合は、注目画素と隣接したGrおよびGbの第1グループの画素の信号レベルの平均値または加重加算値を算出し、注目画素と隣接していないGrおよびGbの第2グループの画素の信号レベルの平均値または加重加算値を算出し、前記第1グループの画素の信号レベルの平均値または加重加算値と第2グループの平均値または加重加算値とを比較することで画素欠陥を判定すること、を特徴とした撮像装置である。
Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.
(1) image pickup means for picking up an image of a subject; and defect determination means for determining a defect of a target pixel using an image signal from the image pickup means, wherein the defect determination means has a signal level of the target pixel First determination processing means for comparing a signal level of a comparison target pixel around the target pixel with the same color as the target pixel and determining a defect, and a signal level of the target pixel is different from the target pixel A second determination processing unit that compares a signal level of a comparison target pixel around the target pixel with a color to determine a defect, a defect determination result by the first determination processing unit, and a second determination processing unit An image pickup apparatus comprising: a third determination processing unit that determines whether or not a pixel defect is generated using a defect determination result.
(2) In the imaging device according to (1), the image signal is a primary color Bayer pixel array, and the second determination processing unit sets Gb as a peripheral pixel of a different color when the target pixel is Gr. An image pickup apparatus characterized by determining a pixel defect by comparing signal levels and determining a pixel defect by comparing the signal level as Gr for surrounding pixels of different colors when the target pixel is Gb is there.
(3) The imaging apparatus according to (1), wherein the image signal is a primary color Bayer pixel array, and the second determination processing unit is adjacent to the target pixel when the target pixel is R or B. The average value or weighted sum of the signal levels of the first group of pixels of Gr and Gb is calculated, and the average value or weighted sum of the signal levels of the second group of pixels of Gr and Gb that are not adjacent to the target pixel is calculated. And determining a pixel defect by comparing the average value or weighted addition value of the signal levels of the pixels of the first group with the average value or weighted addition value of the second group. It is.

また、水平方向と垂直方向にそれぞれN*M画素(N,Mは奇数)の範囲の中心の画素を注目画素(欠陥判定をする画素)とし、比較対象画素を注目画素と同色の周囲画素として、同一の色のみを使用して注目画素が欠陥か否かを判定することを特徴とする撮像装置である。   The center pixel in the range of N * M pixels (N and M are odd numbers) in the horizontal and vertical directions is the target pixel (defect determination pixel), and the comparison target pixel is the surrounding pixel of the same color as the target pixel The imaging apparatus is characterized by determining whether the pixel of interest is defective using only the same color.

また、水平方向と垂直方向にそれぞれN*M画素(N,Mは奇数)の範囲の中心の画素を注目画素(欠陥判定をする画素)とし、比較対象画素を緑色として、注目画素からの距離によって緑色のグループを分け平均値を算出し、グループ毎の平均値の差によって注目画素が欠陥か否かを判定することを特徴とする撮像装置である。   The center pixel in the range of N * M pixels (N and M are odd numbers) in the horizontal and vertical directions is the target pixel (defect determination pixel), the comparison target pixel is green, and the distance from the target pixel The image pickup apparatus is characterized in that the green group is divided by the above, an average value is calculated, and whether or not the pixel of interest is defective is determined based on a difference in the average value for each group.

また、水平方向と垂直方向にそれぞれN*M画素(N,Mは奇数)の範囲の中心の画素を注目画素(欠陥判定をする画素)とし、比較対象画素を注目画素と同色の周囲画素として、注目画素と比較対象画素の差分が閾値よりも小さな比較対象画素を除外して、比較対象画素の平均値と注目画素と比較対象画素の差分の絶対値の最大値と最小値を計算し、比較対象画素の平均値と差分の絶対値の最大値−最小値によって注目画素と比較対象画素の平均値の間の値で補間値を計算し、注目画素が欠陥の場合には、上記補間値を注目画素の値として出力することを特徴とする撮像装置である。   The center pixel in the range of N * M pixels (N and M are odd numbers) in the horizontal and vertical directions is the target pixel (defect determination pixel), and the comparison target pixel is the surrounding pixel of the same color as the target pixel The difference between the target pixel and the comparison target pixel is excluded from the comparison target pixel that is smaller than the threshold value, and the average value of the comparison target pixel and the absolute maximum and minimum values of the difference between the target pixel and the comparison target pixel are calculated. An interpolation value is calculated with a value between the average value of the target pixel and the comparison target pixel based on the average value of the comparison target pixel and the maximum absolute value of the difference minus the minimum value. If the target pixel is defective, the interpolation value Is output as the value of the target pixel.

上記のように、本発明によれば、欠陥と判定する画素の輝度に対する重み係数を考慮した閾値の切り替えや、判定を施し、さらに、ホワイトバランスの状態によって閾値の設定や判定方法を変えることで、カラー撮像装置においても、より精度の高い画素欠陥検出をおこなうことが可能となり、より精度の高い欠陥補正を施すことが可能となる。   As described above, according to the present invention, the threshold value can be switched or determined in consideration of the weighting factor with respect to the luminance of the pixel determined to be defective, and the threshold value setting and determination method can be changed according to the white balance state. Even in a color imaging apparatus, it becomes possible to detect pixel defects with higher accuracy, and to perform defect correction with higher accuracy.

また、本発明によれば、同一の色のみを使用して欠陥判定するため、たとえばホワイトバランスがずれていた際にでも、より精度の高い画素欠陥検出を可能とした撮像装置を提供することができる。   In addition, according to the present invention, since the defect is determined using only the same color, it is possible to provide an imaging device capable of detecting a pixel defect with higher accuracy even when, for example, the white balance is shifted. it can.

また、本発明によれば、欠陥判定画素との距離が近い画素の出力を用いて欠陥判定をするため、より周波数成分の高い被写体においても正しい画素欠陥検出を可能とした撮像装置を提供することができる。   In addition, according to the present invention, since defect determination is performed using an output of a pixel that is close to the defect determination pixel, an imaging device that can correctly detect a pixel defect even in a subject having a higher frequency component is provided. Can do.

また、本発明によれば、目立ちやすい欠陥と、目立ちにくい欠陥を切り分け、目立ちやすい欠陥においては補正を強め、目立ちにくい欠陥では補正を弱めることで、大きな補正効果を得ることと、大きく画像を損ねないことの2つを両立し、かつ、その2つの間をバランスさせた欠陥補正をおこなうことを可能とした、撮像装置を提供できる。   In addition, according to the present invention, a distinctive defect and an inconspicuous defect are separated, a correction is strengthened for a conspicuous defect, and a correction is weakened for an inconspicuous defect, thereby obtaining a large correction effect and greatly degrading an image. It is possible to provide an image pickup apparatus that can perform both of the non-existence and the defect correction that balances the two.

本発明によれば、カラー撮像装置においても精度の高い画素欠陥検出及び画素欠陥補正が可能な撮像装置を提供することができる。   According to the present invention, it is possible to provide an imaging apparatus capable of highly accurate pixel defect detection and pixel defect correction even in a color imaging apparatus.

