JP2013114187A - Manufacturing method of light scattering element, and light scattering element recording medium - Google Patents

Manufacturing method of light scattering element, and light scattering element recording medium Download PDF

Info

Publication number
JP2013114187A
JP2013114187A JP2011262247A JP2011262247A JP2013114187A JP 2013114187 A JP2013114187 A JP 2013114187A JP 2011262247 A JP2011262247 A JP 2011262247A JP 2011262247 A JP2011262247 A JP 2011262247A JP 2013114187 A JP2013114187 A JP 2013114187A
Authority
JP
Japan
Prior art keywords
light
exposure
scattering element
light scattering
scatterer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011262247A
Other languages
Japanese (ja)
Other versions
JP5862945B2 (en
Inventor
Emi Uchida
江美 内田
Takashi Fukuda
隆史 福田
Akio Emoto
顕雄 江本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011262247A priority Critical patent/JP5862945B2/en
Publication of JP2013114187A publication Critical patent/JP2013114187A/en
Application granted granted Critical
Publication of JP5862945B2 publication Critical patent/JP5862945B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve control accuracy of a light scattering state obtained by exposure and achieve multiple recording based on exposure including additional recording.SOLUTION: A recording film 2 is prepared which includes photoreactive molecules 5 mixed in a transparent base material 4 in a cured state. Exposure is performed by using light 8 having the absorption wavelength region of the photoreactive molecules 5 to the recording film 2 at an arbitrary incident angle and in an arbitrary incident area, and photoreaction according to the exposure converts the photoreactive molecule 5 into a light scattering body 3 having optical anisotropy in a light passing area 7 according to the exposure, thereby converting, into scattering light, only the light of illumination light, going from an incidence surface 6a through the light passing area 7 toward an emission surface 6b. In addition, multiple recording based on exposure including addition of scattering properties is performed by taking advantage of the fact that the photoreactive molecules 5 can photoreact by exposure at any time.

Description

本発明は、光散乱素子の製造方法及び光散乱素子用記録媒体に関する。   The present invention relates to a light scattering element manufacturing method and a light scattering element recording medium.

光散乱素子には、所定角度で入射する光に対しては光散乱が生じ、逆にそれとは垂直な光に対しては透過するものがある。このような光散乱素子の製造方法としては、例えば特許文献1に示すように、カチオン重合性を有する化合物と、該カチオン重合性を有する化合物に対して屈折率差を有すると共にラジカル重合性を有する化合物と、化学放射線によってカチオン種及びラジカル種を発生する光開始剤と、を組成物として形成された記録媒体を用意し、その記録媒体に対して所定角度をもって露光するものが知られている。
これによれば、その製造方法により製造されるべき光散乱素子(異方性光散乱フィルム)は、屈折率の高低からなる濃淡模様が形成され、且つ屈折率の異なる部分が、フィルムの厚さ方向に対して傾斜し層状に分布する構造となる。そして、屈折率の異なる部分の傾斜方向に沿った角度で入射する光に対しては光散乱が生じ、屈折率の異なる部分の傾斜方向に垂直な光に対しては単なる透明フィルムとして機能する。
Some light scattering elements cause light scattering for light incident at a predetermined angle, and conversely transmit light that is perpendicular to the light scattering element. As a method for producing such a light scattering element, for example, as shown in Patent Document 1, it has a difference in refractive index with respect to a compound having cationic polymerizability and the compound having cationic polymerizability and has radical polymerizability. There is known a recording medium in which a compound and a photoinitiator that generates cation species and radical species by actinic radiation are prepared as a composition, and the recording medium is exposed at a predetermined angle.
According to this, the light scattering element (anisotropic light scattering film) to be manufactured by the manufacturing method is formed with a light and shade pattern consisting of high and low refractive indexes, and the portions having different refractive indexes are in the thickness direction of the film. In contrast, the structure is inclined and distributed in layers. Light scattering occurs with respect to light incident at an angle along the inclination direction of a portion having a different refractive index, and the light functions as a mere transparent film for light perpendicular to the inclination direction of a portion with a different refractive index.

特開2000−297110号JP 2000-297110 A

しかし、上記光散乱素子の製造方法においては、重合後に相分離構造を形成し、かつ、屈折率が異なる2種以上の光重合性モノマーおよびオリゴマーを使用する必要があり、材料の制約を大いに受ける。また、光重合後に形成された光散乱膜の散乱度は、光重合後のポリマー間の屈折率差および相分離のサイズに依存するため、用いる材料の化学組成及び調合比によってほぼ決定されると言って良い。そのため、露光量によって光散乱特性を任意にチューニングすることは出来ない。
しかも、一部領域に対して所定の入射角度をもって露光を行った場合、その露光領域とその周囲領域との間で、光重合過程における相分離成分の相互拡散(露光領域境界におけるにじみ)が生じることになり、露光による反応領域は、実際に露光された領域よりも不規則な状態で拡張されることになる。このため、このような光散乱素子においては、照明光を照射した際に、散乱光が所望の領域・角度域を超えて生じることになり、露光による光散乱状態の制御内容を的確に反映することができない。
また、材料として重合性化合物を用いる場合、固化と光散乱性の発現は一体的なものであることから、反応完了時には、もはや、露光に基づく散乱特性の追加(多重記録)を行うことができない。また、同じ理由により、光散乱特性が付与されるのは固化された成形物の全体に及ぶため、成形物の一部分のみに光散乱特性を付与することも困難である。
However, in the manufacturing method of the light scattering element, it is necessary to form a phase separation structure after polymerization and to use two or more kinds of photopolymerizable monomers and oligomers having different refractive indexes, which are greatly limited by materials. . In addition, since the scattering degree of the light scattering film formed after photopolymerization depends on the refractive index difference between the polymers after photopolymerization and the size of the phase separation, it is almost determined by the chemical composition and mixing ratio of the materials used. Good to say. Therefore, the light scattering characteristic cannot be arbitrarily tuned depending on the exposure amount.
In addition, when exposure is performed with respect to a partial area at a predetermined incident angle, mutual diffusion of the phase-separated components (bleeding at the boundary of the exposure area) occurs in the photopolymerization process between the exposure area and the surrounding area. In other words, the reaction area due to exposure is expanded more irregularly than the actually exposed area. For this reason, in such a light scattering element, when the illumination light is irradiated, the scattered light is generated beyond a desired region / angle region, and the control content of the light scattering state by exposure is accurately reflected. I can't.
In addition, when a polymerizable compound is used as the material, solidification and light scattering are integrated, so that when the reaction is completed, it is no longer possible to add scattering characteristics based on exposure (multiple recording). . For the same reason, since the light scattering property is imparted to the entire solidified molded product, it is difficult to impart the light scattering property to only a part of the molded product.

本発明は、上記事情に鑑みてなされたもので、その技術的課題は、露光による光散乱状態の制御精度を高めることができると共に、散乱特性の追加を含めた露光に基づく多重記録を行うことができる光散乱素子の製造方法及び光散乱素子用記録媒体を提供することにある。   The present invention has been made in view of the above circumstances, and its technical problem is to improve the control accuracy of the light scattering state by exposure and to perform multiplex recording based on exposure including addition of scattering characteristics. The present invention provides a method for manufacturing a light scattering element and a recording medium for the light scattering element.

