JP2012253545A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2012253545A
JP2012253545A JP2011124219A JP2011124219A JP2012253545A JP 2012253545 A JP2012253545 A JP 2012253545A JP 2011124219 A JP2011124219 A JP 2011124219A JP 2011124219 A JP2011124219 A JP 2011124219A JP 2012253545 A JP2012253545 A JP 2012253545A
Authority
JP
Japan
Prior art keywords
pixel
signal
color
defect
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011124219A
Other languages
Japanese (ja)
Inventor
Yuichi Nonaka
雄一 野中
Akihito Nishizawa
明仁 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Consumer Electronics Co Ltd
Original Assignee
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Consumer Electronics Co Ltd
Priority to JP2011124219A priority Critical patent/JP2012253545A/en
Publication of JP2012253545A publication Critical patent/JP2012253545A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging apparatus which performs a correction with high precision by changing a threshold value for pixel defect determination depending on a type of color signal of a correction object pixel.SOLUTION: The imaging apparatus includes: a pixel defect detection correction circuit which detects a pixel defect from an image signal from an imaging device and corrects the detected pixel defect; and a signal processing circuit which processes the corrected image signal by the pixel defect detection correction circuit to transmit a video signal. The pixel defect detection correction circuit 104 includes: a pixel value holding part 202 which holds a pixel signal of a pixel near a correction object pixel; a comparison part 201 which compares a difference between the pixel value of the correction object pixel and the pixel value held in the pixel value holding part with a preset threshold value, and detects the pixel defect of the correction object pixel; and a correction part which interpolates and corrects a defective pixel when a pixel defect is detected. The threshold value is set, for each color, to correspond to a weight factor representing a contribution degree to a luminance signal of a color signal of the correction object pixel, and is changed according to the color signal of the correction object pixel.

Description

本発明は、撮像装置に係り、特に、画素欠陥を高精度に検出して補正することのできる撮像装置に関する。   The present invention relates to an imaging apparatus, and more particularly to an imaging apparatus capable of detecting and correcting pixel defects with high accuracy.

特許文献1には、固体撮像素子の欠陥検出に際して、レンズを非合焦状態にしたとき、正常画素の出力レベルが低下するのに対して、欠陥画素の出力レベルは変化しないことを利用し、レンズが非合焦状態にあるときの固体撮像素子の出力レベルを所定の閾値と比較することにより、画素の欠陥を確実に検出することが示されている。   Patent Document 1 utilizes that the output level of a defective pixel does not change while the output level of a normal pixel is reduced when the lens is brought out of focus when detecting a defect in a solid-state imaging device. It has been shown that pixel defects are reliably detected by comparing the output level of the solid-state imaging device when the lens is out of focus with a predetermined threshold.

特開2005−328134号公報JP-A-2005-328134

撮像素子に生じる画素欠陥には、製造工程において生じる画素欠陥と、温度変化あるいは宇宙線などの放射線照射などの経時変化に伴う画素欠陥がある。これらの画素欠陥には欠陥箇所の輝度が高くなるいわゆる「白欠陥」と、欠陥箇所の輝度が低くなるいわゆる「黒欠陥」とがある。   Pixel defects that occur in the image sensor include pixel defects that occur in the manufacturing process and pixel defects that accompany temporal changes such as temperature changes or radiation exposure such as cosmic rays. These pixel defects include a so-called “white defect” in which the luminance of the defective portion is increased and a so-called “black defect” in which the luminance of the defective portion is decreased.

製造工程において生じる画素欠陥は固定位置であるため、工場出荷時に、欠陥画素の出力を近隣画素の出力で補間した値で補正する欠陥補正を施すことがおこなわれている。しかしながら、温度変化等の出荷後の径時変化で生じた画素欠陥については、前記補間を行うことができないため画質が損なわれる。   Since the pixel defect that occurs in the manufacturing process is at a fixed position, defect correction is performed at the time of factory shipment to correct the output of the defective pixel with a value interpolated with the output of the neighboring pixel. However, with respect to pixel defects caused by a change in diameter after shipment such as a temperature change, the image quality is deteriorated because the interpolation cannot be performed.

