JP2013113452A - Air conditioning method of building - Google Patents

Air conditioning method of building Download PDF

Info

Publication number
JP2013113452A
JP2013113452A JP2011257536A JP2011257536A JP2013113452A JP 2013113452 A JP2013113452 A JP 2013113452A JP 2011257536 A JP2011257536 A JP 2011257536A JP 2011257536 A JP2011257536 A JP 2011257536A JP 2013113452 A JP2013113452 A JP 2013113452A
Authority
JP
Japan
Prior art keywords
air
pressure
room
return air
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011257536A
Other languages
Japanese (ja)
Other versions
JP5873693B2 (en
Inventor
Toshihiro Murakami
俊博 村上
Yasuo Shimizu
保夫 清水
Daisuke Mito
大介 三戸
Masatake Iribe
真武 入部
Tetsuji Yamada
哲司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2011257536A priority Critical patent/JP5873693B2/en
Publication of JP2013113452A publication Critical patent/JP2013113452A/en
Application granted granted Critical
Publication of JP5873693B2 publication Critical patent/JP5873693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning method of a building suppressing air conditioning energy loss and indoor environment deterioration by a draft or the like by correcting a collapsed air balance between a vertical space and each interior of each room in the building by carrying out a corrective action so as to make a differential pressure or an amount of air movement between the vertical space and the inside of each room zero by means of the existing air conditioners.SOLUTION: A vertical space 1 penetrating an interior of a building B and a room R1 are connected to each other by gaps or the like. A part of a returned air of the room R1 is mixed with an outside air introduced from an outside air introducing port 5b by an air returning fan 12 of an air conditioner 11 and supplied to the room R1 as an air conditioned air after carrying out a temperature regulation by a heating coil 11b and a cooling coil 11c, and a part of the remainder of the returned air is exhausted from exhaust ports 5a, 5c. A differential pressure between the room R1 and the vertical space 1 is measured by a first measuring device 31, and a rotating speed of the air returning fan 12 or an opening of an exhaust damper 13 is controlled by a control device C so as to make the differential pressure zero.

Description

本発明は、建物の空調方法にかかり、特にビル等の建築物に適した空調に関するものである。   The present invention relates to an air conditioning method for buildings, and particularly relates to an air conditioning suitable for buildings such as buildings.

通常、ビルの空調は各階の外気導入量(OA)の総和と、排気量(EA)の総和との収支が0になるようにエアバランスをとって設計、調整を行っている。しかしながら、当該エアバランスが崩れると、EA−OA(EAとOAの差分)に相当する隙間風が、階段室、エレベーターシャフト、パイプシャフトなど、建物を縦に貫く空間(以下、「縦空間」という)と部屋との仕切壁の隙間を通って室内に流入したり、室内から流出する。このため、たとえばOAが過剰の階から縦空間を介してEAが過剰の階に空気が流れ、建物全体として、調温、調湿され空調空気を無駄に多く排気したり、過剰な外気導入を行うことになり、空調用エネルギーを無駄に消費することになる。このようなエアバランスの崩れを生じる原因には、以下のものがある。   Normally, air conditioning in a building is designed and adjusted by taking an air balance so that the balance between the sum of outside air introduction amounts (OA) and the sum of exhaust air amounts (EA) on each floor is zero. However, when the air balance is lost, the gap wind corresponding to EA-OA (difference between EA and OA) passes vertically through the building such as the staircase, elevator shaft, pipe shaft (hereinafter referred to as “vertical space”). ) Flows into the room through the gap between the room and the partition wall. For this reason, for example, air flows from a floor with excessive OA to a floor with excessive EA through a vertical space, and the entire building is conditioned and humidity-controlled to exhaust a lot of conditioned air, or introduce excessive outside air. As a result, the air conditioning energy is wasted. The causes of the collapse of the air balance include the following.

[煙突効果]
高層ビルでは、空調温度と外気との温度差が広がると、室内と屋外の圧力差が高さ方向に変化する現象(煙突効果)が発生する。この煙突効果が起こると、「室内圧<屋外気圧」となる階(例えば冬場の地下階など)では、OAの総和と外部への開口部(地下道への連絡路など)から流入する外気OA´の和が、EAの総和よりも多くなり、余剰の空気が縦空間の壁の隙間を通して室内から縦空間に流出する。逆に「室内圧>屋外気圧」となる階(例えば冬場の高層階など)では、EAの総和と、外部に通ずる開口部から屋外へ流出する室内空気EA´の和がOAの総和よりも多くなり、不足分が縦空間の壁の隙間を通して縦空間から室内に流入する。
[Chimney effect]
In a high-rise building, when the temperature difference between the air-conditioning temperature and the outside air widens, a phenomenon (chimney effect) in which the pressure difference between the room and the outside changes in the height direction occurs. When this chimney effect occurs, on the floor where “indoor pressure <outdoor air pressure” (for example, the underground floor in winter), the outside air OA ′ that flows in from the sum of OA and the opening to the outside (the access path to the underground passage, etc.) Becomes larger than the total sum of EA, and excess air flows out from the room into the vertical space through the gaps in the walls of the vertical space. On the other hand, on floors where “indoor pressure> outdoor air pressure” (for example, higher floors in winter), the sum of EA and the sum of indoor air EA ′ flowing out of the opening to the outside is larger than the sum of OA. Therefore, the shortage flows from the vertical space into the room through the gaps in the walls of the vertical space.

[可変風量空調機のエアバランス不良]
室内温度制御やCO濃度制御など、制御対象が室圧ではない制御によって給排気ファンの回転数やダンパの開度が変化すると、制御の結果、室圧が変化するため、縦空間と室内との隙間風量が変化して、OAとEAの収支に影響を及ぼす。
[Air balance of variable air volume air conditioner is poor]
When the rotation speed of the supply / exhaust fan or the opening of the damper changes due to control where the control target is not room pressure, such as indoor temperature control or CO 2 concentration control, the room pressure changes as a result of the control. The air volume of the gap changes, affecting the balance of OA and EA.

[フロア内空調機の総合エアバランス不良]
フロア内に複数の空調機による給気と定風量(CAV)の排気がある場合、空調機全台運転時にエアバランスを調整すると、空調機の一部を停止した際にOAの総和が減少するため、不足を補うように縦空間から室内に隙間風が流入する。
[Incomplete air balance of air conditioners on the floor]
When there are air supply by multiple air conditioners and exhaust of constant air volume (CAV) on the floor, adjusting the air balance when operating all air conditioners reduces the total OA when a part of the air conditioners is stopped For this reason, the draft air flows into the room from the vertical space so as to compensate for the shortage.

そのような建物の内外の空気の流通を抑えるものとして、例えば以下のものがある。まず、いわゆる二重扉方式における、風除室を構成し、屋内から当該風除室内に入り込んだ空気を屋内へ戻し、屋外から風除室内に入り込んだ空気を屋外へ戻すことで、建物内外の空気の流通を防止して空調エネルギーのロスを低減するものがある(特許文献1)。その他、外気圧が大きい時に、屋外に通ずるダンパを閉じて、外気を室内に流入させないようにすることで、平常時よりも外気流入量を増大させて、空調エネルギーがロスすることを防止するものがある(特許文献2)。   For example, there are the following to suppress the circulation of air inside and outside such a building. First, in the so-called double door system, a windbreak room is constructed, the air that has entered the windbreak room from the inside is returned to the indoor, and the air that has entered the windshield room from the outside is returned to the outside, so that There is one that prevents air flow and reduces loss of air conditioning energy (Patent Document 1). In addition, when the outside air pressure is high, by closing the damper that leads to the outside and preventing the outside air from flowing into the room, the amount of outside air inflow is increased more than usual, preventing loss of air conditioning energy. (Patent Document 2).

特許4515173号公報Japanese Patent No. 4515173 特公平7−107460号公報Japanese Examined Patent Publication No. 7-107460

前記した特許文献1に記載の技術は、別途風除ブースを設け、この風除室に設けた排気ファンの制御によって、内外の空気の流通を抑制しているため、一般の室に対して適用する場合、そのような風除ブースを各室に設ける必要がある。また特許文献2に記載の技術は、専用のエアーダクトとダンパを設置する必要がある。したがって、これら従来技術は、いずれも既設の空調機器をそのまま利用して、前記したようなエアバランスの崩れを防止することはできない。   The technique described in Patent Document 1 is applied to a general chamber because a windbreak booth is separately provided and the flow of air inside and outside is suppressed by controlling an exhaust fan provided in the windbreak chamber. In such a case, it is necessary to provide such a windbreak booth in each room. In the technique described in Patent Document 2, it is necessary to install a dedicated air duct and a damper. Therefore, none of these conventional techniques can prevent the above-described collapse of the air balance by using the existing air conditioning equipment as it is.

前記したように、エアバランスの崩れは縦空間を介した空気の移動が原因である。本発明は既設の空調機器を利用して、縦空間と室内との差圧あるいは空気の移動量が0になるように修正動作を行うことで、前記エアバランスの崩れを修正し、隙間風等による空調エネルギーの損失と室内環境の悪化を抑制することを目的としている。   As described above, the collapse of the air balance is caused by the movement of air through the vertical space. The present invention corrects the collapse of the air balance by using the existing air-conditioning equipment so that the differential pressure between the vertical space and the room or the amount of air movement becomes zero. The purpose is to suppress the loss of air conditioning energy and the deterioration of the indoor environment.