上記技術的課題を達成するために本発明(請求項1に係る発明)にあっては、
入射面から入射された照明光を、出射面から散乱光として出射させる光散乱素子の製造方法において、
光散乱素子用記録媒体として、透明な母材内に光反応性分子が混和されている硬化状態のものを用意し、
前記光散乱素子用記録媒体に対して、任意の入射角度及び入射領域の下で前記光反応性分子の吸収波長域の光を用いることにより露光を行い、
前記露光に基づく光反応により、前記光反応性分子を、該露光に基づく光通過領域内において、光学異方性を有すると共に前記散乱光を生じさせる光散乱体に変化させる構成とされている。この請求項1の好ましい態様としては、請求項2〜9に記載のとおりである。
In order to achieve the above technical problem, the present invention (the invention according to claim 1)
In the manufacturing method of the light scattering element that emits the illumination light incident from the incident surface as scattered light from the output surface,
As a recording medium for a light scattering element, prepare a cured material in which a photoreactive molecule is mixed in a transparent base material,
The light scattering element recording medium is exposed by using light in the absorption wavelength region of the photoreactive molecule under an arbitrary incident angle and incident region,
By the photoreaction based on the exposure, the photoreactive molecule is changed into a light scatterer having optical anisotropy and generating the scattered light in a light passage region based on the exposure. Preferred embodiments of the first aspect are as described in the second to ninth aspects.

前記技術的課題を達成するために本発明(請求項10に係る発明)にあっては、
入射面から入射された照明光を、出射面から散乱光として出射させるべく、露光を行うことにより、該露光に基づく光通過領域内に、光学異方性を有すると共に前記散乱光を生じさせる光散乱体を生成する光散乱素子用記録媒体であって、
透明な母材と、
前記母材内に混和されて、前記露光の吸収波長域の光を吸収して前記光散乱体に変化する光反応性分子と、
を具備し、
前記母材に基づき硬化状態とされている構成とされている。この請求項10の好ましい態様としては、請求項11以下の記載のとおりである。
In order to achieve the technical problem, the present invention (invention according to claim 10),
Light that has an optical anisotropy and generates the scattered light in a light passage region based on the exposure by performing exposure so that the illumination light incident from the incident surface is emitted as scattered light from the exit surface. A recording medium for a light scattering element that generates a scatterer,
With transparent base material,
A photoreactive molecule that is mixed in the base material and absorbs light in the absorption wavelength range of the exposure to change into the light scatterer;
Comprising
It is set as the structure made into the hardening state based on the said base material. Preferred embodiments of the tenth aspect are as described in the eleventh aspect.

本発明(請求項1に係る発明)によれば、光散乱素子用記録媒体として、透明な母材内に光反応性分子が混和されているものを用い、その光反応性分子を露光に基づく光反応により露光に基づく光通過領域内でのみ光散乱体に変化させ、露光の光通過領域外においては、光反応性分子を光散乱体に変化させないことから、照明光のうち、入射面から光通過領域を通って出射面に向かう光のみを散乱光にすることができ、光反応性分子と露光とによる高い精度の制御内容を的確に反映することができる。
また、光反応性分子を露光に基づく光反応により光散乱体に変化させるものであること(光照射によって、核生成が起こり、さらに、それらが露光量に応じて成長すること)から、露光量を増大させれば、露光量の増大は、光反応を通じて形成される散乱構造体の数密度ならびに空間サイズの増大をもたらすことになり、散乱体や材料の混合比など、材料自体を変えなくても、散乱光の強度を簡単に増大させることができる。
このように、光反応性分子と露光との組み合わせにより、露光に基づく光散乱状態の制御精度を著しく高めることができる。
さらに、光散乱素子用記録媒体における光反応性分子が露光によりいつでも光反応するものであることから、異なる照射条件(入射角度、入射領域、露光量)の複数の露光をタイミングを変えて行う場合であっても、光反応性分子を光散乱体に変化させることができる。このため、当該光散乱素子において、同時に限らず事後的においても、露光に基づく多重記録を行うことができる。
According to the present invention (the invention according to claim 1), a recording medium for a light-scattering element is prepared by mixing a photoreactive molecule in a transparent base material, and the photoreactive molecule is based on exposure. It is changed into a light scatterer only within the light passage region based on the exposure by the photoreaction, and the photoreactive molecule is not changed into the light scatterer outside the light passage region of the exposure. Only the light that passes through the light passage region and travels toward the exit surface can be converted into scattered light, and the control content with high accuracy by the photoreactive molecule and the exposure can be accurately reflected.
In addition, photoreactive molecules are changed to light scatterers by photoreaction based on exposure (nucleation occurs due to light irradiation, and they grow according to the exposure dose). Increase the exposure amount, the number density and spatial size of the scattering structures formed through the photoreaction will increase, and the material itself, such as the mixing ratio of the scatterers and materials, will not change. However, the intensity of scattered light can be easily increased.
Thus, the control accuracy of the light scattering state based on exposure can be remarkably improved by the combination of photoreactive molecules and exposure.
Furthermore, since photoreactive molecules in the recording medium for light scattering elements are photoreactive at any time by exposure, multiple exposures under different irradiation conditions (incident angle, incident area, exposure amount) are performed at different timings. Even so, the photoreactive molecule can be changed to a light scatterer. Therefore, in the light scattering element, multiple recording based on exposure can be performed not only simultaneously but also after the fact.

請求項2に係る発明によれば、光散乱素子用記録媒体として、光反応性分子の濃度が全体に対して1〜70wt%のものを用いることから、光反応性分子から変化する光散乱体の割合を適正にして、散乱光の光散乱状態を適正に制御できる。ここで、光反応性分子の濃度が全体に対して1〜70wt%としたのは、1wt%未満では効果の発現が十分でない一方、70wt%を超えると、光反応性分子が分散せず、凝集体となるため、露光前の段階において、既に成形された素子全体が光散乱性を示す状態となり、露光により光散乱特性の制御を行うことができなくなるからである。また、材料の機械的強度が低下して実用性が損なわれるからである。   According to the invention of claim 2, since the recording medium for the light scattering element has a concentration of the photoreactive molecule of 1 to 70 wt% based on the whole, the light scatterer that changes from the photoreactive molecule Therefore, the light scattering state of the scattered light can be controlled appropriately. Here, the concentration of the photoreactive molecule is 1 to 70 wt% with respect to the whole, while the expression of the effect is not sufficient if it is less than 1 wt%, whereas if it exceeds 70 wt%, the photoreactive molecule is not dispersed, This is because the aggregate becomes an aggregate, so that the entire molded element is in a state of light scattering in a stage before exposure, and the light scattering characteristics cannot be controlled by exposure. Moreover, it is because the mechanical strength of the material is lowered and the practicality is impaired.

請求項3に係る発明によれば、光散乱体は、露光に基づく光の入射角度方向における屈折率が母材の屈折率と異なり、且つ該露光に基づく光の入射角度以外の方向における屈折率が、該露光に基づく光の入射角度方向における屈折率の場合よりも該母材の屈折率に近づけられていることから、照明光のうち、入射面から光通過領域を通って出射面に向かう光(露光に基づく光の入射角度方向の光)に関し、散乱光を的確に生じさせることができ、露光に基づく光の入射角度以外の方向において、照明光を透過させることができる。   According to the invention of claim 3, the light scatterer is different in refractive index in the incident angle direction of light based on exposure from the refractive index of the base material and in a direction other than the incident angle of light based on the exposure. Is closer to the refractive index of the base material than in the case of the refractive index in the incident angle direction of the light based on the exposure, so that the illumination light is directed from the incident surface to the exit surface through the light passage region. With respect to light (light in the incident angle direction of light based on exposure), scattered light can be generated accurately, and illumination light can be transmitted in directions other than the incident angle of light based on exposure.

請求項4に係る発明によれば、光散乱体が、露光に基づく光の入射角度方向に細長く延びる形状とされ、光散乱体の長軸方向の屈折率と前記母材の屈折率との差が10-4以上とされると共に、光散乱体の短軸方向の屈折率と母材の屈折率とが略等しくされていることから、前記請求項3の作用効果を、具体的且つ的確に生じさせることができる。
さらに、光散乱体が露光に基づく光の入射角度方向に細長く延びる形状とされていることから、当該光散乱体を含むバルク領域(光通過領域)は空間的に高い異方性を示すようになるため、光散乱の角度選択性を高めることができ、多重記録を行うにしても、角度多重記録性を大幅に向上させることができる。
According to the invention of claim 4, the light scatterer is elongated in the incident angle direction of light based on exposure, and the difference between the refractive index in the major axis direction of the light scatterer and the refractive index of the base material. together but are 10 -4 or more, since the minor axis direction of the refractive index of the light scatterer and the refractive index of the base material are substantially equal, the effect of the claim 3, specifically and accurately Can be generated.
Furthermore, since the light scatterer is elongated in the incident angle direction of light based on exposure, the bulk region (light passage region) including the light scatterer is spatially highly anisotropic. Therefore, the angle selectivity of light scattering can be improved, and the angle multiplex recording property can be greatly improved even when multiplex recording is performed.

請求項5に係る発明によれば、光散乱体が、露光に基づく光の入射角度方向に細長く延びる形状とされることが、光反応性分子を、露光に基づく光通過領域内において、露光に基づく光分解により分解生成物を生成し、分解生成物を露光に基づく光の入射角度方向に結晶成長させることであることから、光散乱体の細長く延びる形状を、露光を的確に利用して形成できる。   According to the fifth aspect of the present invention, the light scatterer is elongated in the incident angle direction of light based on exposure, so that the photoreactive molecule can be exposed in the light passage region based on exposure. Since the decomposition product is generated by photodecomposition based on this, and the decomposition product is crystal-grown in the incident angle direction of light based on exposure, the elongated shape of the light scatterer is formed using exposure accurately it can.

請求項6に係る発明によれば、露光を異なる入射角度及び入射領域の下で多重に行って、各露光に基づく各光通過領域内における光反応性分子を各露光により光散乱体にそれぞれ変化させることから、複数の素子を積層させなくても、単一の当該光散乱素子上において、当該光散乱素子における優れた角度選択性(角度依存性)を利用しつつ、角度多重記録を具体的に行うことができる。勿論、この光散乱素子においては、角度選択的な多重情報の分離再生を容易に行うことができることになる。   According to the invention of claim 6, exposure is performed in multiples under different incident angles and incidence areas, and photoreactive molecules in each light passage region based on each exposure are changed into light scatterers by each exposure. Therefore, even when a plurality of elements are not stacked, angle multiplexing recording can be performed on a single light scattering element while utilizing the excellent angle selectivity (angle dependency) of the light scattering element. Can be done. Of course, in this light scattering element, angle selective multiplexed information can be easily separated and reproduced.

請求項7に係る発明によれば、露光の露光量を調整することから、その露光量の調整に基づき、光散乱体の数密度とサイズを調整できることになり、当該光散乱素子(光散乱素子記録媒体)の材料を変えなくても、当該光散乱素子の散乱度を具体的に調整できる。   According to the seventh aspect of the invention, since the exposure amount of exposure is adjusted, the number density and size of the light scatterer can be adjusted based on the adjustment of the exposure amount, and the light scattering element (light scattering element) The scattering degree of the light scattering element can be specifically adjusted without changing the material of the recording medium.

請求項8に係る発明によれば、表現パターンを表示する表示手段として製造することから、当該光散乱素子の特性を有効に利用して、当該光散乱素子を、表現パターンを表示する表示手段として得ることができる。   According to the eighth aspect of the present invention, since the display means for displaying the expression pattern is manufactured, the characteristics of the light scattering element are effectively used, and the light scattering element is used as the display means for displaying the expression pattern. Can be obtained.

請求項9に係る発明によれば、複数の動態パターンを重ねて表示する表示手段として製造することから、当該光散乱素子の特性を有効に利用して、当該光散乱素子を、複数の動態パターンを重ねて表示する表示手段として得ることができる。   According to the ninth aspect of the invention, since the display unit that displays a plurality of dynamic patterns in an overlapping manner is manufactured, the light scattering element can be used by effectively utilizing the characteristics of the light scattering element. Can be obtained as a display means for displaying in a superimposed manner.

請求項10に係る発明によれば、当該光散乱素子用記録媒体を前記請求項1に係る製造方法に用いることができる。   According to the invention of claim 10, the light scattering element recording medium can be used in the manufacturing method according to claim 1.

請求項11に係る発明によれば、当該光散乱素子用記録媒体を前記請求項2に係る製造方法に用いることができる。   According to the invention of claim 11, the recording medium for light scattering elements can be used in the manufacturing method according to claim 2.

請求項12に係る発明によれば、当該光散乱素子用記録媒体を前記請求項4に係る製造方法に用いることができる。   According to the twelfth aspect of the present invention, the light scattering element recording medium can be used in the manufacturing method according to the fourth aspect.

請求項13に係る発明によれば、当該光散乱素子用記録媒体を前記請求項6に係る製造方法に用いることができる。   According to the invention of claim 13, the light scattering element recording medium can be used in the manufacturing method of claim 6.

請求項14に係る発明によれば、当該光散乱素子用記録媒体を前記請求項5に係る製造方法に用いることができる。   According to the invention of claim 14, the light scattering element recording medium can be used in the manufacturing method of claim 5.

請求項15に係る発明によれば、当該光散乱素子用記録媒体を前記請求項7に係る製造方法に用いることができる。   According to the invention of claim 15, the recording medium for light scattering elements can be used in the manufacturing method according to claim 7.

第1実施形態に係る光散乱性フィルムの内部構造を概念的に示す説明図。Explanatory drawing which shows notionally the internal structure of the light-scattering film which concerns on 1st Embodiment. 第1実施形態に係る光散乱性フィルムの機能を説明する説明図。Explanatory drawing explaining the function of the light-scattering film which concerns on 1st Embodiment. 散乱体の屈折率を説明する説明図。Explanatory drawing explaining the refractive index of a scatterer. 第1実施形態に係る光散乱性フィルムの製造方法を説明する説明図。Explanatory drawing explaining the manufacturing method of the light-scattering film which concerns on 1st Embodiment. 試験記録フィルム(本件実施形態に係る記録フィルム)に対する露光を説明する説明図。Explanatory drawing explaining exposure with respect to a test recording film (recording film which concerns on this embodiment). 試験記録フィルムに対して露光を行って得た光散乱性フィルムに対する照射光照射に基づく散乱強度の測定を説明する説明図。Explanatory drawing explaining the measurement of the scattering intensity | strength based on irradiation light irradiation with respect to the light-scattering film obtained by exposing with respect to a test recording film. 露光量と透過光強度との関係を説明する説明図。Explanatory drawing explaining the relationship between exposure amount and transmitted light intensity. 露光角度0°で露光された光散乱性フィルムの散乱光強度の角度依存性を示す説明図(縦軸:散乱強度 横軸:633nm光の入射角)。Explanatory drawing which shows the angle dependence of the scattered light intensity | strength of the light-scattering film exposed at the exposure angle of 0 degree (vertical axis: scattering intensity horizontal axis: incident angle of 633 nm light). 露光角度+45°で露光された光散乱性フィルムの散乱光強度の角度依存性を示す説明図(縦軸:散乱強度 横軸:633nm光の入射角)。Explanatory drawing which shows the angle dependence of the scattered light intensity | strength of the light-scattering film exposed at the exposure angle +45 degree (vertical axis: scattering intensity horizontal axis: incident angle of 633 nm light). 多重露光された光散乱性フィルムの散乱光強度の角度依存性を示す説明図(縦軸:散乱強度 横軸:633nm光の入射角)。Explanatory drawing which shows the angle dependence of the scattered light intensity | strength of the light-scattering film by which multiple exposure was carried out (a vertical axis | shaft: Scattering intensity horizontal axis: incident angle of 633 nm light). 実証試験における露光の一態様を説明する説明図。Explanatory drawing explaining the one aspect | mode of the exposure in a verification test. 図11の露光に続いて行われる別の露光態様(二重露光)を説明する説明図。Explanatory drawing explaining another exposure aspect (double exposure) performed following the exposure of FIG. 図12の露光後の散乱光の観察を説明する説明図。Explanatory drawing explaining observation of the scattered light after the exposure of FIG. 露光角度が+45°であった場合における散乱光の観察結果を示す写真。The photograph which shows the observation result of the scattered light in case an exposure angle is +45 degree. 露光角度が−45°であった場合における散乱光の観察結果を示す写真。The photograph which shows the observation result of the scattered light in case an exposure angle is -45 degrees. 露光角度が0°であった場合における散乱光の観察結果を示す写真。The photograph which shows the observation result of the scattered light in case an exposure angle is 0 degree. 二重露光のうちの一方に対して照明光が照射された場合における散乱光の発生を説明する説明図。Explanatory drawing explaining generation | occurrence | production of the scattered light when illumination light is irradiated with respect to one of double exposure. 二重露光のうちの他方に対して照明光が照射された場合における散乱光の発生を説明する説明図。Explanatory drawing explaining generation | occurrence | production of the scattered light when illumination light is irradiated with respect to the other of double exposure. 二重露光のうちの両方に対して照明光が照射された場合における散乱光の発生を説明する説明図。Explanatory drawing explaining generation | occurrence | production of the scattered light when illumination light is irradiated with respect to both of double exposure.

以下、本発明の実施形態を図面に基づいて説明する。
1.先ず、当該光散乱素子の製造方法により製造される第1実施形態に係る光散乱性フィルム(光散乱素子)1について説明する。
光散乱性フィルム1は、図1に示すように、光散乱素子用記録媒体としての記録フィルム2と、該記録フィルム2内に含有される複数の光散乱体(光学異方性を有する分子集合体)3と、から構成されている。図1は、光散乱性フィルム1の断面を概念的に示した断面図で、その図1において、上下方向が光散乱性フィルム1の肉厚方向となる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1. First, the light scattering film (light scattering element) 1 according to the first embodiment manufactured by the method for manufacturing the light scattering element will be described.
As shown in FIG. 1, the light scattering film 1 includes a recording film 2 as a recording medium for a light scattering element, and a plurality of light scattering bodies (molecular assembly having optical anisotropy) contained in the recording film 2. Body) 3. FIG. 1 is a cross-sectional view conceptually showing a cross section of the light scattering film 1, and the vertical direction in FIG. 1 is the thickness direction of the light scattering film 1.

(1)前記記録フィルム2は、図1に示すように、母材(マトリクス)4と、光反応性分子5と、からなる硬化物として形成されている。母材4は、透明性を有し、その内部に光反応性分子5を良好に混和する性質を有している。この母材4としては、汎用透明ポリマー(ポリスチレン、ポリウレタン、エポキシ樹脂、アクリル樹脂、ポリカーボネート)の他、重合形態や分子量分布にはこだわらない共重合体、あるいは、ポリマーブレンドでもよい。 (1) The recording film 2 is formed as a cured product composed of a base material (matrix) 4 and photoreactive molecules 5 as shown in FIG. The base material 4 has transparency, and has a property of mixing the photoreactive molecules 5 well therein. The base material 4 may be a general-purpose transparent polymer (polystyrene, polyurethane, epoxy resin, acrylic resin, polycarbonate), a copolymer that does not stick to the polymerization form or molecular weight distribution, or a polymer blend.

前記光反応性分子5は、前述の母材4の性質に基づき該母材4内に良好に混和されている。この光反応性分子5は、光学異方性を有しており、この光反応性分子5としては、α−アミノアセトフェノン類、α−ヒドロキシアセトフェノン類、ベンゾフェノン類、ベンゾイン類、ベンジルケタール類、アシルホスフィンオキサイド類などの光分解性分子、アントラセン、ケイヒ酸、クマリン酸などの光二量化性分子等が用いられる。この光反応性分子5の濃度は、後述の適正な効果(光散乱体3となって散乱光を適正に出射すること)を奏する観点から、全体に対して1〜70wt%とされている。ここで、全体に対して1〜70wt%としているのは、1wt%未満では、前記効果を十分に認めることができないからであり、70wt%を超えると、光反応性分子が分散せず、凝集体となるため、露光前の段階において、既に成形の全体が光散乱性を示す状態となり、露光により光散乱特性の制御を行うことができなくなるからである。また、材料の機械的強度が低下して実用性が損なわれるからでもある。   The photoreactive molecules 5 are well mixed in the base material 4 based on the properties of the base material 4 described above. This photoreactive molecule 5 has optical anisotropy. Examples of the photoreactive molecule 5 include α-aminoacetophenones, α-hydroxyacetophenones, benzophenones, benzoins, benzyl ketals, acyls. Photodecomposable molecules such as phosphine oxides, photodimerizable molecules such as anthracene, cinnamic acid, and coumaric acid are used. The concentration of the photoreactive molecule 5 is set to 1 to 70 wt% with respect to the whole from the viewpoint of achieving an appropriate effect described later (to appropriately emit scattered light as the light scatterer 3). Here, 1 to 70 wt% of the whole is because the effect cannot be sufficiently observed if it is less than 1 wt%, and if it exceeds 70 wt%, the photoreactive molecules are not dispersed and the aggregation is not performed. This is because the aggregate becomes a state in which the entire molding already exhibits light scattering properties before exposure and the light scattering characteristics cannot be controlled by exposure. Moreover, it is also because the mechanical strength of the material is lowered and the practicality is impaired.

前記記録フィルム2の硬化物としての形態は、母材4の性質(硬化性)に基づいている。これにより、記録フィルム2においては、その肉厚方向一方側が入射面6aとなり、フィルムの肉厚方向他方側が出射面6bとなっている。
この場合、光散乱素子用記録媒体を、上記記録フィルム2に代えて、厚肉(板材)の形態のものとしてもよいし、記録フィルム2を透明基板に積層して用いてもよい。
The form of the recording film 2 as a cured product is based on the property (curability) of the base material 4. Thereby, in the recording film 2, the thickness direction one side becomes the entrance surface 6a, and the film thickness direction other side becomes the output surface 6b.
In this case, the recording medium for the light scattering element may be in the form of a thick wall (plate material) instead of the recording film 2, or the recording film 2 may be laminated on a transparent substrate.

(2)前記複数の光散乱体3は、図1に示すように、前記記録フィルム2内のうち、露光が施される光通過領域7内に存在されている。
光通過領域7は、露光に基づく光が記録フィルム2内を通過した領域の軌跡であり、その光通過領域7は、任意の入射角度及び入射領域に基づく露光の結果として決まる。この光通過領域7は記録フィルム2の入射面6aと出射面6bとの間を真っ直ぐに延びており、その光通過領域7においては、前記光反応性分子5は、光反応(例えば光分解)により、光学異方性を有する光散乱体3に変化されることになっている。
複数の光散乱体3は、上述した如く、露光前の上記光通過領域7内に存在していた光反応性分子5をその光通過領域7を通過した露光の光に基づく光反応により形成されたものである。本実施形態においては、各光散乱体3は、光反応性分子5を露光に基づいて光分解することにより分解生成物を生成し、その分解生成物を、微結晶を経て結晶成長体に成長させたものであり、各光散乱体3は、光通過領域7の延び方向(露光の入射方向)に細長く延びた形状とされている。
(2) As shown in FIG. 1, the plurality of light scatterers 3 are present in a light passage region 7 to be exposed in the recording film 2.
The light passage region 7 is a locus of a region where light based on exposure has passed through the recording film 2, and the light passage region 7 is determined as a result of exposure based on an arbitrary incident angle and the incident region. The light passage region 7 extends straight between the incident surface 6a and the emission surface 6b of the recording film 2. In the light passage region 7, the photoreactive molecules 5 undergo a photoreaction (for example, photolysis). Thus, the light scatterer 3 having optical anisotropy is changed.
As described above, the plurality of light scatterers 3 are formed by the photoreaction based on the light of the exposure that has passed through the light-passing region 7 with the photoreactive molecule 5 existing in the light-passing region 7 before exposure. It is a thing. In this embodiment, each light scatterer 3 produces | generates a decomposition product by carrying out photolysis of the photoreactive molecule 5 based on exposure, and grows the decomposition product into a crystal growth body through a microcrystal. Each of the light scatterers 3 has a shape that is elongated in the direction in which the light passage region 7 extends (incidence direction of exposure).

Figure 2013114187
Figure 2013114187

Figure 2013114187
Figure 2013114187

2.次に、上記光散乱性フィルム1の製造方法について図4に基づき説明する。
(1)先ず、前記記録フィルム2(記録媒体(硬化物))を用意する。
記録フィルム2は、前述した如く、透明な母材4と、その母材4内に良好に混和される光反応性分子5と、を具備しており、母材4は、図4上図に示すように、その内部に光反応性分子5を保持しつつフィルムの外形を形作っている。母材4が透明とされているのは、露光、照射光がフィルムを通過できるようにするためである。母材4、光反応性分子5の性質、材質等については、前述のとおりである。
2. Next, the manufacturing method of the said light-scattering film 1 is demonstrated based on FIG.
(1) First, the recording film 2 (recording medium (cured product)) is prepared.
As described above, the recording film 2 includes the transparent base material 4 and the photoreactive molecules 5 that are well mixed in the base material 4. The base material 4 is shown in the upper diagram of FIG. As shown, the outer shape of the film is formed while the photoreactive molecules 5 are held inside. The base material 4 is transparent in order to allow exposure and irradiation light to pass through the film. The properties and materials of the base material 4 and the photoreactive molecule 5 are as described above.

Figure 2013114187
Figure 2013114187

前記露光に用いられる光8は、記録フィルム2内における光反応性分子5の吸収波長域にあるものである。具体的には、レーザー(355nm:YAGレーザー3倍高調波、405nm:GaN系半導体レーザー、442nm:He−Cdレーザー他)、超高圧水銀灯(主に365nm、436nmなど)、メタルハライドランプ等が用いられる。   The light 8 used for the exposure is in the absorption wavelength region of the photoreactive molecule 5 in the recording film 2. Specifically, lasers (355 nm: YAG laser triple harmonic, 405 nm: GaN semiconductor laser, 442 nm: He—Cd laser, etc.), ultrahigh pressure mercury lamps (mainly 365 nm, 436 nm, etc.), metal halide lamps, etc. are used. .

またこの場合、前記露光は、記録フィルム2に対して任意の入射角度及び入射領域の下で行われる。所望パターンの散乱光を生じさせるべく、記録フィルム2内部にその所望パターンに対応した状態で露光に基づく光8を通過させ、その光通過領域7内において、光散乱体3群を形成するためである(露光による光散乱状態の制御)。   In this case, the exposure is performed with respect to the recording film 2 at an arbitrary incident angle and incident region. In order to generate scattered light of a desired pattern, light 8 based on exposure is passed through the recording film 2 in a state corresponding to the desired pattern, and the light scatterer 3 group is formed in the light passage region 7. Yes (control of light scattering state by exposure).

(3)以上の工程を経ることにより、前記図1に示す光散乱性フィルム1が得られることになる。
したがって、上記光散乱性フィルムの製造方法を用いれば、記録フィルム2において、光反応分子5を露光に基づく光反応によりその光通過領域7内でのみ光散乱体に変化させ、露光の光通過領域7外においては、光反応性分子5を光散乱体3に変化させないことから、光散乱性フィルム1において、照明光のうち、入射面6aから光通過領域7を通って出射面6bに向かう光のみを散乱光にすることができ、光反応性分子5と露光の高い精度の制御内容を的確に反映することができる(図2参照)。勿論、露光に際して、指向性の高い光を用いた場合には、散乱光が生じる角度域及び光散乱領域を、より高い精度をもって制御できる。
また、光散乱体は、露光に基づき、細長く延びる形状とされ、そのいずれもが露光に基づく光の入射角度方向に延びるように配向されることから、露光されたバルク領域(光通過領域)は空間的に高い異方性を示すようになるため、光散乱の角度選択性を高めることができ、多重記録を行うにしても、角度多重記録性を大幅に向上させることができる。
(3) By passing through the above process, the light-scattering film 1 shown in the said FIG. 1 will be obtained.
Therefore, if the manufacturing method of the said light-scattering film is used, in the recording film 2, the photoreactive molecule | numerator 5 will be changed into a light-scattering body only within the light passage area | region 7 by the photoreaction based on exposure, and the light passage area | region of exposure Since the light-reactive molecule 5 is not changed to the light scatterer 3 outside the light 7, in the light-scattering film 1, the light that travels from the incident surface 6 a to the exit surface 6 b through the light passage region 7 in the illumination light. Only the light can be converted into scattered light, and the photoreactive molecule 5 and the control content with high accuracy of exposure can be accurately reflected (see FIG. 2). Of course, when light with high directivity is used for exposure, the angular region and the light scattering region where the scattered light is generated can be controlled with higher accuracy.
In addition, the light scatterer has an elongated shape based on the exposure, and all of the light scatterers are oriented so as to extend in the incident angle direction of the light based on the exposure. Therefore, the exposed bulk region (light passage region) is Since the spatially high anisotropy is exhibited, the angle selectivity of light scattering can be increased, and the angle multiplex recording property can be greatly improved even when multiplex recording is performed.

さらに、散乱光の散乱度(入射光に対する光散乱される光強度の割合)については、露光時の露光量(露光強度×露光時間)を調整することにより、調整することができる。具体的には、露光量を増大させれば、露光量の増大は、光反応を通じて形成される散乱構造体の数密度ならびに空間サイズの増大がもたらされるため、散乱体や材料の混合比など、材料自体を変えなくても、散乱光の強度を簡単に増大させることができることになる。   Furthermore, the degree of scattering of scattered light (ratio of the intensity of light scattered with respect to incident light) can be adjusted by adjusting the exposure amount during exposure (exposure intensity × exposure time). Specifically, if the exposure amount is increased, the increase in the exposure amount results in an increase in the number density and spatial size of the scattering structures formed through the photoreaction. Even without changing the material itself, the intensity of the scattered light can be easily increased.

このような光散乱性フィルム1の性能、性質から、例えば、プライバシーの保護を図るべく、その散乱光を利用して所定の角度での視認を阻害する視野角制御フィルムとして用いたり、散乱光と透過光とを組み合わせて、サインボード(屋外装飾や案内板)や、新しいROM型ディスプレイ等に利用することができる。   From such performance and properties of the light scattering film 1, for example, in order to protect privacy, it can be used as a viewing angle control film that inhibits visual recognition at a predetermined angle using the scattered light, In combination with transmitted light, it can be used for sign boards (outdoor decorations and guide boards), new ROM type displays, and the like.

3.実験
上述の内容を裏付けるため、下記実験を行った。
(1)試験記録フィルム(サンプル)の作成
試験記録フィルムは、下記製造方法により作成した。
トリス(2,3−エポキシプロピル)イソシアヌレート(日産化学工業株式会社)55wt%、4−メチル−1,2−シクロヘキサンジカルボン酸無水物(東京化成工業株式会社)、Irgacure 379(チバ・ジャパン株式会社)10wt%を120℃で溶融混合し、硬化触媒としてPX‐4ET(日本化学工業株式会社)を加え、1mm厚のセルに注入した後、熱重合することで透明フィルムを得た。
3. Experiment The following experiment was conducted in order to support the above-mentioned content.
(1) Preparation of test recording film (sample) The test recording film was prepared by the following production method.
Tris (2,3-epoxypropyl) isocyanurate (Nissan Chemical Industry Co., Ltd.) 55 wt%, 4-methyl-1,2-cyclohexanedicarboxylic anhydride (Tokyo Chemical Industry Co., Ltd.), Irgacure 379 (Ciba Japan Co., Ltd.) ) 10 wt% was melt-mixed at 120 ° C., PX-4ET (Nippon Chemical Industry Co., Ltd.) was added as a curing catalyst, poured into a 1 mm thick cell, and then thermally polymerized to obtain a transparent film.

(2)実験内容
実験においては、試験記録フィルム(以下、記録フィルム2と同符号を用いる)を光散乱性フィルム1に形成するべく、図5に示すように、試験フィルム2に露光角度θ=−45°〜+45°の範囲の所定の露光角度でもって露光を行った。この場合、露光のための光としては、光反応性分子5が光反応する405nm光を用いた。
この後、図6に示すように、照射光(検出光)の照射に基づく上記各光散乱性フィルム1の透過光強度および散乱光強度をパワーメータ9により測定した。この場合、照射光(検出光)としては、試験記録フィルム2中に含有する光反応性分子5が光反応しない633nm光を用いた。
(2) Contents of Experiment In the experiment, in order to form a test recording film (hereinafter, the same sign as recording film 2) on the light-scattering film 1, as shown in FIG. The exposure was performed at a predetermined exposure angle in the range of −45 ° to + 45 °. In this case, as the light for exposure, 405 nm light by which the photoreactive molecule 5 photoreacts was used.
Thereafter, as shown in FIG. 6, the transmitted light intensity and scattered light intensity of each of the light scattering films 1 based on irradiation of irradiation light (detection light) were measured by a power meter 9. In this case, as irradiation light (detection light), 633 nm light to which the photoreactive molecules 5 contained in the test recording film 2 did not photoreact was used.

(3)実験結果
上述の実験により、下記実験結果を得た。
(i)露光角度θ=0°の光散乱性フィルム1に関しては、図7に示すように、露光前の状態を100%とすると、露光量の増大に伴い、露光後の光散乱性フィルム1の透過率は2%以下にまで低下し、露光量の増大に伴い散乱度が高まることが観察された。勿論この場合、散乱度と透過光強度の間にはトレードオフの関係があり、散乱度が高い時には、透過光強度が小さな値となる。
(ii)光散乱性フィルム1における散乱光強度の角度依存性を調べたところ、露光角度θ=0°の光散乱性フィルム1に関しては、図8に示すように、照射光の入射角度θ=−3°〜+3°の範囲においてのみ光散乱が生じ、そのうち、照射光の入射角度θ=0°で最大強度が得られた。従前のもの(例えば、特許2547416号、特許2547417号、特許2547419号等)がθ=−15°〜+15°の角度選択性を有していることを考慮すれば、当該光散乱性フィルム1は、優れた角度選択性(入射角依存性)を示している。
(iii)露光角度を変えた光散乱性フィルム1についても同様の評価を行ったところ、図9に示すように、光散乱を生じさせる照射光の入射角度は、露光角度と一致することが判明した。
(iv)露光角度が異なる二度の露光について調べたところ、図10に示すように、各露光角度と一致する入射角度の照射光により、散乱光がそれぞれ生じた。これにより、散乱光を多重に生じさせることが確認できた。
(3) Experimental result The following experimental result was obtained by the above-mentioned experiment.
(i) Regarding the light scattering film 1 with an exposure angle θ = 0 °, as shown in FIG. 7, when the pre-exposure state is 100%, the light scattering film 1 after the exposure increases as the exposure amount increases. It was observed that the transmittance decreased to 2% or less, and the degree of scattering increased with increasing exposure. Of course, in this case, there is a trade-off relationship between the scattering degree and the transmitted light intensity. When the scattering degree is high, the transmitted light intensity is a small value.
(ii) When the angle dependency of the scattered light intensity in the light-scattering film 1 was investigated, as shown in FIG. 8, with respect to the light-scattering film 1 having an exposure angle θ = 0 °, the incident angle θ = Light scattering occurred only in the range of −3 ° to + 3 °, and the maximum intensity was obtained at the incident angle θ = 0 ° of the irradiation light. Considering that conventional ones (for example, Patent 2547416, Patent 2547417, Patent 2547419, etc.) have an angle selectivity of θ = −15 ° to + 15 °, the light scattering film 1 is Excellent angle selectivity (incident angle dependency) is shown.
(iii) The same evaluation was performed on the light scattering film 1 with different exposure angles. As shown in FIG. 9, it was found that the incident angle of irradiation light causing light scattering coincided with the exposure angle. did.
(iv) When two exposures having different exposure angles were examined, as shown in FIG. 10, scattered light was generated by irradiation light having an incident angle that coincided with each exposure angle. As a result, it was confirmed that the scattered light was generated multiple times.

4.図17〜図19は第2実施形態を示す。この第2実施形態において、前記第1実施形態と同一構成要素については同一符号を付してその説明を省略する。 4). 17 to 19 show a second embodiment. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

(1)図17〜図19に示す第2実施形態においては、記録フィルム2に異なる入射角度及び入射領域の下で露光が多重に(2つの方位から)行われ、各露光に基づく各光通過領域7内において、光散乱体3が各露光の入射方向にそれぞれ延びる形状とされている。
これにより、露光が多重にされていても、図17、図18に示すように、そのいずれか一方の方位から露光の照射条件(入射条件、入射領域)と等しい条件をもって照明光が照射されたときには、その各照明光に基づき散乱光が生じることになる。
(1) In the second embodiment shown in FIGS. 17 to 19, the recording film 2 is subjected to multiple exposures (from two directions) under different incident angles and incident areas, and each light passage based on each exposure is performed. In the region 7, the light scatterer 3 has a shape extending in the incident direction of each exposure.
Thereby, even if the exposure is multiplexed, as shown in FIGS. 17 and 18, the illumination light is irradiated from either one of the directions under the same conditions as the exposure conditions (incidence condition, incident area). Sometimes scattered light is generated based on each illumination light.

また、露光が行われた全ての方位(図では2つの方位)から各露光の照射条件(入射条件、入射領域)と等しい条件をもっての照明光照射されたときには、図19に示すように、その各照明光に基づく散乱光が同時に生じることになる。勿論この場合、露光が行われた全ての方位以外からの方位からの照明光が照射された場合には、それは、透過光として出射されることになる。このため、同一光散乱性フィルム1上において多重記録が可能となり、多重記録のために、別個の記録内容を記録した光散乱性フィルムを積層して用いる必要はなくなる。   Further, when illumination light is irradiated from all azimuths (two azimuths in the figure) subjected to exposure under the same conditions as the exposure conditions (incidence condition, incident area) of each exposure, as shown in FIG. Scattered light based on each illumination light is generated simultaneously. Of course, in this case, when illumination light is irradiated from directions other than all the directions in which exposure has been performed, it is emitted as transmitted light. For this reason, multiple recording can be performed on the same light scattering film 1, and it is not necessary to use a light scattering film in which separate recording contents are stacked for the multiple recording.

(2)このような光散乱性フィルム1の性能、性質から、例えば、広告媒体、カードとしての利用を図るべく、角度を変えることで動態表現が可能なフィルムとして用いることができる。具体的には、異なる角度での多重露光によって、コマ送りのフィルムのように動きのある絵を組み合わせることにより、動画的なイメージを散乱像として表現することに用いることができる。 (2) From the performance and properties of such a light-scattering film 1, for example, it can be used as a film capable of expressing dynamics by changing the angle in order to be used as an advertising medium or a card. Specifically, a moving image such as a frame-by-frame film can be combined by multiple exposure at different angles to express a moving image as a scattered image.

5.実証試験
上述の内容を踏まえ、異なる角度からの二度のマスク露光により、特定の二方位にのみ異なる散乱像の表示が可能な素子の作製を試みた。
5. Demonstration Test Based on the above-mentioned contents, an attempt was made to fabricate an element capable of displaying different scattered images only in two specific directions by two mask exposures from different angles.

先ず、図11に示すように、記録フィルム2に“+”のフォトマスク2を介してθ=+45°方向から露光を行った。続いて、図12に示すように、同一領域に“−”のフォトマスク2を介してθ=−45°方向から露光を行った。そして、図13に示すように、この2つの像が多重露光された記録フィルム2(光散乱性フィルム1)に一定方向から光源11の光を入射し、種々の角度でのその光散乱性フィルム1からの出射光を観察した。   First, as shown in FIG. 11, the recording film 2 was exposed through a “+” photomask 2 from the θ = + 45 ° direction. Subsequently, as shown in FIG. 12, the same region was exposed from the θ = −45 ° direction through the “−” photomask 2. Then, as shown in FIG. 13, the light of the light source 11 is incident on the recording film 2 (light scattering film 1) on which the two images have been subjected to multiple exposure from a certain direction, and the light scattering film at various angles. The emitted light from 1 was observed.

図14〜図16は、θ=+45°,0°,−45°で観察されたフィルムの写真を示す。+45°方向から観察した場合は、図14に示すように、マスクをした“+”部分では光が透過し、露光部では散乱が見られた。同様に、−45°では、図15に示すように、“−”の像が現れた(光透過)。そして、0度では、図16に示すように、散乱した像は見られず透過した。つまり、露光角度でのみ露光された情報を散乱像として読み取ることができた。   FIGS. 14-16 show photographs of the film observed at θ = + 45 °, 0 °, −45 °. When observed from the + 45 ° direction, as shown in FIG. 14, light was transmitted in the “+” portion where the mask was formed, and scattering was observed in the exposed portion. Similarly, at −45 °, an image “−” appeared (light transmission) as shown in FIG. At 0 degree, as shown in FIG. 16, a scattered image was not seen and transmitted. That is, information exposed only at the exposure angle could be read as a scattered image.

1 光散乱性フィルム(光散乱素子)
2 記録フィルム(記録媒体)
3 光散乱体
4 母材
5 光反応性分子
7 光通過領域
8 露光に基づく光
1 Light scattering film (light scattering element)
2 Recording film (recording medium)
3 Light scatterer 4 Base material 5 Photoreactive molecule 7 Light passage region 8 Light based on exposure

Claims (15)

入射面から入射された照明光を、出射面から散乱光として出射させる光散乱素子の製造方法において、
光散乱素子用記録媒体として、透明な母材内に光反応性分子が混和されている硬化状態のものを用意し、
前記光散乱素子用記録媒体に対して、任意の入射角度及び入射領域の下で前記光反応性分子の吸収波長域の光を用いることにより露光を行い、
前記露光に基づく光反応により、前記光反応性分子を、該露光に基づく光通過領域内において、光学異方性を有すると共に前記散乱光を生じさせる光散乱体に変化させる、
ことを特徴とする光散乱素子の製造方法。
In the manufacturing method of the light scattering element that emits the illumination light incident from the incident surface as scattered light from the output surface,
As a recording medium for a light scattering element, prepare a cured material in which a photoreactive molecule is mixed in a transparent base material,
The light scattering element recording medium is exposed by using light in the absorption wavelength region of the photoreactive molecule under an arbitrary incident angle and incident region,
By the photoreaction based on the exposure, the photoreactive molecule is changed into a light scatterer that has optical anisotropy and generates the scattered light in a light passage region based on the exposure.
A method for producing a light scattering element, comprising:
請求項1において、
前記光散乱素子用記録媒体として、光反応性分子の濃度が全体に対して1〜70wt%のものを用いる、
ことを特徴とする光散乱素子の製造方法。
In claim 1,
As the recording medium for the light scattering element, one having a concentration of photoreactive molecules of 1 to 70 wt% based on the whole is used.
A method for producing a light scattering element, comprising:
請求項2において、
前記光散乱体は、前記露光に基づく光の入射角度方向における屈折率が前記母材の屈折率と異なり、且つ該露光に基づく光の入射角度以外の方向における屈折率が、該露光に基づく光の入射角度方向における屈折率の場合よりも該母材の屈折率に近づけられている、
ことを特徴とする光散乱素子の製造方法。
In claim 2,
In the light scatterer, the refractive index in the incident angle direction of light based on the exposure is different from the refractive index of the base material, and the refractive index in a direction other than the incident angle of light based on the exposure is light based on the exposure. Is closer to the refractive index of the base material than the refractive index in the incident angle direction of
A method for producing a light scattering element, comprising:
請求項3において、
前記光散乱体が、前記露光に基づく光の入射角度方向に細長く延びる形状とされ、
前記光散乱体の長軸方向の屈折率と前記母材の屈折率との差が10-4以上とされると共に、該光散乱体の短軸方向の屈折率と該母材の屈折率とが略等しくされている、
ことを特徴とする光散乱素子の製造方法。
In claim 3,
The light scatterer has a shape extending elongated in the incident angle direction of light based on the exposure,
The difference between the refractive index in the major axis direction of the light scatterer and the refractive index of the base material is 10 −4 or more, and the refractive index in the minor axis direction of the light scatterer and the refractive index of the base material are Are approximately equal,
A method for producing a light scattering element, comprising:
請求項4において、
前記光散乱体が、前記露光に基づく光の入射角度方向に細長く延びる形状とされることが、該光反応性分子を、該露光に基づく光通過領域内において、該露光に基づく光分解により分解生成物を生成し、該分解生成物を該露光に基づく照明光の入射角度方向に結晶成長させることである、
ことを特徴とする光散乱素子の製造方法。
In claim 4,
The light scatterer has a shape elongated in the incident angle direction of light based on the exposure, so that the photoreactive molecule is decomposed by photolysis based on the exposure in a light passage region based on the exposure. Producing a product, and crystallizing the decomposition product in an incident angle direction of illumination light based on the exposure.
A method for producing a light scattering element, comprising:
請求項3において、
前記露光を異なる入射角度及び入射領域の下で多重に行って、該各露光に基づく各光通過領域内における光反応性分子を該各露光により光散乱体にそれぞれ変化させる、
ことを特徴とする光散乱素子の製造方法。
In claim 3,
The exposure is performed in a multiple manner under different incident angles and incidence areas, and photoreactive molecules in each light passage region based on each exposure are changed into light scatterers by each exposure, respectively.
A method for producing a light scattering element, comprising:
請求項5において、
前記露光の露光量を調整する、
ことを特徴とする光散乱素子の製造方法。
In claim 5,
Adjusting the exposure amount of the exposure;
A method for producing a light scattering element, comprising:
請求項1〜7のいずれか1項において、
表現パターンを表示する表示手段として製造する、
ことを特徴とする光散乱素子の製造方法。
In any one of Claims 1-7,
Manufactured as a display means for displaying an expression pattern,
A method for producing a light scattering element, comprising:
請求項6において、
複数の動態パターンを重ねて表示する表示手段として製造する、
ことを特徴とする光散乱素子の製造方法。
In claim 6,
Produced as a display means to display a plurality of dynamic patterns superimposed on each other,
A method for producing a light scattering element, comprising:
入射面から入射された照明光を、出射面から散乱光として出射させるべく、露光を行うことにより、該露光に基づく光通過領域内に、光学異方性を有すると共に前記散乱光を生じさせる光散乱体を生成する光散乱素子用記録媒体であって、
透明な母材と、
前記母材内に混和されて、前記露光の吸収波長域の光を吸収して前記光散乱体に変化する光反応性分子と、
を具備し、
前記母材に基づき硬化状態とされている、
ことを特徴とする光散乱素子用記録媒体。
Light that has an optical anisotropy and generates the scattered light in a light passage region based on the exposure by performing exposure so that the illumination light incident from the incident surface is emitted as scattered light from the exit surface. A recording medium for a light scattering element that generates a scatterer,
With transparent base material,
A photoreactive molecule that is mixed in the base material and absorbs light in the absorption wavelength range of the exposure to change into the light scatterer;
Comprising
It is in a cured state based on the base material,
A recording medium for a light scattering element.
請求項10において、
前記光反応性分子の濃度が全体に対して1〜70wt%とされている、
ことを特徴とする光散乱素子用記録媒体。
In claim 10,
The concentration of the photoreactive molecule is 1 to 70 wt% with respect to the whole,
A recording medium for a light scattering element.
請求項11において、
前記光反応性分子は、前記光散乱体に変化したとき、前記露光に基づく光の入射角度方向に細長く延びる形状となるものであって、該光散乱体の長軸方向の屈折率と前記母材の屈折率との差が10-4以上となると共に、該光散乱体の短軸方向の屈折率と該母材の屈折率とが略等しくなるものである、
ことを特徴とする光散乱素子用記録媒体。
In claim 11,
When the photoreactive molecule is changed into the light scatterer, the photoreactive molecule has a shape extending elongated in the incident angle direction of light based on the exposure, and the refractive index in the major axis direction of the light scatterer and the mother The difference between the refractive index of the material is 10 −4 or more, and the refractive index of the light scatterer in the minor axis direction is substantially equal to the refractive index of the base material.
A recording medium for a light scattering element.
請求項12において、
前記光反応性分子は、前記露光が異なる入射角度及び入射領域の下で多重に行われたとき、該各露光に基づく各光通過領域内において該各露光により光散乱体にそれぞれ変化するものである、
ことを特徴とする光散乱素子用記録媒体。
In claim 12,
The photoreactive molecule is changed into a light scatterer by each exposure in each light passage region based on each exposure when the exposure is performed in a multiple manner under different incident angles and incident areas. is there,
A recording medium for a light scattering element.
請求項12又は13において、
前記光反応性分子は、前記光散乱体に変化するに際して、前記露光に基づく光通過領域内において、該露光に基づき分解生成物に光分解された後、該分解生成物が該露光に基づく照明光の入射角度方向に結晶成長するものである、
ことを特徴とする光散乱素子用記録媒体。
In claim 12 or 13,
When the photoreactive molecule is converted into the light scatterer, the photoreactive molecule is photodecomposed into a decomposition product based on the exposure in a light passage region based on the exposure, and then the decomposition product is illuminated based on the exposure. Crystal growth in the incident angle direction of light,
A recording medium for a light scattering element.
請求項13において、
前記光反応性分子は、前記光散乱体に変化するに際して、前記露光の露光量の調整に基づき、形態が異なるものである、
ことを特徴とする光散乱素子用記録媒体。
In claim 13,
When the photoreactive molecule changes to the light scatterer, the form is different based on the adjustment of the exposure amount of the exposure.
A recording medium for a light scattering element.
JP2011262247A 2011-11-30 2011-11-30 Method for manufacturing light scattering element Expired - Fee Related JP5862945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262247A JP5862945B2 (en) 2011-11-30 2011-11-30 Method for manufacturing light scattering element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262247A JP5862945B2 (en) 2011-11-30 2011-11-30 Method for manufacturing light scattering element

Publications (2)

Publication Number Publication Date
JP2013114187A true JP2013114187A (en) 2013-06-10
JP5862945B2 JP5862945B2 (en) 2016-02-16

Family

ID=48709744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262247A Expired - Fee Related JP5862945B2 (en) 2011-11-30 2011-11-30 Method for manufacturing light scattering element

Country Status (1)

Country Link
JP (1) JP5862945B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022966A (en) * 2000-07-11 2002-01-23 Seizo Miyata Scattering light guide sheet having polarization function
JP2003114311A (en) * 2001-10-03 2003-04-18 Toppan Printing Co Ltd Light scattering body and display device which uses the same
JP2005037802A (en) * 2003-07-18 2005-02-10 Toppan Printing Co Ltd Light scattering film and display device using the same
US20070190317A1 (en) * 2006-02-14 2007-08-16 Tomoegawa Co., Ltd. Anisotropic scattering adhesive member
JP2009505118A (en) * 2005-08-16 2009-02-05 株式会社オハラ Structure and manufacturing method thereof
JP2009086449A (en) * 2007-10-01 2009-04-23 Tomoegawa Paper Co Ltd Anisotropic diffusion medium
JP2009116197A (en) * 2007-11-08 2009-05-28 Nitto Denko Corp Anisotropic light scattering film, manufacturing method thereof, optical film and image display device
JP2009265406A (en) * 2008-04-25 2009-11-12 Sony Corp Display device and electronic appliance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022966A (en) * 2000-07-11 2002-01-23 Seizo Miyata Scattering light guide sheet having polarization function
JP2003114311A (en) * 2001-10-03 2003-04-18 Toppan Printing Co Ltd Light scattering body and display device which uses the same
JP2005037802A (en) * 2003-07-18 2005-02-10 Toppan Printing Co Ltd Light scattering film and display device using the same
JP2009505118A (en) * 2005-08-16 2009-02-05 株式会社オハラ Structure and manufacturing method thereof
US20070190317A1 (en) * 2006-02-14 2007-08-16 Tomoegawa Co., Ltd. Anisotropic scattering adhesive member
JP2009086449A (en) * 2007-10-01 2009-04-23 Tomoegawa Paper Co Ltd Anisotropic diffusion medium
JP2009116197A (en) * 2007-11-08 2009-05-28 Nitto Denko Corp Anisotropic light scattering film, manufacturing method thereof, optical film and image display device
JP2009265406A (en) * 2008-04-25 2009-11-12 Sony Corp Display device and electronic appliance

Also Published As

Publication number Publication date
JP5862945B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
CN103946728B (en) The manufacture method and optical diffusion film of optical diffusion film
CN100576069C (en) Radiation-curable resin composition and utilize the quick molding method of said composition
US8017193B1 (en) Monomeric formulation for making polymer waveguides
JP2691543B2 (en) Light control plate and method of manufacturing the same
TWI605271B (en) Producing method for light diffusion film
CN106687831A (en) Optical diffusion film and method for manufacturing optical diffusion film
CN105922587A (en) Continuous light curing three-dimensional printing equipment and use method thereof
TWI519585B (en) Composition for anisotropic light diffusion film and anisotropic light diffusion film
TWI583541B (en) Light diffusion film
RU2010129528A (en) METHOD FOR PRODUCING IMAGES IN CRYSTALLINE COLLOID STRUCTURES
TW201224023A (en) Composition for anisotropic light diffusion film and anisotropic light diffusion film
TW201350927A (en) Light diffusion film
JP3644453B1 (en) Curable fluorine-containing resin composition and optical member obtained by curing the same
Ali et al. 4D printed thermochromic Fresnel lenses for sensing applications
JP5552791B2 (en) Method for producing transparent composite sheet and transparent composite sheet
Yang et al. Preparation and mechanism of free‐radical/cationic hybrid photosensitive resin with high tensile strength for three‐dimensional printing applications
US20090195847A1 (en) Holographic recording medium
JP5862945B2 (en) Method for manufacturing light scattering element
KR101245953B1 (en) Molded product and production method thereof
JP2007030373A (en) Method for manufacturing molded body
JP5738367B2 (en) Optical three-dimensional model with low yellowness
WO2021033650A1 (en) Liquid crystal element and liquid crystal element manufacturing method
US20120251927A1 (en) Hologram-recording medium
WO2010140341A1 (en) Diffractive optical element
JP2822065B2 (en) Manufacturing method of light control plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151216

R150 Certificate of patent or registration of utility model

Ref document number: 5862945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees