JP2013115122A - Glass ceramic sintered compact, reflection member and light-emitting element mounting substrate using the same, and light-emitting device - Google Patents

Glass ceramic sintered compact, reflection member and light-emitting element mounting substrate using the same, and light-emitting device Download PDF

Info

Publication number
JP2013115122A
JP2013115122A JP2011257837A JP2011257837A JP2013115122A JP 2013115122 A JP2013115122 A JP 2013115122A JP 2011257837 A JP2011257837 A JP 2011257837A JP 2011257837 A JP2011257837 A JP 2011257837A JP 2013115122 A JP2013115122 A JP 2013115122A
Authority
JP
Japan
Prior art keywords
phase
mass
glass
ceramic sintered
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011257837A
Other languages
Japanese (ja)
Other versions
JP5840937B2 (en
Inventor
Shintaro Saito
愼太郎 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011257837A priority Critical patent/JP5840937B2/en
Publication of JP2013115122A publication Critical patent/JP2013115122A/en
Application granted granted Critical
Publication of JP5840937B2 publication Critical patent/JP5840937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass ceramic sintered compact which is less susceptible to occurrence of defects due to cracking or shedding on the surface in the external machining or cutting step, and to provide a reflection member using the same, and a light-emitting element mounting substrate and a light-emitting device.SOLUTION: A glass ceramic sintered compact 1 has an anorthite phase, a quartz phase, a calcium/zirconium/silicate phase, and a zirconia phase in the glass phase. The light-emitting element mounting substrate includes an insulating substrate 13 having a mounting part 11 on which a light-emitting element is mounted, and a reflection member 19 provided on the upper surface of the insulating substrate 13 so as to surround the mounting part 11. At least one of the insulating substrate 13 and the reflection member 19 consists of the glass ceramic sintered compact.

Description

本発明は、外形加工性に優れたガラスセラミック焼結体と、これを用いた反射部材および発光素子搭載用基板、ならびに発光装置に関する。   The present invention relates to a glass-ceramic sintered body excellent in external formability, a reflecting member and a light-emitting element mounting substrate using the same, and a light-emitting device.

近年、発光素子を搭載した発光装置は、高輝度化および白色化に対する改良が図られ、携帯電話や大型の液晶テレビ等のバックライトとして利用されている。その中で、高反射性を有するだけでなく、従来の発光素子搭載用基板に用いられてきた合成樹脂に比べて、耐熱性や耐久性に優れ、長期間紫外線に曝されても劣化しないという理由から、ガラスセラミック焼結体が注目されている。   In recent years, light-emitting devices equipped with light-emitting elements have been improved for high brightness and whitening, and are used as backlights for mobile phones, large liquid crystal televisions, and the like. Among them, it has not only high reflectivity but also excellent heat resistance and durability compared to the synthetic resin that has been used for conventional light emitting element mounting substrates, and it does not deteriorate even when exposed to ultraviolet rays for a long time. For this reason, glass ceramic sintered bodies have attracted attention.

例えば、特許文献1には、セラミック原料として、ホウ珪酸ガラスと、アルミナと、カルシウムなど2族元素と、金属ニオビウムまたは酸化ニオビウムとを用いることにより可視光領域において高い反射率を示すガラスセラミック焼結体が開示されている。   For example, Patent Document 1 discloses a glass-ceramic sintered material that exhibits high reflectance in the visible light region by using borosilicate glass, alumina, a Group 2 element such as calcium, and niobium metal or niobium oxide as ceramic materials. The body is disclosed.

特開2009−64842号公報JP 2009-64842 A

しかしながら、特許文献1に開示されたガラスセラミック焼結体は、当該ガラスセラミック焼結体中に硬度の高いアルミナ粒子を含有していることから、ダイシングソー等を用いた外形加工や切断処理工程において、ガラスセラミック焼結体の表面にクラックあるいは脱粒に起因する欠陥が発生しやすいという問題があった。   However, since the glass-ceramic sintered body disclosed in Patent Document 1 contains alumina particles with high hardness in the glass-ceramic sintered body, in the outer shape processing or cutting processing step using a dicing saw or the like. There has been a problem that defects caused by cracks or degranulation are likely to occur on the surface of the glass ceramic sintered body.

従って、本発明は、外形加工や切断の処理工程において、表面にクラックあるいは脱粒に起因する欠陥の発生し難いガラスセラミック焼結体とそれを用いた反射部材および発光素子搭載用基板ならびに発光装置を提供することを目的とする。   Accordingly, the present invention provides a glass-ceramic sintered body that is less prone to defects caused by cracks or grain separation on the surface in a processing step of outer shape processing or cutting, a reflecting member using the same, a light-emitting element mounting substrate, and a light-emitting device. The purpose is to provide.

本発明のガラスセラミック焼結体は、ガラス相中に、アノーサイト相と、石英相と、カルシウム・ジルコニウム・シリケート相と、ジルコニア相とを有することを特徴とする。   The glass-ceramic sintered body of the present invention is characterized by having an anorthite phase, a quartz phase, a calcium-zirconium silicate phase, and a zirconia phase in the glass phase.

本発明の反射部材は、上記のガラスセラミック焼結体からなることを特徴とする。   The reflecting member of the present invention is characterized by comprising the above glass ceramic sintered body.

本発明の発光素子搭載用基板は、発光素子を搭載するための搭載部を備えた絶縁基体と、該絶縁基体の前記搭載部側に、前記搭載部を囲うように設けられた反射部材とを有し、前記絶縁基体および前記反射部材のうち少なくとも一方が上記のガラスセラミック焼結体からなることを特徴とする。   The light emitting element mounting substrate according to the present invention includes an insulating base having a mounting portion for mounting the light emitting element, and a reflective member provided on the mounting portion side of the insulating base so as to surround the mounting portion. And at least one of the insulating base and the reflecting member is made of the glass ceramic sintered body.

本発明の発光装置は、前記の発光素子搭載用基板の前記搭載部に発光素子を備えていることを特徴とする。   The light emitting device of the present invention is characterized in that a light emitting element is provided in the mounting portion of the light emitting element mounting substrate.

本発明によれば、外形加工や切断の処理工程において、表面にクラックあるいは脱粒に
起因する欠陥の発生し難いガラスセラミック焼結体と、それを用いた反射部材および発光素子搭載用基板ならびに発光装置を得ることができる。
According to the present invention, a glass-ceramic sintered body in which defects due to cracks or degranulation are hardly generated in a processing step of outer shape processing or cutting, a reflecting member, a light-emitting element mounting substrate, and a light-emitting device using the same Can be obtained.