本発明に係る撮像装置の一構成例を示す図である。It is a figure showing an example of 1 composition of an imaging device concerning the present invention. 欠陥検出・補正回路の第一の構成例を示す図である。It is a figure which shows the 1st structural example of a defect detection and correction circuit. 比較器201の動作フローを示す図である。FIG. 6 is a diagram showing an operation flow of the comparator 201. 閾値選択回路203の補足説明のための画素の一例を示す図である。3 is a diagram illustrating an example of a pixel for supplementary explanation of a threshold selection circuit 203. FIG. 閾値選択回路203の補足説明のための画素の他の例を示す図である。12 is a diagram illustrating another example of a pixel for supplementary explanation of the threshold selection circuit 203. FIG. 欠陥検出・補正回路の第二の構成例を示す図である。It is a figure which shows the 2nd structural example of a defect detection and correction circuit. 第一の欠陥検出回路の構成例を示す図である。It is a figure which shows the structural example of a 1st defect detection circuit. 第一の欠陥検出回路の補足説明図である。It is a supplementary explanatory diagram of the first defect detection circuit. 欠陥検出回路の他の構成例を示す図である。It is a figure which shows the other structural example of a defect detection circuit. 本発明に係る欠陥画素検出に好適な処理アルゴリズムを示す図である。It is a figure which shows the processing algorithm suitable for the defective pixel detection which concerns on this invention. 第二の欠陥検出回路の構成例を示す図である。It is a figure which shows the structural example of a 2nd defect detection circuit. 第三の欠陥検出回路の構成例を示す図である。It is a figure which shows the structural example of the 3rd defect detection circuit.

以下、本発明の実施形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施形態では、撮像装置の一形態であるビデオカメラを例に用いて説明する。本発明に係る撮像装置の第一の実施形態の構成例は、図1に示す通り、撮像レンズ101と、撮像素子102と、A/D変換回路103と、欠陥検出・補正回路104と、信号処理回路105と、タイミングジェネレータ106とを適宜用いて構成される。以下、本撮像装置による欠陥検出・欠陥補正について説明する。まず、撮像レンズ101を介して被写体から入射された光は撮像素子102に照射され、被写体像が結像される。撮像素子102はタイミングジェネレータ106による駆動パルスによって水平と垂直の走査がなされ、被写体像を撮像し電気信号を発生する。この電気信号はA/D変換回路103でデジタル信号に変換され、欠陥検出・補正回路104に入力する。欠陥検出・補正回路104では、タイミングジェネレータ106による色情報により、欠陥検出する閾値(白欠陥用/黒欠陥用)を適宜切り替え、入力信号と近隣の画素との差と閾値(白欠陥用/黒欠陥用)の関係により「正常」と判断した場合には入力信号を信号処理回路105に出力し、「欠陥」と判断した場合には近隣の画素から補間した信号を信号処理回路105に出力する。信号処理回路105はノイズ除去やガンマ補正などの各種カメラ信号処理を施し、TV信号などの信号に変換後出力する。   In the present embodiment, a video camera that is one form of the imaging apparatus will be described as an example. The configuration example of the first embodiment of the imaging apparatus according to the present invention includes an imaging lens 101, an imaging element 102, an A / D conversion circuit 103, a defect detection / correction circuit 104, a signal, as shown in FIG. The processing circuit 105 and the timing generator 106 are used as appropriate. Hereinafter, defect detection / defect correction by the imaging apparatus will be described. First, light incident from a subject via the imaging lens 101 is irradiated to the image sensor 102, and a subject image is formed. The image sensor 102 is scanned in the horizontal and vertical directions by the drive pulse from the timing generator 106, captures a subject image, and generates an electrical signal. This electric signal is converted into a digital signal by the A / D conversion circuit 103 and input to the defect detection / correction circuit 104. In the defect detection / correction circuit 104, the threshold value for detecting a defect (for white defect / for black defect) is appropriately switched according to the color information from the timing generator 106, and the difference between the input signal and neighboring pixels and the threshold value (for white defect / black). When it is determined as “normal” due to the relationship (for defects), an input signal is output to the signal processing circuit 105, and when it is determined as “defective”, a signal interpolated from neighboring pixels is output to the signal processing circuit 105. . The signal processing circuit 105 performs various camera signal processing such as noise removal and gamma correction, converts the signal into a signal such as a TV signal, and outputs the signal.

次に、欠陥検出・補正回路104の第一の構成例の詳細について、図2を用いて説明する。図2に示す通り、欠陥検出・補正回路104の第一構成例は、比較器201と、データラッチ202と、閾値選択回路203とを適宜用いて構成される。欠陥検出・補正回路104への入力信号は、比較器201とデータラッチ202に供給される。データラッチ202では1画素前の入力信号を保持して、入力画素に対して1画素前の信号を逐次比較器201に出力する。一方、閾値選択回路203には、入力画素に対する色情報が入力される。閾値選択回路203では、あらかじめ各色に対する閾値(白欠陥用/黒欠陥用)が設定されており、入力された色情報の種類に応じた閾値(白欠陥用/黒欠陥用)を選択して、比較器201に出力する。   Next, details of the first configuration example of the defect detection / correction circuit 104 will be described with reference to FIG. As shown in FIG. 2, the first configuration example of the defect detection / correction circuit 104 is configured using a comparator 201, a data latch 202, and a threshold selection circuit 203 as appropriate. An input signal to the defect detection / correction circuit 104 is supplied to the comparator 201 and the data latch 202. The data latch 202 holds an input signal one pixel before and outputs a signal one pixel before the input pixel to the sequential comparator 201. On the other hand, color information for an input pixel is input to the threshold selection circuit 203. In the threshold selection circuit 203, thresholds (for white defects / for black defects) for each color are set in advance, and thresholds (for white defects / for black defects) corresponding to the type of input color information are selected, Output to the comparator 201.

ここで、比較器201の動作について、図3を用いて補足する。比較器201では、入力画素の信号量が白欠陥用閾値とデータラッチ202との信号量の和よりも大きいか判定し(STEP1)、入力画素の信号量が白欠陥用閾値とデータラッチ202との信号量の和よりも大きい時に「白欠陥」と判定し、近隣の画素から補間した信号に相当するデータラッチ202の信号量を信号処理回路105に出力する(STEP2)。入力画素の信号量が白欠陥用閾値とデータラッチ202との信号量の和よりも小さい時には、さらに、入力画素の信号量がデータラッチ202の信号量から黒欠陥用閾値を引いた信号量よりも小さいか判定し(STEP3)、入力画素の信号量がデータラッチ202の信号量から黒欠陥用閾値を引いた信号量よりも小さい場合には「黒欠陥」と判定し、近隣の画素から補間した信号に相当するデータラッチ202の信号量を信号処理回路105に出力する(STEP2と同じ)。上記の「白欠陥」「黒欠陥」と判定されなかった場合には、「正常」と判定し入力信号を信号処理回路105に出力する(STEP4)。なお、STEP1とSTEP3の順序は逆であっても構わない。   Here, the operation of the comparator 201 will be supplemented with reference to FIG. The comparator 201 determines whether the signal amount of the input pixel is larger than the sum of the signal amount of the white defect threshold value and the data latch 202 (STEP 1), and the signal amount of the input pixel is equal to the white defect threshold value and the data latch 202. When the sum is larger than the sum of the signal amounts, a “white defect” is determined, and the signal amount of the data latch 202 corresponding to the signal interpolated from the neighboring pixels is output to the signal processing circuit 105 (STEP 2). When the signal amount of the input pixel is smaller than the sum of the signal amount of the white defect threshold value and the data latch 202, the signal amount of the input pixel is more than the signal amount obtained by subtracting the black defect threshold value from the signal amount of the data latch 202. (STEP 3). If the signal amount of the input pixel is smaller than the signal amount obtained by subtracting the black defect threshold from the signal amount of the data latch 202, it is determined as “black defect”, and interpolation is performed from neighboring pixels. The signal amount of the data latch 202 corresponding to the received signal is output to the signal processing circuit 105 (same as STEP 2). If it is not determined as the “white defect” or “black defect”, it is determined as “normal” and an input signal is output to the signal processing circuit 105 (STEP 4). Note that the order of STEP1 and STEP3 may be reversed.

さらに上記した閾値選択回路203の動作について図4を用いて補足する。図4は原色フィルタを用いたカラー撮像装置の一例でたとえばNTSCのTV方式の撮像装置では、赤(R)、緑(G)、青(B)の入力により輝度信号(Y)を、Y=0.29*R+0.60*G+0.11*Bの計算式で生成している。図4中の太枠で囲った水平*垂直の2*2の画素に着目するとGは二つあるため、輝度信号(Y)への重み係数は、
R:G:B = 0.29:0.30:0.11 ・・・(式1)
となっている。
Further, the operation of the threshold selection circuit 203 will be supplemented with reference to FIG. FIG. 4 shows an example of a color image pickup device using primary color filters. For example, in an NTSC TV image pickup device, a luminance signal (Y) is input by inputting red (R), green (G), and blue (B), and Y = It is generated with the formula 0.29 * R + 0.60 * G + 0.11 * B. Focusing on the horizontal * vertical 2 * 2 pixels surrounded by a thick frame in FIG. 4, there are two Gs, so the weighting factor for the luminance signal (Y) is
R: G: B = 0.29: 0.30: 0.11 (Equation 1)
It has become.

ここで赤(R)、緑(G)、青(B)のそれぞれの画素に欠陥があった場合を考えると、輝度信号(Y)へは上記(1)式の比率で欠陥の影響が現れることになるため、閾値の比率も上記(1)式の比率に合わせることで、精度の高い画素欠陥検出が可能となる。つまり、閾値選択回路203には、大略上記(1)式の比率であらかじめ各色に対する閾値(白欠陥用/黒欠陥用)を設定しておき、欠陥と判定する(入力)画素の色情報の種類に応じて切り替えると良いことがわかる。   Here, considering the case where each of the red (R), green (G), and blue (B) pixels has a defect, the luminance signal (Y) is affected by the defect at the ratio of the above equation (1). Therefore, the pixel ratio can be detected with high accuracy by adjusting the ratio of the threshold to the ratio of the above formula (1). That is, in the threshold selection circuit 203, threshold values (for white defects / for black defects) for each color are set in advance approximately in the ratio of the above expression (1), and the type of color information of the pixel that is determined to be a defect (input) It turns out that it is good to switch according to.

他の一例として、図5のような補色フィルタを用いた撮像装置では、信号処理のマトリクスの組み方に複数の組み方が考えられるが、例えば、 Y=K1*Ye+K2*Cy+K3*Mg+K4*Gの計算式で生成している場合には、
Ye:Cy:Mg:G = K1:K2:K3:K4 ・・・(式2)
で、上記(1)式と同様に大略上記(2)式の比率であらかじめ各色に対する閾値(白欠陥用/黒欠陥用)を設定しておくと良く、上記以外の他の色配置の場合でも同様に設定すると良いことがわかる。
As another example, in an imaging apparatus using a complementary color filter as shown in FIG. 5, a plurality of ways of assembling a signal processing matrix can be considered. For example, Y = K1 * Ye + K2 * Cy + K3 * Mg + If it is generated by the K4 * G formula,
Ye: Cy: Mg: G = K1: K2: K3: K4 (Formula 2)
In the same way as the above formula (1), it is preferable to set a threshold value (for white defect / for black defect) in advance for each color in the ratio of the above formula (2). It turns out that it is good to set similarly.

以上のように本実施刑では、欠陥検出する画素の色情報の輝度信号に対する影響度を考慮して、欠陥検出する画素の色情報に応じて欠陥か否かを判定する閾値を切り替えるのでカラー撮像装置においても精度の高い画素欠陥検出と画素欠陥補正可能とした撮像装置を提供することができる。また、本実施形態は、監視カメラシステムなど長期間に亘って通電し続け、欠陥画素が温度変化や経時変化で現れる撮像装置において、特に有効である。   As described above, in this execution penalty, the threshold value for determining whether or not a defect is detected is switched in accordance with the color information of the pixel whose defect is detected in consideration of the degree of influence of the color information of the pixel whose defect is detected on the luminance signal. Also in the apparatus, it is possible to provide an imaging apparatus capable of detecting pixel defects and correcting pixel defects with high accuracy. In addition, this embodiment is particularly effective in an imaging apparatus such as a surveillance camera system in which an energization is continued for a long period of time and defective pixels appear due to temperature changes or temporal changes.

なお、本実施例では、データラッチ202を用いて、近隣画素として直前の画素の情報で欠陥検出と欠陥補正をおこなうこととして一例を説明したが、例えばラインメモリを用いて、1ライン手前の画素の情報で欠陥検出と欠陥補正をおこなっても良く、更にフィード(フレーム)メモリなどを用いて左右、1ライン上下、斜め右上、斜め右下、斜め左上、斜め左下、などを用いて、より広い周辺画素の情報で欠陥検出と欠陥補正をおこなっても良く、種々変更可能である。   In the present embodiment, an example has been described in which the data latch 202 is used to detect and correct the defect using the information of the immediately preceding pixel as a neighboring pixel. However, for example, the pixel one line before using a line memory. Defect detection and defect correction may be performed using this information, and using a feed (frame) memory, etc., left and right, up and down one line, diagonal upper right, diagonal lower right, diagonal upper left, diagonal lower left, etc. Defect detection and defect correction may be performed using peripheral pixel information, and various changes are possible.

本発明に係る撮像装置の第二の実施形態として、欠陥検出・補正回路が異なる例を説明する。図6は欠陥検出・補正回路の第二構成例を説明する図である。なお、図2で示す欠陥検出・補正回路の第一構成例と同じ動作をするものについては、図2と同じ番号を付し適宜説明を省略する。   As a second embodiment of the imaging apparatus according to the present invention, an example in which the defect detection / correction circuit is different will be described. FIG. 6 is a diagram illustrating a second configuration example of the defect detection / correction circuit. 2 that perform the same operations as those in the first configuration example of the defect detection / correction circuit shown in FIG.

撮像装置においては、撮影する光源の色温度がさまざまであるため、白色が白色として撮影できるように色ゲインを自動で制御するいわゆるオートホワイトバランス制御が広く採用されている。例えば、色温度が高くなるほど赤色(R)のゲインを大きくし、青色(B)のゲインを小さくする。逆に色温度が低くなるほど赤色(R)のゲインを小さくし、青色(B)のゲインを大きくする。また、蛍光灯などの光源下では、緑色(G)のゲインを制御することもある。   In the imaging apparatus, since the color temperature of the light source to be photographed varies, so-called auto white balance control that automatically controls the color gain so that white can be photographed as white is widely adopted. For example, as the color temperature increases, the red (R) gain is increased and the blue (B) gain is decreased. Conversely, the lower the color temperature, the smaller the red (R) gain and the larger the blue (B) gain. In addition, the green (G) gain may be controlled under a light source such as a fluorescent lamp.

欠陥検出・補正回路104−2が、オートホワイトバランス制御前に配置されている場合には、上記したように、各色のゲインを変更するため、各色に対して設定してある閾値(白欠陥用/黒欠陥用)にも各色のゲインを考慮する必要がある。   When the defect detection / correction circuit 104-2 is arranged before the auto white balance control, as described above, the threshold value (for white defect) set for each color is changed in order to change the gain of each color. (For black defects), it is necessary to consider the gain of each color.

閾値選択回路303では、不図示のオートホワイトバランス制御部からの各色(R,G,B)のゲインを入力し、あらかじめ設定してある各色に対する閾値(白欠陥用/黒欠陥用)に対して入力した各色のゲインを乗じた値とし、入力された色情報の種類に応じた閾値(白欠陥用/黒欠陥用)を選択して、比較器201に出力する。   In the threshold selection circuit 303, the gain of each color (R, G, B) from an auto white balance control unit (not shown) is input, and the threshold (for white defect / black defect) for each color set in advance is input. A threshold value (for white defect / for black defect) corresponding to the type of the input color information is selected as a value obtained by multiplying the input gain of each color, and is output to the comparator 201.

本実施例では、撮影する光源が変わった際にでも、光源に合った色情報の輝度信号に対する影響度を考慮しているため、より精度の高い画素欠陥検出と画素欠陥補正可能とした撮像装置を提供することができる。   In this embodiment, even when the light source to be photographed is changed, the degree of influence of the color information suitable for the light source on the luminance signal is taken into consideration, so that an image pickup apparatus capable of detecting pixel defects and correcting pixel defects with higher accuracy. Can be provided.

本発明に係る撮像装置の第三の実施形態として、図7で示す第一の欠陥検出回路を用いた例について以下に説明する。まず、本発明に係る欠陥画素の検出するに好適な処理アルゴリズムについて図10を用いて説明する。同図に示したように、本画素欠陥検出アルゴリズムにおいては、同色画素にて画素欠陥判定処理を第1判定処理(GS1)にて行い、さらに異色(前記第1処理に用いた色の以外の色の画素)画素にて画素欠陥判定処理を第2判定処理(GS2)として行い、さらに、第1判定処理と第2判定処理の結果から最終的な画素欠陥判定として最終判定処理(GS3)を行う特徴がある。   As a third embodiment of the imaging apparatus according to the present invention, an example using the first defect detection circuit shown in FIG. 7 will be described below. First, a processing algorithm suitable for detecting defective pixels according to the present invention will be described with reference to FIG. As shown in the figure, in this pixel defect detection algorithm, the pixel defect determination process is performed in the first determination process (GS1) with the same color pixel, and further different colors (other than the colors used in the first process). The pixel defect determination process is performed as the second determination process (GS2) for the color pixel), and the final determination process (GS3) is performed as the final pixel defect determination from the results of the first determination process and the second determination process. There are features to do.

図7は、図10のSTEP1で示した同色画素による画素欠陥判定処理を行う第一の欠陥検出回路の構成例を説明する図である。たとえば、図4のような原色フィルタで、緑色(G)については赤色(R)の行にある緑色(G)をGrとし、青色(B)の行にある緑色(G)をGbとして分けて記載している。また、水平方向と垂直方向にそれぞれ5*5画素の範囲(以後スコープ)を例としている。   FIG. 7 is a diagram illustrating a configuration example of a first defect detection circuit that performs pixel defect determination processing using pixels of the same color shown in STEP 1 of FIG. For example, in the primary color filter as shown in FIG. 4, for green (G), green (G) in the red (R) row is Gr, and green (G) in the blue (B) row is Gb. It is described. In addition, a range of 5 * 5 pixels (hereinafter referred to as a scope) in the horizontal direction and the vertical direction is taken as an example.

図7では、スコープの中央の画素を注目画素(欠陥判定をする画素)とし座標(0,0)で表す。水平方向で左側を負、右側を正、垂直方向で上側を負、下側を正として、注目画素を基準に座標を割り当てている。注目画素は撮像素子の走査に従い移動する。比較対象画素を注目画素と同色の周囲8画素とする。すなわち座標(-2,-2),(0,-2),(+2,-2),(-2,0),(+2,0),(-2,+2),(0,+2),(+2,+2)が対象画素となる。ここでは、図7に示す通り、注目画素が赤色(R)の場合を例にとって説明する。   In FIG. 7, the center pixel of the scope is a pixel of interest (a pixel for defect determination) and is represented by coordinates (0, 0). The coordinates are assigned based on the target pixel, with the left side being negative in the horizontal direction, the right side being positive, the upper side being negative in the vertical direction, and the lower side being positive. The target pixel moves according to the scanning of the image sensor. The comparison target pixels are eight surrounding pixels of the same color as the target pixel. That is, coordinates (-2, -2), (0, -2), (+ 2, -2), (-2,0), (+2,0), (-2, + 2), (0, +2) and (+2, +2) are the target pixels. Here, as shown in FIG. 7, a case where the target pixel is red (R) will be described as an example.

注目画素の信号と比較対象画素の出力と差分の閾値709は比較器701〜708にそれぞれ加えられる。差分の閾値709は、白欠陥、黒欠陥と正常画素とを区別するための閾値で、あらかじめ色毎に設定した値を設定しておく。
比較器701〜708では、それぞれ、(A)|注目画素−比較対象画素| の演算結果と差分の閾値701との大小比較結果、(B)注目画素−比較対象画素 の符号の判定結果、の2つの結果を出力する。なお、記号||は絶対値の演算であり、比較器701〜708では、|注目画素−比較対象画素| ≧ 差分の閾値701 の場合には真(1)、それ以外では偽(0)を出力する。また、注目画素−比較対象画素 の演算結果が正または0の場合には真(1)、負の場合には偽(0)を出力する。
The signal of the target pixel, the output of the pixel to be compared, and the difference threshold 709 are respectively added to the comparators 701 to 708. The difference threshold 709 is a threshold for distinguishing white defects, black defects, and normal pixels, and is set in advance for each color.
The comparators 701 to 708 respectively compare (A) | the target pixel-comparison target pixel | and the difference threshold 701, and (B) the target pixel-comparison target pixel sign determination result. Output two results. The symbol || is an absolute value calculation. In the comparators 701 to 708, true (1) is obtained when | target pixel−comparison target pixel | ≧ difference threshold 701, and false (0) is otherwise obtained. Output. Also, true (1) is output when the calculation result of the target pixel-comparison target pixel is positive or 0, and false (0) is output when it is negative.

比較器701では比較対象画素座標(-2,-2)、比較器702では比較対象画素座標(0,-2)、比較器703では比較対象画素座標(+2,-2)、比較器704では比較対象画素座標(-2,0)、比較器705では比較対象画素座標(+2,0)、比較器706では比較対象画素座標(+2,-2)、比較器707では比較対象画素座標(0,+2)、比較器708では比較対象画素座標(+2,+2)として比較演算をおこなう。比較器701〜708の判定結果は、それぞれ、加算器710と符号一致判定713に入力される。加算器710では、|注目画素−比較対象画素| ≧ 差分の閾値701 となった比較対象の画素数をカウントする。加算器710のカウント結果と、数の閾値711を比較器712に入力し、比較器712では、加算器710のカウント結果 ≧ 数の閾値711 の場合には真(1)、そうでない場合には偽(0)を出力する。一方、符号一致判定713では、注目画素−比較対象画素 の符号がすべて一致した場合には真(1)、一致しなかった場合には偽(0)を出力する。比較器712の結果と符号一致判定713の結果はAND714により積論理が施され、比較器712の結果と符号一致判定713の結果がともに真(1)の場合に真(1)、そうでない場合には偽(0)を判定結果として出力する。以上の結果として、|注目画素−比較対象画素| ≧ 差分の閾値701 となった画素数が数の閾値711以上で、かつ、注目画素−比較対象画素 の符号がすべて一致した場合に判定結果は真(1)=「欠陥有り」、そうでない場合には偽(0)=「欠陥無し」となる。   In the comparator 701, the comparison target pixel coordinate (−2, −2), in the comparator 702 the comparison target pixel coordinate (0, −2), in the comparator 703, the comparison target pixel coordinate (+ 2, −2), and the comparator 704 Is a comparison target pixel coordinate (−2, 0), the comparator 705 is a comparison target pixel coordinate (+2, 0), a comparator 706 is a comparison target pixel coordinate (+2, −2), and a comparator 707 is a comparison target pixel. The comparison is performed with the coordinates (0, + 2) and the comparator 708 as the comparison target pixel coordinates (+ 2, + 2). The determination results of the comparators 701 to 708 are input to the adder 710 and the sign match determination 713, respectively. The adder 710 counts the number of pixels to be compared in which | target pixel−comparison target pixel | ≧ difference threshold value 701. The count result of the adder 710 and the threshold value 711 of the number are input to the comparator 712. The comparator 712 is true (1) if the count result of the adder 710 is equal to or greater than the threshold value 711 of the number. Outputs false (0). On the other hand, in the code coincidence determination 713, true (1) is output when the signs of the target pixel and the comparison target pixel all coincide, and false (0) is output when they do not coincide. The result of the comparator 712 and the result of the sign match determination 713 are ANDed by AND 714. If the result of the comparator 712 and the result of the sign match determination 713 are both true (1), true (1), otherwise Outputs false (0) as the determination result. As a result of the above, the determination result is obtained when | the pixel of interest−comparison target pixel | ≧ the threshold value 701 of the difference is equal to or greater than the threshold value 711 of the number and all the codes of the pixel of interest−comparison target pixel match. True (1) = “defective”, otherwise false (0) = “defective”.

なお、注目画素が撮像素子の有効画素範囲の上下左右2画素以下にある場合には、比較対象画素が無くなる部分の比較器(701〜708のいくつか)を無効とする処理を加算器710と符号一致判定713に付加すると良い。この場合、加算器710で、無効とした画素数分の比率で加算結果を補正しても良いし、数の閾値711を補正して判定しても良い。また、青色(B)、緑色(Gr,Gb)についても差分の閾値709の設定値が変わることがあるが動作は上記の赤色(R)と同様である。また、本実施例では、2と2√2の距離の画素を同一の差分の閾値709を用いて説明したが、2と2√2の距離の画素に対して別々の差分の閾値としても良い。   In addition, when the target pixel is two pixels below, above, below, left, and right of the effective pixel range of the image sensor, a process of invalidating the comparators (some of 701 to 708) where there is no comparison target pixel is It may be added to the code match determination 713. In this case, the addition result may be corrected by the adder 710 at a ratio corresponding to the number of invalid pixels, or the number threshold 711 may be corrected for determination. Also, the setting value of the difference threshold 709 may change for blue (B) and green (Gr, Gb), but the operation is the same as that for red (R). Further, in the present embodiment, the pixels having a distance of 2 and 2√2 are described using the same difference threshold 709, but different thresholds may be used for the pixels having a distance of 2 and 2√2. .

本実施例では、同一の色のみを使用して比較、判定するため、たとえばホワイトバランスがずれていた際にでも、より精度の高い画素欠陥検出を可能とした撮像装置を提供することができる。   In this embodiment, since comparison and determination are performed using only the same color, for example, it is possible to provide an imaging apparatus that can detect pixel defects with higher accuracy even when the white balance is shifted.

なお、原色フィルタを用いて説明したが補色フィルタや、他の色フィルタ配置の撮像素子においても同様の効果を得られることは明らかである。また、スコープを水平方向と垂直方向にそれぞれ5*5画素の範囲としたが、他のサイズのスコープとしても同様の効果を得られることは明らかである。   In addition, although it demonstrated using the primary color filter, it is clear that the same effect can be acquired also in an image pick-up element of a complementary color filter and another color filter arrangement | positioning. In addition, although the scope has a range of 5 * 5 pixels in the horizontal and vertical directions, it is clear that the same effect can be obtained with scopes of other sizes.

本発明に係る撮像装置の第四の実施形態として、図7で示す第一の欠陥検出回路による判定結果に加えて、図11で示す第二の欠陥検出回路並びに図12で示す第三の欠陥検出回路を用いた例について、以下に説明する。   As a fourth embodiment of the imaging apparatus according to the present invention, in addition to the determination result by the first defect detection circuit shown in FIG. 7, the second defect detection circuit shown in FIG. 11 and the third defect shown in FIG. An example using a detection circuit will be described below.

前記実施例3における検出においては、注目画素に対して2と2√2の離れた距離の比較対象画素を用いて欠陥の検出をおこなっているために、たとえばRGBベイヤの画素配列を入力画像信号とした図8に示すように白欠陥の例(実線)と周波数成分の高い被写体の例(点線)との区別ができない問題がある。(逆に黒欠陥の場合も同様にある。)このため、本実施例では、前記実施例3の判定結果に加えて、前記実施例3の注目画素と比較対象画素の間の緑色(G:GrまたはGb)を用いて、欠陥判定をおこなうことで、より精度の高い画素欠陥検出を得るものである。   In the detection in the third embodiment, since the defect detection is performed using the comparison target pixel having a distance of 2 and 2√2 with respect to the target pixel, for example, an RGB Bayer pixel array is used as the input image signal. As shown in FIG. 8, there is a problem that it is impossible to distinguish between an example of a white defect (solid line) and an example of a subject having a high frequency component (dotted line). (Conversely, the same applies to the case of a black defect.) For this reason, in this embodiment, in addition to the determination result of the embodiment 3, the green color between the target pixel and the comparison target pixel of the embodiment 3 (G: By performing defect determination using Gr or Gb), pixel defect detection with higher accuracy is obtained.

たとえば、図9に示すように、前記実施例3による第一の欠陥検出回路901の判定結果に加えて、図10に示したSTEP3の処理を行う第二の欠陥検出回路902(図11)と、図10で示したSTEP4の処理を行う第三の欠陥検出回路903(図12)の判定結果を用いることで、前記実施例3における注目画素と比較対象画素の間を判定する。図10に示したSTEP5及びSTEP6の処理を行う欠陥判定904では、注目画素に対する色情報が入力され、緑色(G:GrまたはGb)の場合には、第一の欠陥検出回路901と第二の欠陥検出回路902のANDを判定結果として出力し、注目画素が赤色(R)または、青色(B)の場合には、第一の欠陥検出回路901と第三の欠陥検出回路903のANDを判定結果として出力する。この画素欠陥判定方法によれば、図8に示す白欠陥の例(実線)と周波数成分の高い被写体の例(点線)との区別が可能となり、周波数成分の高い被写体を欠陥と誤判定してしまう弊害を防ぐことができる。   For example, as shown in FIG. 9, in addition to the determination result of the first defect detection circuit 901 according to the third embodiment, a second defect detection circuit 902 (FIG. 11) that performs the processing of STEP 3 shown in FIG. The determination result of the third defect detection circuit 903 (FIG. 12) that performs the processing of STEP4 shown in FIG. 10 is used to determine between the target pixel and the comparison target pixel in the third embodiment. In the defect determination 904 in which the processing of STEP 5 and STEP 6 shown in FIG. 10 is performed, color information for the pixel of interest is input, and when it is green (G: Gr or Gb), the first defect detection circuit 901 and the second defect detection circuit 901 The AND of the defect detection circuit 902 is output as a determination result. When the target pixel is red (R) or blue (B), the AND of the first defect detection circuit 901 and the third defect detection circuit 903 is determined. Output as a result. According to this pixel defect determination method, it is possible to distinguish between an example of a white defect (solid line) shown in FIG. 8 and an example of a subject with a high frequency component (dotted line), and erroneously determines a subject with a high frequency component as a defect. Can prevent the negative effects.

また、たとえば、図10のように、STEP1で第一の欠陥検出回路の判定結果が「欠陥無し」の場合には、STEP6で判定結果=欠陥無しとして終了し、「欠陥有り」の場合には、注目画素が緑色(G:GrまたはGb)ならSTEP3へ、注目画素が赤色(R)または、青色(B)ならSTEP4へ分岐する。STEP3では、第二の欠陥検出回路の判定結果が「欠陥有り」ならSTEP5で判定結果=欠陥有りとして終了し、「欠陥無し」ならSTEP6で判定結果=欠陥無しとして終了する。STEP4では、第三の欠陥検出回路の判定結果が「欠陥有り」ならSTEP5で判定結果=欠陥有りとして終了し、「欠陥無し」ならSTEP6で判定結果=欠陥無しとして終了とする、ことでも、図9と同じ結果が得られる。   Also, for example, as shown in FIG. 10, when the determination result of the first defect detection circuit is “no defect” in STEP 1, the determination result is ended as “no defect” in STEP 6, and in the case of “defect” If the target pixel is green (G: Gr or Gb), the process branches to STEP3, and if the target pixel is red (R) or blue (B), the process branches to STEP4. In STEP 3, if the determination result of the second defect detection circuit is “defect”, the determination result is ended in STEP 5 = defect exists, and if “defect is not present”, the determination result is ended in STEP 6 = defect is not present. In STEP4, if the determination result of the third defect detection circuit is “defect”, the determination result is ended in STEP5 = defect exists, and if it is “no defect”, the determination result is ended in STEP6 = defect is not present. The same result as 9 is obtained.

次に、第二の欠陥検出回路902の動作について図11を用いて説明し、第三の欠陥検出回路903の動作について図12を用いて説明する。   Next, the operation of the second defect detection circuit 902 will be described with reference to FIG. 11, and the operation of the third defect detection circuit 903 will be described with reference to FIG.

図11は、第二の欠陥検出回路の構成例であり、前記実施例3において、スコープを水平方向と垂直方向にそれぞれ3*3画素の範囲としたものと等価で、比較対象画素は(-1,-1),(+1,-1),(-1,+1),(+1,+1)とする。注目画素と比較対象画素の距離は√2で、注目画素がGrなら比較対象画素はGbになり、また逆に、注目画素がGbなら比較対象画素はGrとなる。   FIG. 11 shows a configuration example of the second defect detection circuit. In the third embodiment, the scope is equivalent to a scope of 3 * 3 pixels in the horizontal direction and the vertical direction, and the comparison target pixel is (− 1, -1), (+ 1, -1), (-1, + 1), (+ 1, + 1). The distance between the target pixel and the comparison target pixel is √2. If the target pixel is Gr, the comparison target pixel is Gb. Conversely, if the target pixel is Gb, the comparison target pixel is Gr.

比較器1101では比較対象画素座標(-1,-1) 。比較器1102では比較対象画素座標(+1,-1) 。比較器1103では比較対象画素座標(-1,+1)。比較器1104では比較対象画素座標(+1,+1)として比較演算をおこなう。差分の閾値1105、加算器1106、数の閾値1107、比較器1108、符号一致判定1109、AND1110は、それぞれ、前記実施例3における差分の閾値709、加算器710、数の閾値711、比較器712、符号一致判定713、AND714と同様に動作するため説明を省略する。なお、差分の閾値1105では、色は緑色(G:GrまたはGb)固定となるため、差分の閾値709における色情報の入力を省略している。また、比較器1108、符号一致判定1109の入力の数が異なり、数の閾値1107は数の閾値711の大略1/2の値となる。   In the comparator 1101, comparison target pixel coordinates (-1, -1). In the comparator 1102, comparison target pixel coordinates (+1, -1). In the comparator 1103, comparison target pixel coordinates (-1, + 1). The comparator 1104 performs a comparison operation using the pixel coordinates for comparison (+ 1, + 1). The difference threshold 1105, the adder 1106, the number threshold 1107, the comparator 1108, the sign match determination 1109, and the AND 1110 are the difference threshold 709, the adder 710, the number threshold 711, and the comparator 712, respectively, in the third embodiment. Since it operates in the same manner as the code coincidence determination 713 and the AND 714, the description thereof is omitted. Since the color is fixed to green (G: Gr or Gb) at the difference threshold 1105, input of color information at the difference threshold 709 is omitted. Further, the numbers of inputs of the comparator 1108 and the code match determination 1109 are different, and the number threshold 1107 is approximately half the value of the number threshold 711.

以上により、第二の欠陥検出回路の構成例での判定結果は、|注目画素−比較対象画素| ≧ 差分の閾値1105 となった画素数が数の閾値1107以上で、かつ、注目画素−比較対象画素 の符号がすべて一致した場合に判定結果は真(1)、そうでない場合には偽(0)となる。この画素欠陥判定方法によれば、GrとGbは分光感度が同じまたは非常に似ている色成分同士であるため、同色と見なすことにより画素同士の差分のみで比較することが可能となる。従って、簡素な回路で実現できるため、低コスト低消費電力を実現できる。また、注目画素に対してより近い画素を用いて高周波の信号の分布を比較しているため、図8に示す白欠陥の例(実線)と周波数成分の高い被写体の例(点線)との区別が可能となり、周波数成分の高い被写体を欠陥と誤判定してしまう弊害を防ぐことができる。   As described above, the determination result in the configuration example of the second defect detection circuit is as follows: | target pixel-comparison target pixel | ≧ difference threshold value 1105 The number of pixels is equal to or greater than the threshold value 1107 and the target pixel-comparison The judgment result is true (1) when all the signs of the target pixels match, and false (0) otherwise. According to this pixel defect determination method, since Gr and Gb are color components having the same or very similar spectral sensitivity, it is possible to compare only by the difference between pixels by regarding them as the same color. Therefore, since it can be realized with a simple circuit, low cost and low power consumption can be realized. Further, since the distribution of high-frequency signals is compared using pixels closer to the target pixel, the white defect example (solid line) shown in FIG. 8 is distinguished from the subject with a high frequency component (dotted line). It is possible to prevent the adverse effect of erroneously determining a subject having a high frequency component as a defect.

図12は、第三の欠陥検出回路の構成例である。たとえば、比較対象画素を第1グループとして注目画素から距離=1だけ離れた座標(0,-1),(-1,0),(+1,0),(0,+1)と、第2グループとして注目画素から距離=√5だけ離れた座標(-1,-2),(+1,-2),(-2,-1),(+2,-1) (-2,+1),(+2,+1),(-1,+2),(+1,+2)の2つのグループに分ける。注目画素は赤色(R)または、青色(B)で、第1グループと第2グループは緑色(G:GrまたはGb)となる。平均値算出回路1201では第1グループの4画素の平均を算出し出力する。また、平均値算出回路1202では、第2グループの8画素の平均を算出し出力する。   FIG. 12 is a configuration example of the third defect detection circuit. For example, the coordinates (0, -1), (-1,0), (+1,0), (0, + 1), which are separated from the target pixel by the distance = 1 as the comparison target pixel as the first group, Coordinates (-1, -2), (+1, -2), (-2, -1), (+2, -1) (-2, +2) away from the pixel of interest by distance = √5 as two groups It is divided into two groups: 1), (+2, +1), (-1, +2), (+1, +2). The target pixel is red (R) or blue (B), and the first group and the second group are green (G: Gr or Gb). The average value calculation circuit 1201 calculates and outputs the average of the four pixels in the first group. The average value calculation circuit 1202 calculates and outputs the average of the 8 pixels in the second group.

比較器1204では、|第1グループの平均値−第2グループの平均値|≦差分の閾値1203 の判定をおこない、|第1グループの平均値−第2グループの平均値|≦差分の閾値1203の場合には真(1)=「欠陥有り」、そうでないならば偽(0)=「欠陥無し」を判定結果として出力する。この画素欠陥判定方法によれば、注目画素であるRまたはBの画素に対して周辺に分布するG信号のうち、第1グループと第2グループの平均値を求めてから比較するため、比較器ひとつで構成することができ、低コスト低消費電力を実現できる。また、注目画素の周辺に分布するG画素を用いて高周波の信号の分布を比較しているため、図8に示す白欠陥の例(実線)と周波数成分の高い被写体の例(点線)との区別が可能となり、周波数成分の高い被写体を欠陥と誤判定してしまう弊害を防ぐことができる。尚、第1グループと第2グループについて平均値を求めて比較するとしたが、重み付け加算後の信号同士を比較する方法であっても同様の効果が得られることは明白である。その際には、平均値を求める方式に対して除算器を省くことができる。   The comparator 1204 makes a determination of | average value of the first group−average value of the second group | ≦ difference threshold 1203, and | average value of the first group−average value of the second group | ≦ difference threshold 1203. In this case, true (1) = “defective” is output, and if not, false (0) = “defective” is output as the determination result. According to this pixel defect determination method, a comparator is used to compare after obtaining an average value of the first group and the second group among the G signals distributed around the R or B pixel as the target pixel. It can be configured by one, and low cost and low power consumption can be realized. In addition, since the distribution of high-frequency signals is compared using G pixels distributed around the pixel of interest, the white defect example (solid line) shown in FIG. 8 and the example of a subject with a high frequency component (dotted line) are compared. This makes it possible to discriminate and prevent the adverse effect of erroneously determining a subject having a high frequency component as a defect. Although the average value is obtained and compared for the first group and the second group, it is obvious that the same effect can be obtained even by the method of comparing the signals after weighted addition. In that case, a divider can be omitted from the method for obtaining the average value.

以上の第二の欠陥検出回路902と第三の欠陥検出回路903において、たとえば図8のように差分の閾値1105と差分の閾値1203を設定すると、図8の白欠陥の例(実線)と周波数成分の高い被写体の例(点線)とを区別できる。   In the second defect detection circuit 902 and the third defect detection circuit 903 described above, for example, when the difference threshold value 1105 and the difference threshold value 1203 are set as shown in FIG. 8, the white defect example (solid line) and frequency in FIG. It can be distinguished from an example of a subject with a high component (dotted line).

本実施例では、前記実施例3と同様に、同一の色のみを使用して比較、判定するため、たとえばホワイトバランスがずれていた際にでも、より精度の高い画素欠陥検出を可能とした撮像装置を提供することができ、また、注目画素との距離が近い画素の出力を用いて欠陥判定をするため、周波数成分の高い被写体においても正しい画素欠陥検出を可能とした撮像装置を提供することができる。   In the present embodiment, as in the third embodiment, since only the same color is used for comparison and determination, for example, even when the white balance is shifted, it is possible to detect a pixel defect with higher accuracy. To provide an image pickup apparatus that can correctly detect a pixel defect even in a subject having a high frequency component because a defect is determined using an output of a pixel that is close to the target pixel. Can do.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また、上記の各構成は、それらの一部又は全部が、ハードウェアで構成されても、プロセッサでプログラムが実行されることにより実現されるように構成されてもよい。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。   In addition, each of the above-described configurations may be configured such that some or all of them are configured by hardware, or are implemented by executing a program by a processor. Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

101 撮像レンズ
102 撮像素子
103 A/D変換回路
104 欠陥検出・補正回路
105 信号処理回路
106 タイミングジェネレータ
201 比較器
202 データラッチ
203 閾値選択回路
303 閾値選択回路
701〜708 比較器
709 差分の閾値
710 加算器
711 数の閾値
712 比較器
713 符号一致判定
714 AND
901 第一の欠陥検出回路
902 第二の欠陥検出回路
903 第三の欠陥検出回路
904 欠陥判定
1101〜1104 比較器
1105 差分の閾値
1106 加算器
1107 数の閾値
1108 比較器
1109 符号一致判定
1110 AND
1201,1202 平均値算出回路
1203 差分の閾値
1204 比較器
DESCRIPTION OF SYMBOLS 101 Image pick-up lens 102 Image pick-up element 103 A / D conversion circuit 104 Defect detection / correction circuit 105 Signal processing circuit 106 Timing generator 201 Comparator 202 Data latch 203 Threshold selection circuit 303 Threshold selection circuit 701-708 Comparator 709 Difference threshold 710 Addition 711 Number threshold 712 Comparator 713 Sign match determination 714 AND
901 First defect detection circuit 902 Second defect detection circuit 903 Third defect detection circuit 904 Defect determination 1101 to 1104 Comparator 1105 Difference threshold 1106 Adder 1107 Number threshold 1108 Comparator 1109 Sign match determination 1110 AND
1201, 1202 Average value calculation circuit 1203 Difference threshold 1204 Comparator

Claims (5)

被写体を撮像する撮像手段と、
前記撮像手段からの画像信号を用いて注目画素の欠陥判定を行う欠陥判定手段と、
を有し、
前記欠陥判定手段は、
前記注目画素の信号レベルと、前記注目画素と同色で前記注目画素の周囲にある比較対象画素の信号レベルと、を比較して欠陥を判定する第一判定処理手段と、
前記注目画素の信号レベルと、前記注目画素と異なる色で前記注目画素の周囲にある比較対象画素の信号レベルと、を比較して欠陥を判定する第二判定処理手段と、
前記第一判定処理手段による欠陥判定結果と前記第二判定処理手段による欠陥判定結果とを用いて画素欠陥か否かを判定する第三判定処理手段と、
を有することを特徴とする撮像装置。
Imaging means for imaging a subject;
Defect determination means for performing defect determination of a pixel of interest using an image signal from the imaging means;
Have
The defect determination means includes
First determination processing means for comparing the signal level of the target pixel with the signal level of the comparison target pixel that is the same color as the target pixel and is around the target pixel;
Second determination processing means for comparing the signal level of the target pixel with a signal level of a comparison target pixel around the target pixel in a color different from that of the target pixel;
Third determination processing means for determining whether or not there is a pixel defect using the defect determination result by the first determination processing means and the defect determination result by the second determination processing means;
An imaging device comprising:
請求項1記載の撮像装置であって、
前記第一判定処理手段は、前記注目画素の色毎に予め設定された異なる閾値を用いて欠陥を判定することを特徴とする撮像装置。
The imaging apparatus according to claim 1,
The imaging apparatus according to claim 1, wherein the first determination processing unit determines a defect using a different threshold set in advance for each color of the target pixel.
請求項2記載の撮像装置であって、
前記画像信号は原色ベイヤの画素配列であり、
前記第二判定処理手段は、
注目画素がGrであった場合は異色の周囲画素はGbとして信号レベルを比較することで画素欠陥を判定し、注目画素がGbであった場合は異色の周囲画素はGrとして信号レベルを比較することで画素欠陥を判定すること、
を特徴とした撮像装置。
The imaging apparatus according to claim 2,
The image signal is a primary color Bayer pixel array;
The second determination processing means includes
If the pixel of interest is Gr, the surrounding pixel of different color is Gb and the signal level is compared to determine the pixel defect. If the pixel of interest is Gb, the surrounding pixel of different color is Gr and the signal level is compared. To determine pixel defects
An imaging device characterized by the above.
請求項2記載の撮像装置であって、
前記画像信号は原色ベイヤの画素配列であり、
前記第二判定処理手段は、注目画素がRまたはBであった場合は、注目画素と隣接したGrおよびGbの第1グループの画素の信号レベルの平均値または加重加算値を算出し、注目画素と隣接していないGrおよびGbの第2グループの画素の信号レベルの平均値または加重加算値を算出し、前記第1グループの画素の信号レベルの平均値または加重加算値と第2グループの平均値または加重加算値とを比較することで画素欠陥を判定すること、
を特徴とした撮像装置。
The imaging apparatus according to claim 2,
The image signal is a primary color Bayer pixel array;
When the target pixel is R or B, the second determination processing unit calculates an average value or a weighted addition value of the signal levels of the first group pixels of Gr and Gb adjacent to the target pixel, and An average value or a weighted addition value of signal levels of pixels of the second group of Gr and Gb that are not adjacent to each other is calculated, and an average value or weighted addition value of the signal levels of the pixels of the first group and the average value of the second group Determining pixel defects by comparing values or weighted sums;
An imaging device characterized by the above.
請求項1乃至4のいずれかに記載の撮像装置において、
前記第三判定処理手段は、前記第一判定処理手段と前記第二判定処理手段の結果がいずれも画素欠陥であると判定された場合に画素欠陥と判定し、前記第一判定処理手段と第二判定処理手段の結果のうち少なくとも片方は画素欠陥でないと判定された場合に画素欠陥ではないと判定すること、
を特徴とした撮像装置。
In the imaging device in any one of Claims 1 thru | or 4,
The third determination processing means determines a pixel defect when the results of the first determination processing means and the second determination processing means are both determined to be pixel defects, and the third determination processing means and the first determination processing means If it is determined that at least one of the results of the two determination processing means is not a pixel defect, determining that it is not a pixel defect;
An imaging device characterized by the above.
JP2011261187A 2011-11-30 2011-11-30 Imaging device Active JP5694907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261187A JP5694907B2 (en) 2011-11-30 2011-11-30 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261187A JP5694907B2 (en) 2011-11-30 2011-11-30 Imaging device

Publications (2)

Publication Number Publication Date
JP2013115675A true JP2013115675A (en) 2013-06-10
JP5694907B2 JP5694907B2 (en) 2015-04-01

Family

ID=48710825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261187A Active JP5694907B2 (en) 2011-11-30 2011-11-30 Imaging device

Country Status (1)

Country Link
JP (1) JP5694907B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10348989B2 (en) 2014-08-27 2019-07-09 Sony Semiconductor Solutions Corporation Image processing device, image processing method, and image processing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086517A (en) * 1999-09-13 2001-03-30 Toshiba Corp Pixel defect detector
JP2004320128A (en) * 2003-04-11 2004-11-11 Mega Chips Corp Defective pixel correction device
JP2006304231A (en) * 2005-04-25 2006-11-02 Eastman Kodak Co Pixel defect correction device
JP2009303139A (en) * 2008-06-17 2009-12-24 Toshiba Corp Solid-state imaging apparatus
JP2011097542A (en) * 2009-11-02 2011-05-12 Sony Corp Pixel defect detection/correction device, image pickup device, image defect detection/correction method, and program therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086517A (en) * 1999-09-13 2001-03-30 Toshiba Corp Pixel defect detector
JP2004320128A (en) * 2003-04-11 2004-11-11 Mega Chips Corp Defective pixel correction device
JP2006304231A (en) * 2005-04-25 2006-11-02 Eastman Kodak Co Pixel defect correction device
JP2009303139A (en) * 2008-06-17 2009-12-24 Toshiba Corp Solid-state imaging apparatus
JP2011097542A (en) * 2009-11-02 2011-05-12 Sony Corp Pixel defect detection/correction device, image pickup device, image defect detection/correction method, and program therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10348989B2 (en) 2014-08-27 2019-07-09 Sony Semiconductor Solutions Corporation Image processing device, image processing method, and image processing system

Also Published As

Publication number Publication date
JP5694907B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP3984936B2 (en) Imaging apparatus and imaging method
JP3747909B2 (en) Pixel defect detection correction apparatus and pixel defect detection correction method
US8253828B2 (en) Image capture device including edge direction determination unit, and image processing method for the same
US8698923B2 (en) Image processing device, image processing method, and program for detecting and correcting defective pixel in image
JP5269841B2 (en) Image processing device
WO2016031597A1 (en) Image processing device, image processing method, and image processing system
KR20080087536A (en) Method and apparatus for detecting dead pixel in image sensor, method and apparatus for capturing image from image sensor
US20130229550A1 (en) Defective pixel correction apparatus, method for controlling the apparatus, and program for causing computer to perform the method
JP2004112736A (en) Semiconductor integrated circuit, defective pixel correction method, and image processor
US9092845B2 (en) Image processing device with defect correcting circuit and image processing method
US9438832B2 (en) Image processing apparatus and image processing method
JP2009194776A (en) Noise filter
US7667748B2 (en) Method and apparatus of defective pixel correction for a solid-state imaging device
KR101945408B1 (en) Apparatus and method for determining defect pixel
JP5694907B2 (en) Imaging device
JP4331120B2 (en) Defective pixel detection method
US8576310B2 (en) Image processing apparatus, camera module, and image processing method
JP5774456B2 (en) Imaging device
US20060181621A1 (en) Method for improving image quality
US8938120B2 (en) Image sensing device and image data processing method using the same
JP2008148115A (en) Image defect correction system of imaging device using direction detection
JP2008153848A (en) Image processing apparatus
JP2012253545A (en) Imaging apparatus
US20150264285A1 (en) Image processing apparatus and solid-state imaging apparatus
JP2017038294A (en) Image correction circuit and solid state image pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5694907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250