JP2013111586A - Resistance spot welding method for high-strength steel plate - Google Patents

Resistance spot welding method for high-strength steel plate Download PDF

Info

Publication number
JP2013111586A
JP2013111586A JP2011257006A JP2011257006A JP2013111586A JP 2013111586 A JP2013111586 A JP 2013111586A JP 2011257006 A JP2011257006 A JP 2011257006A JP 2011257006 A JP2011257006 A JP 2011257006A JP 2013111586 A JP2013111586 A JP 2013111586A
Authority
JP
Japan
Prior art keywords
energization
time
electrode
resistance spot
spot welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011257006A
Other languages
Japanese (ja)
Other versions
JP5891741B2 (en
Inventor
Koichi Taniguchi
公一 谷口
Tomomasa Ikeda
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011257006A priority Critical patent/JP5891741B2/en
Publication of JP2013111586A publication Critical patent/JP2013111586A/en
Application granted granted Critical
Publication of JP5891741B2 publication Critical patent/JP5891741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a resistance spot welding method that attain high joint strength in resistance spot welding of sheet groupings including a high-strength steel plate.SOLUTION: There is provided the resistance spot welding method including: a first step in which a nugget is formed; and a second step in which electricity is supplied after a weld zone is cooled by being held in a no-electricity-supply state while pressed with an electrode. A feed time TA and a feed current IA in the first step, a feed time TB and a feed current IB in the second step, and a holding time TH of no current feeding in the second step satisfy the following expressions: (1) 0.05<(IB×TB)/(IA×TA)<1.0, and (2) 20≤TB≤100, and (3) 10×(t×d)/S<Th<200×(t×d)/S, wherein t is the total plate thickness of the sheet groupings, d is the diameter of the nugget, and S is a tip part area of a welding electrode.

Description

本発明は、継手強度に優れる溶接部を形成する高強度鋼板の抵抗スポット溶接方法に関する。   The present invention relates to a resistance spot welding method for a high-strength steel sheet that forms a weld zone having excellent joint strength.

近年、車体の高信頼性と、エミッション削減を目的とした車体重量の軽減を両立して達成するための鋼板の高強度化が進められている。自動車の車体組立てにおいては、抵抗スポット溶接が広く用いられている。   In recent years, steel sheets have been strengthened to achieve both high reliability of the vehicle body and reduction of vehicle body weight for the purpose of reducing emissions. Resistance spot welding is widely used in the assembly of automobile bodies.

抵抗スポット溶接は、図1に示すように、重ね合わせた2枚以上の鋼板(ここでは、下の鋼板1と上の鋼板2の2枚)の板組3を、上下一対の電極チップ(下の電極チップ4と上の電極チップ5)で挟み、加圧、通電することにより溶融させ、必要サイズの径dのナゲット6を形成して、溶接継手を得るものである。   As shown in FIG. 1, resistance spot welding is performed by attaching a plate set 3 of two or more stacked steel plates (here, the lower steel plate 1 and the upper steel plate 2) to a pair of upper and lower electrode tips (lower The electrode tip 4 and the upper electrode tip 5) are sandwiched between the electrode tip 4 and the upper electrode tip 5) and melted by pressurization and energization to form a nugget 6 having a required diameter d to obtain a welded joint.

このようにして得られた溶接継手の品質は、ナゲットの径dや溶け込みが得られているか、あるいはせん断引張強度(継手のせん断方向に引張試験をしたときの強さ)や十字引張強度(継手の剥離方向に引張試験をしたときの強さ)、または疲労強度などで評価されている。その中でも、せん断引張強度や十字引張強度を代表とする静的強度は、溶接継手の品質の指標として非常に重要視されている。   The quality of the welded joint thus obtained is that the nugget diameter d and penetration are obtained, or the shear tensile strength (strength when a tensile test is performed in the shear direction of the joint) or the cross tensile strength (joint Strength when a tensile test is performed in the peeling direction) or fatigue strength. Among them, the static strength represented by the shear tensile strength and the cross tensile strength is regarded as very important as an index of the quality of the welded joint.

このうち、スポット溶接部の引張せん断強度は、鋼板の引張強度の増加とともに増加する傾向にある。しかし、十字引張強度は鋼板の引張強度の増加にかかわらずほとんど増加せず、逆に減少する。その原因として、高強度鋼板は、その強度を達成するために下記(ア)式などで表される炭素等量Ceqが大きくならざるを得ず、加えて溶接は急熱急冷現象を伴うために、溶接部及び熱影響部において硬度が上昇し、靭性が低下するからだと考えられている。   Among these, the tensile shear strength of the spot welded portion tends to increase as the tensile strength of the steel plate increases. However, the cross tensile strength hardly increases regardless of the increase in the tensile strength of the steel sheet, but decreases. As a cause of this, high strength steel sheet has to have a large carbon equivalent Ceq represented by the following formula (A) in order to achieve its strength, and in addition, welding involves a rapid heating and quenching phenomenon. It is considered that the hardness is increased and the toughness is decreased in the welded portion and the heat affected zone.

Ceq=C+1/24×Si+1/6×Mn(%)・・・(ア)
高強度鋼板を使用する際に溶接継手強度を確保するためには、溶接法の観点からは、打点数の増加やナゲット径の拡大が考えられる。しかし、打点数の増加はスペースが必要であり、作業時間の増加につながり生産性を悪化させる。また、ナゲット径dを拡大するには電極を大きくしたり、溶接金属の飛散(散り、チリ)を防ぐために加圧力を増加しなければならず、装置的な制約も受けるほか、熱影響部が拡大するため溶接継手部および近傍の母材特性が損なわれる欠点もある。
Ceq = C + 1/24 × Si + 1/6 × Mn (%) (a)
In order to ensure the strength of the welded joint when using a high-strength steel plate, from the viewpoint of the welding method, an increase in the number of hitting points and an increase in the nugget diameter are conceivable. However, an increase in the number of hit points requires a space, which leads to an increase in work time and deteriorates productivity. In order to increase the nugget diameter d, the electrode must be enlarged or the applied pressure must be increased to prevent the weld metal from scattering (scattering, dust). Since it expands, there is also a drawback that the properties of the base material in the welded joint and the vicinity are impaired.

そこで、抵抗スポット溶接時、従来と同様、あるいはそれ以下の打点数およびナゲット径で強度を確保するために、ナゲットを形成する本通電の後に通電を行う後熱通電方式に対して様々な試みがなされてきた。そのうち、一度溶接部を凝固、変態させた後に再加熱することにより、ナゲットおよびHAZ部分を軟化させることで、ナゲットの靭性向上や溶接部近傍の応力集中緩和をはかり、継手強度向上を実現する方法が多く検討されてきた。   Therefore, during resistance spot welding, various attempts have been made for the post-heat energization method in which energization is performed after the main energization for forming the nugget in order to ensure the strength with the number of striking points and the nugget diameter that is the same as or less than that in the prior art. Has been made. Among them, once the weld is solidified and transformed, it is reheated to soften the nugget and the HAZ part, thereby improving the toughness of the nugget and reducing the stress concentration near the weld and improving the joint strength. Has been studied a lot.

その一例として特許文献1では、テンパー通電における通電時間Tt・通電電流Itと本通電における通電時間To・通電電流Ioを用いて、(It/Io)の二乗と(Tt/To)の積が0.25〜0.82の範囲に入っている事が望ましいとしている。   As an example, in Patent Document 1, the product of the square of (It / Io) and (Tt / To) is 0 using the energization time Tt and energization current It in temper energization and the energization time To and energization current Io in main energization. It is desirable to be in the range of 25-0.82.

特許文献2では、溶接後保持時間HTを、板厚tを用いて下記(イ)式
300−500t+250t≦ HT ≦ 560−900t+500t・・・(イ)
で表す範囲にし、また、後熱通電を後通電電流を溶接通電電流の70%以上90%以下の範囲とし、後通電時間を溶接通電時間の60%以上100%以下の範囲に規定することで溶接部の冷却中の温度降下速度を調整することにより引張強さを向上させることができることが開示されている。
In Patent Document 2, the retention time HT after welding is expressed by the following equation (a) using the plate thickness t.
300−500t + 250t 2 ≦ HT ≦ 560−900t + 500t 2 (B)
In addition, the post-heat energization is set in a range of 70% to 90% of the welding energization current, and the post-energization time is defined in the range of 60% to 100% of the welding energization time. It is disclosed that the tensile strength can be improved by adjusting the temperature drop rate during cooling of the weld.

また、特許文献3には、冷却と通電を繰り返すことによって短時間にて焼戻しの効果が得られることが開示されている。   Patent Document 3 discloses that tempering effects can be obtained in a short time by repeating cooling and energization.

特開昭58−003792号公報JP 58-003792 A 特開2002−103048号公報JP 2002-103048 A 特開2010−115706号公報JP 2010-115706 A

しかしながら、前記特許文献1および2に記載されているような通電方法は、本通電以下の電流値で、十分な抵抗発熱が可能な範囲を選ぶことが必要となるために、利用可能な電流範囲は狭く、わずかな電流値・電流時間の変化で抵抗発熱に大きく影響を及ぼすため、実施する上でその適用範囲が狭い。   However, the energization methods as described in Patent Documents 1 and 2 need to select a range in which sufficient resistance heat generation is possible at a current value equal to or less than the main energization. Is narrow, and a slight change in current value and current time has a large effect on resistance heat generation.

さらに、特許文献3に記載されているような通電方法は、後熱通電を含め全ての通電が同じ条件であるがために、高張力鋼板において最適な条件とはいいがたく、また、特許文献1および2と同様、溶接条件等の適正化には多くの検討課題がある。   Furthermore, since the energization method as described in Patent Document 3 has the same conditions for all energization including post-heat energization, it is difficult to say that the optimum conditions for a high-tensile steel sheet. As in 1 and 2, there are many issues to be investigated in optimizing welding conditions and the like.

本発明は、高強度鋼板を含む板組の抵抗スポット溶接において、前記問題を解決し、条件決定のし易さ、適用範囲の適正化と、溶接時間の短縮を同時に達成し、高い継手強度を実現する抵抗スポット溶接方法を提供することを目的とする。   The present invention solves the above-mentioned problems in resistance spot welding of a plate assembly including a high-strength steel plate, and at the same time, achieves easy determination of conditions, optimization of application range, and shortening of welding time, and high joint strength. It aims at providing the resistance spot welding method implement | achieved.

本発明者らは、前記課題を解決するために、継手強度とナゲット組織、プロセス温度、電流密度の関係を詳細に検討した。その結果、以下の知見を得た。なお、以下の式において図2に示すように、第1ステップの本通電を通電電流IA(kA)、通電時間TA(ms)、さらに後熱通電である第2ステップの無通電で保持する時間を保持時間Th(ms)、その後、通電している時間および電流をそれぞれ通電時間TB(ms)、通電電流IB(kA)とした。なお、図2では、交流電源を例に取っているため、電流波形のRMS値(実効電流値)を電流値としている。   In order to solve the above problems, the present inventors have studied in detail the relationship between joint strength, nugget structure, process temperature, and current density. As a result, the following knowledge was obtained. In the following equation, as shown in FIG. 2, the main energization of the first step is held for the energization current IA (kA), the energization time TA (ms), and further the non-energization of the second step, which is the post-heat energization. Was the holding time Th (ms), and the energization time and current were energized time TB (ms) and energized current IB (kA), respectively. In FIG. 2, since an AC power supply is taken as an example, the RMS value (effective current value) of the current waveform is used as the current value.

まず、本発明者らは、発熱の指標となる電流二乗時間積(I2×時間)に着目し、後通電に対する本通電の電流二乗時間積の比が下記(1)式の関係にあることが必要であることを見出した。 First, the present inventors pay attention to the current square time product (I 2 × time), which is an index of heat generation, and the ratio of the current square time product of main energization to post energization is in the relationship of the following equation (1). Found that is necessary.

0.05<(IB×TB)/(IA×TA)<1.0・・・(1)
(1)式は本通電に対する後通電の発熱量を立式化したものである。この式の上限の設定は、不必要な入熱を抑制し、継手強度を高めると同時に施工性を向上する観点から定めた。下限値は効果を得るための最小限の加熱を得る観点から定めた。
0.05 <(IB 2 × TB) / (IA 2 × TA) <1.0 (1)
Equation (1) formulates the calorific value of post-energization relative to main energization. The upper limit of this formula was determined from the viewpoint of suppressing unnecessary heat input, increasing joint strength, and simultaneously improving workability. The lower limit was determined from the viewpoint of obtaining the minimum heating for obtaining the effect.

また、通電時間TB(ms)は下記(2)式の関係にあることが必要である。   Further, the energization time TB (ms) needs to have the relationship of the following equation (2).

20≦TB≦100・・・(2)
この(2)式は、施工上の観点から(1)式を制限するものである。
20 ≦ TB ≦ 100 (2)
This formula (2) limits the formula (1) from the viewpoint of construction.

さらに、保持時間Th(ms)は下記(3)式の関係にあることが必要である。ここで、ナゲットの径であるナゲット径d(mm)、電極の先端部面積S(mm)、総板厚t(mm)とした。 Furthermore, the holding time Th (ms) needs to be in the relationship of the following equation (3). Here, the nugget diameter d (mm), which is the diameter of the nugget, the tip end area S (mm 2 ), and the total plate thickness t (mm) were used.

10×(t×d)/S<Th<200×(t×d)/S・・・ (3)
本(3)式は、冷却速度を遅くするファクタとしてナゲットの持つ熱量をナゲット径d(mm)とし、速くするファクタとして電極の先端部面積S(mm)を,総板厚t(mm)で立式化したものである。
10 × (t × d 2 ) / S <Th <200 × (t × d 2 ) / S (3)
In this equation (3), the nugget has a nugget diameter d (mm) as a factor for reducing the cooling rate, and the tip end area S (mm 2 ) as a factor for increasing the total thickness t (mm). It was formulated in

さらに、第2ステップの後に再度電極で加圧したまま無通電で保持して溶接部を冷却することにより、次に続く通電での過度の高温化を抑制できることも知見した。この時の条件として、一回目の保持時間で溶接部の冷却は進んでいるわけであるから、二回目の保持時間は一回目よりも短く、次に続く通電も一回目と同等か、それよりも高い必要がある。   Further, it has also been found that, after the second step, an excessive increase in temperature due to the subsequent energization can be suppressed by holding the non-energized state while being pressurized with the electrode again and cooling the weld. As a condition at this time, since the cooling of the weld progresses in the first holding time, the second holding time is shorter than the first time, and the energization that follows is equal to the first time, or more Also need to be expensive.


したがって、本発明は、下記を構成要件としている。
[1]二枚以上の鋼板を重ね合せた総板厚t(mm)の板組を、一対の溶接電極で挟持し、加圧しながら通電して溶接する抵抗スポット溶接方法であって、
ナゲットを形成する第1ステップと、
電極で加圧したまま、無通電で保持することにより溶接部を冷却した後通電する第2ステップとを備え、
前記第1ステップにおける通電時間TA(ms)、通電電流IA(kA)、第2ステップにおける通電時間TB(ms)、通電電流IB(kA)が、
(1)及び(2)式を満足し、
前記第2ステップの無通電の保持時間Th(ms)が、板組の総板厚t(mm)、前記ナゲットの径d(mm)、前記溶接電極の先端部面積S(mm)との関係で、
(3)式を満足すること、
を特徴とする抵抗スポット溶接方法。

Therefore, the present invention has the following constituent elements.
[1] A resistance spot welding method in which a plate assembly having a total plate thickness t (mm) obtained by superposing two or more steel plates is sandwiched between a pair of welding electrodes and energized while being pressurized and welded.
A first step of forming a nugget;
A second step of energizing after cooling the weld by holding the electrode without applying electricity while being pressurized with an electrode,
The energization time TA (ms), the energization current IA (kA) in the first step, the energization time TB (ms), the energization current IB (kA) in the second step,
Satisfies (1) and (2),
The non-energized holding time Th (ms) in the second step is the total plate thickness t (mm) of the plate assembly, the diameter n (mm) of the nugget, and the tip end area S (mm 2 ) of the welding electrode. In relation
(3) satisfying the equation,
A resistance spot welding method characterized by:

0.05<(IB×TB)/(IA×TA)<1.0・・・(1)
20≦TB≦100・・・(2)
10×(t×d)/S<Th<200×(t×d)/S・・・(3)
[2]前記第2ステップの後、さらに、電極で加圧したまま無通電で保持することにより溶接部を冷却し、その後、通電する第3ステップを備え、
該第3ステップにおける無通電で保持する保持時間Thc(ms)、その後の通電の通電電流値IC(kA)及び通電時間TC(ms)が下記(4)〜(6)式を満足することを特徴とする[1]に記載の抵抗スポット溶接方法。
0.05 <(IB 2 × TB) / (IA 2 × TA) <1.0 (1)
20 ≦ TB ≦ 100 (2)
10 × (t × d 2 ) / S <Th <200 × (t × d 2 ) / S (3)
[2] After the second step, further comprising a third step of cooling the welded portion by holding it without being energized while being pressurized with an electrode, and then energizing,
The holding time Thc (ms) held in the third step without energization, the energization current value IC (kA) for energization thereafter, and the energization time TC (ms) satisfy the following expressions (4) to (6). The resistance spot welding method according to [1], which is characterized.

10<Thc<Th・・・(4)
1.0≦(IC×TC)/(IB×TB)≦3.0・・・(5)
20≦TC≦100・・・(6)
[3]前記第3ステップの後、さらに、電極で加圧したまま無通電で保持することにより溶接部を冷却し、その後、通電するステップを複数備えることを特徴とする[2]に記載の抵抗スポット溶接方法。
10 <Thc <Th (4)
1.0 ≦ (IC 2 × TC) / (IB 2 × TB) ≦ 3.0 (5)
20 ≦ TC ≦ 100 (6)
[3] The method according to [2], further comprising a plurality of steps of cooling the welded portion by holding the electrode without being energized while being pressurized with the electrode after the third step, and then energizing. Resistance spot welding method.

本発明によれば、ナゲットを形成する本通電の後に加圧を維持したまま無通電で冷却する保持時間と、その後の通電時間から成る後熱通電を負荷する通電パターンにおいて、本通電の通電時間、電流値、保持時間、後熱通電の通電時間および電流値を整理したことで、条件決定までの工程を短縮し、かつ、高強度の継手強度が得られる。また、後熱通電においては、電流値を本通電よりも高く設定し、通電時間は保持時間よりも短く設定することを要件としたことから、条件範囲を広く設定することができるとともに、溶接時間を短縮することができる。   According to the present invention, the energization time of the main energization in the energization pattern in which the post-heat energization comprising the energization time and the holding time for cooling without energization while maintaining the pressurization after the main energization to form the nugget is performed. By arranging the current value, holding time, energization time of post-heat energization, and current value, the process up to the condition determination can be shortened and a high strength joint strength can be obtained. In post-heat energization, the current value is set higher than the main energization, and the energization time is set shorter than the holding time. Therefore, the condition range can be set wide and the welding time can be set. Can be shortened.

本発明の一実施形態における板組と電極の配置位置を模式的に示す図である。It is a figure which shows typically the board assembly and the arrangement position of an electrode in one Embodiment of this invention. 本発明の一実施形態における施工手順を模式的に示す図である。It is a figure which shows typically the construction procedure in one Embodiment of this invention. 本発明の実施例で使用した電極チップ形状を示すものである。The electrode tip shape used in the example of the present invention is shown.

本発明は、まず、二枚以上の鋼板を重ね合せた総板厚t(mm)の板組を、一対の溶接電極で挟持し、加圧しながら通電して溶接する抵抗スポット溶接方法である。このような抵抗スポット溶接方法が産業界で広く使用されているからである。本発明で高強度鋼板とは590〜1960MPaの強度を有する鋼板を対象とする。   The present invention is a resistance spot welding method in which a plate set having a total thickness t (mm) obtained by superimposing two or more steel plates is sandwiched between a pair of welding electrodes and is energized and welded while being pressed. This is because such a resistance spot welding method is widely used in industry. In the present invention, the high strength steel plate is intended for a steel plate having a strength of 590 to 1960 MPa.

本発明の第1ステップでは、ナゲットを形成する。このときの通電を本電流と呼ぶ場合がある。第1ステップにおける通電時間をTA(ms)とし、通電電流をIA(kA)を記号化する。   In the first step of the present invention, a nugget is formed. The energization at this time may be referred to as a main current. The energization time in the first step is TA (ms), and the energization current is symbolized as IA (kA).

つぎの、電極で加圧したまま、無通電で保持することにより溶接部を冷却した後通電する第2ステップでは、冷却を主たる目的とする。第2ステップの無通電の保持時間Th(ms)においては電極で加圧したままとする。加圧力は1.5kN以上10kN以下の範囲が好ましい。   In the second step in which the weld is cooled and then energized while being pressurized with the electrodes while being pressurized, the main purpose is cooling. In the second step, the non-energized holding time Th (ms), the electrode is kept pressurized. The applied pressure is preferably in the range of 1.5 kN to 10 kN.

第2ステップにおいては無通電で保持した後、通電時間TB(ms)、通電電流IB(kA)が、本通電の通電時間、通電電流の関係において(1)及び(2)式を満足することが必要である。   In the second step, after holding without energization, the energization time TB (ms) and the energization current IB (kA) satisfy the formulas (1) and (2) in relation to the energization time and energization current of the main energization. is necessary.

さらには、板組の総板厚t(mm)、前記ナゲットの径d(mm)、前記溶接電極の先端部面積S(mm)との関係で、
(3)式を満足することが必要である。
Furthermore, in relation to the total thickness t (mm) of the plate assembly, the diameter d (mm) of the nugget, and the tip end area S (mm 2 ) of the welding electrode,
It is necessary to satisfy the formula (3).

0.05<(IB×TB)/(IA×TA)<1.0・・・(1)
20≦TB≦100・・・(2)
10×(t×d)/S<Th<200×(t×d)/S・・・(3)
(1)式の技術的意義は前述したように、不必要な入熱を抑制し、継手強度を高めると同時に施工性を向上する観点から立式化したものである。入熱量が過小もしくは過大となることを避けるため、さらに好ましくは
0.4≦(IB×TB)/(IA×TA)<1.0である。
0.05 <(IB 2 × TB) / (IA 2 × TA) <1.0 (1)
20 ≦ TB ≦ 100 (2)
10 × (t × d 2 ) / S <Th <200 × (t × d 2 ) / S (3)
As described above, the technical significance of the formula (1) is formulated from the viewpoint of suppressing unnecessary heat input, increasing joint strength, and simultaneously improving workability. More preferably, 0.4 ≦ (IB 2 × TB) / (IA 2 × TA) <1.0 in order to avoid an excessive or excessive heat input.

(2)式の通電時間TBが20未満であれば入熱量が過小となり、
100を超えると入熱量が過大となり溶接部の機械的特性が劣化するので、上記の範囲とした。さらに、好ましくは40≦TB≦80である。
If the energization time TB of the formula (2) is less than 20, the heat input becomes excessive,
If it exceeds 100, the amount of heat input becomes excessive and the mechanical properties of the welded portion deteriorate, so the above range was adopted. Further, preferably 40 ≦ TB ≦ 80.

また、(3)式において第2ステップの無通電の保持時間Th(ms)が10×(t×d)/Sを超えるようにしなければならないのは、溶接部の冷却状態が不完全となるのを防止するためである。溶接部端部(溶融部と熱影響部の境界,ヒュージョンライン)の冷却温度は少なくとも1300℃以下にすることが好ましい。また、無通電の保持時間Th(ms)は、200×(t×d)/S未満とするのは、溶接部が冷却過剰となるのを防止するためである。溶接部端部の温度はAc温度以上にすることが好ましい。
また、確実に溶接部の温度を制御するためには、
20×(t×d)/S<Th<100×(t×d)/S
とすることがさらに好ましい。
Further, in the equation (3), the non-energized holding time Th (ms) in the second step must exceed 10 × (t × d 2 ) / S because the welded state is incompletely cooled. This is to prevent this from happening. The cooling temperature of the weld end (the boundary between the melted part and the heat affected zone, the fusion line) is preferably at least 1300 ° C. or less. The reason why the non-energized holding time Th (ms) is less than 200 × (t × d 2 ) / S is to prevent the welded portion from being overcooled. The temperature at the end of the welded portion is preferably set to Ac 1 temperature or higher.
In addition, in order to control the temperature of the welded part reliably,
20 × (t × d 2 ) / S <Th <100 × (t × d 2 ) / S
More preferably.

さらに、第2ステップの後、電極で加圧したまま無通電で保持することにより溶接部を冷却し、その後、通電する第3ステップを備えることが好ましい。
この第3ステップを採用する場合は、無通電で保持する保持時間Thc(ms)、その後の通電の通電電流値IC(kA)及び通電時間TC(ms)が下記(4)〜(6)式を満足することが必要である。
Furthermore, after the second step, it is preferable to include a third step of cooling the welded portion by holding the electrode without applying electricity while being pressurized with an electrode, and then energizing.
When this third step is adopted, the holding time Thc (ms) that is held without energization, the energization current value IC (kA) and energization time TC (ms) of energization thereafter are expressed by the following equations (4) to (6). It is necessary to satisfy

10<Thc<Th・・・(4)
1.0≦(IC×TC)/(IB×TB)≦3.0・・・(5)
20≦TC≦100・・・(6)
一回目の保持時間で溶接部の冷却は進んでいるわけであるから、二回目の保持時間は一回目よりも短く、次に続く通電も一回目と同等か、それよりも高い必要がある。
10 <Thc <Th (4)
1.0 ≦ (IC 2 × TC) / (IB 2 × TB) ≦ 3.0 (5)
20 ≦ TC ≦ 100 (6)
Since the weld is being cooled in the first holding time, the second holding time is shorter than the first time, and the subsequent energization needs to be equal to or higher than the first time.

さらに、3回目の通電による過剰入熱を避けるため、
1.0≦(IC×TC)/(IB×TB)≦2.0
とすることが好ましい。
Furthermore, in order to avoid excessive heat input due to the third energization,
1.0 ≦ (IC 2 × TC) / (IB 2 × TB) ≦ 2.0
It is preferable that

なお、この第3ステップに関して、テンパーの効果が得られない際には冷却−通電を2回以上繰り返すことで確実に得ることが出来る場合があり、第3ステップの後、さらに、電極で加圧したまま無通電で保持することにより溶接部を冷却し、その後、通電するステップを複数行うこともできる。この場合、第4ステップの条件は第3ステップの条件との関係を考慮して第3ステップに準じて行うことが好ましい。すなわち、さらに複数回行う場合には第Nステップの条件は第(N−1)ステップとの関係を考慮して決定することが好ましい。   In addition, regarding the third step, when the effect of the temper is not obtained, it may be possible to reliably obtain the tempering by repeating cooling and energization twice or more. After the third step, further pressurization with the electrode It is also possible to cool the welded part by holding it without energization, and then perform a plurality of energization steps. In this case, it is preferable that the condition of the fourth step is performed according to the third step in consideration of the relationship with the condition of the third step. That is, in the case of performing a plurality of times, it is preferable to determine the condition of the Nth step in consideration of the relationship with the (N-1) th step.

本発明の実施例1として、前述の図1に示したように、2枚の鋼板(下の鋼板1、上の鋼板2)を重ねた板組3について、溶接ガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて抵抗スポット溶接を行い、抵抗スポット溶接継手を作製した。なお、使用した一対の電極チップ(下の電極チップ4、上の電極チップ5)は、ともに図3に示すように、先端の曲率半径R40mm、先端径6mmを有するアルミナ分散銅のDR型電極とした。   As Example 1 of the present invention, as shown in FIG. 1 described above, a servomotor attached to a welding gun is added to a plate set 3 in which two steel plates (lower steel plate 1 and upper steel plate 2) are stacked. Resistance spot welding was performed by using a pressure single-phase alternating current (50 Hz) resistance welder to produce a resistance spot welded joint. As shown in FIG. 3, the pair of electrode tips used (lower electrode tip 4 and upper electrode tip 5) are composed of an alumina-dispersed copper DR type electrode having a tip radius of curvature R of 40 mm and a tip diameter of 6 mm. did.

試験片として、鋼板1、2ともに、板厚1.6mmの1180MPa級二相組織裸鋼板を使用した。JIS Z3137に基づき溶接および引張試験を行った。スクイズ時間あるいはスロープ時間については特に設定しなかった。   As the test pieces, 1180 MPa class two-phase bare steel plates having a plate thickness of 1.6 mm were used for both the steel plates 1 and 2. Welding and tensile tests were performed based on JIS Z3137. No particular squeeze time or slope time was set.

そして、本発明例として、上記の本発明の一実施形態に基づいて抵抗スポット溶接を行った。その際の通電パターンを、図2(a)に示す。第1ステップとして電流値IAをTAの間通電し、ナゲットを形成した後、第2ステップ、第3ステップの通電をそれぞれ行った。通電終了後ガンが開き加圧力が0になるまでの保持時間は1サイクルに設定した。   And as an example of this invention, resistance spot welding was performed based on one Embodiment of said this invention. An energization pattern at that time is shown in FIG. As a first step, the current value IA was energized during TA to form a nugget, and then energized in the second step and the third step, respectively. The holding time until the gun was opened after the end of energization and the pressure became zero was set to one cycle.

一方、比較例(1)として、本通電のみで後熱通電を行わない抵抗スポット溶接、比較例(2)として一般的なテンパー通電を行った。   On the other hand, as comparative example (1), resistance spot welding with only post-energization and no post-heat energization was performed, and general temper energization was performed as comparative example (2).

表1に、本発明例および各比較例の溶接条件と溶接結果を示す。まず、条件式に適合するかを評価し、適合した場合を○、適合しない場合を×とした。次に、継手強度の観点から、十字引張強度(CTS、JISZ3137に記載される十字引張試験を行った際の破断荷重)を比較例(1)と比較し、1kN以上上回った場合を○、増加が1kN未満であった場合を△、下回った場合を×とした。なお、請求項1に基づく実施例は1、4、7、10、13、16である.さらに、本通電終了後から最後の通電が終了するまでの時間が、比較例(2)と比較して、1/2未満に短縮された場合を◎、1/2以上であるが短縮されたものを○とした。本発明例においては、比較例(1)に比べて、十字引張強度の向上が認められた。   Table 1 shows welding conditions and welding results of the inventive examples and the comparative examples. First, whether or not the conditional expression is satisfied was evaluated. Next, from the viewpoint of joint strength, the cross tensile strength (CTS, breaking load when performing the cross tensile test described in JISZ3137) is compared with Comparative Example (1). Was less than 1 kN, and x was less than x. In addition, the Example based on Claim 1 is 1, 4, 7, 10, 13, 16. Furthermore, when the time from the end of the main energization to the end of the last energization is shortened to less than 1/2 compared with the comparative example (2), it is ◎, but more than 1/2 but has been shortened. The thing was made into (circle). In the example of the present invention, an improvement in the cross tensile strength was recognized as compared with Comparative Example (1).

Figure 2013111586
Figure 2013111586

本発明の実施例2として、前述の図1に示したように、2枚の鋼板(下の鋼板1、上の鋼板2)を重ねた板組3について、溶接ガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて抵抗スポット溶接を行い、抵抗スポット溶接継手を作製した。なお、使用した一対の電極チップ(下の電極チップ4、上の電極チップ5)は、ともに図3に示すように、先端の曲率半径R40mm、先端径6mmを有するアルミナ分散銅のDR型電極とした。   As Example 2 of the present invention, as shown in FIG. 1 described above, a servomotor attached to a welding gun is added to a plate set 3 in which two steel plates (lower steel plate 1 and upper steel plate 2) are stacked. Resistance spot welding was performed by using a pressure single-phase alternating current (50 Hz) resistance welder to produce a resistance spot welded joint. As shown in FIG. 3, the pair of electrode tips used (lower electrode tip 4 and upper electrode tip 5) are composed of an alumina-dispersed copper DR type electrode having a tip radius of curvature R of 40 mm and a tip diameter of 6 mm. did.

試験片として、鋼板1、2ともに、板厚1.6mmの1180MPa級二相組織裸鋼板を使用した。JIS Z3137に基づき溶接および引張試験を行った。スクイズ時間あるいはスロープ時間については特に設定しなかった。   As the test pieces, 1180 MPa class two-phase bare steel plates having a plate thickness of 1.6 mm were used for both the steel plates 1 and 2. Welding and tensile tests were performed based on JIS Z3137. No particular squeeze time or slope time was set.

そして、本発明例として、上記の本発明の一実施形態に基づいて抵抗スポット溶接を行った。その際の通電パターンを、図2(b)に示す。第1ステップとして電流値IAをTAの間通電し、ナゲットを形成した後、第2ステップ、複数回の第3ステップの通電をそれぞれ行った。通電終了後ガンが開き加圧力が0になるまでの保持時間は1サイクルに設定した。   And as an example of this invention, resistance spot welding was performed based on one Embodiment of said this invention. The energization pattern at that time is shown in FIG. As a first step, the current value IA was energized during TA to form a nugget, and then the second step and a plurality of third steps were energized. The holding time until the gun was opened after the end of energization and the pressure became zero was set to one cycle.

一方、比較例(1)として、本通電のみで後熱通電を行わない抵抗スポット溶接、比較例(2)として一般的なテンパー通電を行った。   On the other hand, as comparative example (1), resistance spot welding with only post-energization and no post-heat energization was performed, and general temper energization was performed as comparative example (2).

表2に、本発明例および各比較例の溶接条件と溶接結果を示す。まず、条件式に適合するかを評価し、適合した場合を○、適合しない場合を×とした。次に、継手強度の観点から、十字引張強度(CTS、JISZ3137に記載される十字引張試験を行った際の破断荷重)を比較例(1)と比較し、1kN以上上回った場合を○、増加が1kN未満であった場合を△、下回った場合を×とした。さらに、本通電終了後から最後の通電が終了するまでの時間が、比較例(2)と比較して、1/2未満に短縮された場合を◎、1/2以上であるが短縮されたものを○とした。本発明例においては、比較例(1)に比べて、十字引張強度の向上が認められた。   Table 2 shows welding conditions and welding results of the inventive examples and the comparative examples. First, whether or not the conditional expression is satisfied was evaluated. Next, from the viewpoint of joint strength, the cross tensile strength (CTS, breaking load when performing the cross tensile test described in JISZ3137) is compared with Comparative Example (1). Was less than 1 kN, and x was less than x. Furthermore, when the time from the end of the main energization to the end of the last energization is shortened to less than 1/2 compared with the comparative example (2), it is ◎, but more than 1/2 but has been shortened. The thing was made into (circle). In the example of the present invention, an improvement in the cross tensile strength was recognized as compared with Comparative Example (1).

Figure 2013111586
Figure 2013111586

1 下の鋼板
2 上の鋼板
3 板組
4 下の電極チップ
5 上の電極チップ
6 ナゲット
t 総板厚(mm)
d ナゲット径
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Lower steel plate 3 Board set 4 Lower electrode tip 5 Upper electrode tip 6 Nugget t Total plate thickness (mm)
d Nugget diameter

Claims (3)

二枚以上の鋼板を重ね合せた総板厚t(mm)の板組を、一対の溶接電極で挟持し、加圧しながら通電して溶接する抵抗スポット溶接方法であって、
ナゲットを形成する第1ステップと、
電極で加圧したまま、無通電で保持することにより溶接部を冷却した後、通電する第2ステップとを備え、
前記第1ステップにおける通電時間TA(ms)、通電電流IA(kA)、第2ステップにおける通電時間TB(ms)、通電電流IB(kA)が、
(1)及び(2)式を満足し、
前記第2ステップの無通電の保持時間Th(ms)が、板組の総板厚t(mm)、前記ナゲットの径d(mm)、前記溶接電極の先端部面積S(mm)との関係で、
(3)式を満足すること、
を特徴とする抵抗スポット溶接方法。
0.05<(IB×TB)/(IA×TA)<1.0・・・(1)
20≦TB≦100・・・(2)
10×(t×d)/S<Th<200×(t×d)/S・・・(3)
It is a resistance spot welding method in which a plate assembly having a total thickness t (mm) obtained by superimposing two or more steel plates is sandwiched between a pair of welding electrodes and is energized while being pressurized and welded.
A first step of forming a nugget;
A second step of energizing after cooling the weld by holding the electrode without applying electricity while being pressurized with an electrode,
The energization time TA (ms), the energization current IA (kA) in the first step, the energization time TB (ms), the energization current IB (kA) in the second step,
Satisfies (1) and (2),
The non-energized holding time Th (ms) in the second step is the total plate thickness t (mm) of the plate assembly, the diameter n (mm) of the nugget, and the tip end area S (mm 2 ) of the welding electrode. In relation
(3) satisfying the equation,
A resistance spot welding method characterized by:
0.05 <(IB 2 × TB) / (IA 2 × TA) <1.0 (1)
20 ≦ TB ≦ 100 (2)
10 × (t × d 2 ) / S <Th <200 × (t × d 2 ) / S (3)
前記第2ステップの後、さらに、電極で加圧したまま無通電で保持することにより溶接部を冷却し、その後、通電する第3ステップを備え、
該第3ステップにおける無通電で保持する保持時間Thc(ms)、その後の通電の通電電流値IC(kA)及び通電時間TC(ms)が下記(4)〜(6)式を満足することを特徴とする請求項1に記載の抵抗スポット溶接方法。
10<Thc<Th・・・(4)
1.0≦(IC×TC)/(IB×TB)≦3.0・・・(5)
20≦TC≦100・・・(6)
After the second step, further comprising a third step of cooling the welded portion by holding it without being energized while being pressurized with an electrode, and then energizing,
The holding time Thc (ms) held in the third step without energization, the energization current value IC (kA) for energization thereafter, and the energization time TC (ms) satisfy the following expressions (4) to (6). The resistance spot welding method according to claim 1, wherein:
10 <Thc <Th (4)
1.0 ≦ (IC 2 × TC) / (IB 2 × TB) ≦ 3.0 (5)
20 ≦ TC ≦ 100 (6)
前記第3ステップの後、さらに、電極で加圧したまま無通電で保持することにより溶接部を冷却し、その後、通電するステップを複数備えることを特徴とする請求項2に記載の抵抗スポット溶接方法。   3. The resistance spot welding according to claim 2, further comprising a plurality of steps of cooling the welded portion by holding the electrode without being energized while being pressurized with an electrode after the third step, and thereafter energizing the welded portion. Method.
JP2011257006A 2011-11-25 2011-11-25 Resistance spot welding method for high strength steel sheet Active JP5891741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011257006A JP5891741B2 (en) 2011-11-25 2011-11-25 Resistance spot welding method for high strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011257006A JP5891741B2 (en) 2011-11-25 2011-11-25 Resistance spot welding method for high strength steel sheet

Publications (2)

Publication Number Publication Date
JP2013111586A true JP2013111586A (en) 2013-06-10
JP5891741B2 JP5891741B2 (en) 2016-03-23

Family

ID=48707703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257006A Active JP5891741B2 (en) 2011-11-25 2011-11-25 Resistance spot welding method for high strength steel sheet

Country Status (1)

Country Link
JP (1) JP5891741B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140367368A1 (en) * 2013-06-14 2014-12-18 GM Global Technology Operations LLC Resistance spot welding thin gauge steels
WO2018181231A1 (en) * 2017-03-31 2018-10-04 Jfeスチール株式会社 Production method for resistance spot welded joint
WO2020050011A1 (en) * 2018-09-05 2020-03-12 本田技研工業株式会社 Spot welding method
JP2020040122A (en) * 2018-09-07 2020-03-19 Jfeスチール株式会社 Resistance spot welding method and manufacturing method of resistance spot welded joint

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583792A (en) * 1981-06-29 1983-01-10 Kawasaki Steel Corp Spot welding method of high tension steel plate
JP2011067853A (en) * 2009-09-28 2011-04-07 Nippon Steel Corp Spot welding method for high-strength steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583792A (en) * 1981-06-29 1983-01-10 Kawasaki Steel Corp Spot welding method of high tension steel plate
JP2011067853A (en) * 2009-09-28 2011-04-07 Nippon Steel Corp Spot welding method for high-strength steel sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140367368A1 (en) * 2013-06-14 2014-12-18 GM Global Technology Operations LLC Resistance spot welding thin gauge steels
CN104227211A (en) * 2013-06-14 2014-12-24 通用汽车环球科技运作有限责任公司 Resistance spot welding thin-gauge steel
US9737956B2 (en) * 2013-06-14 2017-08-22 GM Global Technology Operations LLC Resistance spot welding thin gauge steels
CN110461528A (en) * 2017-03-31 2019-11-15 杰富意钢铁株式会社 The manufacturing method of joint for resistance spot welding
JP6410003B1 (en) * 2017-03-31 2018-10-24 Jfeスチール株式会社 Method of manufacturing resistance spot welded joint
KR20190126098A (en) * 2017-03-31 2019-11-08 제이에프이 스틸 가부시키가이샤 Method of manufacturing resistance spot welded joints
WO2018181231A1 (en) * 2017-03-31 2018-10-04 Jfeスチール株式会社 Production method for resistance spot welded joint
KR102225221B1 (en) 2017-03-31 2021-03-08 제이에프이 스틸 가부시키가이샤 Method of manufacturing resistance spot welded joints
WO2020050011A1 (en) * 2018-09-05 2020-03-12 本田技研工業株式会社 Spot welding method
CN112654454A (en) * 2018-09-05 2021-04-13 本田技研工业株式会社 Spot welding method
JPWO2020050011A1 (en) * 2018-09-05 2021-08-26 本田技研工業株式会社 Spot welding method
JP7094374B2 (en) 2018-09-05 2022-07-01 本田技研工業株式会社 Spot welding method
JP2020040122A (en) * 2018-09-07 2020-03-19 Jfeスチール株式会社 Resistance spot welding method and manufacturing method of resistance spot welded joint

Also Published As

Publication number Publication date
JP5891741B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5714537B2 (en) Resistance spot welding method for high strength steel sheet
TWI468246B (en) Method of resistance spot welding of high tensile strength steel sheet and welding joint manufactured by the method
TWI601588B (en) Resistance point welding method
US10040145B2 (en) Spot welding method of high-strength steel sheets excellent in joint strength
JP5713147B2 (en) Overlap welding member, automotive part, overlapping portion welding method, and overlap welding member manufacturing method
JP2008229720A (en) Spot-welded joint of high-strength steel sheets excellent in tensile strength, automotive component having the same joint, and spot-welding method of high-strength steel sheets
JP6226083B2 (en) Resistance spot welding method
JP5210552B2 (en) High strength spot welded joint
JP5573128B2 (en) Resistance spot welding method
JP6958765B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
JP5942392B2 (en) Resistance spot welding method for high strength steel sheet
JP2016068142A (en) Spot welding method
JP5891741B2 (en) Resistance spot welding method for high strength steel sheet
JP2009241086A (en) Spot welding method for high-strength steel sheet
JP6313921B2 (en) Resistance spot welding method
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
JP6168246B1 (en) Resistance spot welding method and manufacturing method of welded member
WO2019156073A1 (en) Method for resistance spot welding, and method for producing resistance-spot-welded joint
JP6160581B2 (en) Resistance spot welding method
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
WO2020036198A1 (en) Resistance spot-welded member and manufacturing method therefor
JP6372639B1 (en) Resistance spot welding method
KR20240023636A (en) Resistance spot welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5891741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250