前記目的を達成するため、本発明は、建物内部を縦に貫く縦空間と、隙間、開口、またはダクトによって通じている室の空調を行なう方法であって、還気ファンによって室の還気の一部を、外気導入口から導入した外気と混合し、熱交換器によって熱交換して温度調整した後に、空調空気として前記室に供給し、還気の残りの一部は排気口から排気する空調方法において、前記室へは、室内の圧力とは無関係の変風量方式によって、温度調整した後の空調空気が供給されており、前記室と前記縦空間内の差圧を計測し、当該差圧が0になるように、前記還気ファンの回転数を制御することを特徴としている。   In order to achieve the above object, the present invention provides a method for air conditioning a vertical space penetrating the interior of a building and a room communicated by a gap, an opening, or a duct. A part of the mixture is mixed with the outside air introduced from the outside air introduction port, heat-exchanged by a heat exchanger to adjust the temperature, and then supplied to the chamber as conditioned air, and the remaining part of the return air is exhausted from the exhaust port. In the air conditioning method, the conditioned air after temperature adjustment is supplied to the chamber by a variable air volume method that is independent of the pressure in the room, and the differential pressure in the chamber and the vertical space is measured and the difference is measured. The rotational speed of the return air fan is controlled so that the pressure becomes zero.

たとえば室圧が縦空間の気圧よりも高い場合、その差圧(室圧―縦空間圧)は正の値となる。このとき還気ファン回転数を上げれば、室内から流れる還気風量が増大するが、コイル等の熱交換器を介して温湿度調整された後に、室内に戻されるため、当該熱交換器による空気抵抗に起因して、室内に戻される風量は低減する。すなわち、還気風量よりも室内に戻す風量が少なくなる。また還気ファンの回転数を上げると、室内から流出する空気の量と排気口のダンパなどを介して熱交換器に流入する空気量が増大する。この時、熱交換器を通過する空気は全て変風量方式で室内に供給されるが、変風量方式では室内の温度などに応じて、室圧制御とは無関係に風量を決定し、たとえば給気ファンの回転数を決めているので、還気ファンの回転数を増大させることにより、変風量方式の要求風量を上回る空気が変風量ユニットに流れることになる。そうすると、変風量ユニットはたとえば室内に給気する給気ファンの回転数を下げる制御を行うことになる。したがって還気ファンの回転数を上げると給気ファンの回転数が下がり、室圧が低下する(このとき変風量方式のユニットと熱交換器を通過する空気量は変わらない)。その結果、室圧は低下するので、差圧(室圧―縦空間圧)が0になる方向に変化する。
逆に、室圧が縦空間内の気圧よりも低い場合、その差圧(室圧―縦空間圧)は負の値となる。この場合には、還気ファンの回転数を下げることにより、室圧は上昇するので、その差圧(室圧―縦空間圧)が0になる方向に変化する。
For example, when the chamber pressure is higher than the atmospheric pressure in the vertical space, the differential pressure (chamber pressure−vertical space pressure) is a positive value. If the number of rotations of the return air fan is increased at this time, the amount of return air flowing from the room increases, but the temperature and humidity are adjusted via a heat exchanger such as a coil and then returned to the room. Due to the resistance, the amount of air returned to the room is reduced. That is, the amount of air returned to the room is less than the amount of return air. Further, when the rotational speed of the return air fan is increased, the amount of air flowing out of the room and the amount of air flowing into the heat exchanger through the exhaust port damper and the like increase. At this time, all of the air passing through the heat exchanger is supplied to the room by the variable air volume method. However, the variable air volume method determines the air volume regardless of the room pressure control, for example, according to the indoor temperature. Since the rotational speed of the fan is determined, by increasing the rotational speed of the return air fan, air exceeding the required air volume of the variable air volume system flows to the variable air volume unit. Then, the variable air volume unit performs control to lower the rotational speed of the air supply fan that supplies air into the room, for example. Therefore, when the rotation speed of the return air fan is increased, the rotation speed of the supply air fan is decreased and the chamber pressure is decreased (the amount of air passing through the variable air volume unit and the heat exchanger is not changed at this time). As a result, the chamber pressure decreases, so that the differential pressure (chamber pressure−longitudinal space pressure) changes to zero.
Conversely, when the chamber pressure is lower than the atmospheric pressure in the vertical space, the differential pressure (chamber pressure−vertical space pressure) is a negative value. In this case, the chamber pressure rises by lowering the rotational speed of the return air fan, so that the differential pressure (chamber pressure-vertical space pressure) changes to become zero.

前記還気ファンの回転数を制御した際、還気ファンの回転数が予め定めた最小値または最大値に達した後一定時間経過した後に、前記排気口のダンパを一定量閉じるか、または一定量開く動作を行い、その後に前記差圧が0になるように、前記還気ファンの回転数を制御するようにしてもよい。   When the rotational speed of the return air fan is controlled, a certain amount of time passes after the rotational speed of the return air fan reaches a predetermined minimum or maximum value, and then the damper of the exhaust port is closed by a certain amount or constant. An opening operation may be performed, and then the rotational speed of the return air fan may be controlled so that the differential pressure becomes zero.

前記還気ファンの回転数を制御した際、還気ファンの回転数が予め定めた最小値または最大値に達した後一定時間経過しても、前記差圧が0にならない場合には、さらに前記排気口のダンパの開度を調整して、前記差圧が0になるように制御するようにしてもよい。   When the rotational speed of the return air fan is controlled, if the differential pressure does not become 0 even after a predetermined time has elapsed after the rotational speed of the return air fan reaches a predetermined minimum value or maximum value, You may make it control so that the said differential pressure | pressure may be set to 0 by adjusting the opening degree of the damper of the said exhaust port.

前記排気口のダンパの開度をさらに制御した際、前記排気口のダンパが全開または全閉に達した後一定時間経過しても、前記差圧が0にならない場合、還気の一部を、外気導入口から導入した外気と混合するにあたって、還気と外気との混合流路に設けた還気ダンパの開度によって、混合する還気風量が調整可能な際には、当該還気ダンパの開度を制御して、前記差圧が0になるように制御するようにしてもよい。   When the opening degree of the damper of the exhaust port is further controlled, if the differential pressure does not become 0 even after a certain time has elapsed after the damper of the exhaust port is fully opened or fully closed, a part of the return air is When mixing with the outside air introduced from the outside air inlet, when the amount of the return air flow to be mixed can be adjusted by the opening degree of the return air damper provided in the return air and outside air mixing flow path, May be controlled so that the differential pressure becomes zero.

屋外と前記室内との差圧に基づいて、前記還気ファンの回転数を調節する制御の応答性を決定するパラメータを変化させるようにしてもよい。   A parameter that determines the responsiveness of the control for adjusting the rotational speed of the return air fan may be changed based on the differential pressure between the outdoors and the room.

前記室内の温度と、外気の温度との温度差及び前記室の高さに基づいて、前記還気ファンの回転数を調節する制御の応答性を決定するパラメータを変化させるようにしてもよい。   A parameter that determines the responsiveness of the control for adjusting the rotation speed of the return air fan may be changed based on the temperature difference between the room temperature and the outside air temperature and the height of the room.

前記差圧に替えて、差圧に比例した物理量(例えば電圧や電流)を出力する装置の出力値を用いるようにしてもよい。   Instead of the differential pressure, an output value of a device that outputs a physical quantity (for example, voltage or current) proportional to the differential pressure may be used.

また前記差圧に替えて、前記室と縦空間とを隔てる壁体に形成された開口に設けられて当該開口を通過する風量、風速若しくは風量に比例した物理量(例えば電圧や電流)を出力する装置の出力値を用いるようにしてもよい。   In place of the differential pressure, a physical quantity (for example, voltage or current) that is provided in an opening formed in a wall that separates the chamber and the vertical space and is proportional to the air volume, the wind speed, or the air volume that passes through the opening is output. You may make it use the output value of an apparatus.

本発明によれば、既設の空調機器を制御して、縦空間と室内との差圧あるいは空気の移動量が0になるように還気ファンを調節することで、建物内のエアバランスの崩れを修正し、隙間風等による空調エネルギーの損失と室内環境の悪化を抑制することが可能である。   According to the present invention, the existing air conditioner is controlled, and the return air fan is adjusted so that the differential pressure between the vertical space and the room or the amount of air movement becomes zero. It is possible to suppress the loss of air-conditioning energy and the deterioration of the indoor environment due to drafts and the like.

実施の形態にかかる空調方法を実施するための空調システムの構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of the structure of the air conditioning system for enforcing the air conditioning method concerning embodiment. 還気ファンと排気ダンパの操作による制御の応答性を変化させるための様子を示した説明図である。It is explanatory drawing which showed the mode for changing the responsiveness of control by operation of a return air fan and an exhaust damper. ビルにおける煙突効果の強弱と縦空間の圧力との関係を示す説明図である。It is explanatory drawing which shows the relationship between the strength of the chimney effect in a building, and the pressure of vertical space. 還気ダンパの操作による制御の応答性を変化させるための様子を示した説明図である。It is explanatory drawing which showed the mode for changing the responsiveness of control by operation of a return air damper. 風量に比例した物理量を出力する装置の構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of the structure of the apparatus which outputs the physical quantity proportional to the air volume. 風量に比例した物理量を出力する他の装置の構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of the structure of the other apparatus which outputs the physical quantity proportional to an air volume.

以下、実施の形態について説明すると、図1は実施の形態にかかる空調方法を実施するための空調システムの概略的構成を模式的に示した図であり、この例では、複数階床を有するビルBに適用した例を示している。このビルBの各階の室R1、R2は、すべて同一構成であり、各々同一の空調システムが採用されているので、以下、室R1を例にとって説明する。   Hereinafter, an embodiment will be described. FIG. 1 is a diagram schematically showing a schematic configuration of an air conditioning system for carrying out an air conditioning method according to the embodiment. In this example, a building having a plurality of floors is shown. The example applied to B is shown. The rooms R1 and R2 on each floor of the building B all have the same configuration and the same air conditioning system is adopted, so the following description will be given taking the room R1 as an example.