(a)は、本実施形態のガラスセラミック焼結体を示すもので、マザー基板を切断した後の状態を示す斜視図であり、(b)は、(a)のA−A線断面図である。(A) shows the glass-ceramic sintered compact of this embodiment, and is a perspective view which shows the state after cut | disconnecting a mother board | substrate, (b) is the sectional view on the AA line of (a). is there. 本実施形態の発光素子搭載用基板の一例を示す断面図である。It is sectional drawing which shows an example of the light emitting element mounting substrate of this embodiment.

本実施形態のガラスセラミック焼結体の一例について図1を基に説明する。図1(a)は、本実施形態のガラスセラミック焼結体を示すもので、マザー基板を切断した後の状態を示す斜視図であり、(b)は、(a)のA−A線断面図である。   An example of the glass ceramic sintered body of the present embodiment will be described with reference to FIG. Fig.1 (a) shows the glass ceramic sintered compact of this embodiment, and is a perspective view which shows the state after cut | disconnecting a mother board | substrate, (b) is the sectional view on the AA line of (a). FIG.

本実施形態のガラスセラミック焼結体1は、ガラス相中に、アノーサイト相と、石英相と、カルシウム・ジルコニウム・シリケート相と、ジルコニア相とを有するものである。本実施形態のガラスセラミック焼結体1では、ガラス相のマトリックス中に、アノーサイト相、石英相、カルシウム・ジルコニウム・シリケート相およびジルコニア相などの結晶相が存在する構成となっているために、ガラスセラミック焼結体1の表面はガラス相に覆われている。このためガラスセラミック焼結体1の表面付近における結晶相やフィラーの脱粒による欠けなどの欠陥を小さくすることができる。   The glass-ceramic sintered body 1 of the present embodiment has an anorthite phase, a quartz phase, a calcium-zirconium silicate phase, and a zirconia phase in a glass phase. In the glass-ceramic sintered body 1 of the present embodiment, the glass phase matrix has a structure in which crystal phases such as anorthite phase, quartz phase, calcium-zirconium-silicate phase, and zirconia phase exist. The surface of the glass ceramic sintered body 1 is covered with a glass phase. For this reason, defects such as chipping due to crystal phase and filler degranulation in the vicinity of the surface of the glass ceramic sintered body 1 can be reduced.

また、上記ガラスセラミック焼結体1では、ガラス相中に含まれる結晶相のうち硬度が最も高い石英(α−石英)でも、モース硬度が7程度であることから、アルミナ(モース硬度9)などモース硬度が7よりも高い結晶相を含むガラスセラミック焼結体1に比較して、外形加工や切断の処理工程において、ガラスセラミック焼結体1の表面のみならず内部においてもクラックや脱粒等に起因する欠陥3のサイズを小さくすることができる。この場合、例えば、ダイシングソーを用いた切断加工におけるチッピング幅(最大値)を70μm以下にできる。   In the glass-ceramic sintered body 1, even the quartz (α-quartz) having the highest hardness among the crystal phases contained in the glass phase has a Mohs hardness of about 7, so alumina (Mohs hardness 9) or the like. Compared to the glass ceramic sintered body 1 containing a crystalline phase having a Mohs hardness higher than 7, in the outer shape processing and cutting processing steps, not only on the surface of the glass ceramic sintered body 1 but also on the inside thereof, cracks, grain breakage, etc. The size of the resulting defect 3 can be reduced. In this case, for example, the chipping width (maximum value) in a cutting process using a dicing saw can be set to 70 μm or less.

また、本実施形態のガラスセラミック焼結体1は、上述のように、ガラス相中に、石英相(α−石英、屈折率1.45)とともに、アノーサイト(CaAlSi、屈折率1.58)相を有し、さらには、カルシウム・ジルコニウム・シリケート相(例えば、CaZrSi12、屈折率1.7〜2.1)およびジルコニア相(屈折率2.4)とを有している。これにより可視光線の波長の領域(波長400〜700nm)における光の反射率を90%以上にできるとともに、可視光線の波長の領域よりも波長の短い近紫外線の波長の領域(380nm以下)における光の反射率を69%以上にすることが可能になる。 Further, as described above, the sintered glass ceramic body 1 of the present embodiment includes an anosite (CaAl 2 Si 2 O 8 , refraction) together with a quartz phase (α-quartz, refractive index 1.45) in the glass phase. And a calcium-zirconium-silicate phase (for example, Ca 2 ZrSi 4 O 12 , refractive index 1.7 to 2.1) and a zirconia phase (refractive index 2.4). have. As a result, the reflectance of light in the visible light wavelength region (wavelength 400 to 700 nm) can be made 90% or more, and the light in the near ultraviolet wavelength region (380 nm or less) shorter than the visible light wavelength region. It is possible to make the reflectivity of 69% or more.

これは、ガラスセラミック焼結体の表面がガラス相に覆われており、表面のガラス相中およびこのガラス相の下層側において、石英相の周囲に、屈折率の異なるアノーサイト相とカルシウム・ジルコニウム・シリケート相とジルコニア相とが混在して均一に分散している構成となっているために、それぞれの結晶相が波長の短い光に対応して反射することが可能となり、また、ガラスセラミック焼結体の表面付近において光の乱反射が起きやすくなっているためであると考えられる。   This is because the surface of the glass-ceramic sintered body is covered with a glass phase, and in the glass phase on the surface and on the lower layer side of this glass phase, around the quartz phase, the anorthite phase and calcium / zirconium having different refractive indexes are provided.・ Since the silicate phase and zirconia phase are mixed and uniformly dispersed, each crystal phase can be reflected in response to light having a short wavelength, It is thought that this is because diffused reflection of light is likely to occur near the surface of the bonded body.