この問題を解決する方法として、前記特許文献1がある。前記特許文献1では、レンズを非合焦状態にしたときの固体撮像素子の出力信号に基づいて画素欠陥検出を行うことにより、経時変化で現れる欠陥画素に対応できる。   As a method for solving this problem, there is Patent Document 1 mentioned above. In Patent Document 1, pixel defects are detected based on the output signal of the solid-state imaging device when the lens is in an out-of-focus state, so that it is possible to deal with defective pixels that appear over time.

ところで、白点欠陥は、補正対象画素と該画素に隣り合う画素の信号の差分があらかじめ設定した差分よりも大きく、かつ該差分が正の場合に白点欠陥と判定し、黒点欠陥は、隣り合う画素の信号の差分があらかじめ設定した差分よりも大きく、かつ該差分が負の場合に黒点欠陥であると判定できる。   By the way, a white spot defect is determined as a white spot defect when a difference between signals of a correction target pixel and a pixel adjacent to the pixel is larger than a preset difference and the difference is positive. When the difference between the signals of the matching pixels is larger than the difference set in advance and the difference is negative, it can be determined that there is a black spot defect.

このため、モノクロの撮像装置であれば正しく判定できるが、複数の色フィルタを配置したカラー撮像装置においては、同一色の画素との間が離れていたり、隣接する画素間で輝度への重み係数が異なっているために、固定の閾値では、欠陥を補正できないことがある。また、欠陥画素で無いにもかかわらず欠陥画素として補正してしまうことがある。   For this reason, a monochrome imaging device can correctly determine, but in a color imaging device in which a plurality of color filters are arranged, the pixels of the same color are separated from each other, or a weighting factor for luminance between adjacent pixels Therefore, the defect may not be corrected with a fixed threshold value. Moreover, although it is not a defective pixel, it may correct as a defective pixel.

本発明はこれらの問題点に鑑みてなされたもので、補正対象画素と近隣の画素の画素信号を比較して補正対象画素(欠陥画素)を補正するに際して、画素欠陥判定の閾値を補正対象画素の色信号の種類に応じて切り換えることにより精度の高い補正を施すことを可能とするものである。   The present invention has been made in view of these problems. When correcting the correction target pixel (defective pixel) by comparing the pixel signals of the correction target pixel and the neighboring pixels, the threshold for pixel defect determination is set as the correction target pixel. By switching according to the color signal type, it is possible to perform highly accurate correction.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

撮像素子からの画像信号から画素欠陥を検出し、検出した画素欠陥を補正する画素欠陥検出補正回路と、該画素欠陥検出補正回路により補正された画像信号を処理して映像信号を送出する信号処理回路を備えた撮像装置において、画素欠陥検出補正回路は、補正対象画素の近隣の画素の画素信号を保持する画素値保持部と、補正対象画素の画素値と、前記画素値保持部に保持された画素値との差を予め設定した閾値と比較して補正対象画素の画素欠陥を検出する比較部と、画素欠陥を検出したとき欠陥画素を補間して補正する補正部を備え、前記閾値は、補正対象画素の色信号の輝度信号に寄与する程度を表す重み係数に対応して各色毎に設定し、前記補正対象画素の色信号に応じて切り換える。   A pixel defect detection and correction circuit for detecting a pixel defect from an image signal from an image sensor, correcting the detected pixel defect, and a signal processing for processing the image signal corrected by the pixel defect detection and correction circuit and transmitting a video signal In an imaging apparatus including a circuit, a pixel defect detection correction circuit is held in a pixel value holding unit that holds a pixel signal of a pixel near the correction target pixel, a pixel value of the correction target pixel, and the pixel value holding unit. A comparison unit that detects a pixel defect of a correction target pixel by comparing a difference between the pixel value and a preset threshold value, and a correction unit that interpolates and corrects the defective pixel when a pixel defect is detected, The color coefficient is set for each color corresponding to the weighting factor indicating the degree of contribution to the luminance signal of the color signal of the correction target pixel, and is switched according to the color signal of the correction target pixel.

本発明は、以上の構成を備えるため、精度の高い欠陥補正を施すことできる。   Since the present invention has the above-described configuration, it is possible to perform highly accurate defect correction.

第1の実施形態にかかる撮像装置を説明する図である。It is a figure explaining the imaging device concerning a 1st embodiment. 欠陥検出補正回路の詳細を説明する図である。It is a figure explaining the detail of a defect detection correction circuit. 比較器の動作について説明する図である。It is a figure explaining operation | movement of a comparator. 原色フィルタを説明する図である。It is a figure explaining a primary color filter. 補色フィルタを説明する図である。It is a figure explaining a complementary color filter. 第2の実施形態を説明する図である。It is a figure explaining 2nd Embodiment.

以下、本発明の実施形態を添付図面を参照しながら説明する。図1は、第1の実施形態にかかる撮像装置を説明する図であり、本実施形態では、撮像装置としてビデオカメラを用いる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram for explaining an imaging apparatus according to the first embodiment. In this embodiment, a video camera is used as the imaging apparatus.

図1において、撮像レンズ101を介して被写体から入射された光は撮像素子102に照射され、被写体像が結像される。撮像素子102はタイミングジェネレータ106による駆動パルスによって水平と垂直の走査がなされ、被写体像を撮像し電気信号を発生する。この電気信号はA/D変換回路103でデジタル信号に変換され、欠陥検出補正回路104に入力する。   In FIG. 1, light incident from a subject via the imaging lens 101 is irradiated to the image sensor 102 to form a subject image. The image sensor 102 is scanned in the horizontal and vertical directions by the drive pulse from the timing generator 106, captures a subject image, and generates an electrical signal. This electric signal is converted into a digital signal by the A / D conversion circuit 103 and input to the defect detection correction circuit 104.

欠陥検出補正回路104では、タイミングジェネレータ106による色情報にしたがって、欠陥検出する閾値(白欠陥用/黒欠陥用)を適宜切り替え、欠陥検出補正回路104に入力する入力信号と近隣の画素信号との差および前記差と閾値(白欠陥用/黒欠陥用)の関係をもとに前記入力信号が「正常」信号であるか「欠陥」信号であるかを判断し、「正常」と判断した場合には入力信号を信号処理回路105に出力し、「欠陥」と判断した場合には近隣の画素信号をもとに補間した信号を信号処理回路105に出力する。   In the defect detection / correction circuit 104, the threshold value for defect detection (for white defect / for black defect) is appropriately switched according to the color information from the timing generator 106, and an input signal input to the defect detection / correction circuit 104 and a neighboring pixel signal are switched. When it is determined that the input signal is a “normal” signal or a “defective” signal based on the difference and the relationship between the difference and the threshold (for white defect / black defect), and “normal” In this case, an input signal is output to the signal processing circuit 105, and when it is determined as “defect”, an interpolated signal based on the neighboring pixel signal is output to the signal processing circuit 105.

信号処理回路105ではノイズ除去やガンマ補正などの各種カメラ信号処理を施し、NTSC信号などのTV信号に変換した後、出力する。   The signal processing circuit 105 performs various camera signal processing such as noise removal and gamma correction, converts the signal into a TV signal such as an NTSC signal, and outputs it.

図2は、欠陥検出補正回路104の詳細を説明する図である。撮像素子からの入力画素信号は、欠陥検出補正回路104の比較器201およびデータラッチ202に供給される。データラッチ202は、例えばn画素前の同色の入力画素信号を保持する画素値保持部であり、撮像素子からの入力画素に対してn画素前の信号を逐次比較器201に出力する。   FIG. 2 is a diagram for explaining the details of the defect detection correction circuit 104. An input pixel signal from the image sensor is supplied to the comparator 201 and the data latch 202 of the defect detection correction circuit 104. The data latch 202 is a pixel value holding unit that holds an input pixel signal of the same color before n pixels, for example, and outputs a signal n pixels before to the comparator 201 with respect to the input pixels from the image sensor.

閾値選択回路203には、入力画素に対応する色情報が入力される。閾値選択回路203では、あらかじめ各色に対する閾値(白欠陥用/黒欠陥用)が設定されており、入力された色情報の種類に応じた閾値(白欠陥用/黒欠陥用)を選択して、比較器201に出力する。   Color information corresponding to the input pixel is input to the threshold selection circuit 203. In the threshold value selection circuit 203, threshold values (for white defects / for black defects) for each color are set in advance, and a threshold value (for white defects / for black defects) corresponding to the type of input color information is selected. Output to the comparator 201.

図3は、前記比較器201の動作について説明する図である。図3において、比較器201は、入力画素信号の信号量が白欠陥用閾値とデータラッチ202に格納された信号との信号量の和よりも大きいか否かを判定し(STEP1)、入力画素信号の信号量が白欠陥用閾値とデータラッチ202に格納された信号との信号量の和よりも大きいとき「白欠陥」と判定し、近隣の画素で補間した信号(あるいはデータラッチ202の信号)を補正部で生成し、生成した信号を信号処理回路105に出力する(STEP2)。   FIG. 3 is a diagram for explaining the operation of the comparator 201. In FIG. 3, the comparator 201 determines whether or not the signal amount of the input pixel signal is larger than the sum of the signal amounts of the white defect threshold value and the signal stored in the data latch 202 (STEP 1). When the signal amount of the signal is larger than the sum of the signal amount of the threshold value for white defect and the signal stored in the data latch 202, it is determined as “white defect”, and the signal interpolated by neighboring pixels (or the signal of the data latch 202) ) Is generated by the correction unit, and the generated signal is output to the signal processing circuit 105 (STEP 2).

次に、入力画素の信号量がデータラッチ202の信号量から黒欠陥用閾値を引いた信号量よりも小さいか否かを判定し(STEP3)、入力画素の信号量がデータラッチ202の信号量から黒欠陥用閾値を引いた信号量よりも小さい場合には「黒欠陥」と判定し、近隣の画素から補間した信号に相当するデータラッチ202の信号量を信号処理回路105に出力する(STEP2と同じ)。なお、上記「白欠陥」および「黒欠陥」と判定されなかった場合には、「正常」と判定し、入力信号を信号処理回路105に出力する(STEP4)。次に、ステップ1に戻り、次の画素信号を取り込む。   Next, it is determined whether or not the signal amount of the input pixel is smaller than the signal amount obtained by subtracting the black defect threshold from the signal amount of the data latch 202 (STEP 3), and the signal amount of the input pixel is the signal amount of the data latch 202. If it is smaller than the signal amount obtained by subtracting the black defect threshold value from the signal, it is determined as “black defect”, and the signal amount of the data latch 202 corresponding to the signal interpolated from the neighboring pixels is output to the signal processing circuit 105 (STEP 2 Same as). If the “white defect” and the “black defect” are not determined, it is determined as “normal” and an input signal is output to the signal processing circuit 105 (STEP 4). Next, returning to step 1, the next pixel signal is captured.

次に、閾値選択回路203の動作について説明する。   Next, the operation of the threshold selection circuit 203 will be described.

図4は原色フィルタの例説明する図である。例えばNTSC方式の撮像装置では、輝度信号(Y)を、赤(R)、緑(G)、青(B)の各入力信号をもとに、
Y=0.29*R+0.60*G+0.11*B
の計算式で生成している。
FIG. 4 is a diagram illustrating an example of a primary color filter. For example, in an NTSC imaging device, the luminance signal (Y) is based on the input signals of red (R), green (G), and blue (B).
Y = 0.29 * R + 0.60 * G + 0.11 * B
It is generated with the following formula.

図4中の太枠で囲った水平2*垂直2の4画素に着目すると緑(G)は2箇所あるため、輝度信号(Y)への重み係数の比率は、
R:G:B = 0.29:0.30:0.11 ・・・(1)
となっている。
When attention is paid to the horizontal 2 * vertical 2 pixels surrounded by a thick frame in FIG. 4, there are two green (G), so the ratio of the weighting factor to the luminance signal (Y) is
R: G: B = 0.29: 0.30: 0.11 (1)
It has become.

ここで赤(R)、緑(G)、青(B)のそれぞれの画素に欠陥があった場合を考えると、輝度信号(Y)に対しては上記(1)式の比率で欠陥の影響が現れることになる。このため、閾値の比率も上記(1)式の比率に合わせることで、精度の高い画素欠陥検出が可能となる。   Here, considering the case where each of the red (R), green (G), and blue (B) pixels has a defect, the luminance signal (Y) is affected by the defect at the ratio of the above equation (1). Will appear. For this reason, it is possible to detect pixel defects with high accuracy by adjusting the ratio of the thresholds to the ratio of the above formula (1).

すなわち、閾値選択回路203には、大略上記(1)式の比率であらかじめ各色毎に閾値(白欠陥用/黒欠陥用)を設定しておき、欠陥の有無を判定する画素(比較器に入力されている画素)の色情報に対応して前記閾値を切り替えて使用するとよい。   That is, in the threshold selection circuit 203, a threshold value (for white defect / for black defect) is set in advance for each color at a ratio of approximately the above formula (1), and a pixel for determining the presence or absence of a defect (input to the comparator). The threshold value may be switched and used in accordance with the color information of the pixel).

図5は補色フィルタの例を説明する図である。図5のような補色フィルタを用いた撮像装置では、信号処理のマトリクスの組み方に複数の組み方が考えられるが、たとえば
Y=K1*Ye+K2*Cy+K3*Mg+K4*G
の計算式で生成している場合には、
Ye:Cy:Mg:G = K1:K2:K3:K4 ・・・(2)
であるから、上記(1)式と同様に大略上記(2)式の比率であらかじめ各色に対する閾値(白欠陥用/黒欠陥用)を設定しておくと良い。なお、上記以外の他の色配置の場合でも同様に設定すると良い。
FIG. 5 is a diagram illustrating an example of a complementary color filter. In the image pickup apparatus using the complementary color filter as shown in FIG. 5, a plurality of ways of assembling the signal processing matrix can be considered. For example, Y = K1 * Ye + K2 * Cy + K3 * Mg + K4 * G
If it is generated by the formula of
Ye: Cy: Mg: G = K1: K2: K3: K4 (2)
Therefore, it is preferable to set a threshold value (for white defect / for black defect) for each color in advance in the ratio of the above expression (2) as in the above expression (1). It should be noted that the same setting may be used for other color arrangements than the above.

以上説明したように、本実施形態によれば、欠陥検出する画素の色情報の輝度信号に対する影響度を考慮して、欠陥検出する画素をその色情報に応じて欠陥か否かを判定する閾値を切り替えて使用する(例えば、赤(R)画素の欠陥を判定するときの閾値THrと、緑(G)画素の欠陥を判定するときの閾値THgと、青(B)画素の欠陥を判定するときの閾値THbをTHr/THg/THb=0.29/0.30/0.11となるように設定しておき、欠陥の有無を判定すべき画素が比較器に入力されたとき、入力された画素の色信号に応じて前記閾値を切り替えて使用する)。   As described above, according to the present embodiment, the threshold for determining whether or not a pixel for defect detection is defective according to the color information in consideration of the degree of influence of the color information of the pixel for defect detection on the luminance signal. (For example, a threshold THr for determining a defect of a red (R) pixel, a threshold THg for determining a defect of a green (G) pixel, and a defect of a blue (B) pixel) The threshold value THb is set so that THr / THg / THb = 0.29 / 0.30 / 0.11, and is input when a pixel for which the presence or absence of a defect is to be determined is input to the comparator. The threshold value is switched according to the color signal of the selected pixel).

このため、カラー撮像装置においても、画素欠陥を高精度に検出し、補正することが可能となる。   For this reason, even in a color imaging apparatus, pixel defects can be detected and corrected with high accuracy.

なお、本実施形態では、データラッチ202を用いて、近隣画素として直前の同色の画素の情報を取得し、この情報を用いて欠陥検出と欠陥補正を行うようにした。しかしながら、例えばラインメモリを用いて、1ライン手前の画素の情報を取得し、この情報を用いて欠陥検出と欠陥補正を行うこともできる。また、フィード(フレーム)メモリなどを用いて左右、1ライン上下、斜め右上、斜め右下、斜め左上、斜め左下、などの情報を用いて、すなわち、より広い範囲の周辺画素の情報を用いて欠陥検出と欠陥補正を行うこともできる。   In the present embodiment, the data latch 202 is used to acquire information on the immediately preceding pixel of the same color as a neighboring pixel, and defect detection and defect correction are performed using this information. However, for example, it is also possible to acquire information on the pixel one line before using a line memory, and perform defect detection and defect correction using this information. Also, using a feed (frame) memory or the like, using information such as left and right, one line up and down, diagonal upper right, diagonal lower right, diagonal upper left, diagonal lower left, etc., that is, using information on a wider range of peripheral pixels Defect detection and defect correction can also be performed.

なお、本発明は、前記特許文献1記載の撮像装置と同様に、監視カメラシステムなどのように長期間に亘って通電し続け、欠陥画素が経時変化で現れる撮像装置において、特に有効である
図6は、本発明の第2の実施形態を説明する図である。第1の実施形態とは、欠陥検出補正回路の構成に相違がある。なお、図6において図2に示される部分と同一部分については同一符号を付してその説明を省略する。
Note that the present invention is particularly effective in an imaging apparatus such as a surveillance camera system that continuously energizes for a long period of time and defective pixels appear over time, like the imaging apparatus described in Patent Document 1. FIG. 6 is a diagram for explaining a second embodiment of the present invention. The configuration of the defect detection and correction circuit is different from that of the first embodiment. 6, the same parts as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.

撮像装置においては、撮影する光源の色温度がさまざまであるため、白色が白色として撮影できるように色ゲインを自動で制御するいわゆるオートホワイトバランス制御が広く採用されている。例えば、色温度が高くなるほど赤色(R)のゲインを大きくし、青色(B)のゲインを小さくする。逆に色温度が低くなるほど赤色(R)のゲインを小さくし、青色(B)のゲインを大きくする。また、蛍光灯などの光源下では、緑色(G)のゲインを制御することもある。なお、本実施形態では、オートホワイトバランス制御は、信号処理回路15に配置されているとする。   In the imaging apparatus, since the color temperature of the light source to be photographed varies, so-called auto white balance control that automatically controls the color gain so that white can be photographed as white is widely adopted. For example, as the color temperature increases, the red (R) gain is increased and the blue (B) gain is decreased. Conversely, the lower the color temperature, the smaller the red (R) gain and the greater the blue (B) gain. Further, under a light source such as a fluorescent lamp, the green (G) gain may be controlled. In the present embodiment, it is assumed that the auto white balance control is arranged in the signal processing circuit 15.

欠陥検出補正回路104が、オートホワイトバランス制御回路の前に配置されている場合、上記したように、オートホワイトバランス制御回路が各色のゲインを変更するため、各色に対して設定してある閾値(白欠陥用/黒欠陥用)は前記各色のゲインを考慮した値とする必要がある。   When the defect detection correction circuit 104 is arranged in front of the auto white balance control circuit, the auto white balance control circuit changes the gain of each color as described above. For white defect / black defect), it is necessary to consider the gain of each color.

閾値選択回路303は、図示しないオートホワイトバランス制御部から各色(R,G,B)毎のゲイン(光源の色温度情報を表す)を入力し、あらかじめ設定してある各色に対する閾値(白欠陥用/黒欠陥用)を、入力された各色毎のゲインを乗じた値に変更する。また、この変更された閾値は、比較器201に入力された画素信号の色情報に応じて選択されて、比較器201に出力する。   The threshold selection circuit 303 inputs a gain (representing color temperature information of the light source) for each color (R, G, B) from an auto white balance control unit (not shown), and sets a threshold for each color (for white defect). / For black defect) is changed to a value obtained by multiplying the input gain for each color. The changed threshold value is selected according to the color information of the pixel signal input to the comparator 201 and is output to the comparator 201.

本実施形態では、撮影する光源の色温度が変わった場合において、光源の色温度に応じて閾値を変更しているため、より精度の高い画素欠陥検出と画素欠陥補正を可能とすることができる。   In this embodiment, when the color temperature of the light source to be photographed is changed, the threshold value is changed according to the color temperature of the light source, so that more accurate pixel defect detection and pixel defect correction can be performed. .

なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすくするために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また、上記の各構成は、それらの一部又は全部が、ハードウェアで構成されても、プロセッサでプログラムが実行されることにより実現されるように構成されてもよい。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。   In addition, each of the above-described configurations may be configured such that some or all of them are configured by hardware, or are implemented by executing a program by a processor. Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

以上説明したように、本発明の実施形態によれば、検出補正対象画素の画素値と、前記画素値保持部に保持された画素値との差を予め設定した閾値と比較する比較部を備え、前記閾値は、欠陥と判定する画素の輝度に対する重み係数を考慮して設定し、検出補正対象画素の色情報の種類に応じて切り換える。また、ホワイトバランスの状態(光源の色温度)によって閾値の設定を変更するためより精度の高い画素欠陥検出を行うことが可能となる。   As described above, according to the embodiment of the present invention, the comparison unit that compares the difference between the pixel value of the detection correction target pixel and the pixel value held in the pixel value holding unit with a preset threshold value is provided. The threshold value is set in consideration of a weighting factor for the luminance of the pixel determined to be defective, and is switched according to the type of color information of the detection correction target pixel. Also, since the threshold setting is changed according to the white balance state (color temperature of the light source), it becomes possible to detect pixel defects with higher accuracy.

101 撮像レンズ
102 撮像素子
103 A/D変換回路
104 欠陥検出補正回路
105 信号処理回路
106 タイミングジェネレータ
201 比較器
202 データラッチ
203 閾値選択回路
303 閾値選択回路
DESCRIPTION OF SYMBOLS 101 Image pick-up lens 102 Image pick-up element 103 A / D conversion circuit 104 Defect detection correction circuit 105 Signal processing circuit 106 Timing generator 201 Comparator 202 Data latch 203 Threshold selection circuit 303 Threshold selection circuit

Claims (4)

撮像素子からの画像信号から画素欠陥を検出し、検出した画素欠陥を補正する画素欠陥検出補正回路と、該画素欠陥検出補正回路により補正された画像信号を処理して映像信号を送出する信号処理回路を備えた撮像装置において、
画素欠陥検出補正回路は、
補正対象画素の近隣の画素の画素信号を保持する画素値保持部と、
補正対象画素の画素値と、前記画素値保持部に保持された画素値との差を予め設定した閾値と比較して補正対象画素の画素欠陥を検出する比較部と、
画素欠陥を検出したとき欠陥画素を補間して補正する補正部を備え、
前記閾値は、補正対象画素の色信号の輝度信号に寄与する程度を表す重み係数に対応して各色毎に設定し、前記補正対象画素の色信号に応じて切り換えることを特徴とする撮像装置。
A pixel defect detection and correction circuit for detecting a pixel defect from an image signal from an image sensor, correcting the detected pixel defect, and a signal processing for processing the image signal corrected by the pixel defect detection and correction circuit and transmitting a video signal In an imaging apparatus provided with a circuit,
Pixel defect detection and correction circuit
A pixel value holding unit that holds a pixel signal of a pixel in the vicinity of the correction target pixel;
A comparison unit that detects a pixel defect of the correction target pixel by comparing a difference between the pixel value of the correction target pixel and the pixel value held in the pixel value holding unit with a preset threshold;
A correction unit that interpolates and corrects defective pixels when a pixel defect is detected,
The imaging apparatus according to claim 1, wherein the threshold value is set for each color corresponding to a weighting factor indicating a degree of contribution to the luminance signal of the color signal of the correction target pixel, and is switched according to the color signal of the correction target pixel.
請求項1記載の撮像装置において、
前記画素値保持部が保持する画素が表す色と補正対象画素が表す色は同一であることを特徴とする撮像装置。
The imaging device according to claim 1,
An image pickup apparatus, wherein a color represented by a pixel held by the pixel value holding unit and a color represented by a correction target pixel are the same.
請求項1記載の撮像装置において、
各色毎に設定する閾値は、オートホワイトバランス制御部が各色信号毎に設定したゲインに応じて変更することを特徴とする撮像装置。
The imaging device according to claim 1,
The threshold value set for each color is changed according to the gain set for each color signal by the auto white balance control unit.
請求項1記載の撮像装置において、
各色毎に設定する閾値は、被写体を照明する光源の色温度にしたがって変更することを特徴とする撮像装置。
The imaging device according to claim 1,
An imaging apparatus characterized in that a threshold value set for each color is changed according to a color temperature of a light source that illuminates a subject.
JP2011124219A 2011-06-02 2011-06-02 Imaging apparatus Withdrawn JP2012253545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124219A JP2012253545A (en) 2011-06-02 2011-06-02 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124219A JP2012253545A (en) 2011-06-02 2011-06-02 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2012253545A true JP2012253545A (en) 2012-12-20

Family

ID=47525947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124219A Withdrawn JP2012253545A (en) 2011-06-02 2011-06-02 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2012253545A (en)

Similar Documents

Publication Publication Date Title
US7876369B2 (en) Image processing apparatus, image processing method, and program
JP5526014B2 (en) Imaging device
JP3747909B2 (en) Pixel defect detection correction apparatus and pixel defect detection correction method
US8970742B2 (en) Image processing apparatus and method capable of performing correction process speedily and easily
JP5162730B2 (en) Imaging device and dark current correction method thereof
JP5541718B2 (en) Imaging device and defective pixel detection method thereof
US8451350B2 (en) Solid-state imaging device, camera module, and imaging method
JPWO2011155297A1 (en) Imaging apparatus and image processing method
US9307168B2 (en) Image capture apparatus and method for controlling image capture apparatus in which defective pixels are indicated
JP5039588B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JP5262953B2 (en) Image processing apparatus, image processing method, and program
CN109565556B (en) Image processing apparatus, image processing method, and storage medium
US10623674B2 (en) Image processing device, image processing method and computer readable recording medium
JP4166974B2 (en) Pixel scratch detection / correction device
JP2011114473A (en) Pixel defect correction device
JP2020022135A (en) Defective pixel correction device, imaging device, and defective pixel correction method
US10791289B2 (en) Image processing apparatus, image processing method, and non-transitory computer readable recording medium
JP2012253545A (en) Imaging apparatus
JP2002271806A (en) Pixel defect signal correction circuit for ccd image pickup element
JP5694907B2 (en) Imaging device
JP2008148115A (en) Image defect correction system of imaging device using direction detection
JP2016019245A (en) Image processing system and image processing method
JP5774456B2 (en) Imaging device
JP4088869B2 (en) Defective pixel detection device for solid-state imaging device and solid-state imaging device
US10911700B2 (en) Image capturing apparatus, image processing apparatus, and method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805