JP2013112596A - Production method of vanadium pentoxide gel - Google Patents

Production method of vanadium pentoxide gel Download PDF

Info

Publication number
JP2013112596A
JP2013112596A JP2011262985A JP2011262985A JP2013112596A JP 2013112596 A JP2013112596 A JP 2013112596A JP 2011262985 A JP2011262985 A JP 2011262985A JP 2011262985 A JP2011262985 A JP 2011262985A JP 2013112596 A JP2013112596 A JP 2013112596A
Authority
JP
Japan
Prior art keywords
vanadium pentoxide
gel
light
light source
pentoxide gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011262985A
Other languages
Japanese (ja)
Inventor
Shigeru Nishio
繁 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKASAWAN ENERG KENKYU CT
Wakasa Wan Energy Research Center
Original Assignee
WAKASAWAN ENERG KENKYU CT
Wakasa Wan Energy Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKASAWAN ENERG KENKYU CT, Wakasa Wan Energy Research Center filed Critical WAKASAWAN ENERG KENKYU CT
Priority to JP2011262985A priority Critical patent/JP2013112596A/en
Publication of JP2013112596A publication Critical patent/JP2013112596A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a vanadium pentoxide gel, by which intrusion of impurities in a final product is prevented during the production, the production can be safely carried out without any injuries, and excellent production efficiency is obtained.SOLUTION: A vanadium pentoxide gel is synthesized by a photochemical reaction using a photochemical effect of vanadium pentoxide (a chemical reaction by an electron-hole pair produced by absorption of light), through a step of irradiating a suspension prepared by dispersing a vanadium pentoxide crystal in water, with light having a wavelength component of 560 nm or shorter, whose wavelength is shorter than an absorption edge at which vanadium pentoxide absorbs light.

Description

本発明は、五酸化バナジウムゲルの製造方法の改良、詳しくは、製造中に不純物が混入する心配がなく、また製造を安全に行うことができ、しかも、製造効率にも優れた五酸化バナジウムゲルの製造方法に関するものである。   The present invention is an improvement of a method for producing a vanadium pentoxide gel, more specifically, there is no concern that impurities are mixed during the production, the production can be performed safely, and the production efficiency is also excellent. It is related with the manufacturing method.

近年、高分子でありながら五酸化バナジウム結晶に匹敵する導電性を持つ五酸化バナジウムゲルが電極材料として注目されている。ちなみに、「五酸化バナジウムゲル」とは、バナジウムと酸素からなる層の間に水分子を挿入した構造を持つ無機高分子であり(図4及び非特許文献1参照)、工業生産も従来から行われている。   In recent years, vanadium pentoxide gel having a conductivity comparable to that of a vanadium pentoxide crystal while being a polymer has attracted attention as an electrode material. Incidentally, “vanadium pentoxide gel” is an inorganic polymer having a structure in which water molecules are inserted between layers composed of vanadium and oxygen (see FIG. 4 and Non-Patent Document 1), and industrial production has also been performed conventionally. It has been broken.

また、上記五酸化バナジウムゲルの合成に関しては、五酸化バナジウム結晶と水を乳鉢に入れ、室温で摩砕する簡単な方法が知られているが(図5[a]参照)、この方法では、五酸化バナジウムが乳鉢と乳棒の間で長時間こすられるため、乳鉢や乳棒の成分が五酸化バナジウムゲルに混入する可能性がある。   As for the synthesis of the vanadium pentoxide gel, a simple method is known in which vanadium pentoxide crystals and water are put in a mortar and ground at room temperature (see FIG. 5 [a]). Since vanadium pentoxide is rubbed between the mortar and pestle for a long time, the components of the mortar and pestle may be mixed into the vanadium pentoxide gel.

また他にも、イオン交換樹脂にバナジン酸塩(例えば、ナトリウム塩)を通して生成したバナジン酸を放置して、不安定なバナジン酸を自発的に五酸化バナジウムゲルへと重合させる方法も公知となっているが(図5[b]参照)、この方法では、バナジン酸塩中の陽イオン(例えば、Naイオン)がゲル中に不純物として残留する虞れがある。   In addition, a method is also known in which vanadic acid generated through vanadate (for example, sodium salt) is allowed to stand in an ion exchange resin, and unstable vanadic acid is spontaneously polymerized into a vanadium pentoxide gel. However, in this method, a cation (for example, Na ion) in vanadate may remain as an impurity in the gel.

一方、上記バナジン酸を生成する方法としては、バナジウムのアルコキシド(アルコールとの化合物)を加水分解する方法も知られているが(図5[c]参照)、この方法だと、副生成物としてアルコールが常に生成されるため、五酸化バナジウムゲルの合成後にゲルとアルコールを分離する必要がある。   On the other hand, a method of hydrolyzing vanadium alkoxide (compound with alcohol) is also known as a method for producing vanadic acid (see FIG. 5 [c]). Since alcohol is always produced, it is necessary to separate the gel and alcohol after synthesis of the vanadium pentoxide gel.

また、上記バナジン酸以外にも、五酸化バナジウム結晶を過酸化水素水に溶解して生成した過酸化物を放置して五酸化バナジウムゲルを合成する方法も知られているが(図5[d]参照)、この方法では、上記のような不純物が混入する心配はないものの、過酸化物が分解する際に激しい化学反応を伴うため、合成作業での危険が大きくなる。   In addition to the above vanadic acid, a method of synthesizing a vanadium pentoxide gel by leaving a peroxide produced by dissolving vanadium pentoxide crystals in aqueous hydrogen peroxide is also known (FIG. 5 [d In this method, although there is no fear of mixing the impurities as described above, since a severe chemical reaction is involved when the peroxide is decomposed, the danger in the synthesis work increases.

また更に、既存の合成法としては、非晶質の五酸化バナジウムと水を混ぜた懸濁液を放置して五酸化バナジウムゲルを合成する方法も知られているが、この方法では、非晶質の五酸化バナジウムを得るために、五酸化バナジウム結晶を予め非晶質化しておく必要があるため、合成前の処理に手間がかかる。   Furthermore, as an existing synthesis method, there is also known a method of synthesizing vanadium pentoxide gel by leaving a suspension of amorphous vanadium pentoxide and water mixed. In order to obtain high quality vanadium pentoxide, it is necessary to make the vanadium pentoxide crystals amorphous in advance, so that the process before synthesis takes time.

他方、工業的な製造法としては、五酸化バナジウムを高温で加熱・溶融し、液体状となった五酸化バナジウムを水中に投下して急冷することにより、五酸化バナジウムゲルを合成する方法が採用されているが(特許文献1参照)、高温の融液は危険であるだけでなく、反応性が高いため、融液を入れたるつぼの成分がゲル中に混入する心配がある。   On the other hand, as an industrial production method, a method of synthesizing vanadium pentoxide gel by heating and melting vanadium pentoxide at a high temperature, dropping the liquid vanadium pentoxide into water and quenching it is adopted. However, since the high-temperature melt is not only dangerous, but also has high reactivity, there is a concern that the components of the crucible containing the melt are mixed in the gel.

特表平7−502246号公報Japanese National Patent Publication No. 7-502246

Petkov,V.;Trikalitis,P.N.;Bozin,E.S.;Billinge,S.J.L.;Vogt,T. ;Kanatzdis,M.G.J.Am.Chem.Soc.2002,124,10157.Petkov, V.; Trikalitis, P.N.; Bozin, E.S.; Billinge, S.J.L.; Vogt, T.; Kanatzdis, M.G.J.Am.Chem.Soc.2002,124,10157. Livage,J.Chem.Mater.1991,3,578.Livage, J. Chem. Mater. 1991, 3, 578.

そこで本発明は、上記の如き問題に鑑みて為されたものであり、その目的とするところは、製造時において最終生成物に不純物が混入する心配がなく、また製造を怪我なく安全に行うことができ、しかも、製造効率にも優れた五酸化バナジウムゲルの製造方法を提供することにある。   Therefore, the present invention has been made in view of the above-described problems, and the object of the present invention is to ensure that no impurities are mixed into the final product during production, and that production can be performed safely without injury. In addition, an object of the present invention is to provide a method for producing a vanadium pentoxide gel that is excellent in production efficiency.

本発明者が上記課題を解決するために採用した手段は次のとおりである。   Means employed by the present inventor to solve the above problems are as follows.

即ち、本発明者は、五酸化バナジウム結晶を水中に分散させた懸濁液に、五酸化バナジウムが光を吸収する吸収端よりも波長が短い560nm以下の波長成分を含む光を照射して、光化学反応により五酸化バナジウムゲルの合成を行う新規の製造法を開発した。   That is, the present inventor irradiates a suspension in which vanadium pentoxide crystals are dispersed in water with light containing a wavelength component of 560 nm or less shorter than the absorption edge where vanadium pentoxide absorbs light, A new production method for the synthesis of vanadium pentoxide gel by photochemical reaction was developed.

また、上記懸濁液に照射する光を、560nm以下の波長成分のみから光とすれば、五酸化バナジウムゲルの合成反応をより効率化することができ、その際使用する光源には、単色性に優れたレーザ光源やLED光源を使用するのが好ましい。   In addition, if the light applied to the suspension is light from only a wavelength component of 560 nm or less, the synthesis reaction of vanadium pentoxide gel can be made more efficient, and the light source used at that time is monochromatic It is preferable to use a laser light source or an LED light source excellent in the above.

一方、上記懸濁液に照射する光の光源に、点光源や線光源よりも発光面積の大きい有機EL等の面光源を使用すれば、一度の合成で五酸化バナジウムゲルを大量に生成することができるため、工業的な大量生産も行える。   On the other hand, if a surface light source such as an organic EL having a light emitting area larger than that of a point light source or a line light source is used as a light source for irradiating the suspension, a large amount of vanadium pentoxide gel is generated by one synthesis. Therefore, industrial mass production is also possible.

本発明では、五酸化バナジウムの光化学作用(光吸収で生成された電子−正孔対による化学反応)を利用して、五酸化バナジウム結晶と水との懸濁液に特定波長の光を照射することにより、五酸化バナジウムゲルを非晶質化等の前処理なく効率的に製造することが可能となる。   In the present invention, using a photochemical action of vanadium pentoxide (a chemical reaction by electron-hole pairs generated by light absorption), a suspension of vanadium pentoxide crystals and water is irradiated with light of a specific wavelength. Thus, the vanadium pentoxide gel can be efficiently produced without pretreatment such as amorphization.

しかも、本発明に係る合成方法では、五酸化バナジウムと水以外の材料を使用しないため、最終生成物に不純物が混入する問題も解消される。加えて、合成に危険な化学反応や高温の融液の生成等も伴わないため、五酸化バナジウムゲルの製造を安全に行うことができる。   In addition, since the synthesis method according to the present invention does not use any material other than vanadium pentoxide and water, the problem that impurities are mixed into the final product is solved. In addition, since there is no chemical reaction that is dangerous for synthesis or generation of a high-temperature melt, vanadium pentoxide gel can be produced safely.

したがって、本発明により、不純物の混入がない純度の高い五酸化バナジウムゲルを生成することができるだけでなく、製造面での効率性や安全性にも優れた五酸化バナジウムゲルの製造方法を提供できることから、本発明の実用的利用価値は頗る高い。   Therefore, according to the present invention, it is possible not only to produce a high-purity vanadium pentoxide gel free from impurities, but also to provide a method for producing a vanadium pentoxide gel excellent in manufacturing efficiency and safety. Therefore, the practical utility value of the present invention is very high.

本発明の実施例1における五酸化バナジウムゲルの合成方法を表わす説明図である。It is explanatory drawing showing the synthesis | combining method of the vanadium pentoxide gel in Example 1 of this invention. 本発明の実施例1におけるレーザ光の照射前と照射後の試料の外観を表わす顕微鏡写真である。It is a microscope picture showing the external appearance of the sample before irradiation after the laser beam irradiation in Example 1 of this invention. 本発明の実施例1に係る合成方法で五酸化バナジウムゲルが生成されたことを示す実験データである。It is an experimental data which shows that the vanadium pentoxide gel was produced | generated by the synthesis method which concerns on Example 1 of this invention. 五酸化バナジウムゲルの分子構造を表わす説明図である。It is explanatory drawing showing the molecular structure of a vanadium pentoxide gel. 従来における五酸化バナジウムゲルの合成方法を表わす説明図である。It is explanatory drawing showing the synthesis | combining method of the vanadium pentoxide gel in the past.

『実施例1』
本発明の実施例1について、以下に説明する。この実施例1では、図1に示すように五酸化バナジウム結晶粉末(560nm付近に吸収端を持つ)と水とを混合して懸濁液を生成した後、この懸濁液に対し、波長532nmのレーザ光を室温下において30W/cm2のエネルギー密度で20時間照射した。
“Example 1”
Example 1 of the present invention will be described below. In Example 1, as shown in FIG. 1, vanadium pentoxide crystal powder (having an absorption edge in the vicinity of 560 nm) and water were mixed to form a suspension, and then the suspension was subjected to a wavelength of 532 nm. Were irradiated for 20 hours at an energy density of 30 W / cm 2 at room temperature.

その結果、図2の顕微鏡写真に示すように、レーザ光を照射した部分(点線の内側部分)が異なる色に変化した。一方、レーザ光を照射しなかった部分(点線の外側部分)については、外観的な変化は見られなかった。   As a result, as shown in the micrograph of FIG. 2, the portion irradiated with the laser light (the inner portion of the dotted line) changed to a different color. On the other hand, no change in appearance was observed in the portion not irradiated with the laser light (the portion outside the dotted line).

そして、上記試料をラマン分光法による定性分析にかけたところ、図3に示すようにレーザ光を照射して色が変化した部分は、過酸化水素法で生成した五酸化バナジウムゲルと近似するスペクトルを示し、レーザ光を照射しなかった部分は、五酸化バナジウム結晶粉末と略同じスペクトルを示した。   Then, when the sample was subjected to qualitative analysis by Raman spectroscopy, as shown in FIG. 3, the portion where the color was changed by irradiation with laser light had a spectrum that approximated the vanadium pentoxide gel produced by the hydrogen peroxide method. The portion that was not irradiated with laser light showed substantially the same spectrum as the vanadium pentoxide crystal powder.

これにより、五酸化バナジウム結晶と水の懸濁液に、五酸化バナジウムが吸収する波長域のレーザ光を照射することによって、純度の高い五酸化バナジウムゲルを生成できることが確認できた。また、合成作業に関しては、危険な反応も伴わず安全に作業を行うことができた。   Thus, it was confirmed that a vanadium pentoxide gel having a high purity can be generated by irradiating a suspension of vanadium pentoxide crystals and water with laser light in a wavelength region that vanadium pentoxide absorbs. In addition, regarding the synthesis work, the work could be performed safely without any dangerous reaction.

本発明は、概ね上記のように構成されるが、記載した実施例にのみ限定されるものではなく、「特許請求の範囲」の記載内において種々の変更が可能であって、例えば、懸濁液に照射する光の光源には、レーザ光源だけでなくキセノンランプやハロゲンランプ、LED光源、有機EL照明などを使用することができる。   The present invention is generally configured as described above. However, the present invention is not limited to the described embodiments, and various modifications can be made within the description of “Claims”. As a light source for irradiating the liquid, not only a laser light source but also a xenon lamp, a halogen lamp, an LED light source, organic EL illumination, or the like can be used.

ちなみに、上記レーザ光源やLED光源については、単色性が優れているため波長成分が560nm以下のみの光(緑や青等)を照射して、合成反応をより効率化することができる。また、有機EL照明などの面光源を使用して照射面積を増やせば、五酸化バナジウムの大量生産も可能となる。   Incidentally, since the laser light source and the LED light source are excellent in monochromaticity, the synthesis reaction can be made more efficient by irradiating light (green, blue, etc.) having a wavelength component of only 560 nm or less. Further, if the irradiation area is increased by using a surface light source such as organic EL lighting, mass production of vanadium pentoxide becomes possible.

そしてまた、五酸化バナジウムゲルの合成に必要な光エネルギーの総量については、照射光の波長域における五酸化バナジウムの光吸収率によって変わってくるが、光吸収率が高い波長域の光を照射すれば、より小さいエネルギー密度で、かつ、短時間で合成を行うことができる。   In addition, the total amount of light energy required for the synthesis of vanadium pentoxide gel depends on the light absorption rate of vanadium pentoxide in the wavelength range of the irradiated light. For example, the synthesis can be performed with a smaller energy density and in a short time.

また更に、五酸化バナジウムの光吸収率の波長依存性が分かれば、ある波長成分の光をどの程度照射したとき、どれくらいの光反応生成物(五酸化バナジウムゲル)が得られるかも予測できるため、懸濁液中の五酸化バナジウム結晶の量に応じて照射強度や照射時間を調整することもできる。   Furthermore, if the wavelength dependence of the light absorption rate of vanadium pentoxide is known, it can be predicted how much photoreaction product (vanadium pentoxide gel) will be obtained when irradiating light of a certain wavelength component. Irradiation intensity and irradiation time can be adjusted according to the amount of vanadium pentoxide crystals in the suspension.

他方、最終生成物に特定の不純物が混入している状態が逆に好ましい場合には、五酸化バナジウム結晶と水以外の材料が含まれた懸濁液に光を照射して五酸化バナジウムゲルの合成を行ってもよく、何れのものも本発明の技術的範囲に属する。   On the other hand, when it is preferable that a specific impurity is mixed in the final product, the suspension containing the vanadium pentoxide crystals and materials other than water is irradiated with light, and the vanadium pentoxide gel is irradiated. Synthesis may be performed, and any of them belongs to the technical scope of the present invention.

近年、電子部品や電化製品等において、導電性に優れた電極材料が求められており、五酸化バナジウムゲルも高機能材料の一つとして期待されている。一方、製造側では、純度の高い五酸化バナジウムゲルをできるだけ安全に効率良く製造するための技術が求められている。   In recent years, electrode materials excellent in conductivity have been demanded for electronic parts, electrical appliances, and the like, and vanadium pentoxide gel is also expected as one of highly functional materials. On the other hand, on the production side, there is a demand for a technique for producing highly pure vanadium pentoxide gel as safely and efficiently as possible.

そのような中で、本発明の五酸化バナジウムゲルの製造方法は、純度の高い五酸化バナジウムゲルを安全かつ効率的に製造することができる有用な技術であるため、その産業上の利用価値は非常に高い。   Under such circumstances, the method for producing vanadium pentoxide gel of the present invention is a useful technique that can safely and efficiently produce vanadium pentoxide gel with high purity. Very expensive.

Claims (4)

五酸化バナジウム結晶を水中に分散させた懸濁液に、560nm以下の波長成分を含む光を照射して、光化学反応により五酸化バナジウムゲルを合成することを特徴とする五酸化バナジウムゲルの製造方法。   A method for producing a vanadium pentoxide gel characterized in that vanadium pentoxide crystals are synthesized by irradiating light containing a wavelength component of 560 nm or less to a suspension in which vanadium pentoxide crystals are dispersed in water, and by photochemical reaction. . 懸濁液に照射する光が、560nm以下の波長成分のみの光であることを特徴とする請求項1記載の五酸化バナジウムゲルの製造方法。   The method for producing a vanadium pentoxide gel according to claim 1, wherein the light applied to the suspension is only light having a wavelength component of 560 nm or less. 懸濁液に照射する光の光源に、単色性に優れたレーザ光源或いはLED光源を使用することを特徴とする請求項2記載の五酸化バナジウムゲルの製造方法。   The method for producing a vanadium pentoxide gel according to claim 2, wherein a laser light source or an LED light source excellent in monochromaticity is used as a light source for irradiating the suspension. 懸濁液に照射する光の光源に面光源を使用することを特徴とする請求項1〜3の何れか一つに記載の五酸化バナジウムゲルの製造方法。   The method for producing a vanadium pentoxide gel according to any one of claims 1 to 3, wherein a surface light source is used as a light source for irradiating the suspension.
JP2011262985A 2011-11-30 2011-11-30 Production method of vanadium pentoxide gel Pending JP2013112596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262985A JP2013112596A (en) 2011-11-30 2011-11-30 Production method of vanadium pentoxide gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262985A JP2013112596A (en) 2011-11-30 2011-11-30 Production method of vanadium pentoxide gel

Publications (1)

Publication Number Publication Date
JP2013112596A true JP2013112596A (en) 2013-06-10

Family

ID=48708474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262985A Pending JP2013112596A (en) 2011-11-30 2011-11-30 Production method of vanadium pentoxide gel

Country Status (1)

Country Link
JP (1) JP2013112596A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186747A (en) * 1992-06-04 1994-07-08 Minnesota Mining & Mfg Co <3M> Flexographic printing plate provided with vanadium oxide antistatic layer
JP2000511342A (en) * 1996-05-22 2000-08-29 モルテック コーポレイション Composite cathodes, chemical cells containing novel composite cathodes, and processes for making them
JP2001303033A (en) * 2000-04-21 2001-10-31 Rikogaku Shinkokai Transition metal oxide photochromic material and photochromic method and device using the same
JP2006164800A (en) * 2004-12-08 2006-06-22 Sumitomo Osaka Cement Co Ltd Method of forming conductive film, and conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186747A (en) * 1992-06-04 1994-07-08 Minnesota Mining & Mfg Co <3M> Flexographic printing plate provided with vanadium oxide antistatic layer
JP2000511342A (en) * 1996-05-22 2000-08-29 モルテック コーポレイション Composite cathodes, chemical cells containing novel composite cathodes, and processes for making them
JP2001303033A (en) * 2000-04-21 2001-10-31 Rikogaku Shinkokai Transition metal oxide photochromic material and photochromic method and device using the same
JP2006164800A (en) * 2004-12-08 2006-06-22 Sumitomo Osaka Cement Co Ltd Method of forming conductive film, and conductive film

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6015035524; 西尾繁,外: '五酸化バナジウムにおける可視光フォトクロミズム' 現代化学 No.389, 20030801, p.23-27, 東京化学同人 *
JPN6015035527; 西尾繁: 'シリカ上で合成したV2O5・nH2Oが放置中に受ける構造変化のその場ラマン分光' 日本セラミックス協会第24回秋季シンポジウム講演予稿集 , 20110907, p.441, 日本セラミックス協会 *
JPN6015035529; LAMARQUE-FORGET S. et al: 'Electrooptic Effects in the Nematic and Isotropic Phases of Aqueous V2O5 Suspensions' Advanced Materials Vol.12, No.17, 20000901, p.1267-1270 *
JPN6015035531; PERGAMENT, A. et al: 'Electrical and optical properties of hydrated amorphous vanadium oxide' J. Phys. D: Appl. Phys. Vol.41, No.22, 20081031, 225306 (p.1-3) *
JPN6015035543; COMMEINHES, X. et al: 'Orientation of liquid-crystalline suspensions of vanadium pentoxide ribbons by a magnetic field' Advanced Materials Vol.9, No.11, 19970903, p.900-903 *

Similar Documents

Publication Publication Date Title
Han et al. Efficient self‐assembly synthesis of uniform CdS spherical nanoparticles‐Au nanoparticles hybrids with enhanced photoactivity
JP5845999B2 (en) Method for producing double fluoride phosphor
Liu et al. Microwave-synthesis of g-C3N4 nanoribbons assembled seaweed-like architecture with enhanced photocatalytic property
Xu et al. Enhancing visible light photocatalytic activity of nitrogen-deficient g-C3N4 via thermal polymerization of acetic acid-treated melamine
De Moura et al. ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties
Xu et al. Citric acid modulated electrochemical synthesis and photocatalytic behavior of BiOCl nanoplates with exposed {001} facets
Pal et al. Phosphorus induced crystallinity in carbon dots for solar light assisted seawater desalination
Janbandhu et al. CdS/TiO2 heterojunction in glass matrix: synthesis, characterization, and application as an improved photocatalyst
Fang et al. In-situ precipitation synthesis of novel BiOCl/Ag2CO3 hybrids with highly efficient visible-light-driven photocatalytic activity
Jia et al. Towards a highly efficient simulated sunlight driven photocatalyst: a case of heterostructured ZnO/ZnS hybrid structure
Salavati-Niasari et al. Hierarchical nanostructured nickel sulfide architectures through simple hydrothermal method in the presence of thioglycolic acid
Chen et al. Direct Synthesis of Hexagonal NaGdF4 Nanocrystals from a Single‐Source Precursor: Upconverting NaGdF4: Yb3+, Tm3+ and Its Composites with TiO2 for Near‐IR‐Driven Photocatalysis
Yogesh et al. Photoluminescence properties of carbon nanoparticles synthesized from activated carbon powder (4% ash) by laser ablation in solution
Zhang et al. Self-assembled CaMoO4 and CaMoO4: Eu3+ hierarchical superstructures: Facile sonochemical route synthesis and tunable luminescent properties
Wu et al. Synthesis of SnS 2/few layer boron nitride nanosheets composites as a novel material for visible-light-driven photocatalysis
Lu et al. Concentrated solar irradiation protocols for the efficient synthesis of tri-color emissive carbon dots and photophysical studies
Babar et al. An efficient fabrication of ZnO–carbon nanocomposites with enhanced photocatalytic activity and superior photostability
Morales-Mendoza et al. Structure and optical properties of ZnO and ZnO2 nanoparticles
Deng et al. Novel Bi19S27Br3 superstructures: facile microwave-assisted aqueous synthesis and their visible light photocatalytic performance
Lucilha et al. ZnO prepared by solution combustion synthesis: characterization and application as photoanode
Li et al. Facile and large scale synthesis of novel Cu2O octahedral crystals with efficient visible light photocatalytic activity
Wu et al. Upconversion photoluminescence enhancement and modulation of NaYF4: Yb, Er through using different ligands
Xue et al. S-doped Sb 2 O 3 nanocrystal: An efficient visible-light catalyst for organic degradation
Moslah et al. Synthesis of W‐doped TiO2 by low‐temperature hydrolysis: Effects of annealing temperature and doping content on the surface microstructure and photocatalytic activity
JP2018058722A (en) Fluorinated potassium manganate for use as raw material of manganese-activated complex fluorinated phosphor and process for producing manganese-activated complex fluorinated phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151225