また、本実施形態のガラスセラミック焼結体では、ガラス相の含有量が26〜44質量%、アノーサイト相の含有量が5〜35質量%、石英相の含有量が1〜9質量%、カルシウム・ジルコニウム・シリケート相の含有量が6〜14質量%およびジルコニア相の含有量が17〜41質量%であるときには、380nm以下の波長の領域における光の反射率を90%以上にすることができる。この中で、ガラス相、アノーサイト相、石英相および
カルシウム・ジルコニウム・シリケート相のそれぞれの含有量を上記範囲とし、ジルコニア相の含有量を18〜41質量%としたときには、380nm以下の波長の領域における光の反射率を91%以上にすることができる。
Moreover, in the glass ceramic sintered body of the present embodiment, the content of the glass phase is 26 to 44% by mass, the content of the anorthite phase is 5 to 35% by mass, the content of the quartz phase is 1 to 9% by mass, When the content of the calcium / zirconium / silicate phase is 6 to 14% by mass and the content of the zirconia phase is 17 to 41% by mass, the reflectance of light in a wavelength region of 380 nm or less may be 90% or more. it can. Among these, when the contents of the glass phase, the anorthite phase, the quartz phase, and the calcium / zirconium / silicate phase are within the above ranges and the content of the zirconia phase is 18 to 41% by mass, the wavelength of 380 nm or less The light reflectance in the region can be 91% or more.

また、ガラス相の含有量が32〜44質量%、アノーサイト相の含有量が22〜26質量%、石英相の含有量が5〜9質量%、カルシウム・ジルコニウム・シリケート相の含有量が6〜10質量%およびジルコニア相の含有量が18〜30質量%であるとともに、石英相の平均粒径が0.9〜5.5μmであるときには、380nm以下の波長の領域における光の反射率を91%以上に維持した状態で、ダイシングソーを用いた切断加工におけるチッピング幅を55μm以下にできる。   Further, the glass phase content is 32 to 44% by mass, the anorthite phase content is 22 to 26% by mass, the quartz phase content is 5 to 9% by mass, and the calcium / zirconium silicate phase content is 6%. When the content of -10% by mass and the content of the zirconia phase is 18-30% by mass, and the average particle size of the quartz phase is 0.9-5.5 μm, the reflectance of light in the wavelength region of 380 nm or less is With the state maintained at 91% or more, the chipping width in the cutting process using the dicing saw can be made 55 μm or less.

また、アノーサイト相、石英相およびカルシウム・ジルコニウム・シリケート相の含有量をそれぞれ22〜26質量%、5〜9質量%および6〜10質量%とし、ガラス相の含有量を32〜42質量%、ジルコニア相の含有量を22〜30質量%として、石英相の平均粒径を1.9〜5.5μmとしたときには、ダイシングソーを用いた切断加工におけるチッピング幅を55μm以下に維持した状態で380nm以下の波長の領域における光の反射率を92%以上に高めることができる。   Further, the contents of the anorthite phase, the quartz phase and the calcium / zirconium / silicate phase are 22 to 26 mass%, 5 to 9 mass% and 6 to 10 mass%, respectively, and the glass phase content is 32 to 42 mass%. When the content of the zirconia phase is 22 to 30% by mass and the average particle size of the quartz phase is 1.9 to 5.5 μm, the chipping width in cutting using a dicing saw is maintained at 55 μm or less. The reflectance of light in a wavelength region of 380 nm or less can be increased to 92% or more.

さらに、アノーサイト相および石英相のそれぞれの含有量を22〜26質量%および5〜9質量%の範囲とし、石英相の平均粒径を1.9〜5.5μmとして、ガラス相の含有量を34〜42質量%、カルシウム・ジルコニウム・シリケート相の含有量を6〜9質量%およびジルコニア相の含有量を22〜27質量%としたときには、ダイシングソーを用いた切断加工におけるチッピング幅を45μm以下に小さくすることができる。   Further, the content of the anorthite phase and the quartz phase is in the range of 22 to 26% by mass and 5 to 9% by mass, the average particle size of the quartz phase is 1.9 to 5.5 μm, and the content of the glass phase When the content of the calcium / zirconium silicate phase is 6 to 9% by mass and the content of the zirconia phase is 22 to 27% by mass, the chipping width in the cutting process using a dicing saw is 45 μm. The following can be reduced.

さらに、上記組成において、石英相の平均粒径を1.9〜3.8μmとしたときには、ダイシングソーを用いた切断加工におけるチッピング幅を40μm以下とさらに小さくすることができる。   Furthermore, in the above composition, when the average particle size of the quartz phase is 1.9 to 3.8 μm, the chipping width in the cutting process using a dicing saw can be further reduced to 40 μm or less.

次に、本実施形態のガラスセラミック焼結体1を発光素子搭載用基板に適用した例について説明する。図2は、本実施形態の発光素子搭載用基板の一例を示す断面図である。   Next, an example in which the glass ceramic sintered body 1 of the present embodiment is applied to a light emitting element mounting substrate will be described. FIG. 2 is a cross-sectional view illustrating an example of the light emitting element mounting substrate of the present embodiment.

本実施形態の発光素子搭載用基板は、発光素子(図示せず)を搭載するための搭載部11を備えた絶縁基体13と、絶縁基体13の上面および下面に設けられた導体層15と、絶縁基体13の上面および下面に設けられた導体層15同士を接続するための貫通導体17とを有し、さらに絶縁基体13の上面において、搭載部11を囲うように設けられた反射部材19とを有するものであり、絶縁基体13および反射部材19のうち少なくとも一方が本実施形態のガラスセラミック焼結体1からなるものである。   The light emitting element mounting substrate of this embodiment includes an insulating base 13 provided with a mounting portion 11 for mounting a light emitting element (not shown), a conductor layer 15 provided on the upper and lower surfaces of the insulating base 13, and A through conductor 17 for connecting the conductor layers 15 provided on the upper and lower surfaces of the insulating base 13, and a reflecting member 19 provided so as to surround the mounting portion 11 on the upper surface of the insulating base 13; And at least one of the insulating base 13 and the reflecting member 19 is made of the glass ceramic sintered body 1 of the present embodiment.

上述したように、本実施形態のガラスセラミック焼結体1は、切断や研磨などの外形加工性に優れており、ガラスセラミック焼結体1の表面に発生する欠陥3のサイズを小さくすることができることから、このようなガラスセラミック焼結体1を発光素子搭載用基板の絶縁基体13および反射部材19のうち少なくとも一方に適用した場合には、欠陥3が小さく、かつ可視光領域のみならず、波長が400nmよりも短い近紫外線の波長の領域においても高い反射率を示す発光素子搭載用基板を得ることができる。この場合、発光素子搭載用基板として外観検査での不良率を低減できるという点で欠陥3のサイズ(図1(b)に示す幅w)は、最大値が70μm以下であることが望ましい。   As described above, the glass ceramic sintered body 1 of the present embodiment is excellent in external formability such as cutting and polishing, and the size of the defect 3 generated on the surface of the glass ceramic sintered body 1 can be reduced. Therefore, when such a glass ceramic sintered body 1 is applied to at least one of the insulating base 13 and the reflecting member 19 of the light emitting element mounting substrate, the defect 3 is small and not only in the visible light region, It is possible to obtain a light-emitting element mounting substrate that exhibits high reflectance even in the near-ultraviolet wavelength region where the wavelength is shorter than 400 nm. In this case, it is desirable that the maximum size of the defect 3 (width w shown in FIG. 1B) is 70 μm or less in that the defect rate in the appearance inspection as the light emitting element mounting substrate can be reduced.

また、上記した発光素子搭載用基板の搭載部11に発光素子を取り付けた発光装置は、発光素子搭載用基板を構成する絶縁基体13および反射部材19のうち少なくとも一方が可視光領域のみならず、波長が400nmよりも短い近紫外線の波長の領域においても高
い反射率を示すものであることから、広い波長の範囲にわたって高い発光特性を示すものとなる。
Further, in the light emitting device in which the light emitting element is attached to the mounting portion 11 of the light emitting element mounting substrate, at least one of the insulating base 13 and the reflecting member 19 constituting the light emitting element mounting substrate is not only in the visible light region, Since it exhibits high reflectance even in the near ultraviolet wavelength region where the wavelength is shorter than 400 nm, it exhibits high light emission characteristics over a wide wavelength range.

次に、本実施形態のガラスセラミック焼結体1の製造方法について説明する。まず、原料粉末として、ガラス粉末と、石英粉末と、ジルコニア(ZrO)粉末とを準備する。この場合、ガラス粉末は、アノーサイト相(CaAlSi)相が析出しやすいという理由から、Si、B、Al、Ca、Mg、Znをそれぞれ含有するホウ珪酸ガラス粉末を用いることが好ましい。また、原料粉末中にジルコニア粉末を含ませると、ガラス粉末を構成しているCa等のアルカリ土類元素の酸化物と二酸化珪素との間で高屈折率のカルシウム・ジルコニウム・シリケート相(例えば、CaZrSi12)とジルコニア相との共存系が形成されやすくなり、これにより高い光の反射率を有するガラスセラミック焼結体1を得ることが可能となる。この場合、原料粉末中に含まれる石英粉末の含有量は2〜15質量%、特に3〜7質量%であることが望ましいが、石英粉末の平均粒径としては1〜6μm、特に、1〜4μmであるものを用いることが好ましい。 Next, the manufacturing method of the glass ceramic sintered compact 1 of this embodiment is demonstrated. First, glass powder, quartz powder, and zirconia (ZrO 2 ) powder are prepared as raw material powders. In this case, borosilicate glass powder containing Si, B, Al, Ca, Mg, and Zn, respectively, is used for the glass powder because the anorthite phase (CaAl 2 Si 2 O 8 ) phase is likely to precipitate. preferable. Further, when zirconia powder is included in the raw material powder, a high refractive index calcium / zirconium / silicate phase (for example, between the oxide of an alkaline earth element such as Ca and silicon dioxide constituting the glass powder (for example, Coexisting system of Ca 2 ZrSi 4 O 12 ) and zirconia phase is likely to be formed, and this makes it possible to obtain a glass ceramic sintered body 1 having a high light reflectance. In this case, the content of the quartz powder contained in the raw material powder is preferably 2 to 15% by mass, particularly 3 to 7% by mass, but the average particle size of the quartz powder is 1 to 6 μm, particularly 1 to It is preferable to use one having a thickness of 4 μm.

また、原料粉末中に含まれるジルコニア粉末の含有量は5〜55質量%、15〜40質量%、特に、20〜25質量%とすることが望ましいが、ジルコニア粉末は石英粉末よりも平均粒径の小さい粉末を用いることが望ましく、平均粒径は0.3〜1.0μm、特に、0.3〜0.8μmであるものを用いることが好ましい。原料粉末として、平均粒径が1μm以下のジルコニア粉末を用いると、石英相の周囲に微粒のカルシウム・ジルコニウム・シリケート相を形成することができるとともに、アノーサイト相も微粒化することが可能となり、さらには、カルシウム・ジルコニウム・シリケート相に導入されずに残ったジルコニア相も上記のアノーサイト相およびカルシウム・ジルコニウム・シリケート相と共存させることが可能となり、これにより紫外線および近紫外線の波長の領域における光の反射率がさらに高いガラスセラミック焼結体1を得ることが可能となる。   The content of the zirconia powder contained in the raw material powder is preferably 5 to 55% by mass, 15 to 40% by mass, and particularly preferably 20 to 25% by mass. However, the zirconia powder has an average particle size larger than that of the quartz powder. It is desirable to use a powder having a small average particle diameter of 0.3 to 1.0 [mu] m, particularly 0.3 to 0.8 [mu] m. When a zirconia powder having an average particle size of 1 μm or less is used as a raw material powder, a fine calcium / zirconium / silicate phase can be formed around the quartz phase, and the anorthite phase can be atomized. Furthermore, the zirconia phase remaining without being introduced into the calcium / zirconium / silicate phase can coexist with the anorthite phase and the calcium / zirconium / silicate phase as described above. It becomes possible to obtain the glass ceramic sintered body 1 having a higher light reflectance.

次に、ガラス粉末と、石英粉末と、ジルコニア粉末とを有機ビヒクルとともにボールミルなどの攪拌混合機を用いて成形用の混合体を調製する。   Next, a glass powder, quartz powder, and zirconia powder are mixed with an organic vehicle to prepare a molding mixture using a stirring mixer such as a ball mill.

次に、調製した成形用の混合体を所定の形状に成形した後、800〜1000℃の温度で焼成することによって本実施形態のガラスセラミック焼結体またはこのガラスセラミック焼結体からなる反射部材を得ることができる。   Next, after the prepared molding mixture is molded into a predetermined shape, it is fired at a temperature of 800 to 1000 ° C. to thereby make the glass ceramic sintered body of the present embodiment or the reflecting member made of this glass ceramic sintered body. Can be obtained.

また、発光素子搭載用基板の絶縁基体13を製造する場合には、成形用の混合体をスラリー状にした上で、ドクターブレード法等の成形法によりシート状成形体を形成し、次に、このシート状成形体を打ち抜き加工により貫通孔を形成した後、作製したシート状成形体のうち導体層15および貫通導体17を有する部分となるシート状成形体にAgまたはCuを主成分とする導体ペーストを用いて導体パターンを形成する。次に、導体パターンが形成されたシート状成形体と、必要に応じて導体パターンを形成していないシート状成形体とを組み合わせて所望の層数になるように積層して生の積層体を作製し、この後、所定の条件にて焼成することにより発光素子搭載用基板となるマザー基板を作製する。   Further, when manufacturing the insulating base 13 of the light emitting element mounting substrate, after forming a molding mixture into a slurry, a sheet-like molded body is formed by a molding method such as a doctor blade method, After forming a through-hole by punching the sheet-shaped molded body, a conductor mainly composed of Ag or Cu is formed on the sheet-shaped molded body that is a portion having the conductor layer 15 and the through conductor 17 in the manufactured sheet-shaped molded body. A conductor pattern is formed using a paste. Next, a sheet-like molded body on which a conductor pattern is formed and a sheet-like molded body on which a conductor pattern is not formed as necessary are combined and laminated so as to have a desired number of layers. Then, a mother substrate to be a light emitting element mounting substrate is manufactured by firing under predetermined conditions.

次に、マザー基板を所定の寸法で切断することにより本実施形態の発光素子搭載用基板の絶縁基体13が得られる。マザー基板を本実施形態のガラスセラミック焼結体により形成した場合には、切断あるいは外形加工の処理工程において、表面にクラックや脱粒に起因する欠陥の発生を抑制することが可能となり、外観が良好であり、かつ光の反射特性に優れた発光素子搭載用基板を得ることができる。   Next, the mother substrate is cut to a predetermined size to obtain the insulating base 13 of the light emitting element mounting substrate of the present embodiment. When the mother substrate is formed of the glass ceramic sintered body of the present embodiment, it is possible to suppress the occurrence of defects due to cracks and degranulation on the surface in the processing step of cutting or outline processing, and the appearance is good In addition, a light-emitting element mounting substrate having excellent light reflection characteristics can be obtained.

まず、原料粉末として、重量比率でSiO:B:Al:CaO:MgO
:ZnO=49:8:18:21:1:3の割合の組成を有するホウケイ酸ガラス粉末(平均粒径:2.5μm)と、石英(α−石英)粉末と、ジルコニア(ZrO)粉末(平均粒径:0.5μm)とを表1の割合で秤量し、次に、この原料粉末100質量部に対して、アクリルバインダーを14質量部、可塑剤としてDOPを5質量部、溶剤としてトルエンを30質量部含む有機ビヒクルを添加し、ボールミルを用いて40時間ほど混合し、スラリーを作製した。次に、このスラリーをドクターブレード法を用いて成形して平均厚みが0.2mmのシート状成形体を作製した。
First, as a raw material powder, SiO 2 : B 2 O 3 : Al 2 O 3 : CaO: MgO in a weight ratio.
: ZnO = Borosilicate glass powder (average particle diameter: 2.5 μm), quartz (α-quartz) powder, and zirconia (ZrO 2 ) powder having a composition ratio of 49: 8: 18: 21: 1: 3 (Average particle size: 0.5 μm) is weighed in the ratio shown in Table 1, and then 100 parts by mass of the raw material powder is 14 parts by mass of acrylic binder, 5 parts by mass of DOP as a plasticizer, An organic vehicle containing 30 parts by mass of toluene was added and mixed using a ball mill for about 40 hours to prepare a slurry. Next, this slurry was molded using a doctor blade method to produce a sheet-like molded body having an average thickness of 0.2 mm.

次に、このシート状成形体を3枚貼り合わせ、加圧積層することにより、生の積層体を作製した後、表1に示す最高温度で1時間焼成して、縦、横、厚みが、それぞれ60mm、50mm、0.4mmのマザー基板を作製した。   Next, three sheets of this sheet-like molded body were bonded and pressure-laminated to produce a raw laminate, and then fired at the maximum temperature shown in Table 1 for 1 hour. Mother substrates of 60 mm, 50 mm, and 0.4 mm were produced.

次に、マザー基板を、ダイシングソー(DISCO社製DAD3350)により切断して、長さ、幅、厚みがそれぞれ約50mm、約5mm、約0.4mmの試料片を10個作製した。次に、切断した10個の試料片を実体顕微鏡を用いて観察し、試料片に発生した欠けなどの欠陥を観察し、稜線に垂直な方向の幅の最大値を表1に記した。切断後の試料片はいずれにも稜線付近のみに微小な欠け(チッピング)が発生していた。   Next, the mother substrate was cut with a dicing saw (DAD3350 manufactured by DISCO) to prepare 10 sample pieces having lengths, widths, and thicknesses of about 50 mm, about 5 mm, and about 0.4 mm, respectively. Next, 10 cut sample pieces were observed using a stereomicroscope, and defects such as chips generated in the sample pieces were observed. Table 1 shows the maximum width in the direction perpendicular to the ridgeline. In each of the cut sample pieces, minute chipping (chipping) occurred only in the vicinity of the ridgeline.

次に、シート状成形体を2枚貼り合わせ、加圧積層することにより、生の積層体を作製した後、切断して、欠けの評価に用いた基板と同じ条件にて焼成して、反射率測定用の基板を作製した。反射率測定用の基板のサイズは縦、横、厚みが、それぞれ30mm、30mm、0.25mmとした。作製した反射率測定用基板の反射率を分光測色計(コニカミノルタ製CM−3700d)を用いて波長360〜720nmの範囲にて測定し、360nm、430nm、540nm、700nmでの反射率を全反射率から求めた。   Next, two sheet-like molded bodies are bonded together and pressure-laminated to produce a raw laminate, which is then cut and fired under the same conditions as the substrate used for evaluation of chipping, and reflected. A substrate for rate measurement was prepared. The size of the substrate for reflectance measurement was 30 mm, 30 mm, and 0.25 mm in length, width, and thickness, respectively. The reflectance of the produced reflectance measurement substrate was measured in the wavelength range of 360 to 720 nm using a spectrocolorimeter (CM-3700d manufactured by Konica Minolta), and the reflectances at 360 nm, 430 nm, 540 nm, and 700 nm were all measured. Obtained from reflectance.

また、ガラスセラミック焼結体中に存在する各結晶相およびガラス相の割合は、ガラスセラミック焼結体を粉砕し、X線回折により得られるメインピーク位置をJCPDSに照らして同定するとともに、リートベルト解析を行うことにより求めた。   The ratio of each crystal phase and glass phase present in the glass ceramic sintered body is determined by crushing the glass ceramic sintered body and identifying the main peak position obtained by X-ray diffraction in light of JCPDS. It was determined by performing an analysis.

ガラスセラミック焼結体中に含まれる石英相の平均粒径は、マザー基板から切り出したガラスセラミック焼結体の一部を樹脂中に埋め、断面の研磨を行った後、研磨した試料について走査型電子顕微鏡を用いて内部組織の写真を撮り、その写真上に約50個入る円を描き、円内および円周にかかった結晶粒子を選択し、次いで、各結晶粒子の輪郭を画像処理して、各結晶粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より求めた。このとき走査型電子顕微鏡に備えられているX線マイクロアナライザにより結晶相に含まれる主成分の元素を同定して、Si以外には酸素しか検出されなかった結晶相を石英相として同定した。   The average particle size of the quartz phase contained in the glass ceramic sintered body is determined by scanning a portion of the glass ceramic sintered body cut out from the mother substrate in a resin, polishing the cross section, and then polishing the sample. Take a picture of the internal structure using an electron microscope, draw about 50 circles on the picture, select the crystal particles that fall within and around the circle, and then image-process the outline of each crystal particle Then, the area of each crystal particle was obtained, the diameter when replaced with a circle having the same area was calculated, and the average value was obtained. At this time, an element of a main component contained in the crystal phase was identified by an X-ray microanalyzer provided in the scanning electron microscope, and a crystal phase in which only oxygen other than Si was detected was identified as a quartz phase.

比較例として、石英(α−石英)粉末の代わりアルミナ粉末を用いた試料を、上記と同様の方法にて作製し、同様の評価を行った(表1の試料No.15)。   As a comparative example, a sample using alumina powder instead of quartz (α-quartz) powder was prepared by the same method as described above, and the same evaluation was performed (sample No. 15 in Table 1).

Figure 2013115122
Figure 2013115122

表1の結果から明らかなように、試料No.1〜7、9〜14および16〜27では、ダイシングソーを用いた切断加工におけるチッピングの幅が70μm以下であった。また、これらの試料は、波長360〜700nmにおける反射率がいずれも69%以上であった。   As is clear from the results in Table 1, sample No. In 1-7, 9-14, and 16-27, the chipping width in cutting using a dicing saw was 70 μm or less. Further, these samples all had a reflectance of 69% or more at a wavelength of 360 to 700 nm.

また、ガラスセラミック焼結体中に含まれるガラス相の含有量が26〜44質量%、アノーサイト相の含有量が5〜35質量%、石英相の含有量が1〜9質量%、カルシウム・ジルコニウム・シリケート相の含有量が6〜14質量%およびジルコニア相の含有量が17〜41質量%である試料No.3〜7、9〜14、16、18、20、21、26および27では、360nmにおける反射率が90%以上であり、ダイシングソーを用いた切断加工におけるチッピングの幅が70μm以下であった。   Further, the glass phase content contained in the glass ceramic sintered body is 26 to 44% by mass, the anorthite phase content is 5 to 35% by mass, the quartz phase content is 1 to 9% by mass, calcium. Sample No. 2 having a zirconium silicate phase content of 6 to 14% by mass and a zirconia phase content of 17 to 41% by mass. In 3-7, 9-14, 16, 18, 20, 21, 26 and 27, the reflectance at 360 nm was 90% or more, and the chipping width in the cutting process using the dicing saw was 70 μm or less.

また、ガラスセラミック焼結体中に含まれるガラス相の含有量が32〜44質量%、アノーサイト相の含有量が22〜26質量%、石英相の含有量が5〜9質量%、カルシウム・ジルコニウム・シリケート相の含有量が6〜14質量%およびジルコニア相の含有量が18〜41質量%である試料No.3〜7、10〜14、16、18、20、21、26および27では、360nmにおける反射率が91%以上であり、ダイシングソーを用いた切断加工におけるチッピングの幅が70μm以下であった。   Further, the glass phase content contained in the glass ceramic sintered body is 32 to 44% by mass, the anorthite phase content is 22 to 26% by mass, the quartz phase content is 5 to 9% by mass, calcium. Sample No. 2 having a zirconium silicate phase content of 6 to 14% by mass and a zirconia phase content of 18 to 41% by mass. In 3-7, 10-14, 16, 18, 20, 21, 26 and 27, the reflectance at 360 nm was 91% or more, and the chipping width in the cutting process using a dicing saw was 70 μm or less.

また、ガラス相の含有量が32〜44質量%、アノーサイト相の含有量が22〜26質量%、石英相の含有量が5〜9質量%、カルシウム・ジルコニウム・シリケート相の含有量が6〜10質量%およびジルコニア相の含有量が18〜30質量%であるとともに、石英相の平均粒径が0.9〜5.5μmである試料No.3〜5、10〜13、18、20、26および27では、360nmにおける反射率が91%以上であり、ダイシングソーを用いた切断加工におけるチッピングの幅が55μm以下であった。   Further, the glass phase content is 32 to 44% by mass, the anorthite phase content is 22 to 26% by mass, the quartz phase content is 5 to 9% by mass, and the calcium / zirconium silicate phase content is 6%. No. 10 mass% and the content of the zirconia phase is 18-30 mass%, and the average particle size of the quartz phase is 0.9-5.5 μm. In 3-5, 10-13, 18, 20, 26, and 27, the reflectance at 360 nm was 91% or more, and the chipping width in cutting using a dicing saw was 55 μm or less.

また、アノーサイト相、石英相およびカルシウム・ジルコニウム・シリケート相の含有量をそれぞれ22〜26質量%、5〜9質量%および6〜10質量%とし、ガラス相の含有量を32〜42質量%、ジルコニア相の含有量を22〜30質量%として、さらに、石英相の平均粒径を1.9〜5.5μmとした試料No.4、5、10〜12、18、20、26および27では、ダイシングソーを用いた切断加工におけるチッピング幅を55μm以下に維持した状態で、380nm以下の波長の領域における光の反射率が92%以上であった。   Further, the contents of the anorthite phase, the quartz phase and the calcium / zirconium / silicate phase are 22 to 26 mass%, 5 to 9 mass% and 6 to 10 mass%, respectively, and the glass phase content is 32 to 42 mass%. Sample No. 2 having a zirconia phase content of 22 to 30% by mass and an average particle size of the quartz phase of 1.9 to 5.5 μm. In 4, 5, 10-12, 18, 20, 26 and 27, the light reflectance in the wavelength region of 380 nm or less is 92% in a state where the chipping width in the cutting process using the dicing saw is maintained at 55 μm or less. That was all.

さらに、アノーサイト相および石英相のそれぞれの含有量を22〜26質量%および5〜9質量%の範囲とし、また、石英相の平均粒径を1.9〜5.5μmとして、ガラス相の含有量を34〜42質量%、カルシウム・ジルコニウム・シリケート相の含有量を6〜9質量%およびジルコニア相の含有量を22〜27質量%とした試料No.4、5、10〜12、26および27では、380nm以下の波長の領域における光の反射率が92%以上であり、ダイシングソーを用いた切断加工におけるチッピング幅を45μm以下であった。   Furthermore, the contents of the anorthite phase and the quartz phase are in the range of 22 to 26% by mass and 5 to 9% by mass, respectively, and the average particle size of the quartz phase is 1.9 to 5.5 μm. Sample No. 2 having a content of 34 to 42% by mass, a calcium / zirconium / silicate phase content of 6 to 9% by mass, and a zirconia phase content of 22 to 27% by mass. In 4, 5, 10-12, 26, and 27, the reflectance of light in a wavelength region of 380 nm or less was 92% or more, and the chipping width in cutting using a dicing saw was 45 μm or less.

またさらに、上記組成において、石英相の平均粒径を1.9〜3.8μmとした試料No.4、5、10〜12および26では、380nm以下の波長の領域における光の反射率を92%以上に維持しつつ、ダイシングソーを用いた切断加工におけるチッピング幅を40μm以下に低減できた。   Furthermore, in the above composition, the sample No. 1 in which the average particle size of the quartz phase was 1.9 to 3.8 μm. In 4, 5, 10-12 and 26, the chipping width in cutting using a dicing saw could be reduced to 40 μm or less while maintaining the reflectance of light in a wavelength region of 380 nm or less at 92% or more.

これに対し、石英(α−石英)粉末の代わりアルミナ粉末を用いた試料(試料No.15)は、ダイシングソーを用いた切断加工におけるチッピングの幅が100μmであった

また、石英粉末およびジルコニア粉末の両方を混合せず、ガラス粉末のみにより作製した試料(試料No.8)もダイシングソーを用いた切断加工におけるチッピングの幅が80μmと大きかった。
On the other hand, the sample (sample No. 15) using alumina powder instead of quartz (α-quartz) powder had a chipping width of 100 μm in a cutting process using a dicing saw.
In addition, a sample (sample No. 8) produced only by glass powder without mixing both quartz powder and zirconia powder also had a large chipping width of 80 μm in cutting using a dicing saw.

1・・・・・ガラスセラミック焼結体
3・・・・・欠陥
11・・・・搭載部
13・・・・絶縁基体
15・・・・導体層
17・・・・貫通導体
19・・・・反射部材
DESCRIPTION OF SYMBOLS 1 ... Glass ceramic sintered compact 3 ... Defect 11 ... Mounting part 13 ... Insulating base | substrate 15 ... Conductor layer 17 ... Through-conductor 19 ...・ Reflective member

Claims (9)

ガラス相中に、アノーサイト相と、石英相と、カルシウム・ジルコニウム・シリケート相と、ジルコニア相とを有することを特徴とするガラスセラミック焼結体。   A glass-ceramic sintered body comprising an anorthite phase, a quartz phase, a calcium-zirconium-silicate phase, and a zirconia phase in a glass phase. 前記ガラス相の含有量が26〜44質量%、前記アノーサイト相の含有量が5〜35質量%、前記石英相の含有量が1〜9質量%、前記カルシウム・ジルコニウム・シリケート相の含有量が6〜14質量%および前記ジルコニア相の含有量が17〜41質量%であることを特徴とする請求項1に記載のガラスセラミック焼結体。   The content of the glass phase is 26 to 44% by mass, the content of the anorthite phase is 5 to 35% by mass, the content of the quartz phase is 1 to 9% by mass, and the content of the calcium / zirconium silicate phase The glass-ceramic sintered body according to claim 1, wherein the content of the zirconia phase is 17 to 41% by mass. 前記ガラス相の含有量が32〜44質量%、前記アノーサイト相の含有量が22〜26質量%、前記石英相の含有量が5〜9質量%、前記カルシウム・ジルコニウム・シリケート相の含有量が6〜10質量%および前記ジルコニア相の含有量が18〜30質量%であるとともに、前記石英相の平均粒径が0.9〜5.5μmであることを特徴とする請求項1または2に記載のガラスセラミック焼結体。   The glass phase content is 32 to 44% by mass, the anorthite phase content is 22 to 26% by mass, the quartz phase content is 5 to 9% by mass, and the calcium / zirconium silicate phase content is The content of the zirconia phase is 18 to 30% by mass, and the average particle size of the quartz phase is 0.9 to 5.5 μm. The glass-ceramic sintered body described in 1. 前記ガラス相の含有量が32〜42質量%および前記ジルコニア相の含有量が22〜30質量%であるとともに、前記石英相の平均粒径が1.9〜5.5μmであることを特徴とする請求項3に記載のガラスセラミック焼結体。   The glass phase content is 32-42% by mass, the zirconia phase content is 22-30% by mass, and the quartz phase has an average particle size of 1.9-5.5 μm. The glass ceramic sintered body according to claim 3. 前記ガラス相の含有量が34〜42質量%、前記カルシウム・ジルコニウム・シリケート相の含有量が6〜9質量%および前記ジルコニア相の含有量が22〜27質量%であることを特徴とする請求項4に記載のガラスセラミック焼結体。   The glass phase content is 34 to 42% by mass, the calcium / zirconium / silicate phase content is 6 to 9% by mass, and the zirconia phase content is 22 to 27% by mass. Item 5. A glass ceramic sintered body according to Item 4. 前記石英相の平均粒径が1.9〜3.8μmであることを特徴とする請求項5に記載のガラスセラミック焼結体。   6. The glass ceramic sintered body according to claim 5, wherein an average particle diameter of the quartz phase is 1.9 to 3.8 μm. 請求項1乃至6のうちいずれかに記載のガラスセラミック焼結体からなることを特徴とする反射部材。   A reflecting member comprising the glass ceramic sintered body according to claim 1. 発光素子を搭載するための搭載部を備えた絶縁基体と、該絶縁基体の前記搭載部側に、前記搭載部を囲うように設けられた反射部材とを有し、前記絶縁基体および前記反射部材のうち少なくとも一方が請求項1乃至6のうちいずれかに記載のガラスセラミック焼結体からなることを特徴とする発光素子搭載用基板。   An insulating base having a mounting portion for mounting a light emitting element, and a reflecting member provided on the mounting portion side of the insulating base so as to surround the mounting portion, the insulating base and the reflecting member A substrate for mounting a light emitting element, wherein at least one of the glass ceramic sintered bodies according to any one of claims 1 to 6 is formed. 請求項8に記載の発光素子搭載用基板の前記搭載部に発光素子を備えていることを特徴とする発光装置。   A light emitting device comprising a light emitting element in the mounting portion of the light emitting element mounting substrate according to claim 8.
JP2011257837A 2011-11-25 2011-11-25 Glass ceramic sintered body, reflecting member and light emitting element mounting substrate using the same, and light emitting device Active JP5840937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011257837A JP5840937B2 (en) 2011-11-25 2011-11-25 Glass ceramic sintered body, reflecting member and light emitting element mounting substrate using the same, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011257837A JP5840937B2 (en) 2011-11-25 2011-11-25 Glass ceramic sintered body, reflecting member and light emitting element mounting substrate using the same, and light emitting device

Publications (2)

Publication Number Publication Date
JP2013115122A true JP2013115122A (en) 2013-06-10
JP5840937B2 JP5840937B2 (en) 2016-01-06

Family

ID=48710425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257837A Active JP5840937B2 (en) 2011-11-25 2011-11-25 Glass ceramic sintered body, reflecting member and light emitting element mounting substrate using the same, and light emitting device

Country Status (1)

Country Link
JP (1) JP5840937B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042788A1 (en) * 2014-09-18 2016-03-24 東芝ライテック株式会社 Light-emitting module substrate, light-emitting module, and illumination apparatus
CN116969681A (en) * 2023-06-16 2023-10-31 潮州三环(集团)股份有限公司 Microcrystalline glass material for fuel cell connecting part
CN116969681B (en) * 2023-06-16 2024-05-14 潮州三环(集团)股份有限公司 Microcrystalline glass material for fuel cell connecting part

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064842A (en) * 2007-09-04 2009-03-26 Sumitomo Metal Electronics Devices Inc Ceramic sintered compact, substrate using the ceramic sintered compact, package for mounting light-emitting element using the compact, and light emitting device using the compact
JP2009164309A (en) * 2007-12-28 2009-07-23 Sumitomo Metal Electronics Devices Inc Light-emitting element mounting board, its production process, and light-emitting device using the same
US20100184580A1 (en) * 2008-01-14 2010-07-22 Atomic Energy Council - Institute Of Nuclear Energy Research Glass-ceramic sealant for planar solid oxide fuel cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064842A (en) * 2007-09-04 2009-03-26 Sumitomo Metal Electronics Devices Inc Ceramic sintered compact, substrate using the ceramic sintered compact, package for mounting light-emitting element using the compact, and light emitting device using the compact
JP2009164309A (en) * 2007-12-28 2009-07-23 Sumitomo Metal Electronics Devices Inc Light-emitting element mounting board, its production process, and light-emitting device using the same
US20100184580A1 (en) * 2008-01-14 2010-07-22 Atomic Energy Council - Institute Of Nuclear Energy Research Glass-ceramic sealant for planar solid oxide fuel cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015026902; FERRARI,A.M. et al: '"Effect of V2O5 addition on the crystallisation of glasses belonging to the CaO-ZrO2-SiO2 system"' Journal of Non-Crystalline Solids Vol.315, 2003, pp.77-88 *
JPN6015026903; LEDERER,K. et al: '"Zirconia-doped Mg-Ca-Al-Si-O-N glasses: crystallization"' Journal of Non-Crystalline Solids Vol.224, 1998, pp.109-121 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042788A1 (en) * 2014-09-18 2016-03-24 東芝ライテック株式会社 Light-emitting module substrate, light-emitting module, and illumination apparatus
JPWO2016042788A1 (en) * 2014-09-18 2017-04-27 東芝ライテック株式会社 Light emitting module substrate, light emitting module, and lighting fixture
CN116969681A (en) * 2023-06-16 2023-10-31 潮州三环(集团)股份有限公司 Microcrystalline glass material for fuel cell connecting part
CN116969681B (en) * 2023-06-16 2024-05-14 潮州三环(集团)股份有限公司 Microcrystalline glass material for fuel cell connecting part

Also Published As

Publication number Publication date
JP5840937B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5263112B2 (en) Ceramic raw material composition
JP5705881B2 (en) Reflective member, light emitting element mounting substrate, and light emitting device
WO2012015015A1 (en) Glass ceramic composition, substrate for light-emitting element, and light-emitting device
JP5765526B2 (en) Light reflecting substrate and light emitting device using the same
JP6315399B2 (en) Glass member
JP6187476B2 (en) White glass
JPWO2011096126A1 (en) Light emitting element mounting substrate and light emitting device
KR102242189B1 (en) Composite powder, green sheet, light reflective substrate, and light emitting device using these
JP5840937B2 (en) Glass ceramic sintered body, reflecting member and light emitting element mounting substrate using the same, and light emitting device
JP5516082B2 (en) Glass ceramic composition, substrate for light emitting diode element, and light emitting device
JP5671833B2 (en) Light reflecting substrate material, light reflecting substrate and light emitting device using the same
JP5655375B2 (en) Glass ceramic composition, light emitting diode element substrate and light emitting device.
JP5516026B2 (en) Glass ceramic composition, light emitting diode element substrate, and light emitting device
KR20230054660A (en) Chemically strengthened glass and crystallized glass and their manufacturing method
JP2017165619A (en) Glass ceramic substrate and method for producing the same
WO2023106269A1 (en) Glass ceramic composition
JP5500494B2 (en) Light reflecting material
JP5907481B2 (en) Light reflecting substrate and light emitting device using the same
JP2011111365A (en) Opaque ceramic sintered body and operation panel using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5840937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150