室R1は、たとえばエレベーターシャフトなどの縦空間1と壁2を介して位置している排気のある室RE(例えばトイレや湯沸室など)と隣接している。また室R1には、壁3を介して機械室4が隣接している。この機械室4に、室R1の空調を実施する空調機11が設けられている。   The room R1 is adjacent to a room RE (for example, a toilet or a hot water room) with exhaust, which is located through a vertical space 1 such as an elevator shaft and a wall 2, for example. The machine room 4 is adjacent to the room R1 through the wall 3. The machine room 4 is provided with an air conditioner 11 that performs air conditioning of the room R1.

この空調機11は、チャンバ11a内に、還気ファン12と給気ファン16を有している。還気ファン12は、壁3に設けられた還気口3aから取り込んだ室内の雰囲気(還気)を、チャンバ11a内に導入する。チャンバ11a内に導入された還気は、一部は排気として、排気ダンパ13を介して、ビルBの外壁5に設けられた排気口5aから排気される。   The air conditioner 11 has a return air fan 12 and an air supply fan 16 in a chamber 11a. The return air fan 12 introduces the indoor atmosphere (return air) taken from the return air port 3a provided in the wall 3 into the chamber 11a. A part of the return air introduced into the chamber 11a is exhausted from an exhaust port 5a provided in the outer wall 5 of the building B through an exhaust damper 13 as exhaust.

チャンバ11aに取り込まれた還気の残りの一部は還気ダンパ14を経由して外気と混合される。すなわち、ビルの外壁5に設けられた外気導入口5bから外気ダンパ15を介してチャンバ11a内に導入された外気と、還気の一部が混合された後、加熱コイル11b、冷却コイル11c、加湿器11dによって温湿度調整される。そして温湿度調整された後、給気ファン16によって、室R1の天井部空間に複数設置されている各VAVユニット21に供給され、天井22に設けた給気口22aから室R1内に供給される。   The remaining part of the return air taken into the chamber 11 a is mixed with the outside air via the return air damper 14. That is, after the outside air introduced into the chamber 11a from the outside air inlet 5b provided in the outer wall 5 of the building via the outside air damper 15 and a part of the return air are mixed, the heating coil 11b, the cooling coil 11c, The temperature and humidity are adjusted by the humidifier 11d. After the temperature and humidity are adjusted, the air supply fan 16 supplies a plurality of VAV units 21 installed in the ceiling space of the room R1 and supplies the air into the room R1 from the air supply ports 22a provided in the ceiling 22. The

室R1と縦空間1との間に位置している前出排気のある室REからの排気は、天井22に設けられた排気口22bから、CAVユニット23を介して、排気ダクト24等により、外壁5に設けられた排気口5cから排気される。   Exhaust air from the room RE with the previous exhaust located between the room R1 and the vertical space 1 is exhausted from the exhaust port 22b provided in the ceiling 22 through the CAV unit 23 by the exhaust duct 24 and the like. It exhausts from the exhaust port 5c provided in the outer wall 5. FIG.

室R1と排気のある室RE、排気のある室REと縦空間1、室R1と機械室4とは、壁等で隔てられているものの、それぞれ気密に閉鎖されているわけではなく、各々隙間や大小の開口(図示せず)等によって連通している。したがって、排気のある室RE、室R1、縦空間1、機械室4も連通している。   Although the chamber R1 and the chamber RE with the exhaust, the chamber RE with the exhaust and the vertical space 1, and the chamber R1 and the machine chamber 4 are separated by a wall or the like, they are not closed in an airtight manner, And large and small openings (not shown). Therefore, the room RE, the room R1, the vertical space 1, and the machine room 4 with exhaust are also communicated.

そして空調機11の還気ファン12は、排気のある室REと縦空間1とを隔てている壁2に設けられた第1の計測装置31の計測結果、並びに外壁5に設けられた第2の計測装置32の各計測結果に基づき、制御装置Cによってインバータ制御される。また排気ダンパ13の開度も、同様に第1の計測装置31の計測結果、第2の計測装置32の各計測結果に基づき、制御装置Cによって制御することが可能である。この例では、第1の計測装置31は、排気のある室REと縦空間1との間の差圧を計測する差圧計であり、また第2の計測装置32は、機械室4と屋外との間の差圧を計測する差圧計である。   The return air fan 12 of the air conditioner 11 includes the measurement result of the first measuring device 31 provided on the wall 2 that separates the exhausted room RE and the vertical space 1, and the second result provided on the outer wall 5. The control device C performs inverter control based on each measurement result of the measurement device 32. Similarly, the opening degree of the exhaust damper 13 can be controlled by the control device C based on the measurement results of the first measurement device 31 and the measurement results of the second measurement device 32. In this example, the first measuring device 31 is a differential pressure gauge that measures the differential pressure between the chamber RE with exhaust and the vertical space 1, and the second measuring device 32 includes the machine room 4 and the outdoors. It is a differential pressure gauge that measures the differential pressure between.

実施の形態にかかる空調システムは、以上の構成を有しており、次にその運転例について説明する。まず通常時は、排気ダンパ13及び還気ダンパ14の制御は、外気導入口5bからの、外気ダンパ15の制御による外気取入れ量に対して、排気量と外気取入れ量が等しくなるように制御される。また、給気ファン16の回転数は室内空調のための制御(たとえば、室R1の室温に応じて回転数を制御して給気風量を調整する)が行われ、還気ファン12の回転数は、給気ファン16の回転数に合わせて制御され、室内における給排気の量を一致させている(通常時の制御)。   The air conditioning system according to the embodiment has the above-described configuration. Next, an example of the operation will be described. First, during normal times, the exhaust damper 13 and the return air damper 14 are controlled so that the exhaust amount and the outside air intake amount are equal to the outside air intake amount by the outside air damper 15 control from the outside air introduction port 5b. The Further, the rotation speed of the air supply fan 16 is controlled for indoor air conditioning (for example, the rotation speed is controlled according to the room temperature of the room R1 to adjust the supply air volume), and the rotation speed of the return air fan 12 is controlled. Is controlled in accordance with the rotational speed of the air supply fan 16, and the amount of air supply / exhaust in the room is matched (control during normal time).

そしてまず室R1の室圧が、縦空間1内の圧力よりも高い場合、第1の計測装置31によって計測される差圧(室圧―縦空間圧)は正の値となる。このとき還気ファン12の回転数の制御出力は正(回転数を上げる方向)に制御される。還気ファン12の回転数が増大すると、室圧は低下するので、第1の計測装置31によって計測される差圧(室圧―縦空間圧)が0になる方向に変化する。逆に、室圧が縦空間圧よりも低い場合、第1の計測装置31によって計測される差圧(室圧―縦空間圧)は負の値となる。このとき還気ファン12の回転数の制御出力は負(回転数を下げる方向)に制御される。還気ファン12の回転数が減少すると、室圧は上昇するので、差圧(室圧―縦空間圧)が0になる方向に変化する。   First, when the chamber pressure in the chamber R1 is higher than the pressure in the vertical space 1, the differential pressure (chamber pressure−vertical space pressure) measured by the first measuring device 31 is a positive value. At this time, the control output of the rotational speed of the return air fan 12 is controlled to be positive (in the direction of increasing the rotational speed). When the number of rotations of the return air fan 12 increases, the chamber pressure decreases, so that the differential pressure (chamber pressure−vertical space pressure) measured by the first measuring device 31 changes in a direction that becomes zero. Conversely, when the chamber pressure is lower than the longitudinal space pressure, the differential pressure (chamber pressure−vertical space pressure) measured by the first measuring device 31 is a negative value. At this time, the control output of the rotational speed of the return air fan 12 is controlled to be negative (in the direction of decreasing the rotational speed). When the rotational speed of the return air fan 12 decreases, the chamber pressure increases, so that the differential pressure (chamber pressure-vertical space pressure) changes to zero.

ここで還気ファン12の回転数が予め設定された上限値または下限値に達し、一定時間(チャタリングを考慮して、たとえば10秒程度)経過しても、未だ差圧が0にならない場合には、排気ダンパ13を他の制御、すなわち、既述した通常時の制御から切り離して、第1の計測装置31によって計測される差圧(室圧―縦空間圧)に基づいて開度制御を行う。すなわち、差圧(室圧―縦空間圧)が正の値の場合には排気ダンパ13を開ける方向に制御する。排気ダンパ13が開くと、チャンバ11aに導入された還気のうち、排気として屋外に放出される分が多くなるので、室圧は下がり、差圧(室圧―縦空間圧)が0になる方向に変化する。   Here, when the rotational speed of the return air fan 12 reaches a preset upper limit value or lower limit value, and the differential pressure still does not become zero even after a certain time (for example, about 10 seconds in consideration of chattering). The exhaust damper 13 is separated from the other control, that is, the normal control described above, and the opening degree control is performed based on the differential pressure (room pressure−vertical space pressure) measured by the first measuring device 31. Do. That is, when the differential pressure (chamber pressure−vertical space pressure) is a positive value, the exhaust damper 13 is controlled to open. When the exhaust damper 13 is opened, a portion of the return air introduced into the chamber 11a is released to the outside as exhaust gas, so that the chamber pressure decreases and the differential pressure (room pressure−vertical space pressure) becomes zero. Change direction.

逆に第1の計測装置31によって計測される差圧(室圧―縦空間圧)が負の値の場合には排気ダンパ13を閉める方向(開度を小さくする方向)に制御する。排気ダンパ13の開度が小さくなると、還気として室R1に戻される換気量が増加して室圧は上がるので、差圧(室圧―縦空間圧)が0になる方向に変化する。このとき還気ダンパ14はそれまでの開度を維持している。なお、差圧が0になった時点で、排気ダンパ13の制御を通常時の制御に戻し、差圧に基づく制御は、還気ファン12の回転数制御のみとする。   On the contrary, when the differential pressure (chamber pressure-vertical space pressure) measured by the first measuring device 31 is a negative value, the exhaust damper 13 is controlled to be closed (the direction in which the opening is reduced). When the opening degree of the exhaust damper 13 decreases, the ventilation amount returned to the chamber R1 as the return air increases and the chamber pressure increases, so that the differential pressure (chamber pressure-vertical space pressure) changes to zero. At this time, the return air damper 14 maintains the opening degree until then. When the differential pressure becomes zero, the control of the exhaust damper 13 is returned to the normal control, and the control based on the differential pressure is only the rotational speed control of the return air fan 12.

またさらに、還気ファン12の回転数が、予め設定された上限値または下限値に達し、なおかつ排気ダンパ13の開度が予め設定された最大開度あるいは最小開度に達しても、差圧(室圧―縦空間圧)が0にならない場合には、還気ダンパ14を、通常時の制御から切り離して制御を行う。すなわち、差圧(室圧―縦空間圧)が正の値の場合には還気ダンパ14を閉める方向に制御する。還気ダンパ14の開度が小さくなると、室R1に戻す還気量が低減し、室圧は下がるので、差圧(室圧―縦空間圧)が0になる方向に変化する。逆に差圧(室圧―縦空間圧)が負の値の場合には、還気ダンパ14の開度を大きくする方向に制御する。   Furthermore, even if the rotational speed of the return air fan 12 reaches a preset upper limit value or lower limit value, and the opening degree of the exhaust damper 13 reaches a preset maximum opening degree or minimum opening degree, the differential pressure When (room pressure-vertical space pressure) does not become zero, the return air damper 14 is controlled separately from the normal control. That is, when the differential pressure (chamber pressure-vertical space pressure) is a positive value, the return air damper 14 is controlled to close. When the opening degree of the return air damper 14 is reduced, the amount of return air returned to the chamber R1 is reduced and the chamber pressure is lowered, so that the differential pressure (chamber pressure-vertical space pressure) is changed to zero. Conversely, when the differential pressure (chamber pressure-vertical space pressure) is a negative value, the opening degree of the return air damper 14 is controlled to increase.

なお、そのように還気ダンパ14による制御を付加して、差圧が0になった時点で、排気ダンパ13と還気ダンパ14の制御を通常時の制御に戻し、制御装置Cによる差圧を0にする制御は、還気ファン12の回転数制御のみに戻す。   In addition, when the control by the return air damper 14 is added in this way and the differential pressure becomes zero, the control of the exhaust damper 13 and the return air damper 14 is returned to the normal control, and the differential pressure by the control device C is returned. The control to set to 0 is returned only to the rotational speed control of the return air fan 12.

以上の例によれば、既設の空調機11をそのまま利用して、還気ファン12、排気ダンパ13、さらには還気ダンパ14を制御することで、室R1と縦空間1との差圧を0に近づけることができ、それによって、ビルBにおける室R1と縦空間1とのエアバランスの崩れを修正し、隙間風等による空調エネルギーの損失と室内環境の悪化を抑制することが可能である。   According to the above example, the existing air conditioner 11 is used as it is, and the return air fan 12, the exhaust damper 13, and further the return air damper 14 are controlled, so that the differential pressure between the chamber R1 and the vertical space 1 is reduced. It is possible to approach 0, thereby correcting the collapse of the air balance between the room R1 and the vertical space 1 in the building B, and suppressing the loss of air-conditioning energy and the deterioration of the indoor environment due to a draft or the like. .

ところで、室内−屋外間の差圧が大きい場合と小さい場合(すなわち差圧0を基準とした差圧の絶対値が大小の場合)とでは、還気ファン12の回転数や排気ダンパ13の開度が同じでも、空気移動量が変わってしまう。すなわち、煙突効果により室内屋外の差圧が大きくなる(高層階などで室内圧が大きくなる)と、排気の移動量(CAVユニット23からの排気や、排気口5a(1台とは限らない)空調機からの排気などのすべてを合計した量)が所望の量よりも多くなってしまう。したがって、室内−屋外間の差圧が大きくなれば、還気ファン12の回転数や排気ダンパ13開度の変化量を小さくして、所望の排気量となるようにすることが好ましい。   By the way, when the differential pressure between the indoor and the outdoor is large or small (that is, when the absolute value of the differential pressure with reference to the differential pressure 0 is large or small), the rotational speed of the return air fan 12 or the opening of the exhaust damper 13 is increased. Even if the degree is the same, the amount of air movement will change. That is, when the differential pressure outside the room increases due to the chimney effect (the indoor pressure increases on higher floors, etc.), the amount of exhaust movement (exhaust from the CAV unit 23 and the exhaust port 5a (not limited to one)). The total amount of exhaust air from the air conditioner is greater than the desired amount. Therefore, if the differential pressure between the indoor and outdoor is increased, it is preferable to reduce the amount of change in the rotational speed of the return air fan 12 and the opening degree of the exhaust damper 13 so as to obtain a desired exhaust amount.

すなわち、室内圧−屋外圧の圧力差が大きい場合には、室R1内圧力−縦空間1内圧力の差圧に応じた還気ファン12の回転数や排気ダンパ13の開度の変化の度合いを小さくして、応答性を小さくする。逆に室内圧−屋外圧の値が小さい場合には、室R1内圧力−縦空間1内圧力の差圧に応じた還気ファン12の回転数や排気ダンパ13の開度の変化の度合いを大きくして、応答性を高めることが好ましい。   That is, when the pressure difference between the indoor pressure and the outdoor pressure is large, the degree of change in the rotation speed of the return air fan 12 and the opening degree of the exhaust damper 13 according to the differential pressure between the pressure in the chamber R1 and the pressure in the vertical space 1 To reduce responsiveness. Conversely, when the value of the indoor pressure-outdoor pressure is small, the degree of change in the rotational speed of the return air fan 12 and the opening degree of the exhaust damper 13 according to the differential pressure between the pressure in the chamber R1 and the pressure in the vertical space 1 is set. It is preferable to increase the responsiveness.

図2は、そのことを説明するものであり、図中、「操作量」とは、還気ファン12、及び排気ダンパ13に対する操作量のことであり、図中、K点は、室R1内圧力−縦空間1内圧力の差圧が0のときの、還気ファン12、及び排気ダンパ13の通常時の操作量を示している。そして差圧が正の場合には、還気ファン12の回転数は高くする制御、排気ダンパ13の開度を大きくする制御が行なわれ、K点から図中の上側に操作量を増大する制御が行なわれる。差圧が負の場合には、還気ファン12の回転数は低くする制御、排気ダンパ13の開度を小さくする制御が行なわれ、K点から図中の下側に操作量を減少する制御が行なわれる。   FIG. 2 explains this, and in the figure, the “operation amount” is the operation amount for the return air fan 12 and the exhaust damper 13, and in the figure, the point K is in the chamber R 1. The amount of normal operation of the return air fan 12 and the exhaust damper 13 when the pressure-pressure difference in the vertical space 1 is zero is shown. When the differential pressure is positive, control for increasing the rotational speed of the return air fan 12 and control for increasing the opening of the exhaust damper 13 are performed, and control for increasing the operation amount from the K point to the upper side in the figure. Is done. When the differential pressure is negative, control is performed to reduce the rotational speed of the return air fan 12, and control to reduce the opening of the exhaust damper 13, and control to decrease the operation amount from the K point downward in the figure. Is done.

そして図2中、実線で示した操作量の変化は、室内圧−屋外圧の圧力差を考慮せず、室R1内圧力−縦空間1内圧力の差圧に基づいた場合を示しており、一点鎖線で示した操作量の変化は、室内圧−屋外圧の圧力差が小さい場合の、応答性を高めるための操作量の変化を示しており、破線で示した操作量の変化は、室内圧−屋外圧の圧力差が大きい場合の、応答性を弱めるための操作量の変化を示している。なお図2は、比例制御を例にして、応答性の変化を示したものであるが、比例制御だけではオフセット(残留偏差)が現れることもあるため、必要に応じて積分制御を用いてもよい。   And the change of the operation amount shown by the solid line in FIG. 2 shows the case where the pressure difference between the room pressure and the outdoor pressure is not taken into consideration, and the pressure is based on the pressure difference between the pressure in the chamber R1 and the pressure in the vertical space 1, The change in the manipulated variable indicated by the alternate long and short dash line indicates the change in the manipulated variable for improving the response when the pressure difference between the indoor pressure and the outdoor pressure is small. The change of the manipulated variable for weakening the responsiveness when the pressure difference between the pressure and the outdoor pressure is large is shown. Note that FIG. 2 shows the change in responsiveness using proportional control as an example. However, since offset (residual deviation) may appear only with proportional control, integral control may be used as necessary. Good.

このように、室内圧−屋外圧の圧力差の大小によって、操作量の変化の度合いを変化させて、制御の応答性を定めるパラメータを変更することで、室内外の差圧の大小に応じた適切な応答速度で制御を行なうことが可能である。図1に示した空調システムでは、第2の計測装置32を設置しているので、室内圧−屋外圧の圧力差を検出して、前記した制御の応答性を定めるパラメータを変更することが可能である。   As described above, the degree of change in the operation amount is changed depending on the magnitude of the pressure difference between the indoor pressure and the outdoor pressure, and the parameter for determining the control response is changed, so that the pressure difference according to the indoor / outdoor pressure is changed. Control can be performed at an appropriate response speed. In the air conditioning system shown in FIG. 1, since the second measuring device 32 is installed, it is possible to detect the pressure difference between the indoor pressure and the outdoor pressure and change the parameter that determines the responsiveness of the control described above. It is.

また、ある建物において室内−屋外温度差が同じであれば、同じような圧力分布が得られる。したがって室内−屋外温度差がわかれば、当該建物における室の高さ(階数)に対する、室内−屋外差圧の大きさを求めることができる。   Moreover, if the indoor-outdoor temperature difference is the same in a certain building, a similar pressure distribution can be obtained. Therefore, if the indoor-outdoor temperature difference is known, the magnitude of the indoor-outdoor differential pressure with respect to the height (number of floors) of the room in the building can be obtained.

すなわち、発明者らの知見によれば、図3示したように、室内−屋外温度差が大きい場合には、煙突効果が大きくなり、その結果、室高さに対する室内圧の上昇度合いが大きくなる(図3中の実線)。逆に、室内−屋外温度差が小さい場合には、煙突効果が小さくなり、その結果、室高さに対する室内圧の上昇度合いが小さくなる(図3中の破線)。   That is, according to the knowledge of the inventors, as shown in FIG. 3, when the indoor-outdoor temperature difference is large, the chimney effect is increased, and as a result, the degree of increase in the indoor pressure with respect to the room height is increased. (Solid line in FIG. 3). Conversely, when the indoor-outdoor temperature difference is small, the chimney effect is small, and as a result, the degree of increase in the indoor pressure with respect to the room height is small (broken line in FIG. 3).

このことを利用して、室R1の高さにおける、室内圧−屋外圧の予測値を算定することによって、前記した図2に示したような、制御の応答性を定めるパラメータを変更し、その結果、室内外の差圧の大小に応じた適切な応答速度で制御を行なうことが可能である。室内圧−屋外圧の予測値の算定にあたっては、たとえば、次のようにして行なうことができる。すなわち、空気の密度ρは、温度(℃c)をtとすると、次式で表せる。
ρ=1.293/(1+0.00367×t)[kg/m
ここで、対象となる建物のB1Fと1Fに、縦空間と外気が常時つながった通路等があるとすると、上層階の煙突効果は1Fが基準(ΔP=0)となり、1Fからの高低差hに比例して、差圧ΔP(室内圧−屋外圧)が増大する。したがって、室内の密度をρ、室外の密度をρとすると、差圧ΔPは、
ΔP=(ρ−ρ)×g×hと算定できる。(gは重力加速度)
そしてそのようにして室内圧−屋外圧を予測することで、高価な差圧計を用いることなく、温度計による室内−屋外温度差によって、かかるパラメータの変更を行なうことができる。
By utilizing this, by calculating the predicted value of the indoor pressure-outdoor pressure at the height of the chamber R1, the parameter for determining the control responsiveness as shown in FIG. As a result, it is possible to perform control at an appropriate response speed according to the magnitude of the pressure difference inside and outside the room. For example, the predicted value of the indoor pressure and the outdoor pressure can be calculated as follows. That is, the density ρ of air can be expressed by the following equation, where t is the temperature (° C.).
ρ = 1.293 / (1 + 0.00367 × t) [kg / m 3 ]
Here, if there is a passage where the vertical space and outside air are always connected to B1F and 1F of the target building, the chimney effect of the upper floor is 1F as the reference (ΔP = 0), and the height difference from 1F is h In proportion to the pressure difference ΔP (indoor pressure−outdoor pressure) increases. Therefore, when the indoor density is ρ 1 and the outdoor density is ρ 2 , the differential pressure ΔP is
It can be calculated as ΔP = (ρ 2 −ρ 1 ) × g × h. (G is gravitational acceleration)
And by predicting the indoor pressure-outdoor pressure in this way, such a parameter can be changed by the indoor-outdoor temperature difference by the thermometer without using an expensive differential pressure gauge.

また、外気温度は時期(たとえば季節、時間帯など)により大きく変わるが、室内温度は空調装置により制御されており、外気温度と比較して時期による変化は小さいので、外気温度さえ計測すれば、室高さに対する室内−屋外差圧の大まかな大きさを求めることができる。したがって、上記の「温度差が大きい場合」、「温度差が小さい場合」を、それぞれ「外気温が低い場合」、「外気温が高い場合」とみなして、制御するようにしてもよい。   Also, the outside air temperature varies greatly depending on the time (for example, season, time zone, etc.), but the room temperature is controlled by the air conditioner, and the change due to the time is small compared to the outside air temperature. An approximate magnitude of the indoor-outdoor differential pressure relative to the room height can be determined. Therefore, the above-mentioned “when the temperature difference is large” and “when the temperature difference is small” may be regarded as “when the outside air temperature is low” and “when the outside air temperature is high”, respectively.

さらにまた前記した還気ダンパ14の制御についても、前記した図2に即して説明したように、室内圧−屋外圧の圧力差の大小によって、操作量の変化の度合いを変化させて、制御の応答性を定めるパラメータを変更することで、室内外の差圧の大小に応じた適切な応答速度で制御を行なうことが可能である。   Furthermore, as described with reference to FIG. 2, the control of the return air damper 14 is also performed by changing the degree of change in the manipulated variable according to the pressure difference between the indoor pressure and the outdoor pressure. It is possible to perform control at an appropriate response speed according to the magnitude of the pressure difference between the inside and outside of the room by changing the parameter that determines the responsiveness.

すなわち、図4において、「操作量」とは、還気ダンパ14に対する操作量のことであり、図中、L点は、室R1内圧力−縦空間1内圧力の差圧が0のときの、還気ダンパ14の通常時の操作量を示している。そして差圧が正の場合には、還気ダンパ14の開度を小さくし、差圧が負の場合には、還気ダンパ14の開度を大きくする制御が行なわれる。そして図4において、実線で示した操作量の変化は、室内圧−屋外圧の圧力差を考慮せず、室R1内圧力−縦空間1内圧力の差圧に基づいた場合を示しており、一点鎖線で示した操作量の変化は、室内圧−屋外圧の圧力差が小さい場合の、応答性を高めるための還気ダンパ14の操作量の変化を示しており、破線で示した操作量の変化は、室内圧−屋外圧の圧力差が大きい場合の、応答性を弱めるための還気ダンパ14の操作量の変化を示している。   That is, in FIG. 4, the “operation amount” is an operation amount for the return air damper 14, and in the drawing, point L is when the pressure difference between the pressure in the chamber R 1 and the pressure in the vertical space 1 is zero. The amount of operation of the return air damper 14 during normal operation is shown. When the differential pressure is positive, the opening degree of the return air damper 14 is reduced, and when the differential pressure is negative, the opening degree of the return air damper 14 is increased. In FIG. 4, the change in the operation amount indicated by the solid line shows a case based on the pressure difference between the pressure in the chamber R1 and the pressure in the vertical space 1 without considering the pressure difference between the indoor pressure and the outdoor pressure. The change in the operation amount indicated by the alternate long and short dash line indicates the change in the operation amount of the return air damper 14 for enhancing the responsiveness when the pressure difference between the indoor pressure and the outdoor pressure is small, and the operation amount indicated by the broken line This change indicates a change in the operation amount of the return air damper 14 for weakening the responsiveness when the pressure difference between the indoor pressure and the outdoor pressure is large.

このような室内圧−屋外圧の圧力差の大小も勘案して、還気ダンパ14の操作量の変化の度合いを変化させて、制御の応答性を定めるパラメータを変更することで、室内外の差圧の大小に応じた適切な応答速度で制御を行なうことが可能である。もちろん、かかる場合も、前記した図3に即して説明したように、室内圧−屋外圧の圧力差に代えて、室内−屋外温度差に基づいて、パラメータを変更するようにしてもよい。   Taking into account the magnitude of the pressure difference between the indoor pressure and the outdoor pressure, the degree of change in the operation amount of the return air damper 14 is changed, and the parameter that determines the control responsiveness is changed. It is possible to control at an appropriate response speed according to the magnitude of the differential pressure. Of course, in this case, as described with reference to FIG. 3, the parameter may be changed based on the indoor-outdoor temperature difference instead of the pressure difference between the indoor pressure and the outdoor pressure.

また前記実施の形態では、まず還気ファン12の回転数制御を優先して、差圧が0となるようにしていたが、排気ダンパ13の開度制御を優先的に制御するようにしてもよい。そしてかかる場合、排気ダンパ13の開度を制御した際に、全開または全閉に達した後一定時間経過しても、差圧が0にならない場合には、さらに還気ファン12の回転数を制御して差圧が0になるように制御するようにしてもよい。そしてそのように還気ファン12の回転数をさらに制御した際、還気ファン12の回転数が予め定めた最小値または最大値に達した後一定時間経過しても、前記差圧が0にならない場合、還気の一部を、外気導入口から導入した外気と混合するにあたって、還気ダンパ14の開度を制御して、前記差圧が0になるように制御するようにしてもよい。   In the above-described embodiment, the rotational pressure control of the return air fan 12 is first given priority so that the differential pressure becomes zero. However, the opening degree control of the exhaust damper 13 may be preferentially controlled. Good. In such a case, when the opening degree of the exhaust damper 13 is controlled, if the differential pressure does not become zero even after a certain time has elapsed after reaching full open or full close, the rotational speed of the return air fan 12 is further increased. Control may be performed so that the differential pressure becomes zero. When the rotational speed of the return air fan 12 is further controlled as described above, even if a certain time elapses after the rotational speed of the return air fan 12 reaches a predetermined minimum value or maximum value, the differential pressure becomes zero. If this is not the case, when the part of the return air is mixed with the outside air introduced from the outside air inlet, the opening of the return air damper 14 may be controlled so that the differential pressure becomes zero. .

還気ファン12の回転数が予め設定された上限値または下限値に達し、一定時間(チャタリングを考慮して、たとえば10秒程度)経過しても、未だ差圧(室圧―縦空間圧)が0にならない場合に、排気ダンパ13の開度をそれまでの開度からさらに予め定めた所定量大きくするかまたは予め定めた所定量小さくするようにしてもよい。   Even if the rotational speed of the return air fan 12 reaches a preset upper limit value or lower limit value and a certain time (for example, about 10 seconds in consideration of chattering) elapses, the differential pressure (room pressure-longitudinal space pressure) still remains. When the value does not become 0, the opening degree of the exhaust damper 13 may be further increased by a predetermined amount from the previous opening degree or may be decreased by a predetermined amount.

すなわち、差圧(室圧―縦空間圧)が正の状態で還気ファン12の回転数が上限値に達した場合には、排気ダンパ13の開度をそれまでの開度からさらに予め定めた所定量(例えば全開を100、全閉を0とすると5程度)だけ大きくしてその開度を維持する。排気ダンパ13の開度が大きくなると、チャンバ11aに導入された還気のうち、排気として屋外に放出される分が多くなるので、室圧は下がる。そして、差圧(室圧―縦空間圧)が負圧の所定値になったところで、還気ファン12の回転数を上限値の状態から下げて、差圧(室圧―縦空間圧)が0となるように制御に戻る。このとき排気ダンパ13はそのままの開度を維持している。   That is, when the differential pressure (chamber pressure−vertical space pressure) is positive and the rotational speed of the return air fan 12 reaches the upper limit value, the opening degree of the exhaust damper 13 is further determined in advance from the previous opening degree. The opening degree is increased by a predetermined amount (for example, approximately 5 when fully open is 100 and fully closed is 0). When the opening degree of the exhaust damper 13 increases, the amount of the return air introduced into the chamber 11a that is released to the outside as exhaust increases, so the room pressure decreases. When the differential pressure (room pressure-vertical space pressure) reaches a predetermined negative value, the rotational speed of the return air fan 12 is lowered from the upper limit value so that the differential pressure (room pressure-vertical space pressure) is reduced. Control is returned to zero. At this time, the exhaust damper 13 maintains the opening degree as it is.

逆に差圧(室圧―縦空間圧)が負の状態で還気ファン12の回転数が下限値に達した場合には、排気ダンパ13の開度をそれまでの開度から予め定めた所定量小さくする。排気ダンパ13の開度が小さくなると、還気として室R1に戻される換気量が増加して室圧は上がる。そして、差圧(室圧―縦空間圧)が正圧の所定値になったところで、還気ファン12の回転数を下限値の状態から上げて、差圧(室圧―縦空間圧)を0にする制御に戻る。   On the contrary, when the rotational pressure of the return air fan 12 reaches the lower limit with the differential pressure (chamber pressure−vertical space pressure) being negative, the opening degree of the exhaust damper 13 is determined in advance from the opening degree so far. Decrease by a predetermined amount. When the opening degree of the exhaust damper 13 decreases, the ventilation amount returned to the chamber R1 as return air increases and the chamber pressure increases. Then, when the differential pressure (room pressure−vertical space pressure) reaches a predetermined value of positive pressure, the rotational speed of the return air fan 12 is increased from the lower limit value, and the differential pressure (room pressure−vertical space pressure) is increased. Return to control to zero.

またさらに、排気ダンパ13の開度を所定量大きくするかまたは小さくしてから予め設定した所定時間経過しても差圧(室圧―縦空間圧)が負圧または正圧の所定値にならない場合には、排気ダンパ13の開度をさらに所定量大きくするかまたは小さくする。すなわち、差圧(室圧―縦空間圧)が正の値から還気ファン12回転数が上限値に達し排気ダンパ13開度を所定量大きくしても負圧の所定値にならない場合には、排気ダンパ13をさらに所定量大きくする。逆に差圧(室圧―縦空間圧)が負の値から還気ファン12回転数が下限値に達し、排気ダンパ13の開度を所定量小さくしても正圧の所定値にならない場合には、排気ダンパ13の開度をさらに所定量小さくする。   Furthermore, even if a predetermined time elapses after the opening degree of the exhaust damper 13 is increased or decreased by a predetermined amount, the differential pressure (chamber pressure−vertical space pressure) does not become a predetermined value of negative pressure or positive pressure. In this case, the opening degree of the exhaust damper 13 is further increased or decreased by a predetermined amount. That is, when the differential pressure (chamber pressure−vertical space pressure) is a positive value and the rotational speed of the return air fan 12 reaches the upper limit value and the exhaust damper 13 opening degree is increased by a predetermined amount, the negative pressure does not become a predetermined value. The exhaust damper 13 is further increased by a predetermined amount. Conversely, when the differential pressure (chamber pressure-vertical space pressure) is a negative value and the rotational speed of the return air fan 12 reaches the lower limit value, the positive pressure does not become the predetermined value even if the opening degree of the exhaust damper 13 is reduced by a predetermined amount. For this, the opening degree of the exhaust damper 13 is further reduced by a predetermined amount.

また、還気ファン12の回転数が、予め設定された上限値または下限値に達し、なおかつ排気ダンパ13の開度が予め設定された最大開度あるいは最小開度に達しても、差圧(室圧―縦空間圧)が負圧または正圧の所定値にならない場合には、還気ダンパ14を、通常時の制御から切り離して制御を行うようにしてもよい。   Further, even if the rotational speed of the return air fan 12 reaches a preset upper limit value or lower limit value, and the opening degree of the exhaust damper 13 reaches a preset maximum opening degree or minimum opening degree, the differential pressure ( When the chamber pressure-vertical space pressure does not reach a predetermined value of negative pressure or positive pressure, the return air damper 14 may be controlled separately from the normal control.

すなわち、差圧(室圧―縦空間圧)が正の値から、還気ファン12回転数が上限値に達し排気ダンパ13の開度が最大開度に達しても負圧の所定値にならない場合には、還気ダンパ14を閉める方向に制御する。還気ダンパ14の開度が小さくなると、室R1に戻す還気量が低減し、その結果室圧は下がるので、差圧(室圧―縦空間圧)が0になる方向に変化する。逆に差圧(室圧―縦空間圧)が負の値から還気ファン12回転数が下限値に達し排気ダンパ13の開度が最小開度に達しても正圧の所定値にならない場合には、還気ダンパ14の開度を大きくする方向に制御する。   That is, even if the differential pressure (chamber pressure-vertical space pressure) is a positive value, the return air fan 12 rotation speed reaches the upper limit value, and the opening degree of the exhaust damper 13 does not reach the predetermined value of the negative pressure. In such a case, control is performed so that the return air damper 14 is closed. When the opening degree of the return air damper 14 is reduced, the amount of return air returned to the chamber R1 is reduced. As a result, the chamber pressure is lowered, so that the differential pressure (room pressure−vertical space pressure) is changed to zero. Conversely, when the differential pressure (chamber pressure−vertical space pressure) is a negative value, the return air fan 12 rotation speed reaches the lower limit value and the exhaust damper 13 does not reach the predetermined value even if the opening degree reaches the minimum opening degree. First, the opening degree of the return air damper 14 is controlled to be increased.

空気の移動量の調整は、排気ダンパ13の開度制御によって行うよりも、還気ファン12の回転数制御によって行う方が、より細かい調整が可能であるので、上記のように排気ダンパ13の開度は段階的に所定量ずつ大きくするかまたは小さくするようにして、還気ファン12の回転数を連続的に制御することにより空気の移動量を調整するようにすれば、室圧を細かく調整することが可能となる。   Since the adjustment of the amount of air movement can be performed more finely by performing the rotation speed control of the return air fan 12 than by performing the opening degree control of the exhaust damper 13, the adjustment of the exhaust damper 13 is performed as described above. If the opening degree is increased or decreased by a predetermined amount step by step, and the amount of air movement is adjusted by continuously controlling the rotational speed of the return air fan 12, the chamber pressure is reduced. It becomes possible to adjust.

図1に示した空調システムでは、第1の計測装置31、第2の計測装置32は、いずれも差圧計を用いていたが、これに限らず、差圧に比例した物理量(たとたえば電圧や電流)を出力する装置の出力値を用いたり、前記室R1と縦空間1とを隔てる壁2に形成された開口(図示せず)に、当該開口を通過する風量、風速若しくは風量に比例した物理量(たとたえば電圧や電流)を出力する装置の出力値を用いるようにしてもよい。   In the air conditioning system shown in FIG. 1, the first measuring device 31 and the second measuring device 32 both use a differential pressure gauge. However, the present invention is not limited to this, and a physical quantity proportional to the differential pressure (for example, voltage Or an output value of a device that outputs a current), or an opening (not shown) formed in the wall 2 separating the chamber R1 and the vertical space 1 is proportional to the air volume, the wind speed, or the air volume passing through the opening. The output value of the device that outputs the physical quantity (for example, voltage or current) may be used.

図5は、風量に比例した物量を出力する計測装置51の例を示しており、この計測装置51は、チャンバ52の内部が2つの流路52a、52bに仕切られており、流路52aには、熱線風速計53が設けられ、他の流路52bには、2本の電極54、55が設けられている。電極54は剛性が高く、電極55は、風を受けて柔軟に変形する構造を有している。これら2本の電極54、55は、風の流路に沿って並んで設置されており、流路に風が流れていないときは、両者は接触している。   FIG. 5 shows an example of a measuring device 51 that outputs an object quantity proportional to the air volume. The measuring device 51 has an interior of a chamber 52 divided into two flow paths 52a and 52b. Is provided with a hot-wire anemometer 53, and two electrodes 54 and 55 are provided in the other channel 52b. The electrode 54 has high rigidity, and the electrode 55 has a structure that is flexibly deformed by receiving wind. These two electrodes 54 and 55 are arranged side by side along the flow path of the wind, and when the wind is not flowing through the flow path, they are in contact with each other.

そして、風が開口部56から開口部57に向かって流れるとすると、電極55は、開口部57に向かって変形するため、2本の電極の接触状態が解かれて、接点が開く(接点が切れる)。逆に開口部57から開口部56に向かって風が流れると、電極55は電極54に向かって変形しようとするため、接点は閉じたまま(接点がつながったまま)になる。このように、電極54と電極55との開閉状態で風の流れる方向を検出し、熱線風速計53で風の強さを計測することができる。なお熱線風速計53からの出力は、変換器58によって変換されて、出力線59から、たとえば制御装置Cへと出力される。   If the wind flows from the opening 56 toward the opening 57, the electrode 55 is deformed toward the opening 57, so that the contact state of the two electrodes is released and the contact is opened (the contact is opened). Cut). Conversely, when wind flows from the opening 57 toward the opening 56, the electrode 55 tends to be deformed toward the electrode 54, so that the contact remains closed (the contact remains connected). Thus, the direction of wind flow can be detected in the open / closed state of the electrode 54 and the electrode 55, and the wind intensity can be measured by the hot wire anemometer 53. The output from the hot wire anemometer 53 is converted by the converter 58 and output from the output line 59 to, for example, the control device C.

図6は、風量に比例した物量を出力する他の計測装置61の例を示しており、計測装置61の本体62の内部には液体が充填され、この液体中に振り子63が浸漬されている。この振り子63は、液体中に設けられた支点64に中央部63aが支持され、両端部には、重錘を兼ねた水中抵抗体63b、63cが設けられている。   FIG. 6 shows an example of another measuring device 61 that outputs a quantity proportional to the air volume. The main body 62 of the measuring device 61 is filled with a liquid, and the pendulum 63 is immersed in the liquid. . The pendulum 63 has a central portion 63a supported by a fulcrum 64 provided in the liquid, and underwater resistors 63b and 63c that also serve as weights are provided at both ends.

振り子63の中央部63aの上側には、受風体63dが設けられて水面から突出している。そして本体62の上部に対向して設けられた風の流路65、66を流れる風を受けることができる。受風体63dの位置は、レーザ距離計67で計測するようになっており、無風時の距離と、計測した距離の差から風向と風速を計測することが可能である。なお、振り子63は液中に浸漬されているので液体の粘性によって、受風体63dの自励振動や、突発的な風による急激な動きを防止することができるようになっている。   A wind receiving body 63d is provided above the central portion 63a of the pendulum 63 and protrudes from the water surface. And the wind which flows through the flow paths 65 and 66 of the wind provided facing the upper part of the main body 62 can be received. The position of the wind receiving body 63d is measured by a laser distance meter 67, and it is possible to measure the wind direction and the wind speed from the difference between the distance when there is no wind and the measured distance. Since the pendulum 63 is immersed in the liquid, the viscosity of the liquid can prevent self-excited vibration of the wind receiving body 63d and sudden movement due to sudden wind.

なお、以上は室内の温度に応じて室内へ空調空気の給気風量を制御するシステムにおいて本発明を適用した例を示したものであるが、例えば室内のCOの濃度により室内への給気風量を制御するシステムにおいても本発明は適用できる。すなわち、たとえば室内にCO濃度センサを設置し、当該CO濃度センサが示す数値に基づいて排気ダンパ13や還気ダンパ14の開度を調整して、室内への外気取入れ量を制御するシステムにおいて、上述した方法と同様に排気ダンパ13や還気ダンパ14の開度を、「室圧―縦空間圧」が0になる方向に制御すればよい。 Although the above shows an example in which the present invention is applied to a system that controls the supply air volume of conditioned air into the room according to the indoor temperature, for example, the supply of air into the room by the concentration of indoor CO 2 The present invention can also be applied to a system for controlling the air volume. Thus, for example a system of the CO 2 concentration sensor is installed in a room, by adjusting the degree of opening of the exhaust damper 13 and the return air damper 14 based on the numerical value indicated by the CO 2 concentration sensor, to control the outside air intake amount into the room In the same manner as described above, the opening degree of the exhaust damper 13 and the return air damper 14 may be controlled so that the “room pressure−vertical space pressure” becomes zero.

なお、例えば還気ダンパ14が全閉の場合、還気ファン12によって室R1、R2から還気口3aを通じて排出される空気は、すべて屋外へ排気されることになるが、この場合であっても、当該排出される空気は、本発明における還気である。もちろん還気ダンパ14が全閉の場合には、還気ファン12は、実質的には排気ファンとして機能しているが、依然として本発明でいうところの還気ファンである。   For example, when the return air damper 14 is fully closed, all the air discharged from the chambers R1 and R2 through the return air port 3a by the return air fan 12 is exhausted to the outside. However, the discharged air is the return air in the present invention. Of course, when the return air damper 14 is fully closed, the return air fan 12 substantially functions as an exhaust fan, but is still a return air fan in the present invention.

本発明は、ビル等の比較的高層の建物の空調に有用である。   The present invention is useful for air conditioning of relatively high-rise buildings such as buildings.

1 縦空間
2、3 壁
3a 還気口
4 機械室
5 外壁
5a、5c 排気口
5b 外気導入口
11 空調機
11a チャンバ
11b 加熱コイル
11c 冷却コイル
11d 加湿器
12 還気ファン
13 排気ダンパ
14 還気ダンパ
15 外気ダンパ
16 給気ファン
21 VAVユニット
22 天井
22a 給気口
22b 排気口
23 CAVユニット
24 排気ダクト
31 第1の計測装置
32 第2の計測装置
B ビル
C 制御装置
R1、R2 室
RE 排気のある室
DESCRIPTION OF SYMBOLS 1 Vertical space 2, 3 Wall 3a Return air port 4 Machine room 5 Outer wall 5a, 5c Exhaust port 5b Outside air introduction port 11 Air conditioner 11a Chamber 11b Heating coil 11c Cooling coil 11d Humidifier 12 Return air fan 13 Exhaust damper 14 Return air damper 15 Outside air damper 16 Supply fan 21 VAV unit 22 Ceiling 22a Supply port 22b Exhaust port 23 CAV unit 24 Exhaust duct 31 First measurement device 32 Second measurement device B Building C Control device R1, R2 Chamber RE Exhaust Room

Claims (8)

建物内部を縦に貫く縦空間と、隙間、開口、またはダクトによって通じている室の空調を行なう方法であって、
還気ファンによって室の還気の一部を、外気導入口から導入した外気と混合し、熱交換器によって熱交換して温度調整した後に、空調空気として前記室に供給し、還気の残りの一部は排気口から排気する空調方法において、
前記室へは、室内の圧力とは無関係の変風量方式によって、温度調整した後の空調空気が供給されており、
前記室と前記縦空間内の差圧を計測し、当該差圧が0になるように、前記還気ファンの回転数を制御することを特徴とする、建物の空調方法。
A method of air-conditioning a vertical space penetrating through the interior of a building and a room connected by a gap, an opening, or a duct,
A part of the return air in the room is mixed with the outside air introduced from the outside air introduction port by the return air fan, the heat is exchanged by the heat exchanger and the temperature is adjusted, and then supplied to the room as conditioned air, and the remaining return air Part of the air-conditioning method of exhausting from the exhaust port,
The chamber is supplied with conditioned air after temperature adjustment by a variable air volume method independent of the pressure in the room,
A building air-conditioning method, wherein the pressure difference between the chamber and the vertical space is measured, and the rotational speed of the return air fan is controlled so that the differential pressure becomes zero.
前記還気ファンの回転数を制御した際、還気ファンの回転数が予め定めた最小値または最大値に達した後一定時間経過した後に、前記排気口のダンパを一定量閉じるか、または一定量開く動作を行い、その後に前記差圧が0になるように、前記還気ファンの回転数を制御することを特徴とする、請求項1記載の建物の空調方法。 When the rotational speed of the return air fan is controlled, a certain amount of time passes after the rotational speed of the return air fan reaches a predetermined minimum or maximum value, and then the damper of the exhaust port is closed by a certain amount or constant. 2. The building air conditioning method according to claim 1, wherein the number of rotations of the return air fan is controlled so that the differential pressure becomes zero after performing an opening operation. 前記還気ファンの回転数を制御した際、還気ファンの回転数が予め定めた最小値または最大値に達した後一定時間経過しても、前記差圧が0にならない場合には、さらに前記排気口のダンパの開度を調整して、前記差圧が0になるように制御することを特徴とする、請求項1に記載の建物の空調方法。 When the rotational speed of the return air fan is controlled, if the differential pressure does not become 0 even after a predetermined time has elapsed after the rotational speed of the return air fan reaches a predetermined minimum value or maximum value, The building air conditioning method according to claim 1, wherein the differential pressure is controlled to be zero by adjusting an opening degree of the damper of the exhaust port. 前記排気口のダンパの開度を制御した際、前記排気口のダンパが全開または全閉に達した後一定時間経過しても、前記差圧が0にならない場合、
還気の一部を、外気導入口から導入した外気と混合するにあたって、還気と外気との混合流路に設けた還気ダンパの開度によって、混合する還気風量が調整可能な際には、当該還気ダンパの開度を制御して、前記差圧が0になるように制御することを特徴とする、請求項2または3に記載の建物の空調方法。
When controlling the opening degree of the exhaust outlet damper, if the differential pressure does not become 0 even after a certain period of time has elapsed after the exhaust opening damper has fully opened or fully closed,
When mixing a part of the return air with the outside air introduced from the outside air inlet, when the return air volume to be mixed can be adjusted by the opening of the return air damper provided in the return air and outside air mixing flow path 4. The building air conditioning method according to claim 2 or 3, wherein the opening of the return air damper is controlled so that the differential pressure becomes zero.
屋外と前記室内との差圧に基づいて、前記還気ファンの回転数を調節する制御の応答性を決定するパラメータを変化させることを特徴とする、請求項1〜4のいずれかに記載の建物の空調方法。 The parameter which determines the responsiveness of the control which adjusts the rotation speed of the said return air fan based on the differential pressure | voltage between the outdoors and the said room is changed, The any one of Claims 1-4 characterized by the above-mentioned. How to air-condition buildings. 前記室内の温度と、外気の温度との温度差及び前記室の高さに基づいて、前記還気ファンの回転数を調節する制御の応答性を決定するパラメータを変化させることを特徴とする、請求項1〜4のいずれかに記載の建物の空調方法。 Based on the temperature difference between the room temperature and the outside air temperature and the height of the room, a parameter for determining the responsiveness of the control for adjusting the rotation speed of the return air fan is changed. The building air conditioning method according to claim 1. 前記差圧に替えて、差圧に比例した物理量を出力する装置の出力値を用いることを特徴とする、請求項1〜6のいずれかに記載の建物の空調方法。 The building air conditioning method according to claim 1, wherein an output value of a device that outputs a physical quantity proportional to the differential pressure is used instead of the differential pressure. 前記差圧に替えて、前記室と縦空間とを隔てる壁体に形成された開口に設けられて当該開口を通過する風量、風速若しくは風量に比例した物理量を出力する装置の出力値を用いることを特徴とする、請求項1〜6のいずれかに記載の建物の空調方法。
Instead of the differential pressure, an output value of a device that is provided in an opening formed in a wall that separates the chamber and the vertical space and outputs a volume of air passing through the opening, a wind speed, or a physical quantity proportional to the volume of air is used. The building air-conditioning method according to claim 1, wherein
JP2011257536A 2011-11-25 2011-11-25 Building air conditioning method Active JP5873693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011257536A JP5873693B2 (en) 2011-11-25 2011-11-25 Building air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011257536A JP5873693B2 (en) 2011-11-25 2011-11-25 Building air conditioning method

Publications (2)

Publication Number Publication Date
JP2013113452A true JP2013113452A (en) 2013-06-10
JP5873693B2 JP5873693B2 (en) 2016-03-01

Family

ID=48709156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257536A Active JP5873693B2 (en) 2011-11-25 2011-11-25 Building air conditioning method

Country Status (1)

Country Link
JP (1) JP5873693B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385584B1 (en) 2013-10-30 2014-04-16 로지시스템(주) An automatic control system for cooling/heating and air-pressure in the buiding using the smart grid
JP2019067083A (en) * 2017-09-29 2019-04-25 株式会社大林組 Ventilation design apparatus, ventilation design method, program for executing method, and storage medium
CN109838879A (en) * 2017-11-28 2019-06-04 山西彩云归科技有限公司 The method of air quantity and the fresh air system of adjusting air inlet amount are adjusted for fresh air system
CN110873423A (en) * 2018-08-31 2020-03-10 青岛海尔空调器有限总公司 Air conditioner and self-cleaning control method thereof
CN110873424A (en) * 2018-08-31 2020-03-10 青岛海尔空调器有限总公司 Air conditioner and self-cleaning control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107747793B (en) * 2017-10-16 2020-10-13 广东美的暖通设备有限公司 Variable frequency air conditioner and control method and device thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437608A (en) * 1982-05-17 1984-03-20 Smith Robert B Variable air volume building ventilation system
JPS63207932A (en) * 1987-02-20 1988-08-29 Matsushita Seiko Co Ltd Ventilation device
JPH05118619A (en) * 1991-09-21 1993-05-14 Ebara Corp Air conditioner
JPH10227512A (en) * 1996-12-27 1998-08-25 Albert Bauer Air conditioner
JPH10318593A (en) * 1997-05-19 1998-12-04 Mitsubishi Electric Corp Control method for air-conditioning device and air-conditioning device
JP2000297959A (en) * 1999-04-14 2000-10-24 Yamatake Corp Air conditioning control system
JP2007132538A (en) * 2005-11-08 2007-05-31 Yamatake Corp Room pressure control system
WO2007075168A1 (en) * 2005-12-28 2007-07-05 Otis Elevator Company Building pressurization control to minimize stack effect
WO2007075161A1 (en) * 2005-12-28 2007-07-05 Otis Elevator Company Building pressure management to adjust the stack effect in a vertical shaft
JP2009002574A (en) * 2007-06-21 2009-01-08 Takenaka Komuten Co Ltd Hybrid air conditioning system
JP2009210179A (en) * 2008-03-04 2009-09-17 Panasonic Corp Ventilating device
US20100057258A1 (en) * 2008-08-29 2010-03-04 Clanin Thomas J Return Fan Control System and Method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437608A (en) * 1982-05-17 1984-03-20 Smith Robert B Variable air volume building ventilation system
JPS63207932A (en) * 1987-02-20 1988-08-29 Matsushita Seiko Co Ltd Ventilation device
JPH05118619A (en) * 1991-09-21 1993-05-14 Ebara Corp Air conditioner
JPH10227512A (en) * 1996-12-27 1998-08-25 Albert Bauer Air conditioner
JPH10318593A (en) * 1997-05-19 1998-12-04 Mitsubishi Electric Corp Control method for air-conditioning device and air-conditioning device
JP2000297959A (en) * 1999-04-14 2000-10-24 Yamatake Corp Air conditioning control system
JP2007132538A (en) * 2005-11-08 2007-05-31 Yamatake Corp Room pressure control system
WO2007075168A1 (en) * 2005-12-28 2007-07-05 Otis Elevator Company Building pressurization control to minimize stack effect
WO2007075161A1 (en) * 2005-12-28 2007-07-05 Otis Elevator Company Building pressure management to adjust the stack effect in a vertical shaft
JP2009002574A (en) * 2007-06-21 2009-01-08 Takenaka Komuten Co Ltd Hybrid air conditioning system
JP2009210179A (en) * 2008-03-04 2009-09-17 Panasonic Corp Ventilating device
US20100057258A1 (en) * 2008-08-29 2010-03-04 Clanin Thomas J Return Fan Control System and Method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385584B1 (en) 2013-10-30 2014-04-16 로지시스템(주) An automatic control system for cooling/heating and air-pressure in the buiding using the smart grid
JP2019067083A (en) * 2017-09-29 2019-04-25 株式会社大林組 Ventilation design apparatus, ventilation design method, program for executing method, and storage medium
JP7020036B2 (en) 2017-09-29 2022-02-16 株式会社大林組 Ventilation design equipment, ventilation design methods, programs and storage media for carrying out the methods.
CN109838879A (en) * 2017-11-28 2019-06-04 山西彩云归科技有限公司 The method of air quantity and the fresh air system of adjusting air inlet amount are adjusted for fresh air system
CN110873423A (en) * 2018-08-31 2020-03-10 青岛海尔空调器有限总公司 Air conditioner and self-cleaning control method thereof
CN110873424A (en) * 2018-08-31 2020-03-10 青岛海尔空调器有限总公司 Air conditioner and self-cleaning control method thereof
CN110873424B (en) * 2018-08-31 2021-07-23 重庆海尔空调器有限公司 Air conditioner and self-cleaning control method thereof
CN110873423B (en) * 2018-08-31 2021-07-23 重庆海尔空调器有限公司 Air conditioner and self-cleaning control method thereof

Also Published As

Publication number Publication date
JP5873693B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5873693B2 (en) Building air conditioning method
CA3014479C (en) Integrated heat and energy recovery ventilator system
CA2558994C (en) Basement ventilator
US9500383B2 (en) Method for controlling a ventilation system for the ventilation of an enclosure and a ventilation system
JP5101698B2 (en) Indoor pressurizing method and pressurizing apparatus for reducing chimney effect problems
KR101121209B1 (en) Hybrid circulation system
KR20120044795A (en) Supply damper of separating the leakage air flow and the supplementary air flow, and its control method
JP5611910B2 (en) Air conditioning control system and air conditioning control method
WO2013073165A1 (en) Supply and exhaust ventilation device
JP2008309381A (en) Heat exchange ventilation device
US9091454B2 (en) Air change rate measurement and control
JP2006145070A (en) Air conditioning system and air conditioning system control method
JP2017048940A (en) Air conditioning system for clean room
JP2014173826A (en) Total heat exchange type ventilation device
KR20200080736A (en) Leakage prediction and indoor airflow control device and control method thereof
FI126255B (en) Pressure control and ventilation in a pressurized multi-storey building
JP4929198B2 (en) Floor blowing air conditioning method and air conditioning system
CN109477647A (en) The construction method of air-conditioning system and the design method of air-conditioning system
JP2011007354A (en) Ventilator
JP2020134079A (en) Air conditioning device utilizing air flow window
KR20150061469A (en) Pressurization Method to Reduce Stack Effect Problems And System Of The Same
KR101941429B1 (en) Ventilation equipment with function of estimating carbon dioxide
JP5919045B2 (en) Air conditioner
JP4272097B2 (en) Integrated control air conditioning system
FI12412U1 (en) Ventilation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5873693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150