JP2013112739A - Method of manufacturing rare-earth doped sulfide phosphors - Google Patents

Method of manufacturing rare-earth doped sulfide phosphors Download PDF

Info

Publication number
JP2013112739A
JP2013112739A JP2011259767A JP2011259767A JP2013112739A JP 2013112739 A JP2013112739 A JP 2013112739A JP 2011259767 A JP2011259767 A JP 2011259767A JP 2011259767 A JP2011259767 A JP 2011259767A JP 2013112739 A JP2013112739 A JP 2013112739A
Authority
JP
Japan
Prior art keywords
rare earth
container
added
flux
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011259767A
Other languages
Japanese (ja)
Other versions
JP5763509B2 (en
Inventor
Yuji Takatsuka
裕二 高塚
Masato Kakihana
眞人 垣花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2011259767A priority Critical patent/JP5763509B2/en
Publication of JP2013112739A publication Critical patent/JP2013112739A/en
Application granted granted Critical
Publication of JP5763509B2 publication Critical patent/JP5763509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a rare earth doped sulfide phosphors in which the reduction and sulfuration of a container used in the method is prevented and a problem of the deterioration of the container due to the reaction with flux in the use of the flux is solved while applying an efficient reduction sulfuration method of carbon disulfide.SOLUTION: In the method of manufacturing the rare earth doped sulfide phosphors expressed by general formula [AS:RE] in which A expresses an alkaline earth metal element and RE expresses a rare earth element, a step of reducing and sulfurating a precursor by carbon disulfide is executed to a mixture of the precursor with flux, wherein the precursor is prepared by mixing at least one kind of a rare earth doped oxide expressed by general formula [AO:RE], a rare earth doped carbonate expressed by general formula [ACO:RE] and an alkaline earth metal carbonate [ACO] with REOor REFwhich is a salt of rare earth. Therefore, the container in which the mixture is charged has a double structure comprising an inner container and an outer container, the inner container is made of graphite, and space between the outer container and the inner container is filled with an inert gas.

Description

本発明は、照明やディスプレイ等に用いられる近紫外から青色の光で高輝度の蛍光を発する蛍光体に好適な希土類添加硫化物蛍光体の製造方法に関する。   The present invention relates to a method for producing a rare earth-added sulfide phosphor suitable for a phosphor that emits high-intensity fluorescence with near-ultraviolet to blue light used in lighting, displays, and the like.

近年、青色LEDや近紫外LEDの開発に伴い、これらのLEDと蛍光体を組み合わせて白色を得る、白色発光素子の開発が進んでいる。青色LEDを用いて白色発光素子を作成する場合は特許文献1、2、3に記載されているように青色LEDと黄色蛍光体を組み合わせて白色発光素子を得るが開発されている。
しかしながら、青色とその補色とから構成された白色は、色再現性が悪く、演色性が低いため、3波長型と称される白色発光素子が開発されている。
In recent years, with the development of blue LEDs and near-ultraviolet LEDs, development of white light-emitting elements that obtain white by combining these LEDs and phosphors is progressing. When a white light emitting element is produced using a blue LED, as described in Patent Documents 1, 2, and 3, a white light emitting element is obtained by combining a blue LED and a yellow phosphor.
However, white light composed of blue and its complementary color has poor color reproducibility and low color rendering, so a white light-emitting element called a three-wavelength type has been developed.

3波長型の白色発光素子として青色を発光する発光素子と、発光素子の青色の発光を受けて、緑色を発光する蛍光体及び赤色を発光する蛍光体を用いた白色発光素子(特許文献4を参照)が知られている。
また、青色の光で励起可能な赤色蛍光体としては、CaAlSiN:Eu(特許文献5)や(Sr、Ca)AlSiN(非特許文献1)、CaSi、SrSi(特許文献6)などの窒化物蛍光体やCaS:Eu、SrS:Euや(Ca,Sr)S:Euなどの硫化物蛍光体(特許文献7)が知られている。
A light emitting element that emits blue light as a three-wavelength type white light emitting element, and a white light emitting element using a phosphor that emits green light and a phosphor that emits red light by receiving blue light emitted from the light emitting element (see Patent Document 4) See).
Examples of red phosphors that can be excited by blue light include CaAlSiN: Eu (Patent Document 5), (Sr, Ca) AlSiN (Non-Patent Document 1), Ca 2 Si 5 N 8 , and Sr 2 Si 5 N 8. Nitride phosphors such as (Patent Document 6) and sulfide phosphors (Patent Document 7) such as CaS: Eu, SrS: Eu, and (Ca, Sr) S: Eu are known.

硫化物蛍光体は古くから知られており、カルシウムやストロンチウム炭酸塩や硫酸塩と酸化ユーロピウムを混合して前駆体とし、それを硫化水素中で焼成することで蛍光体を作製している。
このため、従来から赤色蛍光体の特性を向上させる試みが多くなされている。
例えば特許文献8及び特許文献9には、硫化カルシウムを母体中心とし、Euを発光中心、Mn、Li、Ce、Gd等を増感剤とした赤色蛍光体が記載されている。
Sulfide phosphors have been known for a long time, and phosphors are produced by mixing calcium, strontium carbonate, sulfate and europium oxide as precursors and firing them in hydrogen sulfide.
For this reason, many attempts have been made to improve the characteristics of red phosphors.
For example, Patent Document 8 and Patent Document 9 describe red phosphors having calcium sulfide as a host center, Eu as a luminescent center, and Mn, Li, Ce, Gd and the like as sensitizers.

また、蛍光体の作製においてフラックスを使うことはよく知られており、硫化水素中で約1000℃の温度で硫化し、その後フラックスを添加して熱処理することが特許文献10に記載されている。また、硫化物とフラックスを混合して焼成する方法が特許文献11に記載されている。
しかしながら硫化水素を用いる硫化法では、硫化水素が有毒なだけではなく、悪臭物質であり、不安定な物質でもあるために、微量であっても、厳しい管理が要求され、製造コストや生産効率などの低下を招いてしまうなどの問題も生じている。
In addition, it is well known that a flux is used in the production of a phosphor. Patent Document 10 describes that a sulfur is sulfided in hydrogen sulfide at a temperature of about 1000 ° C., and then a flux is added to perform heat treatment. Further, Patent Document 11 describes a method in which sulfide and flux are mixed and fired.
However, in the sulfurization method using hydrogen sulfide, hydrogen sulfide is not only toxic, but also a malodorous substance and an unstable substance. There are also problems such as incurring a decline in

これらの問題点を解決するため硫化法として二硫化炭素を用いた酸化物や炭酸塩の還元硫化法が開発された(特許文献12、非特許文献2)。
またフラックスを入れる場合は、硫化とフラックス焼成を分けて2回焼成することが知られていた。
In order to solve these problems, a reductive sulfidation method for oxides and carbonates using carbon disulfide has been developed as a sulfidation method (Patent Document 12, Non-Patent Document 2).
In addition, it has been known that, when flux is added, sulfiding and flux firing are separately performed twice.

特開平10−093146号公報Japanese Patent Laid-Open No. 10-093146 特開平10−065221号公報Japanese Patent Application Laid-Open No. 10-065221 特開平10−242513号公報Japanese Patent Laid-Open No. 10-242513 特開2000−244021号公報JP 2000-244021 A 特開2006−008721号公報JP 2006-008721 A 特開2006−152296号公報JP 2006-152296 A 特開昭56−82876号公報JP 56-82876 A 特開2002−80845号公報JP 2002-80845 A 特開2003−41250号公報JP 2003-41250 A 特表2005−509081号公報JP 2005-509081 A 特開2005−146190号公報JP 2005-146190 A 特開2009−221264号公報JP 2009-212264 A

Hiromu Watanabe and Naoto Kijima,Journal of Alloys and Compounds,475,2009,p.434.Hiromu Watanabe and Naoto Kijima, Journal of Alloys and Compounds, 475, 2009, p. 434. Valery Petrykin and Masato Kakihana,Journal of the American Ceramic Society,92,2009,[S1]S27−S31.Valery Petrykin and Masato Kakihana, Journal of the American Ceramic Society, 92, 2009, [S1] S27-S31.

二硫化炭素を用いて酸化物や炭酸塩を硫化する方法は、還元力が強いため硫化水素を用いた場合よりも低温、短時間で硫化できるという利点もあるが、二硫化炭素が炭素と硫黄に分解すると強い還元力のため一般に管状炉に使われている石英管やアルミナ管なども還元硫化し、発生した硫化物が蛍光体に混入するという問題がある。
また、塩化物やフッ化物を混ぜて硫化すると焼成回数が減るため効率的であるが、塩化物やフッ化物が蒸発するため石英管が失透して破損する恐れがあり、アルミナ管も塩化物と反応するという問題もある。
The method of sulfiding oxides and carbonates using carbon disulfide has the advantage that it can be sulfided at a lower temperature and in a shorter time than when hydrogen sulfide is used because of its strong reducing power. When decomposed, the quartz tube or alumina tube generally used in tubular furnaces is reduced and sulfided due to its strong reducing power, and the generated sulfide is mixed into the phosphor.
Mixing chlorides and fluorides and sulfiding is efficient because the number of firings is reduced, but the chlorides and fluorides evaporate, so the quartz tube may be devitrified and damaged. There is also the problem of reacting with.

本発明者らは、係る種々の技術的課題を解決するために鋭意研究を重ねた結果、効率的な二硫化炭素の還元硫化法を採用しつつ、この方法において炭素を材料とした容器が最適であり、炭素が酸化しないように炭素容器の周囲を不活性ガス雰囲気にすることで、容器の還元硫化を防止すると共にフラックス使用時のフラックスとの反応による劣化の問題も解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the various technical problems, the present inventors have adopted an efficient carbon disulfide reductive sulfidation method, and in this method, a container made of carbon is optimal. It has been found that the atmosphere around the carbon container is made inert gas so that the carbon is not oxidized, thereby preventing the reduction and sulfidation of the container and solving the problem of deterioration due to the reaction with the flux when using the flux. The invention has been completed.

本発明の第1の発明は、一般式[AS:RE]で表され、Aはアルカリ土類金属元素、REは希土類元素である希土類添加硫化物蛍光体の製造方法であって、一般式[A:RE]で表される希土類添加酸化物、一般式[ACO3+Z:RE]で表される希土類添加炭酸塩、アルカリ土類金属炭酸塩[ACO]の少なくとも1種と、希土類塩であるRE又はREFを混合した前駆体を、二硫化炭素で還元硫化する工程において、その還元硫化が、前駆体とフラックスの混合物に対して実施されるものであり、還元硫化の際にその混合物を入れる容器が、内側容器と外側容器から構成される2重構造を採り、且つ内側容器がグラファイト製で、外側容器と内側容器間に、不活性ガスが充填されていることを特徴とする希土類添加硫化物蛍光体の製造方法である。 A first invention of the present invention is a method for producing a rare earth-added sulfide phosphor represented by a general formula [AS: RE], wherein A is an alkaline earth metal element, and RE is a rare earth element. At least one of a rare earth-added oxide represented by A X O Z : RE], a rare earth-added carbonate represented by the general formula [A X CO 3 + Z : RE], and an alkaline earth metal carbonate [ACO 3 ]; In the step of reducing and sulfiding a precursor mixed with RE 2 O 3 or REF 3 which is a rare earth salt with carbon disulfide, the reduction and sulfidation is performed on the mixture of the precursor and the flux. The container into which the mixture is put in the case of reductive sulfidation has a double structure composed of an inner container and an outer container, and the inner container is made of graphite, and an inert gas is filled between the outer container and the inner container. It is characterized by being A method for producing a rare earth doped sulfide phosphor.

本発明の第2の発明は、第1の発明におけるフラックスが、アルカリ金属の塩化物、臭化物、フッ化物、アルカリ土類金属の塩化物、臭化物、フッ化物の中から選ばれる1種類以上であることを特徴とする希土類添加硫化物蛍光体の製造方法である。   In the second invention of the present invention, the flux in the first invention is at least one selected from alkali metal chlorides, bromides, fluorides, alkaline earth metal chlorides, bromides, and fluorides. This is a method for producing a rare earth-added sulfide phosphor.

本発明の第3の発明は、第1及び第2の発明におけるアルカリ土類金属元素Aが、Ca、Srから選ばれる1種類以上からなり、希土類金属元素REが、Euであることを特徴とする希土類添加硫化物蛍光体の製造方法である。   The third invention of the present invention is characterized in that the alkaline earth metal element A in the first and second inventions is composed of one or more selected from Ca and Sr, and the rare earth metal element RE is Eu. This is a method for producing a rare earth-added sulfide phosphor.

本発明は、一般式[A:RE]で表される希土類添加酸化物、一般式[ACO3+Z:RE]で表される希土類添加炭酸塩、アルカリ土類金属炭酸塩(ACO)の少なくとも1種と、希土類塩のRE又はREFを混合した前駆体とフラックスを、二硫化炭素を含む不活性ガス中で熱処理する還元硫化工程において、反応容器を2重構造の構成とし、二硫化炭素が流れる内側容器をグラファイト製とし、内側容器と外側容器の間に不活性ガスが充填していることを特徴とする蛍光体の製造方法であり、本発明によれば反応容器が二硫化炭素やフラックスの蒸気で破損することなく、また更に有毒な硫化水素を用いることなく、しかも相純度が高く、高輝度の赤色発光蛍光体粒子を安定して得ることができるなど、生産安定性、安全性、高品質、と工業的に顕著な効果を奏するものである。 The present invention relates to a rare earth-added oxide represented by the general formula [A X O Z : RE], a rare earth-added carbonate represented by the general formula [A X CO 3 + Z : RE], an alkaline earth metal carbonate (ACO 3 ) In a reductive sulfidation process in which a precursor mixed with at least one kind of rare earth salt RE 2 O 3 or REF 3 and a flux are heat-treated in an inert gas containing carbon disulfide, the reaction vessel has a double structure. The inner container through which carbon disulfide flows is made of graphite, and an inert gas is filled between the inner container and the outer container. According to the present invention, Without causing damage to the reaction vessel by carbon disulfide or flux vapor, and without using toxic hydrogen sulfide, the phase purity is high, and high-luminance red light-emitting phosphor particles can be stably obtained. , Production stability, safety, is intended to achieve the high-quality, industrially remarkable effects.

Arガスに二硫化炭素(CS)を含ませる方法の一例を示す説明図である。The Ar gas is an explanatory diagram showing an example of a method to include carbon disulfide (CS 2). 使用する管状炉の炉心管の構造を示す図で、(A)は従来の炉心管、(B)は本発明の内管にグラファイト管を用いた二重管構造の炉心管を示す図で、(C)は内管にグラファイト管を持つ他の構造を有する炉心管を示す図である。It is a figure which shows the structure of the core tube of the tubular furnace to be used, (A) is a conventional core tube, (B) is a figure which shows the core tube of the double tube structure which used the graphite tube for the inner tube of this invention, (C) is a figure which shows the core tube which has another structure which has a graphite tube in an inner tube. グラファイト容器を用いたボックス炉の構成の一例を示す図である。It is a figure which shows an example of a structure of the box furnace using a graphite container. 反応式(1)より求めたCSの分解における平衡状態で生成するSの割合の変化を示す図である。Generating at equilibrium in the degradation of CS 2 was calculated from the reaction formula (1) is a diagram showing a change in the percentage of S 2. 反応式(2)におけるギブスの自由エネルギー変化(ΔG)を示す図である。It is a figure which shows Gibbs free energy change ((DELTA) G) in Reaction formula (2). 反応式(3)〜(6)におけるギブスの自由エネルギー変化ΔGを計算した結果を示す図である。It is a figure which shows the result of having calculated Gibbs free energy change (DELTA) G in Reaction formula (3)-(6). 反応式(3)〜(6)における平衡定数Kを計算した結果を示す図である。It is a figure which shows the result of having calculated the equilibrium constant K in Reaction formula (3)-(6). 反応式(3)〜(6)において、SiOの代りにAl(アルミナ)を用いた場合のギブスの自由エネルギー変化ΔGの計算結果を示す図である。In Scheme (3) to (6), is a diagram showing a calculation result of the free energy change ΔG Gibbs when using Al 2 O 3 instead of SiO 2 (alumina). 実施例1、2、5、6の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of Example 1, 2, 5, 6.

一般に、還元性反応ガスを用いる化合物製造では、炉の容器は反応ガスや生成ガスと反応しない容器が使われる。
還元雰囲気では、金属性の容器を用いることもできるが、鉄やタングステン、モリブデンなど金属は硫化するものが多いため、図1に示すような方法で発生させた二硫化炭素を含む不活性ガスを流して還元硫化を行う場合、従来は図2(A)に示すように、炉心管に石英管やアルミナ管などを使う管状炉が用いられている。
In general, in the production of a compound using a reducing reaction gas, a furnace container that does not react with a reaction gas or a generated gas is used.
In a reducing atmosphere, a metallic container can be used. However, since metals such as iron, tungsten, and molybdenum often sulfidize, an inert gas containing carbon disulfide generated by the method shown in FIG. 1 is used. In the case of carrying out reductive sulfidization by flowing, a tubular furnace using a quartz tube, an alumina tube or the like as a furnace core tube is conventionally used as shown in FIG.

図1は二硫化炭素(気体)の発生装置を示す概略図で、1は二硫化炭素発生装置、10はウォーターバスで、適温の水11を張ったウォーターバス10に二硫化炭素{液体}を入れたビーカー12をバス内に浸して温度制御し、キャリアガスとして不活性ガス(図1ではArガス)を二硫化炭素(液体)内に吹き込み、気体の二硫化炭素を送出するものである。
図2(A)は従来から用いられている管状炉の炉心管部の概略を示す断面図で、21は従来の石英管、23は石英製摺り合わせ蓋で、石英管21内に置かれた試料に対して、二硫化炭素(CS)を含むキャリアガス(Ar)を流すものである。
FIG. 1 is a schematic diagram showing a carbon disulfide (gas) generator, wherein 1 is a carbon disulfide generator, 10 is a water bath, and carbon disulfide {liquid} is applied to a water bath 10 filled with water 11 of appropriate temperature. The beaker 12 is immersed in a bath to control the temperature, an inert gas (Ar gas in FIG. 1) is blown into the carbon disulfide (liquid) as a carrier gas, and gaseous carbon disulfide is sent out.
FIG. 2A is a cross-sectional view showing an outline of a core tube portion of a conventionally used tubular furnace, 21 is a conventional quartz tube, 23 is a quartz sliding lid, and is placed in the quartz tube 21. A carrier gas (Ar) containing carbon disulfide (CS 2 ) is passed through the sample.

二硫化炭素を用いた酸化物や炭酸塩の還元硫化は、硫化水素を用いた場合よりも還元力が強く、低温かつ短時間で硫化することができる。
これは二硫化炭素の還元力が強いだけでなく、下記反応式(1)に示すように高温で二硫化炭素が炭素と硫黄に分解し、炭素の微粒子が原料に付着し、それが還元に寄与するためである。
Reductive sulfidation of oxides and carbonates using carbon disulfide has stronger reducing power than hydrogen sulfide, and can be sulfided at a low temperature and in a short time.
This is not only because of the strong reducing power of carbon disulfide, but also as shown in the following reaction formula (1), carbon disulfide decomposes into carbon and sulfur at a high temperature, and carbon fine particles adhere to the raw material, which is used for reduction. This is to contribute.

Figure 2013112739
Figure 2013112739

上記反応式(1)からギブスの自由エネルギー変化(ΔG)と平衡定数Kを、熱力学計算ソフト(「HSC chemistry ver4.1」Outotec Research Oy.製)を用いて計算し、[S(g)]/[CS(g)]を求めた結果を図4に示す。 The Gibbs free energy change (ΔG) and the equilibrium constant K are calculated from the above reaction formula (1) using thermodynamic calculation software (“HSC chemistry ver4.1” manufactured by Autotec Research Oy.), And [S 2 (g )] / [CS 2 (g)] is shown in FIG.

図4からCSは、600℃で10%、1000℃では15%以上が分解していることが分かる。この分解で硫黄(S(g))は低温部に移動して析出するが、炭素(C)は高温部に付着する。また、系内に一酸化炭素が存在すると下記反応式(2)の反応が起こる可能性がある。 FIG. 4 shows that CS 2 is decomposed by 10% at 600 ° C. and 15% or more at 1000 ° C. In this decomposition, sulfur (S 2 (g)) moves to the low temperature part and precipitates, but carbon (C) adheres to the high temperature part. Further, when carbon monoxide is present in the system, the reaction of the following reaction formula (2) may occur.

Figure 2013112739
Figure 2013112739

この反応のΔGの計算結果を図5に示す。
計算結果からCOが存在すると775℃以下でΔGが負になり、Cの生成が起きることになる。すなわち、CSによる硫化反応ではCOが生成する場合がある。その場合COが管内に残留した状態でCSを流しながら温度を下げるとCが生成する。
The calculation result of ΔG of this reaction is shown in FIG.
From the calculation results, if CO is present, ΔG becomes negative at 775 ° C. or lower, and C is generated. That is, if the CO generated in the sulfurization reaction with CS 2. In this case, C is generated when the temperature is lowered while flowing CS 2 with CO remaining in the pipe.

実際に900℃以上で長時間CS還元硫化を行うと試料が黒くなる。この試料のXRD測定では硫化物以外の回折ピークは検出されない。またEPMAなどでは不純物が検出されない。更に大気中又は2酸化炭素中で焼成すると黒色はなくなる。
これらのことから、硫化物の黒色化は炭素が付着したためと思われる。
従って、石英管を用いてCSの還元硫化を行うと、特に繰り返し使う場合は上記理由により発生したCを考慮する必要がある。
次に、下記反応式(3)〜(6)を用いて、ギブスの自由エネルギー変化ΔGと平衡定数Kを計算した結果を図6、図7に示す。
When the CS 2 reduction sulfidation is actually performed at 900 ° C. or higher for a long time, the sample becomes black. In the XRD measurement of this sample, no diffraction peak other than sulfide is detected. Further, impurities such as EPMA are not detected. Further, the black color disappears when firing in air or carbon dioxide.
From these facts, it seems that the blackening of the sulfide is due to the adhesion of carbon.
Therefore, when CS 2 is subjected to reductive sulfidation using a quartz tube, it is necessary to take into account C generated for the above reasons, particularly when it is repeatedly used.
Next, the calculation results of Gibbs free energy change ΔG and equilibrium constant K using the following reaction formulas (3) to (6) are shown in FIGS.

Figure 2013112739
Figure 2013112739

Figure 2013112739
Figure 2013112739

Figure 2013112739
Figure 2013112739

Figure 2013112739
Figure 2013112739

上記反応式(3)〜(6)を用いてギブスの自由エネルギー(ΔG)変化と平衡定数Kを計算した結果を図6、図7に示す。
ΔGの変化から800℃以上では上記反応式(6):「SiO+C+CS(g)=SiS+2CO(g)」の反応が最も起こりやすく、1300℃以上で値が負になる。
これは炭素が無い場合に比べて100℃低い。この場合における1000℃の平衡定数Kは、0.00247と計算された。
これから、[CO(g)]が4.8%、([CO(g)]/[CS(g)]=0.00242)以下であれば還元硫化が進行することが分かる。
The results of calculating the Gibbs free energy (ΔG) change and the equilibrium constant K using the above reaction formulas (3) to (6) are shown in FIGS.
From the change in ΔG, the reaction of the above reaction formula (6): “SiO 2 + C + CS 2 (g) = SiS 2 + 2CO (g)” is most likely to occur at 800 ° C. or higher, and the value becomes negative at 1300 ° C. or higher.
This is 100 ° C. lower than when there is no carbon. The equilibrium constant K at 1000 ° C. in this case was calculated to be 0.00247.
From this, it can be seen that when [CO (g)] is 4.8%, ([CO (g)] 2 / [CS 2 (g)] = 0.242) or less, the reduction sulfurization proceeds.

また、アルミナに関しても同様の計算を行った結果を図8に示す。
ΔGは、炭素が存在すると1200℃以上で値が負になる。これは炭素が無い場合に比べて100℃低く、固体炭素が存在すると還元硫化されやすいことが分かった。
実際に、石英管を用いてCSを流して950℃で2時間還元硫化すると管内に綿状のSiSが析出した。またアルミナを石英管中に入れてCSを流して950℃で2時間還元硫化すると表面にドーム状の突起が発生した。
これらの点から、石英管やアルミナ管は二硫化炭素を用いて800℃以上で還元硫化する製造方法には適していないことが分かる。特に950℃以上で繰り返し使用すると石英管から発生したSiSなどの異物が蛍光体に混入することがあるので好ましくない。
Moreover, the result of having performed the same calculation regarding alumina is shown in FIG.
ΔG becomes negative at 1200 ° C. or higher when carbon is present. This was lower by 100 ° C. than when no carbon was present, and it was found that when solid carbon was present, it was easily reduced and sulfided.
Actually, when CS 2 was supplied using a quartz tube and reduced and sulfided at 950 ° C. for 2 hours, cotton-like SiS 2 was precipitated in the tube. Further, when alumina was put in a quartz tube and CS 2 was flowed and reduced and sulfidized at 950 ° C. for 2 hours, a dome-shaped protrusion was generated on the surface.
From these points, it can be seen that the quartz tube and the alumina tube are not suitable for a production method in which carbon disulfide is used for reduction sulfidation at 800 ° C. or higher. In particular, repeated use at 950 ° C. or higher is not preferable because foreign matter such as SiS 2 generated from the quartz tube may be mixed into the phosphor.

そこで、高温で使用可能な材料としてはグラファイトが考えられるが、二硫化炭素を含む不活性ガスを流すには最適である。しかしグラファイトは酸素と反応して燃焼するため、容器を大気と遮断することが必要になる。
グラファイト容器を大気と遮断する方法として、グラファイト容器を内側容器とし、さらに外側(大気側)容器との2重構造にすることが有効である。
Therefore, graphite can be considered as a material that can be used at high temperatures, but it is optimal for flowing an inert gas containing carbon disulfide. However, since graphite reacts with oxygen and burns, it is necessary to shut off the container from the atmosphere.
As a method of blocking the graphite container from the atmosphere, it is effective to use a double structure of the graphite container as an inner container and an outer (atmosphere side) container.

2重構造の外側(大気側)の容器には、石英やアルミナ、または金属の容器など特に制限なく使用することができるが、外側容器とグラファイト製内側容器を接触させると、大気側の外側容器が金属製の場合では反応して炭化物を形成する恐れがあり、また酸化物製の場合では酸化物容器が還元されるおそれがある。
そのためグラファイト製内側容器と大気側の容器の間に空間があることが必要である。
但し、グラファイト製内側容器と大気側の外側容器の間に空間に酸素があるとグラファイト製内側容器が酸化するため、空間部分に酸素を含まないことが必要であり、空間部分へ不活性ガスを流すことにより達成できる。
The outer container (atmosphere side) of the double structure can be used without limitation, such as quartz, alumina, or metal container, but if the outer container and the graphite inner container are brought into contact, the outer container on the atmosphere side If it is made of metal, it may react to form a carbide, and if it is made of oxide, the oxide container may be reduced.
Therefore, it is necessary that there is a space between the graphite inner container and the atmosphere side container.
However, if there is oxygen in the space between the graphite inner container and the atmospheric outer container, the graphite inner container oxidizes, so it is necessary that the space portion does not contain oxygen, and inert gas is introduced into the space portion. This can be achieved by flowing.

このような還元硫化装置の一例として、図2(B)、(C)に、グラファイト製内側容器(炉心管)を用いた管状炉の炉心管部の断面図を示し、その構造を示す。
図2(B)、(C)において、20はグラファイト管(内側容器:内側炉心管)、22は石英管(外側容器:外側炉心管)、24はカーボンシート、25は硫黄溜り、26はフランジである。
図2(B)、(C)共に、2重管構造を採り、内側容器(内側炉心管)にグラファイト管20を用い、外側容器(外側炉心管)に石英管22を使用し、内側容器と外側容器の間に、不活性ガス(図中ではArを使用)を流通させて、充填状態にしたものである。
さらに管状炉以外の炉形態として、図3に示すようなグラファイト容器を内側容器に用いたボックス炉を用いても良い。図3において、30はボックス炉、31はグラファイト容器(内側容器)、32は外側容器(石英/カーボンシートの複合体)、36はヒーターである。
As an example of such a reducing sulfide apparatus, FIGS. 2B and 2C show a sectional view of a core tube portion of a tubular furnace using a graphite inner vessel (core tube), and the structure thereof is shown.
2B and 2C, 20 is a graphite tube (inner vessel: inner core tube), 22 is a quartz tube (outer vessel: outer core tube), 24 is a carbon sheet, 25 is a sulfur reservoir, and 26 is a flange. It is.
2 (B) and 2 (C) both adopt a double tube structure, using a graphite tube 20 for the inner vessel (inner core tube) and using a quartz tube 22 for the outer vessel (outer core tube), An inert gas (Ar is used in the figure) is circulated between the outer containers so as to be filled.
Furthermore, as a furnace form other than the tubular furnace, a box furnace using a graphite container as shown in FIG. 3 as an inner container may be used. In FIG. 3, 30 is a box furnace, 31 is a graphite vessel (inner vessel), 32 is an outer vessel (quartz / carbon sheet composite), and 36 is a heater.

本発明の製造方法を用いることによって、一般式[AS:RE]で表され、AがCa、Srの1種類以上のアルカリ土類金属元素、REが希土類元素のEuである希土類添加硫化物蛍光体を作製することができる。
具体的には、一般式[A:RE]の希土類添加酸化物、一般式[ACO3+Z:RE]、アルカリ土類金属炭酸塩(ACO)の少なくとも1種と、希土類塩のRE又はREFを混合した前駆体を、二硫化炭素を用いて還元硫化するものである。
使用する前駆体原料として、均一に希土類元素が分布した希土類添加酸化物や希土類添加炭酸塩を使用すると低温での還元硫化が可能になる。一方、アルカリ土類金属炭酸塩(ACO)とRE或いはREFなどの希土類塩を原料として混合したものを前駆体に使用し、還元硫化しても蛍光体を製造しても良い。
By using the production method of the present invention, rare earth-added sulfide fluorescence represented by the general formula [AS: RE], wherein A is one or more alkaline earth metal elements of Ca and Sr, and RE is rare earth Eu. The body can be made.
Specifically, a rare earth-added oxide of the general formula [A X O Z : RE], at least one of the general formula [A X CO 3 + Z : RE], an alkaline earth metal carbonate (ACO 3 ), and a rare earth salt A precursor in which RE 2 O 3 or REF 3 is mixed is reduced and sulfided using carbon disulfide.
When a rare earth-added oxide or rare earth-added carbonate in which rare earth elements are uniformly distributed is used as a precursor raw material to be used, reductive sulfidization at a low temperature becomes possible. On the other hand, a mixture of alkaline earth metal carbonate (ACO 3 ) and a rare earth salt such as RE 2 O 3 or REF 3 as a raw material may be used as a precursor, and the phosphor may be produced by reduction-sulfurization. .

さらに、本発明の硫化物蛍光体の製造方法では、フラックスを用いた焼成が、還元硫化反応の低温化、短時間化に有効である。
用いるフラックスとしては、KClやNaCl、BaClやSrCl、CaClなどのアルカリ金属やアルカリ土類金属の塩化物、KBrやNaBr、BaBr、SrBr、CaBrのような臭化物、BaFやSrF、CaFのようなフッ化物などが好適に使用できる。
Furthermore, in the method for producing a sulfide phosphor of the present invention, firing using a flux is effective for reducing the temperature and shortening the reduction sulfur reaction.
The flux used, KCl and NaCl, BaCl 2 and SrCl 2, CaCl alkali metal or alkaline earth metal chlorides, such as, KBr or NaBr, BaBr 2, bromides such as SrBr 2, CaBr 2, BaF 2 and SrF 2 , fluorides such as CaF 2 can be suitably used.

本発明の硫化物蛍光体の製造方法において、フラックスを熔融させて使用するため、その熱処理温度はフラックスの融点以上、沸点以下が望ましく、さらにフラックスが蛍光体と反応して化合物を形成しないことが望ましい。これらの点から、KClやSrClなどの塩化物を使用することは特に好ましい。
なお、フラックスは融点以上で使用すると蒸発して容器と反応することがある。そのためアルカリ金属やアルカリ土類金属の塩化物をフラックスとして用いる場合は、石英管を内側の容器として使用すると反応して失透現象が発生し、失透を放置してフラックスでの硫化を続けると石英管が破損することがある。
したがって本発明のように、内側容器にグラファイト製容器を用いる製造方法では、フラックスによる損傷は殆ど無く、生成する硫化物蛍光体に対する異物混入も認められず、また安定して繰り返し使用することができることも特徴である。
In the method for producing a sulfide phosphor of the present invention, since the flux is melted and used, the heat treatment temperature is preferably above the melting point of the flux and below the boiling point, and the flux does not react with the phosphor to form a compound. desirable. From these points, it is particularly preferred to use chlorides such as KCl and SrCl 2.
If the flux is used above its melting point, it may evaporate and react with the container. Therefore, when using alkali metal or alkaline earth metal chloride as a flux, if a quartz tube is used as an inner container, it will react and devitrification will occur. The quartz tube may be damaged.
Therefore, as in the present invention, in the manufacturing method using a graphite container as the inner container, there is almost no damage due to the flux, no foreign matter is mixed into the generated sulfide phosphor, and it can be used stably and repeatedly. Is also a feature.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

酸化ユーロピウム(フルウチ化学株式会社製 3N:Eu)0.005モル(1.9126g)を、硝酸(関東化学株式会社製 60%)に、完全に溶解させた後、その溶解液を蒸発乾固して硝酸Eu(Eu硝酸塩)を得た。この硝酸Euに蒸留水を加えて100mlに定溶してEu濃度0.1モル/リットルの水溶液を作製した。 Europium oxide (3N: Eu 2 O 3 manufactured by Furuuchi Chemical Co., Ltd.) 0.005 mol (1.9126 g) was completely dissolved in nitric acid (60% manufactured by Kanto Chemical Co., Ltd.), and the solution was evaporated. It was dried to obtain Eu nitrate (Eu nitrate). Distilled water was added to this Eu nitrate and the resulting solution was dissolved in 100 ml to prepare an aqueous solution with an Eu concentration of 0.1 mol / liter.

次に、蒸留水50mlを入れたビーカーに、炭酸ストロンチウム(関東化学株式会社製3N)2.4595gを加え、ホットスターラーの設定温度を80℃、その回転数を150rpmとして攪拌した。この攪拌状態の所に、クエン酸16gを加えて1時間攪拌し、炭酸ストロンチウムを完全に溶解させた溶液を作製した。その溶液に硝酸Eu水溶液(0.1モル/リットル)を0.56ml加え、80℃で2時間攪拌し、プロピレングリコール12.7gを加え、120℃で3時間攪拌してゲル化させた。
金属モル数(Sr+Eu):クエン酸:プロピレングリコールの比は1:5:10である。Eu濃度(Eu/(Sr+Eu))は0.2%である。
Next, 2.4595 g of strontium carbonate (3N, manufactured by Kanto Chemical Co., Inc.) was added to a beaker containing 50 ml of distilled water, and the mixture was stirred at a set temperature of the hot stirrer of 80 ° C. and a rotation speed of 150 rpm. In this stirred state, 16 g of citric acid was added and stirred for 1 hour to prepare a solution in which strontium carbonate was completely dissolved. 0.56 ml of an aqueous solution of Eu nitrate (0.1 mol / liter) was added to the solution, and the mixture was stirred at 80 ° C. for 2 hours. 12.7 g of propylene glycol was added, and the mixture was stirred at 120 ° C. for 3 hours to cause gelation.
The ratio of metal moles (Sr + Eu): citric acid: propylene glycol is 1: 5: 10. The Eu concentration (Eu / (Sr + Eu)) is 0.2%.

次に、ゲル体をドラフト内に置いたマントルヒーターに入れ、450℃に加熱して、そのゲル体を熱分解して酸化物前躯体を作製した。さらに、これを乳鉢で粉砕して酸化物前駆体粉末を作製した。
得られた酸化物前駆体粉末を、750℃、2時間の焼成を行って残留有機物を焼失させた。
Next, the gel body was put in a mantle heater placed in a draft, heated to 450 ° C., and the gel body was thermally decomposed to prepare an oxide precursor. Further, this was pulverized with a mortar to prepare an oxide precursor powder.
The obtained oxide precursor powder was baked at 750 ° C. for 2 hours to burn away residual organic substances.

得られた粉末0.3960gに、塩化カリウム(KCl)0.0442gを加え、これを乳鉢で粉砕した。これをグラファイト容器に入れ、図1に示す方法で液体の二硫化炭素中を通したAr流通下で、図2(B)に示す石英管中にグラファイト管を入れた炉心管を用いた管状炉に入れて925℃、1時間の熱処理し、還元硫化を行ない、Eu添加SrS硫化物を作製した。図2(B)において、20は内側炉心管(グラファイト管)、22は外側炉心管(石英管)、24はカーボンシートである。
Ar流量は、熱処理開始から10分間は50ml/min、その後温度が460℃に達するまで10ml/min、460℃から925℃に達するまで20ml/min、925℃の1時間の熱処理中と熱処理を終えて炉の温度が40℃になるまで、計4時間20分の間流量を10ml/minにした。
To 0.3960 g of the obtained powder, 0.0442 g of potassium chloride (KCl) was added, and this was pulverized in a mortar. A tubular furnace using a furnace core tube in which a graphite tube is placed in a quartz tube shown in FIG. 2 (B) under Ar circulation through liquid carbon disulfide by the method shown in FIG. Then, heat treatment was performed at 925 ° C. for 1 hour to perform reduction sulfidation to produce Eu-added SrS sulfide. In FIG. 2B, 20 is an inner core tube (graphite tube), 22 is an outer core tube (quartz tube), and 24 is a carbon sheet.
Ar flow rate is 50 ml / min for 10 minutes from the start of heat treatment, then 10 ml / min until the temperature reaches 460 ° C., 20 ml / min until the temperature reaches from 460 ° C. to 925 ° C. The flow rate was adjusted to 10 ml / min for a total of 4 hours and 20 minutes until the furnace temperature reached 40 ° C.

蒸留水100mlを入れたビーカーに炭酸カルシウム(関東化学株式会社製 3N)2.7678gを加え、ホットスターラーの設定温度を80℃,回転数150rpmで攪拌した。この攪拌状態のところにクエン酸31.878gを加えて1時間攪拌し、炭酸カルシウムを完全に溶解した溶液を作製した。これに硝酸Eu水溶液(0.1モル/リットル)を0.277ml加え、80℃で2時間攪拌した。これにプロピレングリコール21.06gを加え、120℃で3時間攪拌してゲル化させた。
金属モル数(Ca+Eu):クエン酸:プロピレングリコールの比は1:6:10である。Eu濃度(Eu/(Ca+Eu))は0.2%である。
2.7678 g of calcium carbonate (3N manufactured by Kanto Chemical Co., Inc.) was added to a beaker containing 100 ml of distilled water, and the hot stirrer was set at a set temperature of 80 ° C. and a rotation speed of 150 rpm. To this stirred state, 31.878 g of citric acid was added and stirred for 1 hour to prepare a solution in which calcium carbonate was completely dissolved. 0.277 ml of an aqueous solution of Eu nitrate (0.1 mol / liter) was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. To this was added 21.06 g of propylene glycol, and the mixture was stirred at 120 ° C. for 3 hours to gel.
The ratio of moles of metal (Ca + Eu): citric acid: propylene glycol is 1: 6: 10. The Eu concentration (Eu / (Ca + Eu)) is 0.2%.

次に、そのゲル体をドラフト内に置いたマントルヒーターに入れ、450℃に加熱して、そのゲル体を熱分解して酸化物前躯体を作製した。さらに、これを乳鉢で粉砕して酸化物前駆体粉末を作製し、得られた酸化物前駆体粉末を、750℃、2時間の焼成を行って残留有機物を焼失させた。その得られた粉末0.3071gに、塩化カリウム(KCl)0.0382gを加え、これを乳鉢で粉砕した。
この粉砕したものを実施例1と同じ条件で、還元硫化してEu添加CaS硫化物を作製した。
Next, the gel body was put in a mantle heater placed in a draft, heated to 450 ° C., and the gel body was pyrolyzed to prepare an oxide precursor. Furthermore, this was pulverized in a mortar to prepare an oxide precursor powder, and the obtained oxide precursor powder was baked at 750 ° C. for 2 hours to burn off residual organic substances. 0.0382 g of potassium chloride (KCl) was added to 0.3071 g of the obtained powder, and this was pulverized in a mortar.
This pulverized product was reduced and sulfided under the same conditions as in Example 1 to produce Eu-added CaS sulfide.

実施例1の還元硫化の最高保持温度を950℃にした以外は、実施例1と同じ方法で、Eu添加SrS硫化物を作製した。   An Eu-added SrS sulfide was produced in the same manner as in Example 1 except that the maximum retention temperature of reduced sulfurization in Example 1 was 950 ° C.

実施例2の還元硫化の最高保持温度を950℃にした以外は、実施例2と同じ方法で、Eu添加CaS硫化物を作製した。   An Eu-added CaS sulfide was produced in the same manner as in Example 2 except that the maximum retention temperature of reduced sulfidation in Example 2 was 950 ° C.

実施例2の還元硫化の最高保持温度を950℃にし、SrとCaの比が85:15になるように炭酸Srと炭酸Caを加えた以外は、実施例2と同じ方法でEu添加(Sr、Ca)S硫化物を作製した。   Eu was added in the same manner as in Example 2 except that Sr carbonate and Ca carbonate were added so that the maximum retention temperature of reduced sulfide in Example 2 was 950 ° C. and the ratio of Sr to Ca was 85:15 (Sr , Ca) S sulfide was prepared.

実施例2の還元硫化の最高保持温度を950℃にし、SrとCaの比が50:50になるように炭酸Srと炭酸Caを加えた以外は、実施例2と同じ方法でEu添加(Sr、Ca)S硫化物を作製した。   Eu addition (Sr , Ca) S sulfide was prepared.

フラックスを塩化ストロンチウムに変えた以外は、実施例5と同じ方法でEu添加(Sr、Ca)S硫化物を作製した。   Eu-added (Sr, Ca) S sulfide was produced in the same manner as in Example 5 except that the flux was changed to strontium chloride.

フラックスを塩化ストロンチウムに変えた以外は、実施例6と同じ方法でEu添加(Sr、Ca)S硫化物を作製した。   Eu-added (Sr, Ca) S sulfide was produced in the same manner as in Example 6 except that the flux was changed to strontium chloride.

炭酸カルシウム、炭酸ストロンチウムと酸化ユーロピウムの粉末を0.499:0.499:0.002のモル比になるように秤量し、メノウの乳鉢で混合した。
この混合粉末に対して塩化カリウムを15重量%加えて更に混合して原料粉末とし、これをグラファイト容器に入れ実施例1と同様の方法でEu添加(Sr、Ca)S硫化物を作製した。
Calcium carbonate, strontium carbonate and europium oxide powders were weighed to a molar ratio of 0.499: 0.499: 0.002 and mixed in an agate mortar.
To this mixed powder, 15% by weight of potassium chloride was added and further mixed to obtain a raw material powder, which was put into a graphite container and Eu-added (Sr, Ca) S sulfide was produced in the same manner as in Example 1.

(比較例1)
塩化カリウムを加えない以外は、実施例1と同じ方法でEu添加SrS硫化物を作製した。
(Comparative Example 1)
Eu-added SrS sulfide was prepared in the same manner as in Example 1 except that potassium chloride was not added.

(比較例2)
塩化カリウムを加えない以外は、実施例2と同じ方法でEu添加CaS硫化物を作製した。
(Comparative Example 2)
An Eu-added CaS sulfide was produced in the same manner as in Example 2 except that potassium chloride was not added.

(比較例3)
塩化カリウムを加えず、還元硫化の最高保持温度を800℃にした以外は、実施例1と同じ方法でEu添加SrS硫化物を作製した。
(Comparative Example 3)
Eu-added SrS sulfide was produced in the same manner as in Example 1 except that potassium chloride was not added and the maximum retention temperature of reduced sulfurization was 800 ° C.

(比較例4)
塩化カリウムを加えず、硫化の最高保持温度を800℃にした以外は、実施例2と同じ方法でEu添加CaS硫化物を作製した。
(Comparative Example 4)
An Eu-added CaS sulfide was produced in the same manner as in Example 2 except that potassium chloride was not added and the maximum retention temperature for sulfurization was 800 ° C.

(従来例1)
実施例1のグラファイト管の替りに合成石英製の管を用いた以外は、実施例1と同じ方法でEu添加SrS硫化物を作製した。
還元硫化後に、綿状の物質が石英管に付着していた。
(Conventional example 1)
Eu-added SrS sulfide was produced in the same manner as in Example 1 except that a synthetic quartz tube was used instead of the graphite tube in Example 1.
After reductive sulfidation, a flocculent substance adhered to the quartz tube.

(従来例2)
実施例2のグラファイト管の替りに合成石英製の管を用いた以外は、実施例2と同じ方法でEu添加CaS硫化物を作製した。
還元硫化後に綿状の物質が石英管に付着し、硫化試料ブラックライトを照射すると表面が緑に発光した。この発光は試料を乳鉢で粉砕したものでは見えなかった。
(Conventional example 2)
An Eu-added CaS sulfide was prepared in the same manner as in Example 2 except that a synthetic quartz tube was used instead of the graphite tube in Example 2.
After reductive sulfidation, a flocculent substance adhered to the quartz tube, and when the sulfurized sample black light was irradiated, the surface emitted green light. This luminescence was not visible when the sample was ground in a mortar.

(従来例3)
実施例1のグラファイト容器の替りにアルミナ容器を用いた以外は、実施例1と同じ方法でEu添加SrS硫化物を作製した。
硫化後にアルミナ容器の変色が発生し、ブラックライトを照射すると変色部が緑に発光した。またアルミナ容器を繰り返し使用すると表面に凹凸が発生した。
(Conventional example 3)
Eu-added SrS sulfide was produced in the same manner as in Example 1 except that an alumina container was used instead of the graphite container in Example 1.
Discoloration of the alumina container occurred after sulfurization, and when the black light was irradiated, the discolored portion emitted green light. Further, when the alumina container was repeatedly used, irregularities were generated on the surface.

また、従来例1で合成石英製の管を用いて塩化カリウムを加えた焼成試験を行うと3回の硫化試験後に管の内部に曇りが生じ、さらに還元硫化を行うと石英管からザラメ状の石英が剥離した。   In addition, when a firing test with potassium chloride is performed using a synthetic quartz tube in Conventional Example 1, fogging occurs inside the tube after three sulfidation tests, and further reduction sulfidation results in a grainy shape from the quartz tube. Quartz peeled off.

(従来例4)
実施例1のグラファイト管の替りに合成石英製の管を用いた以外は、実施例2と同じ方法でEu添加CaS硫化物を作製した。
還元硫化後に、綿状の物質が石英管に付着していた。
(Conventional example 4)
An Eu-added CaS sulfide was produced in the same manner as in Example 2 except that a synthetic quartz tube was used instead of the graphite tube of Example 1.
After reductive sulfidation, a flocculent substance adhered to the quartz tube.

作製した試料を以下の項目を測定して評価した。   The prepared samples were evaluated by measuring the following items.

[輝度の評価]
輝度の評価は、LED用の黄色蛍光体として良く知られているYAG:Ce(P61:化成オプト製)を基準物として用い、実施例1から実施例9、比較例1から比較例4、及び従来例1から従来例4で作製したEu添加硫化物蛍光体とを比較して行った。
それぞれ発光スペクトルを測定し、ピーク強度、発光波長を比較した結果を、まとめて表1に示す。
測定した実施例1、2、5、6の発光スペクトルを図9に示す。
[Brightness evaluation]
The evaluation of the brightness was performed using YAG: Ce (P61: manufactured by Kasei Opto), which is well known as a yellow phosphor for LED, as a reference material, and Examples 1 to 9, Comparative Examples 1 to 4, and The comparison was made with Eu-added sulfide phosphors produced in Conventional Example 1 to Conventional Example 4.
Table 1 summarizes the results of measuring the emission spectrum and comparing the peak intensity and the emission wavelength.
The measured emission spectra of Examples 1, 2, 5, and 6 are shown in FIG.

本発明の製造方法により作製した実施例1から実施例9と、製造条件が満たされていなかった比較例1から比較例4のピーク強度を比較すると、還元硫化温度が900℃以上で、フラックスとしてKClを加えることで、輝度が大幅に向上し、YAG:Ceと同等以上であることが分かる。
比較例2のEu添加CaSでは、試料が黒くなったことも輝度低下の原因と思われる。800℃では試料の黒化が無いためEu添加CaSの輝度は、向上したが温度が不足して結晶性が十分ではない。Eu添加SrSはKClを加えないと輝度が不足している。
When comparing the peak intensities of Examples 1 to 9 produced by the production method of the present invention and Comparative Examples 1 to 4 where the production conditions were not satisfied, the reduced sulfurization temperature was 900 ° C. or higher, and the flux was It can be seen that the luminance is greatly improved by adding KCl, which is equal to or higher than YAG: Ce.
In the Eu-added CaS of Comparative Example 2, it is considered that the brightness of the sample was also reduced because the sample was blackened. At 800 ° C., there was no blackening of the sample, so the luminance of Eu-added CaS was improved, but the temperature was insufficient and the crystallinity was not sufficient. Eu-added SrS lacks brightness unless KCl is added.

従来例1から従来例4では、石英管やアルミナ容器と硫化物が反応した従来例2、従来例3の輝度が著しく低くなった。
反応しなかった従来例1や従来例4では輝度は比較的高いが、SiSと推定される異物が生成し、蛍光体への混入の恐れがあり、またこの条件で硫化を繰り返し行うと石英管が破損することが分かり、品質的にも安全面でも問題がある。
In Conventional Example 1 to Conventional Example 4, the luminance of Conventional Example 2 and Conventional Example 3 in which the quartz tube or the alumina container and the sulfide reacted is significantly reduced.
In the conventional example 1 and the conventional example 4 that did not react, the luminance was relatively high, but a foreign substance presumed to be SiS 2 was generated and could be mixed into the phosphor. It turns out that the pipe is broken, and there is a problem in terms of quality and safety.

Figure 2013112739
Figure 2013112739

1 二硫化炭素発生装置
10 ウォーターバス
11 水
12 ビーカー
20 グラファイト管
21 石英管(従来の単管炉心管)
22 石英管(外側容器)
23 石英製摺り合わせ蓋
24 カーボンシート
25 硫黄溜り
26 フランジ
30 ボックス炉
31 グラファイト容器(内側容器)
32 外側容器(石英/カーボンシートの複合体)
36 ヒーター
DESCRIPTION OF SYMBOLS 1 Carbon disulfide generator 10 Water bath 11 Water 12 Beaker 20 Graphite tube 21 Quartz tube (conventional single tube core tube)
22 Quartz tube (outer container)
23 Quartz sliding lid 24 Carbon sheet 25 Sulfur reservoir 26 Flange 30 Box furnace 31 Graphite container (inner container)
32 Outer container (quartz / carbon sheet composite)
36 Heater

Claims (3)

一般式 [AS:RE]で表され、Aはアルカリ土類金属元素、REは希土類元素である希土類添加硫化物蛍光体の製造方法であって、
一般式[A:RE]で表される希土類添加酸化物、一般式[ACO3+Z:RE]で表される希土類添加炭酸塩、アルカリ土類金属炭酸塩[ACO]の少なくとも1種と、希土類塩であるRE又はREFを混合した前駆体を、
二硫化炭素で還元硫化する工程において、
前記還元硫化が、前記前駆体とフラックスの混合物に対して実施されるものであり、
前記還元硫化の際に前記混合物を入れる容器が、内側容器と外側容器から構成される2重構造を採り、且つ内側容器がグラファイト製で、外側容器と内側容器間に、不活性ガスが充填されていることを特徴とする希土類添加硫化物蛍光体の製造方法。
It is represented by the general formula [AS: RE], wherein A is an alkaline earth metal element and RE is a rare earth element-added sulfide phosphor,
At least one of a rare earth-added oxide represented by the general formula [A X O Z : RE], a rare earth-added carbonate represented by the general formula [A X CO 3 + Z : RE], and an alkaline earth metal carbonate [ACO 3 ]. A precursor obtained by mixing one kind and RE 2 O 3 or REF 3 which is a rare earth salt,
In the process of reducing and sulfiding with carbon disulfide,
The reduced sulfidation is performed on the mixture of the precursor and the flux;
The container in which the mixture is put in the reduction sulfurization has a double structure composed of an inner container and an outer container, and the inner container is made of graphite, and an inert gas is filled between the outer container and the inner container. A method for producing a rare earth-added sulfide phosphor.
前記フラックスが、アルカリ金属の塩化物、臭化物、フッ化物、アルカリ土類金属の塩化物、臭化物、フッ化物の中から選ばれる1種類以上であることを特徴とする請求項1に記載の希土類添加硫化物蛍光体の製造方法。   2. The rare earth additive according to claim 1, wherein the flux is at least one selected from an alkali metal chloride, bromide, fluoride, alkaline earth metal chloride, bromide, and fluoride. A method for producing a sulfide phosphor. 前記アルカリ土類金属元素Aが、Ca、Srから選ばれる1種類以上からなり、
前記希土類金属元素REが、Euである
ことを特徴とする請求項1または2に記載の希土類添加硫化物蛍光体の製造方法。
The alkaline earth metal element A is composed of one or more selected from Ca and Sr,
The method for producing a rare earth-added sulfide phosphor according to claim 1 or 2, wherein the rare earth metal element RE is Eu.
JP2011259767A 2011-11-29 2011-11-29 Method for producing rare earth-added sulfide phosphor Expired - Fee Related JP5763509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011259767A JP5763509B2 (en) 2011-11-29 2011-11-29 Method for producing rare earth-added sulfide phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011259767A JP5763509B2 (en) 2011-11-29 2011-11-29 Method for producing rare earth-added sulfide phosphor

Publications (2)

Publication Number Publication Date
JP2013112739A true JP2013112739A (en) 2013-06-10
JP5763509B2 JP5763509B2 (en) 2015-08-12

Family

ID=48708586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011259767A Expired - Fee Related JP5763509B2 (en) 2011-11-29 2011-11-29 Method for producing rare earth-added sulfide phosphor

Country Status (1)

Country Link
JP (1) JP5763509B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971386A (en) * 1982-10-15 1984-04-23 Hitachi Ltd Production of fluorescent substance
JPH06192655A (en) * 1990-03-21 1994-07-12 Usr Optonix Inc Preparation of sulfide phosphor
JP2002212549A (en) * 2001-01-19 2002-07-31 Matsushita Electric Ind Co Ltd Method for producing fluorescent substance and production apparatus used therefor
JP2010215729A (en) * 2009-03-13 2010-09-30 Sumitomo Metal Mining Co Ltd Manufacturing method of phosphor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971386A (en) * 1982-10-15 1984-04-23 Hitachi Ltd Production of fluorescent substance
JPH06192655A (en) * 1990-03-21 1994-07-12 Usr Optonix Inc Preparation of sulfide phosphor
JP2002212549A (en) * 2001-01-19 2002-07-31 Matsushita Electric Ind Co Ltd Method for producing fluorescent substance and production apparatus used therefor
JP2010215729A (en) * 2009-03-13 2010-09-30 Sumitomo Metal Mining Co Ltd Manufacturing method of phosphor

Also Published As

Publication number Publication date
JP5763509B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5245411B2 (en) Phosphor, method for producing the same, and light emitting device using the phosphor
JP4975269B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
JP2012509364A (en) Phosphor composition
US11021652B2 (en) Phosphor particles with a protective layer, and method for producing the phosphor particles with the protective layer
JP4934792B2 (en) Phosphor, method for producing the same, and light emitting device using the phosphor
JP2010189583A (en) Method for producing oxide phosphor
JP5763509B2 (en) Method for producing rare earth-added sulfide phosphor
TW200307739A (en) Method of manufacturing a luminescent material with high thermal extinction temperature
JP6602066B2 (en) Method for producing YAG phosphor
WO2014006755A1 (en) Silicate phosphor and process for manufacturing same
JP2010047774A (en) Phosphor and method for producing the same and light source
JP4861722B2 (en) Blue light emitting phosphor powder and method for producing the same
JP5506215B2 (en) Method for manufacturing phosphor
JP6350123B2 (en) Method for producing sulfide phosphor
JP4639125B2 (en) Method for producing blue-emitting phosphor
KR20020067818A (en) Preparation Method of Green Color Emitting Stroutium-Europium-Thiogallium Phosphor
JP2014009253A (en) Method for producing sulfide phosphor, and the sulfide phosphor
JP2011032416A (en) Phosphor, and method for producing the same
CN108603114B (en) Phosphor and method for producing same
JP2010180297A (en) Zinc sulfide phosphor and process of producing the same
JP5484504B2 (en) Eu-activated alkaline earth metal thioaluminate phosphor and method for producing the same
KR101494338B1 (en) Phosphor powder prepared by alkali treatment of silicate phosphor containing chlorine and method for preparing the same
JP2012077126A (en) Phosphor and method for producing the same
JP2016065127A (en) Method for producing red phosphor
JP5512708B2 (en) Rare earth-added alkaline earth metal silicate phosphor and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150611

R150 Certificate of patent or registration of utility model

Ref document number: 5763509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees