JP2013108941A - Optical transmission discriminator and optical transmission body using the same - Google Patents

Optical transmission discriminator and optical transmission body using the same Download PDF

Info

Publication number
JP2013108941A
JP2013108941A JP2011256259A JP2011256259A JP2013108941A JP 2013108941 A JP2013108941 A JP 2013108941A JP 2011256259 A JP2011256259 A JP 2011256259A JP 2011256259 A JP2011256259 A JP 2011256259A JP 2013108941 A JP2013108941 A JP 2013108941A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
light
optical transmission
leakage component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011256259A
Other languages
Japanese (ja)
Other versions
JP5778008B2 (en
Inventor
Junichi Iwasaki
准一 岩崎
Yoshiaki Takeuchi
善明 竹内
Katsuo Mabuchi
克雄 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaki Electric Co Ltd
Hokkaido Electric Power Co Inc
Original Assignee
Osaki Electric Co Ltd
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaki Electric Co Ltd, Hokkaido Electric Power Co Inc filed Critical Osaki Electric Co Ltd
Priority to JP2011256259A priority Critical patent/JP5778008B2/en
Publication of JP2013108941A publication Critical patent/JP2013108941A/en
Application granted granted Critical
Publication of JP5778008B2 publication Critical patent/JP5778008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the problem of the conventional optical transmission discriminator in which: detection efficiency of light is significantly improved in comparison with an optical fiber identifier, but an unstable measurement value, an increase in transmission loss, an occurrence of disconnection, degradation of long-term reliability or the like easily occur when applied to a coated optical fiber, an optical fiber cord, an optical fiber cable or the like.SOLUTION: A coating removed part of an optical cord 11 in a state of an optical fiber strand 11a is held freely movably between optical fiber fixing parts 15 by a length according to a curved shape when fitting to a photodetector 30 that separate from an optical leakage component 10 and an optical transmission line and a predetermined extra length, and is held in the optical transmission line by the optical leakage component 10. The optical fiber strand 11a is stably held by forming an optical transmission line curved part when fitting. An optical signal for transmitting the optical transmission line is leaked from the optical transmission line curved part and measured by a light receiving element 59 of the photodetector 30, and discriminates a transmission state. An optical transmission discriminator can be used as an optical fiber identifier for optical fiber cord which is strong against bending, or a simple transmission strength measuring instrument, or an optical transmission surveillance monitor.

Description

本発明は、光通信、LAN(ローカルエリアネットワーク)、光配線等に用いられる光伝送路において、光伝送路を光信号が伝搬しているか、伝搬する光信号が正常か、強度が安定しているか等の活線状態や、光伝送路の接続が正常か、断線していないか等の接続状態を判別するためや、光伝送路の心線対照等に用いられ、光伝送路の信号光強度を簡易に測定する伝送光強度モニターに用いられ、更に、これらの機能を中長期的に維持し、光伝送路の伝送状態の変化を中長期的に監視する装置のモニター部として用いられる光伝送判別器、およびこの光伝送判別器が適用された光ファイバ心線、光ファイバコード、光ファイバケーブル等の光伝送体に関するものである。   The present invention relates to an optical transmission line used for optical communication, LAN (local area network), optical wiring, etc., whether the optical signal propagates through the optical transmission line, the propagating optical signal is normal, or the intensity is stable. It is used to determine the connection state such as whether the optical transmission line is normal, whether the connection of the optical transmission line is normal, or not disconnected, or for the purpose of contrasting the optical transmission line. Light used for transmission light intensity monitoring that easily measures the intensity, and also used as a monitor unit for devices that maintain these functions over the medium to long term and monitor changes in the transmission state of the optical transmission line over the medium to long term The present invention relates to a transmission discriminator and an optical transmission body such as an optical fiber core wire, an optical fiber cord, and an optical fiber cable to which the optical transmission discriminator is applied.

従来から、光伝送路の配線換え等の光線路工事の際に光伝送路の接続状態や活線状態等の伝送状態を判別する光伝送判別器の重要性が指摘されて来たが、充分な性能を有する機器は広く普及しておらず、例えば、特許文献1や特許文献2等に開示された「心線対照器(IDテスタ)」がその代用品として流用されて来た。「心線対照器」は、心線対照用光源と心線対照用光検出器とから成り、心線対照用光源を用いて局舎等の開放端から判別光を光伝送路に挿入し、心線対照用光検出器を用いて、光伝送路を構成する光ファイバコード等を湾曲させることで光信号の一部を光ファイバから漏洩させ、その漏洩光を検出することにより、各光伝送路を識別する装置であり、光伝送路敷設時の導通試験等に用いられる。この「心線対照器」は、測定時のみ光伝送媒体(光ファイバ)に湾曲部を生じさせればよいので、光伝送路を対照していない時間は光伝送損失が増加する要因が無いという特徴がある。   Conventionally, the importance of optical transmission discriminators that discriminate the transmission status such as the connection status and live status of optical transmission lines during construction of optical lines such as rewiring of optical transmission lines has been pointed out. Devices having such performance have not been widely used. For example, a “cardiac wire contrast device (ID tester)” disclosed in Patent Document 1, Patent Document 2, and the like has been used as a substitute. The “cardiac contrast device” is composed of a light source for core wire contrast and a light detector for core wire contrast, and the discrimination light is inserted into the optical transmission line from the open end of the station building or the like using the light source for core wire contrast, Each optical transmission is detected by leaking a part of the optical signal from the optical fiber by bending the optical fiber cord that constitutes the optical transmission line using the optical detector for detecting the core wire, and detecting the leaked light. It is a device for identifying a path, and is used for a continuity test when an optical transmission path is laid. This "core wire contrast device" only needs to generate a curved portion in the optical transmission medium (optical fiber) only at the time of measurement, so there is no factor that increases the optical transmission loss during the time when the optical transmission path is not compared. There are features.

この心線対照用光検出器を用いて、光伝送路の接続状態や活線状態等の伝送状態を判別する場合は、局舎等で伝送路を抜き差しすることなく、心線対照用光源を用いず、光伝送路の接続を保持したまま、現用の光信号により判別することになる。また、現用の光伝送路の伝送状態を判別する場合、伝送状態判別器により現用光の伝送を阻害し、通信障害を生じてはならないため、例えば1dB以上の挿入損失が発生することがないことが、測定上の必須条件となる。   When using this optical fiber for detecting a core wire to determine the transmission state of the optical transmission line, such as the connection state and the live line state, the light source for the core wire reference is not used without connecting / disconnecting the transmission line in a station or the like. The determination is made based on the current optical signal while maintaining the connection of the optical transmission line without using it. Also, when determining the transmission state of the working optical transmission line, the transmission state discriminator must not interfere with the transmission of the working light and cause a communication failure. For example, an insertion loss of 1 dB or more will not occur. However, this is an essential condition for measurement.

しかし、特許文献1や特許文献2等に開示された上記従来の「心線対照器」は、光ファイバの湾曲により生じる漏洩光が、光ファイバコード、ケーブル類の多層の被覆層を通り、吸収と散乱を伴い乍ら広範囲に拡散するため、光の検出効率が大幅に低下するという欠点を有している。   However, in the above-mentioned conventional “cardiac wire contrast device” disclosed in Patent Document 1, Patent Document 2, etc., the leakage light caused by the bending of the optical fiber passes through the multilayer coating layers of the optical fiber cord and cables, and absorbs it. However, since the light is diffused over a wide range with scattering, the light detection efficiency is greatly reduced.

また、湾曲による光損失の増加は光信号の波長に大きく依存しており、短波長の光信号の検出では、光伝送路を形成する光ファイバを大きく湾曲させる必要がある。従って、短波長と長波長の光信号が同時に伝送している場合には、長波長側の挿入損失を抑えるため、光ファイバの湾曲半径を一定以上に保持することが必要になるが、この状態では短波長での挿入損失が更に低く抑えられるため、漏洩光の光強度が検出限界以下になる可能性が生じる。逆に、短波長での漏洩光強度を確保するために光ファイバの湾曲半径を小さくした場合には、長波長では更に大きな挿入損失が生じるため、長波長の信号伝送に障害を生じる可能性が大きくなるという欠点を有している。   In addition, the increase in optical loss due to bending greatly depends on the wavelength of the optical signal, and in detecting an optical signal with a short wavelength, the optical fiber forming the optical transmission path needs to be largely curved. Therefore, when short-wavelength and long-wavelength optical signals are transmitted at the same time, it is necessary to keep the bending radius of the optical fiber above a certain value in order to suppress insertion loss on the long-wavelength side. However, since the insertion loss at a short wavelength can be further reduced, there is a possibility that the light intensity of the leaked light will be below the detection limit. Conversely, if the radius of curvature of the optical fiber is reduced in order to secure the leakage light intensity at the short wavelength, an even greater insertion loss occurs at the long wavelength, which may cause an obstacle to signal transmission at the long wavelength. It has the disadvantage of becoming larger.

心線対照では、使用中の光伝送路(活線)が測定対象でなく、使用していない光伝送路を測定対象とするため、この場合の挿入損失の多少の増加は問題とならない。従って、心線対照用光検出器を用いて現用光を検知する場合、現用光を取り出すための光損失が大きく、光損失マージン(損失の余裕)を多く確保できない光伝送路においては適用ができないという欠点を有していた。心線対照では対照する心線対照光の光強度として、現用信号光の最低強度より大幅に大きい強度を確保できるため、心線対照器に於ける光損失が大きい場合も問題とならない。   Since the optical transmission line (live line) in use is not the object to be measured and the optical transmission line that is not being used is the object to be measured in the core line control, the increase in insertion loss in this case is not a problem. Therefore, when the working light is detected by using the optical fiber for detecting the core wire, the optical loss for extracting the working light is large, and it cannot be applied to an optical transmission line in which a large light loss margin (loss margin) cannot be secured. Had the disadvantages. In the cord contrast, since the strength of the contrast control light to be contrasted can be ensured to be much larger than the minimum intensity of the working signal light, there is no problem even when the light loss in the cord contrast is large.

また、長波長の信号を検出する場合と短波長の信号を検出する場合とで湾曲条件を大幅に変える方法も考えられるが、短波長の光信号の有無を検出するためには、その前に長波長の光信号を確認する必要が生じ、逆に、長波長の光信号が検出されない場合も、短波長の光信号の有無も確認する必要が生じる。結果として、何れの場合も作業量が大幅に増えるため、本方法は実用性に乏しく、実際に実用には供されていない。   In addition, it is possible to change the bending condition significantly when detecting a long wavelength signal and when detecting a short wavelength signal, but before detecting the presence or absence of a short wavelength optical signal, It becomes necessary to confirm the long wavelength optical signal. Conversely, even when the long wavelength optical signal is not detected, it is necessary to confirm the presence or absence of the short wavelength optical signal. As a result, the amount of work is greatly increased in any case, so that this method is not practical and is not practically used.

また、従来、上記の「心線対照器」の他に、特許文献3および非特許文献1などに開示されたような、光ファイバを湾曲させず、光ファイバ心線の接続部からの漏洩光を検出して、心線対照を行う装置がある。   Conventionally, in addition to the above “core wire contrast device”, the leaked light from the connection portion of the optical fiber core wire is not bent as disclosed in Patent Literature 3 and Non-Patent Literature 1 and the like. There is a device for detecting a heartbeat and performing a cardiac contrast.

しかし、特許文献3に開示された上記従来の心線対照を行う装置は、検出される光信号の強度が非常に小さいため漏洩光を検出する際に太陽光その他の自然界のノイズの影響を受け易く、これを改善するため、光伝送路に特定の周波数で変調された変調光を挿入し、融着接続部から漏洩した変調光の一部を検出する。従って、特許文献3に開示された従来の心線対照を行う装置は、現用の光信号が光伝送路媒体を伝搬しているか否かを判別する場合に、太陽光その他の自然界のノイズの影響を受けやすく、確実に判別することが原理的に難しいという欠点を有していた。また、非特許文献1に開示された簡易なインライン光パワーモニタを予め光伝送路中に設置し、現用光の判別に使用することも考えられるが、この装置は光伝送路当たりの単価が高価なため、一般に普及していない。   However, since the intensity of the detected optical signal is very small, the conventional apparatus for performing contrast control disclosed in Patent Document 3 is affected by sunlight and other natural noise when detecting leaked light. In order to improve this, the modulated light modulated at a specific frequency is inserted into the optical transmission line, and a part of the modulated light leaking from the fusion splicing part is detected. Therefore, the conventional apparatus for performing contrast control disclosed in Patent Document 3 determines the influence of sunlight or other natural noise when determining whether the current optical signal is propagating through the optical transmission line medium. It has the disadvantage that it is easy to receive and in principle it is difficult to reliably discriminate. In addition, a simple in-line optical power monitor disclosed in Non-Patent Document 1 may be installed in the optical transmission line in advance and used for discriminating the working light. However, this device has a high unit price per optical transmission line. Therefore, it is not popular.

以上説明したように、光ファイバ心線を湾曲させて漏洩光を検出する上記従来の湾曲法は、その適用範囲に欠点を有しているが、この欠点が克服されれば、現用光伝送判別装置の適用範囲の拡大が期待される。   As described above, the conventional bending method for detecting leaked light by bending the optical fiber core has a drawback in its application range. Expansion of the application range of the equipment is expected.

以上の欠点を克服した方法が、特許文献4,5,6および非特許文献2,3に開示されている。   Methods that overcome the above drawbacks are disclosed in Patent Documents 4, 5, and 6 and Non-Patent Documents 2 and 3.

特許文献4と非特許文献2には、光成端トレイ等の光素線部に光漏洩部品を設置することにより、配線された光ファイバを取り出すこと無く、伝送判別を可能とする技術が開示されている。特許文献5には、同様な構成を光アダプタや光コードに適用した技術として、設置された光漏洩部品で光素線部を湾曲させることにより、漏洩光の検出効率を大幅に改善した技術が開示されている。更に特許文献6と非特許文献3には、これらの技術を拡張して、光漏洩部品には光漏洩曲面を設定し、光検出器に光伝送路押えを設定することにより、小型化と低価格化を実現し、光成端トレイ、光アダプタ、光装置等に適用した技術が公開されている。   Patent Document 4 and Non-Patent Document 2 disclose a technique that enables transmission discrimination without taking out a wired optical fiber by installing a light leakage component in an optical element part such as an optical termination tray. Has been. In Patent Document 5, as a technique in which a similar configuration is applied to an optical adapter or an optical cord, there is a technique that greatly improves the detection efficiency of leaked light by curving the optical element wire portion with an installed light leak component. It is disclosed. Further, Patent Document 6 and Non-Patent Document 3 expand these techniques, set a light leakage curved surface for the light leakage component, and set an optical transmission line presser for the photodetector, thereby reducing the size and reducing the size. Technologies that have realized price and applied to optical termination trays, optical adapters, optical devices, etc. have been released.

また、特許文献7には、これに類似した技術が開示されており、光ファイバコネクタ内部で測定時に光ファイバを撓ませ、その曲げ損失で活線判別や心線対照が行われる。しかし、本方法は、測定時の曲げ形状を積極的に制御しておらず、受光素子の相対位置も最適に設定されないため、心線対照器と比較しても、損失増加に対する光検出強度の効率が大きく劣り、測定値が不安定である等の欠点を有しており、実用性が低い。   Patent Document 7 discloses a technique similar to this, in which an optical fiber is bent at the time of measurement inside the optical fiber connector, and live line discrimination and core line comparison are performed based on the bending loss. However, this method does not actively control the bending shape at the time of measurement, and the relative position of the light receiving element is not optimally set. It has disadvantages such as large inefficiency and unstable measurement values, and its practicality is low.

これら状況から、特許文献4,5,6に開示された技術が、活線判別等の光伝送路を伝送する光信号の状態を判別する光伝送判別器として、最も実用性を有する技術の1つであると判断される。   From these situations, the techniques disclosed in Patent Documents 4, 5, and 6 are one of the most practical techniques as an optical transmission discriminator that discriminates the state of an optical signal transmitted through an optical transmission line such as live line discrimination. It is judged that it is one.

しかし、特許文献4(非特許文献2)および特許文献6(非特許文献3)に開示されているのは、光成端トレイや光成端ユニット、光成端装置の構造であり、基本的にはトレイ状の光ファイバ収納部内に適用した技術であり、光コード類への適用技術は開示されていない。特許文献5にはこれらと同様な技術を光アダプタや光コード類に適用する構成が開示されているが、基本構成が特許文献4と同様であり、これらに適用するための構造の最適化が成されていないため、この技術を光コード類に適用した場合、嵌合構造が安定せず、測定中に湾曲形状が安定しないため、測定値の再現性に乏しく、安定性にも劣っていた。また、使用中に光ファイバに曲げ応力や伸張応力がかかり、それが伝送損失の増加や断線の原因となり易く、長期信頼性に劣っていた。これらの欠点により、実用性と商品性に乏しかった。   However, Patent Document 4 (Non-Patent Document 2) and Patent Document 6 (Non-Patent Document 3) disclose the structure of an optical termination tray, an optical termination unit, and an optical termination device. Is a technique applied in a tray-like optical fiber storage section, and does not disclose a technique applied to optical cords. Patent Document 5 discloses a configuration in which the same technology is applied to optical adapters and optical cords, but the basic configuration is the same as that in Patent Document 4, and optimization of the structure for application to these is disclosed. Therefore, when this technology is applied to optical cords, the fitting structure is not stable, and the curved shape is not stable during measurement. Therefore, the reproducibility of measured values is poor and the stability is poor. . In addition, bending stress and tensile stress are applied to the optical fiber during use, which tends to cause an increase in transmission loss and disconnection, resulting in poor long-term reliability. Due to these disadvantages, practicality and commerciality were poor.

また、これまでの提案では嵌合構造が安定していなかったことからも推察されるが、これらの技術を配線切り替えをすることなく光伝送路の信号光強度を簡易に測定する伝送光強度の簡易測定器に応用した例や実使用中の光伝送路の健全性を判断することを目的とし、光伝送路を伝送する光信号の変化を監視する中長期光モニターとして応用した例はこれまで無かった。   In addition, it can be inferred from the fact that the fitting structure was not stable in the previous proposals. However, these techniques can be used to easily measure the signal light intensity of the optical transmission line without switching the wiring. Examples of application to simple measuring instruments and examples of application as a medium- to long-term optical monitor for monitoring changes in optical signals transmitted through optical transmission lines, with the aim of determining the soundness of optical transmission lines in actual use. There was no.

また、近年のFTTH(ファイバ・トゥー・ザ・ホーム)等の発展により、各家庭や事務所等の公衆回線の末端にまで多くの光ファイバが施設されるようになってきており、従来の電線と同等に使い易い光ファイバの使用が広く望まれている。   In addition, with the recent development of FTTH (Fiber to the Home), many optical fibers have been installed at the end of public lines at homes and offices. The use of an optical fiber that is as easy to use as is widely desired.

この様な市場の要求に対応して、取扱い性を向上させた曲げに強い光ファイバコードの導入が進んでいる。この様な光ファイバコードでは従来の光ファイバより曲げ特性に優れた光ファイバが用いられている。   In response to such market demands, bending-resistant optical fiber cords with improved handleability are being introduced. In such an optical fiber cord, an optical fiber having better bending characteristics than a conventional optical fiber is used.

従来の光ファイバはITU−T G.652勧告(非特許文献4)に準拠した光ファイバが標準的な光ファイバとなっており、その規格として最小許容曲げ半径は30mmであった。そこで近年はITU−T G.657.A1勧告(非特許文献5)に準拠する、最小許容曲げ半径の規格値が10mmの曲げに強い光ファイバの導入が進んでいる。また更に今後は、ITU−T G.657.B3勧告(非特許文献5)に準拠した最小許容曲げ半径規格値が5mmの光ファイバが開発され、その光ファイバを用いた光ファイバコードの本格導入が望まれているのが現状である。   The conventional optical fiber is ITU-T G.264. An optical fiber based on the 652 recommendation (Non-Patent Document 4) is a standard optical fiber, and the minimum allowable bending radius is 30 mm as a standard. Therefore, in recent years, ITU-TG 657. Introduction of an optical fiber that is compliant with the A1 recommendation (Non-Patent Document 5) and that is resistant to bending with a standard value of the minimum allowable bending radius of 10 mm is in progress. In the future, ITU-T G. 657. An optical fiber having a minimum allowable bending radius standard value of 5 mm based on the B3 recommendation (Non-patent Document 5) has been developed, and it is currently desired to introduce an optical fiber cord using the optical fiber.

処が、従来の心線対照器は既に説明したように、光ファイバの湾曲により生じる漏洩光が、光ファイバコード、ケーブル類の多層の被覆層を通り、吸収と散乱を伴い乍ら広範囲に拡散するため、光の検出効率が大幅に低下するという欠点を有しており、更に湾曲による光損失の増加は光信号の波長に大きく依存しているという欠点を有していた。   However, as described above, in the conventional optical fiber contrast device, the leaked light caused by the bending of the optical fiber passes through the multilayer coating layers of the optical fiber cord and cables, and spreads over a wide range with absorption and scattering. For this reason, there is a drawback that the light detection efficiency is greatly reduced, and further, the increase in light loss due to the curvature greatly depends on the wavelength of the optical signal.

この様な従来の心線対照器は、従来の標準光ファイバとしてITU−T G.652勧告に準拠した光ファイバを用いた光コード用に開発されたものであり、様々な欠点は有するものの、簡便に心線対照が可能になるため広く使用されて来た。   Such a conventional optical fiber contrast device is an ITU-T G.264 standard optical fiber. It has been developed for optical cords using optical fibers conforming to the 652 recommendation, and has been widely used because it has various drawbacks, but enables easy control of the cords.

この従来の心線対照器は上記の曲げに強い光ファイバコードへ適用することを目的として改良され、構造を最適化することによりITU−T G.657.A1勧告に準拠する光ファイバを用いた光ファイバ心線へ適用することは可能になった。(非特許文献6)   This conventional cord contrast device has been improved for application to the above-mentioned bending-resistant optical fiber cord, and by optimizing the structure, the ITU-T G.D. 657. It has become possible to apply to an optical fiber core using an optical fiber complying with the A1 recommendation. (Non-patent document 6)

しかし、更にITU−T G.657.B3勧告に準拠する光ファイバを用いた光ファイバコードへ適用する改良を試みた処、光ファイバ素線のみであれば対照可能であるが、光ファイバコードでは光信号の検出効率が非常に悪いため、検出限界は対照光強度や対照光の伝送距離や光ファイバコードの種類等に依存しており、確実性に乏しいと判断される。これは従来の心線対照器には原理的に適用限界があるためと考えられる。   However, ITU-T G. 657. The improvement applied to the optical fiber cord using the optical fiber conforming to the B3 recommendation can be contrasted with only the optical fiber, but the optical fiber cord has a very poor detection efficiency of the optical signal. The detection limit depends on the reference light intensity, the transmission distance of the reference light, the type of the optical fiber cord, and the like, and is judged to have low certainty. This is presumably because the conventional cord contrast device has an application limit in principle.

特開平6−221958号公報JP-A-6-221958 特開2004−325310号公報JP 2004-325310 A 特開2005−94720号公報JP 2005-94720 A 特開2007−85934号公報JP 2007-85934 A 特開2009−257833号公報JP 2009-257833 A 特開2009−257834号公報JP 2009-257834 A 特開2008−33195号公報JP 2008-33195 A

モハンマド・サード・カーン、浅田真一郎、高橋健、横山純、「インライン光パワーモニタ」、2004年 電子情報通信学会 エレクトロニクスソサイエティ大会、C-3-23 p155.Mohammad Third Khan, Shinichiro Asada, Ken Takahashi, Jun Yokoyama, “Inline Optical Power Monitor”, 2004 IEICE Electronics Society Conference, C-3-23 p155. 岩崎、櫻庭、間渕、竹内、「分離型心線状態判別器の提案」、2006年 電子情報通信学会 総合大会 B-10-2Iwasaki, Sakuraba, Mazama, Takeuchi, "Proposal of a separable core wire state discriminator", 2006 IEICE General Conference B-10-2 岩崎、櫻庭、間渕、竹内、「分離型心線状態判別器の実用性評価」、2008年 電子情報通信学会 総合大会 B-10-1Iwasaki, Kaniwa, Mazama, Takeuchi, “Evaluation of practicality of separable core wire state discriminator”, 2008 IEICE General Conference B-10-1 ITU−T G.652勧告ITU-T G. 652 recommendation ITU−T G.657勧告ITU-T G. 657 recommendation フジクラ技法 第117号 2009 Vol.2 p.16.Fujikura Technique No.117 2009 Vol.2 p.16.

非特許文献2および3から明らかなように、特許文献4〜6の技術の内で、具体的な構造が開示されているのは、光ファイバ心線を用いて、クロージャ内の配線用トレイに応用した場合に限定されていた。   As is clear from Non-Patent Documents 2 and 3, among the techniques of Patent Documents 4 to 6, a specific structure is disclosed in a wiring tray in a closure using an optical fiber core wire. It was limited when applied.

従って、光ファイバ心線、光ファイバコード、光ファイバケーブル等へ特許文献4〜6の配線用トレイ向け技術を適用した場合には、不安定な測定値、伝送損失の増加、断線の発生、長期信頼性の低下等が生じ易いという欠点を有していた。   Therefore, when the technology for wiring trays of Patent Documents 4 to 6 is applied to an optical fiber core, an optical fiber cord, an optical fiber cable, etc., unstable measurement values, increase in transmission loss, occurrence of disconnection, long-term There was a drawback that reliability was easily lowered.

我々は特許文献4〜6に開示された技術を光ファイバ心線、光ファイバコード、光ファイバケーブル等に適用し、これらの欠点を実験的に明確にし、実用に供するための要件を立証し、本発明を考案するに至った。   We apply the techniques disclosed in Patent Documents 4 to 6 to optical fiber cores, optical fiber cords, optical fiber cables, etc., clarify these defects experimentally, and prove the requirements for practical use, The present invention has been devised.

また、非測定時の伝送損失増加の原因となる比較的に高価な光部品を予め装着することなく、配線切り替えなしに光伝送路の信号光強度を簡易に測定する伝送光強度モニターや、実使用中の光伝送路を伝送する光信号の変化を監視する中長期光モニターはこれまでなかった。   In addition, a transmission light intensity monitor that can easily measure the signal light intensity of the optical transmission line without switching wiring, without mounting relatively expensive optical components that cause an increase in transmission loss during non-measurement. Until now, there has been no medium- to long-term optical monitor for monitoring changes in the optical signal transmitted through the optical transmission line in use.

また、従来の心線対照器はITU−T G.657.B3勧告に準拠する光ファイバを用いた光ファイバコードへ適用した場合、確実性に乏しいという欠点を有しており、新しい原理に基づいた心線対照器の出現が望まれていた。   Also, the conventional cord contrast device is an ITU-TG. 657. When applied to an optical fiber cord using an optical fiber that complies with the B3 recommendation, it has a drawback of poor reliability, and the emergence of a core contrast device based on a new principle has been desired.

本発明はこのような課題を解決するためになされたもので、
光伝送路中に設置され、光ファイバ素線または光ファイバ心線のいずれか一方の状態にされた光伝送路の被覆除去部を保持する光漏洩部品と、前記光伝送路とは別個の、測定時に光漏洩部品を収納して保持し、その一部と互いに嵌合し、その嵌合状態を安定的に保持する保持構造を具備した光検出器とを備え、
光検出器は、嵌合時のみに光漏洩部品中の被覆除去部の一部を湾曲させることにより形成される光伝送路湾曲部から漏洩する伝送光信号を計測する受光素子を有し、
光漏洩部品および光検出器のいずれか一方に設けられた、嵌合時に光伝送路湾曲部の湾曲形状を形成する湾曲形成部と、
光漏洩部品および光検出器のいずれか一方に設けられた、嵌合時に光伝送路湾曲部を湾曲形成部に押さえ付け、湾曲形成部の湾曲形状に沿って湾曲させる光ファイバ押さえを備え、
被覆除去部は、両端部が光漏洩部品の長さ方向の両側に構成された一対の光ファイバ固定部に固定されて、一対の光ファイバ固定部間に所定の余長を持って所定の長さで遊動自在に保持され、
光漏洩部品は、湾曲形成部によって形成される光伝送路湾曲部に相当する箇所とその両側の光ファイバ固定部との間に、被覆除去部を光伝送路湾曲部から光ファイバ固定部に導く光ファイバ処理領域を備えていることを特徴とする、光伝送路中を伝搬する光信号の伝送状態を判別する光伝送判別器を構成した。
The present invention has been made to solve such problems,
A light leakage component that is installed in the optical transmission line and holds the coating removal portion of the optical transmission line that is in one of the state of the optical fiber or the optical fiber, and is separate from the optical transmission line, A light detector having a holding structure for storing and holding a light leakage component at the time of measurement, fitting with a part thereof, and stably holding the fitting state,
The photodetector has a light receiving element that measures a transmission optical signal that leaks from an optical transmission path curved portion formed by curving a part of the coating removal portion in the light leakage component only at the time of fitting,
A curve forming portion that is provided in any one of the light leakage component and the light detector and forms a curve shape of the light transmission path curve portion when fitted,
Provided in any one of the light leakage component and the photodetector, and includes an optical fiber presser that presses the curved optical transmission path against the curved forming portion during fitting, and curves along the curved shape of the curved forming portion,
The coating removal portion is fixed to a pair of optical fiber fixing portions whose both ends are configured on both sides in the length direction of the light leakage component, and has a predetermined extra length between the pair of optical fiber fixing portions. Now it is held freely,
The light leakage component guides the coating removal portion from the optical transmission line bending portion to the optical fiber fixing portion between the portion corresponding to the optical transmission path bending portion formed by the bending forming portion and the optical fiber fixing portions on both sides thereof. An optical transmission discriminator for discriminating the transmission state of an optical signal propagating in an optical transmission path, characterized by comprising an optical fiber processing region.

この構成によれば、光ファイバ素線または光ファイバ心線のいずれか一方の状態にされた光伝送路の被覆除去部は、光漏洩部品によって光伝送路中に保持される。光漏洩部品によって保持された被覆除去部は、光信号の伝送状態判別時、光ファイバ押さえによって湾曲形成部に押さえ付けられることで、湾曲形成部の湾曲形状に沿って湾曲させられ、伝送路湾曲部を形成する。この伝送路湾曲部からは光伝送路を伝搬する光信号が漏洩し、漏洩した光信号は、光伝送路とは別個の光検出器に備えられた受光素子によって計測される。   According to this configuration, the coating removal portion of the optical transmission line that is in either the optical fiber strand or the optical fiber core is held in the optical transmission path by the light leakage component. The coating removal portion held by the light leakage component is bent along the curved shape of the bending portion by being pressed against the bending portion by the optical fiber presser at the time of determining the transmission state of the optical signal. Forming part. An optical signal propagating through the optical transmission line leaks from the transmission line curved portion, and the leaked optical signal is measured by a light receiving element provided in a photodetector separate from the optical transmission line.

このため、漏洩光の計測は、光ファイバ素線または光ファイバ心線のいずれか一方の状態にされた光伝送路の被覆除去部から漏洩する光信号に対して行われるため、特許文献1や特許文献2等に開示された従来の心線対照用光検出器を単に用いた場合より、光検出効率を大幅に向上させ、かつ安定させることが可能となる。   For this reason, since the measurement of the leaked light is performed on the optical signal leaking from the coating removal portion of the optical transmission line that is in either the optical fiber strand or the optical fiber core wire, Patent Document 1 or It is possible to significantly improve and stabilize the light detection efficiency as compared with the case where the conventional optical fiber for contrast detection disclosed in Patent Document 2 is simply used.

また、光漏洩部品における光伝送路の被覆除去部は、一対の光ファイバ固定部間に所定の予長を持った開放状態で遊動自在に両端が固定され、光伝送路湾曲部が湾曲形成部によって形成される箇所とその両側の光ファイバ固定部との間に光ファイバ処理領域を備えることにより、伝送状態判別時に、被覆除去部で不要な伸張応力、圧縮応力や、局所的な屈曲を生じない状態が安定して確保される。また、伝送状態非判別時における被覆除去部の湾曲半径を一定以上に大きく確保することが可能となり、非判別時の湾曲に依存する光損失増加の発生を安定的に防止することが可能となり、局所的な屈曲を生じない状態が安定して確保される。   In addition, the optical transmission path covering removal part in the light leakage part is fixed freely at both ends in an open state with a predetermined pre-length between the pair of optical fiber fixing parts, and the optical transmission line bending part is a curved forming part. By providing an optical fiber processing area between the location formed by the optical fiber and the optical fiber fixing parts on both sides, unnecessary tensile stress, compressive stress, and local bending occur at the coating removal part when determining the transmission state. A stable state is ensured. In addition, it is possible to secure a larger radius than the fixed radius of the coating removal portion when the transmission state is not determined, and it is possible to stably prevent the occurrence of an increase in light loss that depends on the curvature when not determined, A state that does not cause local bending is stably ensured.

通常、光ファイバコネクタの内部では光ファイバ素線は固定されていない。これは、光ファイバコネクタの接続時と開放時との光ファイバコネクタ内でのフェルールの位置の僅かな違いにより、光ファイバ心線に圧縮歪みが加わり、局所的な屈曲を生じて、光損失の増加の要因となることを避けるためである。当初の本発明による光漏洩部品では、光ファイバコネクタと同様にその内部で光ファイバ素線を固定せずに試作を行ったが、この場合には測定の繰り返しにより予長が変化し、返って光ファイバ素線の屈曲の要因となることが判明した。そこで、光漏洩部品内部の両側の光ファイバ固定部で、光ファイバ素線の固定を試みた処、光ファイバ素線の屈曲の発生が根本的に抑制された。これにより本発明の光伝送判別器の新規な構成の提案に至った。   Usually, the optical fiber is not fixed inside the optical fiber connector. This is because, due to a slight difference in the position of the ferrule in the optical fiber connector between when the optical fiber connector is connected and when it is opened, compressive strain is applied to the optical fiber core wire, causing local bending, resulting in loss of optical loss. This is to avoid an increase factor. In the initial light leakage component according to the present invention, the optical fiber connector was prototyped without fixing the optical fiber in the same manner as in the optical fiber connector. It has been found that this causes bending of the optical fiber. Therefore, when an attempt was made to fix the optical fiber at the optical fiber fixing portions on both sides inside the light leakage component, the occurrence of bending of the optical fiber was fundamentally suppressed. This has led to the proposal of a new configuration of the optical transmission discriminator of the present invention.

この結果、特許文献4〜6に開示された技術を光ファイバ心線、光ファイバコード、光ファイバケーブル等に適用するための、光ファイバ心線、光ファイバコード、光ファイバケーブル等の詳細な新規な保持構造、光伝送状態判別時のみに漏洩光を発生させ、非判別時には光損失増加を発生させないための新規な構造、検出光が安定するために光検出器に要求される新規な構造、および、長期信頼性に優れた構造を備えた光伝送判別器が提供されることとなる。   As a result, in order to apply the techniques disclosed in Patent Documents 4 to 6 to optical fiber cores, optical fiber cords, optical fiber cables, and the like, new details such as optical fiber cores, optical fiber cords, optical fiber cables, etc. A new holding structure, a new structure that generates leakage light only when determining the optical transmission state, and a non-discrimination that does not cause an increase in optical loss, a new structure that is required for the photodetector to stabilize the detection light, In addition, an optical transmission discriminator having a structure with excellent long-term reliability is provided.

従って、従来の欠点である、測定値の再現性に乏しく、安定性にも劣っていた特性が改善される。また、伸張応力、屈曲等による伝送損失の増加や断線が克服され、長期信頼性にも優れる。   Therefore, the conventional defect, which is poor in reproducibility of measured values and inferior in stability, is improved. Further, an increase in transmission loss and disconnection due to tensile stress, bending, etc. are overcome, and excellent long-term reliability.

また、本発明は、湾曲形成部が光漏洩部品に備えられ、光ファイバ押さえが光検出器に備えられていることを特徴とする。   Further, the present invention is characterized in that the curve forming portion is provided in the light leakage component, and the optical fiber retainer is provided in the photodetector.

この構成によれば、湾曲形成部が光漏洩部品に備えられることで、光伝送路の被覆除去部は湾曲形成部と共に光漏洩部品に安定して保持される。このため、伝送状態判別時に、光伝送路湾曲部を湾曲形成部に沿って安定的に湾曲させることが可能となり、挿入損失特性や光信号受信効率を再現性良く、安定化することが可能となる。また、光ファイバ押さえが光検出器に備えられていることで、光伝送判別器の小型化、低価格化が可能になると共に、操作性に優れた光伝送判別器の提供が可能となる。   According to this configuration, the bend forming portion is provided in the light leaking component, so that the coating removal portion of the optical transmission path is stably held by the light leaking component together with the bend forming portion. For this reason, it is possible to stably bend the optical transmission line bending portion along the curve forming portion when determining the transmission state, and it is possible to stabilize the insertion loss characteristic and the optical signal reception efficiency with good reproducibility. Become. In addition, since the optical fiber retainer is provided in the photodetector, it is possible to reduce the size and price of the optical transmission discriminator and to provide an optical transmission discriminator excellent in operability.

また、本発明は、湾曲形成部および光ファイバ押さえが光検出器に備えられていることを特徴とする。   Further, the present invention is characterized in that the optical detector is provided with a curve forming portion and an optical fiber presser.

この構成によれば、光漏洩部品によって保持された被覆除去部は、光信号の伝送状態判別時、光検出器に備えられた光ファイバ押さえにより、同じく光検出器に備えられた湾曲形成部に押さえ付けられることで、湾曲形成部の湾曲形状に沿って湾曲させられる。そして、湾曲した被覆除去部分から漏洩した光信号が、光伝送判別に供される。   According to this configuration, the coating removal portion held by the light leakage component is turned into the curved formation portion similarly provided in the photodetector by the optical fiber presser provided in the photodetector when determining the transmission state of the optical signal. By being pressed down, it is bent along the curve shape of the curve forming portion. Then, the optical signal leaked from the curved covering removal portion is used for optical transmission discrimination.

このように湾曲形成部および光ファイバ押さえが共に光検出器に備えられることで、光伝送システムの光伝送路中に設置される光漏洩部品の構造が単純になり、精密な加工精度が必要とされなくなる。このため、光伝送判別器の性能を維持したまま、更なる低価格化が可能となる。また、光伝送路中に光伝送路の被覆除去部を保持する光漏洩部品を予め設けておくことで、既に光伝送システムに設置されている光漏洩部品を交換することなく、光検出器に備えられた湾曲形成部を交換することにより、湾曲形成部が有する湾曲形状を変更し、光伝送判別器の挿入損失や光信号受信効率等を適宜変更することが可能となる。また、光伝送判別器を光伝送路の中長期的な安定性を監視する光モニターに適用する場合、異なる要求仕様に柔軟に対応することが可能となる。   As described above, since both the curved forming portion and the optical fiber retainer are provided in the photodetector, the structure of the light leakage component installed in the optical transmission path of the optical transmission system is simplified, and precise processing accuracy is required. It will not be done. For this reason, it is possible to further reduce the price while maintaining the performance of the optical transmission discriminator. In addition, by providing a light leakage component that holds the coating removal portion of the light transmission path in the light transmission path in advance, the light detector can be installed in the photodetector without replacing the light leakage component already installed in the light transmission system. By exchanging the provided curve forming portion, the curve shape of the curve forming portion can be changed, and the insertion loss, optical signal reception efficiency, and the like of the optical transmission discriminator can be changed as appropriate. In addition, when the optical transmission discriminator is applied to an optical monitor that monitors the medium to long-term stability of the optical transmission path, it is possible to flexibly cope with different required specifications.

また、本発明では、被覆除去部は、長さが光漏洩部品と光検出器との嵌合時の湾曲形状により決定される長さに設定され、それにより決定される余長を持って光ファイバ固定部間に遊動自在に保持されることを特徴とする。   In the present invention, the length of the sheath removing portion is set to a length determined by the curved shape at the time of fitting between the light leakage component and the photodetector, and has a surplus length determined thereby. It is characterized by being held freely between the fiber fixing portions.

この構成によれば、被覆除去部の予長が最適値に設定されるため、被覆除去部が光ファイバ固定部間に遊動自在に適切に保持固定されることにより、伝送状態判別時に被覆除去部に伸張応力や圧縮応力が生じないことが基本的に保証される。また、余長が必要最小限の長さに決定されるため、伝送状態非判別時に曲げ等により生じる損失の発生が効果的に抑制される。   According to this configuration, since the pre-length of the coating removal unit is set to an optimum value, the coating removal unit is appropriately held and fixed freely and freely between the optical fiber fixing units, so that the coating removal unit can be used when determining the transmission state. It is basically guaranteed that no tensile stress or compressive stress is generated. Further, since the extra length is determined to be the minimum necessary length, the occurrence of loss caused by bending or the like when the transmission state is not determined is effectively suppressed.

また、本発明は、湾曲形成部の曲率半径が1.5mm以上で、かつ5.5mm以下であることを特徴とする。   Moreover, this invention is characterized by the curvature radius of a curve formation part being 1.5 mm or more and 5.5 mm or less.

この構成によれば、測定時に湾曲により伝送路湾曲部に物理的なダメージを与えることなく、伝送路湾曲部で生じる挿入損失の波長依存性を最小限に抑えることが可能となり、例えば波長1.55μmでの挿入損失を0.5dB以下に抑えながら、同時に波長1.31μmでの信号光強度の検出限界を−40dB以下にすることが可能となる。   According to this configuration, it is possible to minimize the wavelength dependence of the insertion loss generated in the transmission line bending portion without causing physical damage to the transmission line bending portion due to bending during measurement. At the same time, the detection limit of the signal light intensity at the wavelength of 1.31 μm can be made −40 dB or less while suppressing the insertion loss at 55 μm to 0.5 dB or less.

図1は本発明に至った調査結果の1つで、光ファイバ素線を一定の曲率半径で湾曲させた場合の、波長1.55μmでの曲げ損失を基準として、波長1.31μmでの相対的な曲げ損失の曲率半径依存性を測定した実験結果である。全般に波長1.31μmでの曲げ損失は波長1.55μmでの値に比し大幅に小さく、曲率半径が小さい方が波長1.31μmでの挿入損失が波長1.55μmでの挿入損失により近い値を示している。   FIG. 1 shows one of the investigation results that led to the present invention. When the optical fiber is bent with a certain radius of curvature, the relative loss at the wavelength of 1.31 μm is obtained with reference to the bending loss at the wavelength of 1.55 μm. It is the experimental result which measured the curvature radius dependence of typical bending loss. In general, the bending loss at the wavelength of 1.31 μm is significantly smaller than the value at the wavelength of 1.55 μm, and the smaller the radius of curvature, the closer the insertion loss at the wavelength of 1.31 μm is closer to the insertion loss at the wavelength of 1.55 μm. The value is shown.

ここで、波長1.55μmでの挿入損失の光伝送に異常を生じない上限値を0.5dBと仮定し、光強度−40dBmの光伝送を高感度受光素子を用いて−80dBmまで光強度を検出できるとした場合、検出効率の最も良い値は−14dB程度なので、必要となる波長1.31μmでの曲げ損失の最低値は0.01dB程度となる。この値を用いて、図1の調査結果から類推すれば、湾曲による曲率半径は5.5mm以下である必要があると判断される。また、湾曲部の曲率半径の下限は主に光ファイバ心線に物理的なダメージを与えない範囲で規定され、半径1.5mmがほぼ限界と推定される。   Here, it is assumed that the upper limit value that does not cause an abnormality in the optical transmission of the insertion loss at the wavelength of 1.55 μm is 0.5 dB, and the optical intensity of the optical transmission of −40 dBm is increased to −80 dBm using a high sensitivity light receiving element. If it can be detected, the best value of the detection efficiency is about −14 dB, so the minimum value of the bending loss at the required wavelength of 1.31 μm is about 0.01 dB. By using this value and inferring from the survey results of FIG. 1, it is determined that the radius of curvature due to bending needs to be 5.5 mm or less. Further, the lower limit of the radius of curvature of the curved portion is mainly defined in a range that does not physically damage the optical fiber core, and the radius of 1.5 mm is estimated to be almost the limit.

通常使用される心線対照器における湾曲の曲率半径は約10mm程度あるので、この結果だけから判断しても、通用の心線対照器を活線の判別に使用する場合は測定限界に制限があり、実用的でないと判断される。   Since the radius of curvature of curvature in a normally used cord contrast device is about 10 mm, even if judging from this result alone, there is a limit to the measurement limit when using a common cord contrast device for distinguishing live lines. Yes, determined to be impractical.

また、本発明は、光ファイバ処理領域は、湾曲形成部に連続して形成され、嵌合時に被覆除去部が湾曲形成部の湾曲方向と反対に湾曲される光ファイバ折り返し領域と、光ファイバ折り返し領域と光ファイバ固定部との間に形成され、嵌合時に光ファイバ固定部に保持された被覆除去部を光ファイバ固定部から屈曲することなく直線状に保持し、かつ非嵌合時に被覆除去部が湾曲構造を形成する空間の一部となる、所定の長さの光ファイバ整列領域を備えることを特徴とする。   Further, according to the present invention, the optical fiber processing region is formed continuously with the curve forming portion, and the coating removal portion is bent opposite to the bending direction of the curve forming portion when fitted, and the optical fiber folded region. Formed between the area and the optical fiber fixing part, the coating removal part held by the optical fiber fixing part at the time of fitting is held in a straight line without bending from the optical fiber fixing part, and the coating is removed at the time of non-fitting. An optical fiber alignment region having a predetermined length is provided in which the portion becomes a part of a space forming a curved structure.

この構成によれば、伝送状態判別時における一対の光ファイバ固定部間の被覆除去部は、湾曲形成部と光ファイバ押さえにより強制的に湾曲形成部の湾曲形状に沿った形状に変形させられ、各光ファイバ整列領域における各被覆除去部は直線状に近い状態で保持される。一方、伝送状態非判別時における一対の光ファイバ固定部間の被覆除去部は、それらの応力から解放され、所定の予長を持った状態で両端が固定されているため、特定の曲率で湾曲したまま保持される。この時の湾曲曲率は、光ファイバ整列領域にある被覆除去部分の寄与により、湾曲形成部や光ファイバ折り返し領域での湾曲曲率より十分に大きな曲率となる。もし、光ファイバ整列領域を設けなかった場合を考えると、被覆除去部が湾曲して保持される特定の曲率半径は、測定時の光伝送路湾曲部の曲率半径と光ファイバ折り返し領域での被覆除去部の曲率半径の中間の値を示すことになる。この曲率半径を大きくし、湾曲状態での被覆除去部の長期信頼性の劣化を防止するためには、光ファイバ整列領域の設定が必要となる。   According to this configuration, the coating removal portion between the pair of optical fiber fixing portions at the time of transmission state determination is forcibly deformed into a shape along the curved shape of the curved forming portion by the curved forming portion and the optical fiber presser, Each coating removal portion in each optical fiber alignment region is held in a state close to a straight line. On the other hand, the sheath removal part between the pair of optical fiber fixing parts at the time of transmission state non-discrimination is released from those stresses, and both ends are fixed in a state having a predetermined pre-length, so that it is curved with a specific curvature. Is kept. At this time, the curvature of curvature is sufficiently larger than the curvature of curvature at the bend forming portion and the optical fiber folding region due to the contribution of the coating removal portion in the optical fiber alignment region. If the optical fiber alignment region is not provided, the specific radius of curvature at which the coating removal portion is curved and held is the radius of curvature of the optical transmission line bending portion at the time of measurement and the coating at the optical fiber folding region. This indicates an intermediate value of the radius of curvature of the removal portion. In order to increase the radius of curvature and prevent deterioration of long-term reliability of the coating removal portion in the curved state, it is necessary to set an optical fiber alignment region.

従って、光ファイバ整列領域は、伝送状態非判別時に、光漏洩部品内の被覆除去部が過剰な湾曲を受けて光信号の挿入損失を生じさせることを安定的に防止する効果を発揮する。   Therefore, the optical fiber alignment region exhibits an effect of stably preventing an optical signal insertion loss due to excessive bending of the coating removal portion in the light leakage component when the transmission state is not determined.

また、本発明は、嵌合時に光伝送路湾曲部が形成する弧の中心角が、嵌合時のその両側の光ファイバ折り返し領域の被覆除去部が形成する弧の各中心角の和に等しいことを特徴とする。   Further, according to the present invention, the center angle of the arc formed by the optical transmission line bending portion at the time of fitting is equal to the sum of the center angles of the arcs formed by the coating removal portions of the optical fiber folded regions on both sides at the time of fitting. It is characterized by that.

この構成によれば、伝送状態判別時における光漏洩部品内の一対の光ファイバ固定部間で、被覆除去部は、湾曲形成部によって中央に形成させられる光伝送路湾曲部の弧の中心角が、この光伝送路湾曲部の両側に光ファイバ折り返し領域によって等しく形成させられる各湾曲部の弧の各中心角の和に等しくなって、湾曲させられる。このため、伝送状態判別時における光漏洩部品内で、光ファイバ折り返し領域での各湾曲部の両外側の光ファイバ固定部付近における被覆除去部は、一直線上に保持される。従って、伝送状態判別時に、光ファイバ固定部付近で被覆除去部に更に屈曲応力が加わることがなく、光損失の余分な増加や光伝送路の物理的な劣化要因が生じなくなる。   According to this configuration, between the pair of optical fiber fixing parts in the light leakage component at the time of transmission state determination, the sheath removal part has the central angle of the arc of the optical transmission line curved part formed in the center by the curved formation part. The optical transmission line bending portion is bent by being equal to the sum of the central angles of the arcs of the bending portions formed equally by the optical fiber folded region on both sides. For this reason, in the light leakage component at the time of determining the transmission state, the coating removal portions in the vicinity of the optical fiber fixing portions on both outer sides of the curved portions in the optical fiber folded region are held in a straight line. Accordingly, when the transmission state is determined, no additional bending stress is applied to the coating removal portion near the optical fiber fixing portion, so that an extra increase in optical loss and a physical deterioration factor of the optical transmission path do not occur.

また、本発明は、遊動自在に固定された光ファイバ固定部間の被覆除去部の非嵌合時における湾曲曲率が、被覆除去部を形成する光ファイバ素線または光ファイバ心線の長期信頼性に規定された曲率で保持され、光ファイバ整列領域の幅はその曲率から換算され、設定されていることを特徴とする。   In addition, the present invention provides a long-term reliability of the optical fiber or the optical fiber core wire that forms the coating removal portion because the curvature of curvature when the coating removal portion is not fitted between the optical fiber fixing portions that are freely fixed is fixed. The width of the optical fiber alignment region is converted from the curvature and set.

この構成によれば、非測定時の被覆除去部の長期信頼性が確保される。光伝送路に使用される光ファイバは長期信頼性の観点から常時の保持される場合の曲率半径の最小値が規定されており、例えば、従来からある標準的な単一モード光ファイバ素線の場合で30mm、FTTH等に使用される曲げに強い光ファイバ素線の場合で15mmとなっている。従って、本発明による伝送路判別器の光漏洩部品においても非測定時の被覆除去部はこれらの仕様に従った値を守る必要がある。ただし、これらの値は光ファイバの種類等に依存するので、最小曲率半径はこれらの値に限定されるものではない。   According to this structure, the long-term reliability of the coating removal part at the time of non-measurement is ensured. The optical fiber used for the optical transmission line has a minimum value of the radius of curvature when it is always maintained from the viewpoint of long-term reliability. For example, a conventional standard single-mode optical fiber In some cases, it is 30 mm, and in the case of an optical fiber that is resistant to bending used in FTTH or the like, it is 15 mm. Therefore, even in the light leakage component of the transmission path discriminator according to the present invention, it is necessary that the coating removal portion at the time of non-measurement keeps the values according to these specifications. However, since these values depend on the type of optical fiber and the like, the minimum radius of curvature is not limited to these values.

また、本発明は、光ファイバ押さえは、湾曲形成部と嵌合する領域に、光信号が通過する所定の光通過部材部または隙間として光ファイバ押え隙間部が形成され、かつ各光ファイバ折り返し領域の少なくとも一部と嵌合する構造を有することを特徴とする。   Further, according to the present invention, in the optical fiber retainer, an optical fiber holding gap portion is formed as a predetermined light passing member portion or a gap through which an optical signal passes in a region fitted with the curve forming portion, and each optical fiber folding region It has the structure which fits at least one part of this.

この構成によれば、伝送状態判別時に、被覆除去部は、光ファイバ押さえが各光ファイバ折り返し領域の少なくとも一部と嵌合することで、湾曲形成部によってその湾曲形状に沿って湾曲させられ、設計に沿った光挿入損失を発生させると共に、光信号の一部を光伝送路の外部に放射させる。この際、光ファイバ押さえ部が湾曲形成部と嵌合する領域に、光信号が通過する所定の光通過部材部または隙間として光ファイバ押え隙間部が形成され、光伝送路湾曲部から漏洩する光信号を遮断しないため、湾曲形成部に当接する被覆除去部から光伝送路の外部に放射された光信号は光ファイバ押さえ部に遮られることなく、光検出器の受光素子で効率的に計測される。   According to this configuration, when determining the transmission state, the coating removing unit is bent along the curved shape by the bending unit by fitting the optical fiber retainer with at least a part of each optical fiber folded region, An optical insertion loss according to the design is generated, and a part of the optical signal is radiated to the outside of the optical transmission line. At this time, an optical fiber holding gap portion is formed as a predetermined light passing member portion or gap through which an optical signal passes in a region where the optical fiber holding portion is fitted with the bending forming portion, and light leaks from the optical transmission path bending portion. Since the signal is not blocked, the optical signal radiated from the coating removal portion that contacts the curve forming portion to the outside of the optical transmission path is efficiently measured by the light receiving element of the photodetector without being blocked by the optical fiber holding portion. The

また、その際、光ファイバ押さえが各光ファイバ折り返し領域の少なくとも一部と嵌合することで、光ファイバ押さえが湾曲形成部と各光ファイバ折り返し領域全体の光ファイバをこれらの形状に沿って変形させることができるので、湾曲形成部以外の領域で光ファイバの伝送損失の増加を防ぎながら、光伝送路湾曲部を形成することができる。従って、光ファイバ押えは必ずしも光伝送路湾曲部を直接押える必要は無いが、少なくとも光ファイバ折り返し領域の一部と嵌合し、光伝送路湾曲部と被覆除去部の光ファイバ折り返し領域の湾曲形状を効率的に形成することが可能となる。   At that time, the optical fiber retainer is fitted to at least a part of each optical fiber folded region, so that the optical fiber retainer deforms the optical fiber in the curved portion and the entire optical fiber folded region along these shapes. Therefore, it is possible to form the optical transmission line curved portion while preventing an increase in transmission loss of the optical fiber in a region other than the curved forming portion. Therefore, the optical fiber retainer does not necessarily need to directly press the optical transmission line bending portion, but it is fitted to at least a part of the optical fiber folding region, and the curved shape of the optical fiber folding region of the optical transmission line bending portion and the coating removal portion Can be formed efficiently.

また、本発明は、光ファイバ折り返し領域の光ファイバ押さえと嵌合する部分で、被覆除去部に接触する曲面の曲率半径が、湾曲形成部の曲率半径の1.3倍以上であることを特徴とする。   Further, the present invention is characterized in that the radius of curvature of the curved surface in contact with the coating removal portion is 1.3 times or more than the radius of curvature of the curve forming portion at the portion that fits with the optical fiber retainer in the optical fiber folded region. And

この構成によれば、伝送状態判別時における、光ファイバ折り返し領域での被覆除去部の曲げによる光損失の発生を最小限に抑えることが可能となり、光伝送状態への影響を最小限とすることが可能となる。   According to this configuration, it is possible to minimize the occurrence of optical loss due to bending of the coating removal portion in the optical fiber folding region when determining the transmission state, and minimize the influence on the optical transmission state. Is possible.

例えば、図2は本発明に至った実験的な調査結果の1つで、単一モード光ファイバ素線を用いて波長1.55μmで測定した曲げ損失の曲率半径依存性を測定した実験結果であり、曲率半径が減少するに伴い曲げ損失が指数的に上昇した。ここで曲げの中心角は一定としている。同図を参照すると、光伝送路湾曲部の湾曲曲率半径を5.5mm、その時に発生する曲げ損失を0.5dBと仮定した場合、光ファイバ折り返し領域での被覆除去部湾曲の曲率半径をその1.3倍の7.15mm以上に設定すれば、光ファイバ折り返し領域の被覆除去部で発生する曲げ損失を0.1dB以下に抑制することが可能となることが判る。相対的に伝送路湾曲部以外の被覆除去部で発生する損失を0.1dB以下に抑えることは、実用上必須であると判断される。   For example, FIG. 2 is one of experimental results that led to the present invention, and is an experimental result of measuring the curvature radius dependence of a bending loss measured at a wavelength of 1.55 μm using a single-mode optical fiber. Yes, the bending loss increased exponentially as the radius of curvature decreased. Here, the central angle of bending is constant. Referring to the figure, when it is assumed that the bending radius of curvature of the optical transmission line bending portion is 5.5 mm and the bending loss generated at that time is 0.5 dB, the curvature radius of the coating removal portion bending in the optical fiber folded region is It can be seen that if it is set to 1.3 times or more, 7.15 mm or more, it is possible to suppress the bending loss generated at the coating removal portion in the optical fiber folded region to 0.1 dB or less. It is judged that it is indispensable practically to suppress the loss generated in the coating removal portion other than the transmission path curved portion to 0.1 dB or less.

また、本発明は、光ファイバ折り返し領域に、湾曲形成部の湾曲方向と反対に湾曲した、湾曲形成部の湾曲に連続する湾曲面を持つ光ファイバ折り返し部が、湾曲形成部の両側に形成され、その光ファイバ折り返し部が嵌合時に光ファイバ押さえと対向して嵌合し、それらの間に被覆除去部の一部を安定的に保持することを特徴とする。   Further, according to the present invention, in the optical fiber folded region, optical fiber folded portions that are curved opposite to the bending direction of the curved forming portion and have a curved surface continuous to the curved forming portion are formed on both sides of the curved forming portion. The optical fiber turn-back portion is fitted to face the optical fiber presser when fitted, and a part of the coating removal portion is stably held between them.

この構成によれば、伝送状態判別時における光伝送路の被覆除去部が、光ファイバ折り返し部と光ファイバ押さえとが対抗して嵌合することによって、湾曲形成部で湾曲させられる方向と反対に折り返して湾曲させられ、その形状が安定的に保持されことで、光漏洩部品内での被覆除去部の位置が安定し、光ファイバ固定部間の被覆除去部で局所的に屈曲が発生したりすることを抑えることが可能となり、被覆除去部の湾曲形状が長期的に安定化する。   According to this configuration, the coating removal portion of the optical transmission line at the time of determining the transmission state is opposite to the direction in which the optical fiber folding portion and the optical fiber presser are opposed to each other and bent by the bending portion. It is bent and bent, and its shape is stably held, so that the position of the coating removal part in the light leakage component is stabilized, and bending occurs locally at the coating removal part between the optical fiber fixing parts. It becomes possible to suppress this, and the curved shape of the coating removal portion is stabilized in the long term.

また、本発明は、有効深さが被覆除去部の外径±0.1mm以内で、有効幅が被覆除去部の外径以上でかつ受光素子の受光面の幅以下の溝が、湾曲形成部または光ファイバ押さえまたは光ファイバ折り返し部の少なくとも1箇所に光伝送路の長さ方向に形成されていることを特徴とする。   Further, the present invention provides a groove having an effective depth within the outer diameter of the sheath removing portion within ± 0.1 mm, an effective width greater than or equal to the outer diameter of the sheath removing portion, and less than or equal to the width of the light receiving surface of the light receiving element. It is characterized in that it is formed in the length direction of the optical transmission line at at least one position of the optical fiber presser or the optical fiber folded portion.

ここで、有効深さとは、溝の断面が矩形の場合は深さそのものを表すが、断面がV字形状のV溝の場合は、V溝が無い部品表面にある場合とV溝に嵌った場合との溝深さ方向における被覆除去部の位置の相違を表す。また、同様に、溝の有効幅は、溝の断面が矩形の場合は溝幅自体を表すが、それ以外の形状の場合は、溝の中で被覆除去部が溝幅方向に移動できる距離から算出される。例えば、V溝の場合、被覆除去部は溝幅方向に移動できないので、有効溝幅は被覆除去部の幅と等しいと考えることになる。   Here, the effective depth means the depth itself when the cross section of the groove is rectangular, but in the case of a V groove having a V-shaped cross section, the effective depth is fitted on the part surface without the V groove and in the V groove. This represents the difference in the position of the coating removal portion in the groove depth direction from the case. Similarly, the effective width of the groove represents the groove width itself when the cross section of the groove is rectangular, but in the case of other shapes, the effective width of the groove is determined from the distance that the sheath removal part can move in the groove width direction in the groove. Calculated. For example, in the case of a V-groove, since the coating removal portion cannot move in the groove width direction, it is considered that the effective groove width is equal to the width of the coating removal portion.

この構成によれば、伝送状態判別時における一対の光ファイバ固定部間の被覆除去部は、湾曲形成部または光ファイバ押さえまたは光ファイバ折り返し部の少なくとも1箇所に光伝送路の長さ方向に形成された溝により、被覆除去部の光ファイバに側面から応力が加わることなく、かつ光ファイバと受光素子との間の距離が増加することなく、光伝送路の長さ方向に整列させられる。このため、伝送状態判別時に被覆除去部に形成させられる湾曲部付近での光ファイバの位置を安定させることが可能となり、受光効率が位置的な要因で低下することが防げ、被覆除去部の湾曲部と受光素子との光結合度を安定的に向上させることが可能となる。   According to this configuration, the covering removal portion between the pair of optical fiber fixing portions at the time of determining the transmission state is formed in the length direction of the optical transmission path in at least one place of the curve forming portion, the optical fiber holding portion, or the optical fiber folding portion. The grooves are aligned in the length direction of the optical transmission line without applying stress from the side surface to the optical fiber of the coating removal portion and without increasing the distance between the optical fiber and the light receiving element. For this reason, it becomes possible to stabilize the position of the optical fiber in the vicinity of the bending portion formed in the coating removal portion when determining the transmission state, and it is possible to prevent the light receiving efficiency from being lowered due to a positional factor, and to bend the coating removal portion. It is possible to stably improve the optical coupling degree between the light receiving element and the light receiving element.

また、本発明は、前記溝の断面形状が左右対称なV溝を基本とする形状であり、かつその溝内面の少なくとも1部に光反射面が形成されていることを特徴とする。   Further, the present invention is characterized in that the cross-sectional shape of the groove is basically a V-groove having a symmetrical shape, and a light reflection surface is formed on at least a part of the groove inner surface.

ここで、V溝を基本とする形状とは、基本の形状はV溝であるが、厳密にV溝である必要は無く、例えばV溝の底の部分の形状はある程度自由で平らでも良く、また両端部はなだらかに湾曲していても良いということを示す。   Here, the basic shape of the V groove is a V groove, but it is not strictly necessary to be a V groove. For example, the shape of the bottom portion of the V groove may be somewhat free and flat. Moreover, it shows that both ends may be gently curved.

この構成によれば、検出部の受光素子に対峙した光ファイバ表面から放射される漏洩光だけでなく、光ファイバ表面から、それに対して垂直な方向に放射される漏洩光が効率よく受光素子に到達するため、光検出効率が大幅に上昇するだけでなく、光検出効率の偏波依存性が大幅に解消され、光ファイバ中を伝送する光信号の偏波状態に依存することなく、再現性と安定性に優れた光検出特性を得ることが可能となる。   According to this configuration, not only the leaked light emitted from the surface of the optical fiber facing the light receiving element of the detection unit, but also the leaked light emitted from the surface of the optical fiber in a direction perpendicular to the optical fiber surface efficiently enters the light receiving element. Therefore, not only does the light detection efficiency increase significantly, but the polarization dependency of the light detection efficiency is greatly eliminated, and reproducibility is not dependent on the polarization state of the optical signal transmitted through the optical fiber. In addition, it is possible to obtain light detection characteristics with excellent stability.

また、本発明は、嵌合時に湾曲形成部の湾曲形状に沿って湾曲させられた光伝送路湾曲部の表面と、受光素子の受光面との最短距離が2mm以下であることを特徴とする。   Further, the present invention is characterized in that the shortest distance between the surface of the light transmission path bending portion bent along the bending shape of the bending forming portion and the light receiving surface of the light receiving element during fitting is 2 mm or less. .

この構成によれば、伝送状態判別時における、被覆除去部の光伝送路湾曲部と受光素子との間の距離が最小限に抑えられ、被覆除去部の光伝送路湾曲部と受光素子との光結合度を向上させることが可能となる。   According to this configuration, the distance between the light transmission path curved portion of the coating removal unit and the light receiving element during transmission state determination is minimized, and the distance between the light transmission path curved portion of the coating removal unit and the light receiving element is reduced. It is possible to improve the degree of optical coupling.

また、本発明は、光ファイバ押えは、光通過部材部または光ファイバ押え隙間部の光ファイバ折り返し領域側の側面の少なくとも一部に光信号を受光素子側に反射する光反射面が形成されていることを特徴とする。   Further, according to the present invention, the optical fiber retainer is formed with a light reflecting surface that reflects an optical signal to the light receiving element side on at least a part of the side surface of the light passing member portion or the optical fiber retainer gap portion on the optical fiber return region side. It is characterized by being.

この構成によれば、光ファイバ押さえの光ファイバ折り返し領域側の側面に光反射処理を施さない場合に比し、被覆除去部の光伝送路湾曲部と受光素子との光結合度を数dB以上向上させることが可能となる。   According to this configuration, the optical coupling degree between the light transmission path bending portion of the coating removal portion and the light receiving element is several dB or more, compared to the case where the light reflection treatment is not performed on the side surface of the optical fiber holding side of the optical fiber folding region. It becomes possible to improve.

光伝送路湾曲部で発生する漏洩光は発散的に光ファイバの外部に放射されるため、受光素子が直接感知する漏洩光の割合は少なく、光結合度が低下する主要因はこの漏洩光の発散である。従って、これを補う手段として光ファイバ押さえの光通過部材部または光ファイバ押え隙間部の光ファイバ折り返し領域側の側面の少なくとも一部に光信号を受光素子側に反射する光反射面が形成されていることは光結合度を向上させるために非常に有効となる。また、光信号光の伝搬方向に依存して、集光に最適な位置は互いに異なるため、受光素子が1つ設置される場合は、この反射手段は更に有効となる。   Since the leaked light generated at the curved portion of the optical transmission path is divergently emitted outside the optical fiber, the ratio of the leaked light that is directly sensed by the light receiving element is small, and the main factor that decreases the optical coupling degree is the leaked light. It is a divergence. Therefore, as a means for compensating for this, a light reflecting surface for reflecting an optical signal to the light receiving element side is formed on at least a part of the side surface of the optical fiber holding gap side portion of the optical fiber holding member or the optical fiber holding gap portion. It is very effective to improve the optical coupling degree. Further, since the optimum positions for condensing are different from each other depending on the propagation direction of the optical signal light, this reflection means becomes more effective when one light receiving element is installed.

また、本発明は、未操作時に、光漏洩部品と光検出器との嵌合が保持される操作機構を備えることを特徴とする。   In addition, the present invention is characterized by including an operation mechanism that holds the fitting between the light leakage component and the photodetector when not operated.

この構成によれば、操作機構の未操作時に、光漏洩部品と光検出器との嵌合が保持され、操作機構による光ファイバ押さえおよび湾曲形成部に対する作用によって被覆除去部に光伝送路湾曲部が形成・保持され、光伝送路湾曲部に漏洩光が生じさせられて、漏洩光の計測が行われる。   According to this configuration, when the operating mechanism is not operated, the fitting between the light leakage component and the photodetector is held, and the optical transmission line bending portion is added to the coating removing portion by the action of the operating mechanism on the optical fiber presser and the bending forming portion. Is formed and held, leakage light is generated in the curved portion of the optical transmission path, and leakage light is measured.

このため、光ファイバ押さえおよび湾曲形成部により被覆除去部に光伝送路湾曲部が形成されて行われる伝送状態の判別時には、操作機構が操作されないので、操作に起因して光ファイバ押さえと湾曲形成部との相対位置が変化することはなく、光ファイバ押さえと湾曲形成部との嵌合状態が安定し、漏洩光計測の再現性が向上する。従って、伝送状態判別時における光伝送路の挿入損失および光伝送路湾曲部と受光素子との光結合度が安定し、人的な要因によって生じる漏洩光の計測値の差異を最小限に抑えることが可能となる。また、伝送状態判別時の挿入損失および光信号受信効率が長期的に安定するので、光伝送路中の光信号の中長期的な安定性を測定する光モニターとして、光伝送判別器を使用することが可能となる。   For this reason, since the operation mechanism is not operated when the transmission state is determined by forming the optical transmission line bending portion in the coating removal portion by the optical fiber pressing and bending forming portion, the optical fiber pressing and bending formation is caused by the operation. The relative position with respect to the portion does not change, the fitting state between the optical fiber retainer and the curve forming portion is stabilized, and the reproducibility of leakage light measurement is improved. Therefore, the insertion loss of the optical transmission line and the optical coupling degree between the curved part of the optical transmission line and the light receiving element at the time of determining the transmission state are stabilized, and the difference in the measured value of the leaked light caused by human factors is minimized. Is possible. In addition, since the insertion loss and optical signal reception efficiency at the time of determining the transmission state are stable over the long term, an optical transmission discriminator is used as an optical monitor for measuring the medium to long-term stability of the optical signal in the optical transmission path. It becomes possible.

また、本発明は、光検出器が、受光素子を含む検出部と、受光素子で計測される光信号の伝送状態判別制御を行う制御回路を含む光検出器本体とに分離されていることを特徴とする。   In the present invention, the photodetector is separated into a detection unit including a light receiving element and a photodetector main body including a control circuit for performing transmission state determination control of an optical signal measured by the light receiving element. Features.

この構成によれば、光検出器が検出部と光検出器本体とに分離され、被覆除去部に形成された光伝送路湾曲部からの漏洩光を検出する受光素子を光検出器本体と別体の検出部に構成することで、検出部の大幅な小型化が可能となり、光伝送状態判別作業の作業性が大幅に向上する。また、光伝送路中の光信号の中長期的な安定性を測定する光モニターとして光伝送判別器が使用された場合、光伝送路近傍で光伝送判別器が占有する空間の体積が大幅に削減され、収納性、保持性に優れる光モニターが提供される。   According to this configuration, the photodetector is separated into the detection unit and the photodetector main body, and the light receiving element that detects the leaked light from the optical transmission path curved portion formed in the coating removal unit is separated from the photodetector main body. By configuring the body detection unit, the detection unit can be significantly reduced in size, and the workability of the optical transmission state determination work is greatly improved. In addition, when an optical transmission discriminator is used as an optical monitor that measures the medium to long-term stability of optical signals in the optical transmission line, the volume of space occupied by the optical transmission discriminator in the vicinity of the optical transmission line is greatly increased. An optical monitor that is reduced and has excellent storage and retention is provided.

また、本発明は、光検出器は、予め測定された光結合効率から測定値を光伝送路を伝送する信号光強度に換算する機能を有することを特徴とする。   In addition, the present invention is characterized in that the photodetector has a function of converting a measured value into a signal light intensity transmitted through the optical transmission line from an optical coupling efficiency measured in advance.

この構成によれば、実用性のあるパワーチェッカーとして、光伝送路を伝送する信号光強度を接続替えすることなく簡易的に測定し、その結果を光検出器の表示部に表示することが可能となる。   According to this configuration, as a practical power checker, it is possible to easily measure the signal light intensity transmitted through the optical transmission line without changing the connection, and display the result on the display unit of the photodetector. It becomes.

従来、心線対照器等で、光伝送路を伝送する信号光強度を測定することは出来なかった。これは、従来の心線対照器では検出光強度の再現性に乏しく、また安定性に欠けるため、測定結果の妥当性が低かったためである。   Conventionally, it has been impossible to measure the intensity of signal light transmitted through an optical transmission line with a core wire contrast device or the like. This is because the relevance of the detection light intensity is poor and the relevance of the measurement result is low in the conventional cord contrast device because the reproducibility of the detected light is poor.

本発明の技術では、測定対象が光ファイバ素線又は光ファイバ心線に限定されるため、光検出器の検出効率を予め補正することが可能で、その固体差は大幅に軽減される。   In the technique of the present invention, since the measurement target is limited to the optical fiber strand or the optical fiber core wire, the detection efficiency of the photodetector can be corrected in advance, and the individual difference is greatly reduced.

従って、本発明の技術では、測定の再現性、安定性にも優れるため、測定時に測定波長を選択すれば、光伝送路を伝送する信号光強度を測定することが可能となる。   Therefore, since the technique of the present invention is excellent in measurement reproducibility and stability, it is possible to measure the intensity of signal light transmitted through the optical transmission line by selecting a measurement wavelength during measurement.

また、検出部が光ファイバの種類(素線又は心線)に依存せず共通の場合には、光ファイバの種類を選択する必要を生じるが、この光ファイバの種類の選択は自動化が可能である。   In addition, when the detection unit is not dependent on the type of optical fiber (elementary wire or core), it is necessary to select the type of optical fiber. However, the selection of this type of optical fiber can be automated. is there.

ここで、受光素子の受光効率の固体差、電気回路の固体差等は光検出器の固体差として予め補正され、光検出器の光漏洩部品の嵌合・把持機構の固体差は光検出器の検出効率として補正される。   Here, the solid difference of the light receiving efficiency of the light receiving element, the solid difference of the electric circuit, etc. is corrected in advance as the solid difference of the photodetector, and the solid difference of the fitting / gripping mechanism of the light leakage component of the photodetector is detected by the photodetector. Is corrected as the detection efficiency.

測定精度は光漏洩部品の加工・組立て精度にも大きく依存するが、これらの固体差を実用的に抑制することにより、光伝送路を伝送する信号光強度を接続替えすることなく簡易的に測定するパワーチェッカーとして実用的な性能が得られる。   The measurement accuracy greatly depends on the processing and assembly accuracy of the light leakage component, but by practically suppressing these individual differences, the signal light intensity transmitted through the optical transmission path can be easily measured without switching. As a power checker, practical performance can be obtained.

また、測定精度を確保するためには、光漏洩部品を取付ける光伝送路として使用する光ファイバの特性や被覆色を適宜選別・限定することが望ましい。   Further, in order to ensure measurement accuracy, it is desirable to appropriately select and limit the characteristics and coating color of the optical fiber used as the optical transmission path for mounting the light leakage component.

また、本発明は、前記光漏洩部品が、予め測定された光結合効率の光漏洩部品による固体差を補正する補正値を示す識別コードが表記されていることを特徴とする。   Further, the present invention is characterized in that an identification code indicating a correction value for correcting the individual difference due to the light leakage component having a light coupling efficiency measured in advance is written on the light leakage component.

この構成によれば、光漏洩部品をその光学特性により分類し、表示された光漏洩部品の補正値を示す識別コードを測定時に検出器に入力することにより、光伝送路を伝送する信号光強度の測定精度を更に向上させることが可能となる。   According to this configuration, the light leakage components are classified according to their optical characteristics, and the signal light intensity transmitted through the optical transmission line is input to the detector at the time of measurement by inputting an identification code indicating the correction value of the displayed light leakage components. The measurement accuracy can be further improved.

この補正値では、使用する光ファイバの特性や被覆色の相違や光漏洩部品の加工・組立て精度に依存する個体差を補正することが可能となる。   With this correction value, it is possible to correct individual differences depending on characteristics of optical fibers to be used, coating color differences, and processing / assembly accuracy of light leakage components.

従って、基本的には使用する光ファイバの特性、被覆色、被覆材料等を測定精度向上のために限定する必要は無くなる。   Therefore, basically, there is no need to limit the characteristics, coating color, coating material, etc. of the optical fiber to be used in order to improve the measurement accuracy.

また、本発明は、光検出器が光線路モニター機能を有し、かつ光漏洩部品を把持した状態で中長期的に保持されることを特徴とする。   Further, the present invention is characterized in that the photodetector has an optical line monitoring function and is held for a medium to long term in a state where the light leakage component is held.

ここで、光線路モニター機能とは、検出値とその検出時を特定する機能、これらのデータを解析する機能、判定基準値を設定することにより検出値の正常・異常を判断する機能のうち少なくとも1つ以上の機能を有し、かつ、これらの結果を保持・記憶する機能、これらの結果を出力する機能のうち少なくとも1つ以上の機能を有することを指す。   Here, the optical line monitoring function is at least one of a function for identifying a detected value and its detection time, a function for analyzing these data, and a function for determining normality / abnormality of a detected value by setting a determination reference value. It means having at least one of a function having one or more functions and holding and storing these results and a function of outputting these results.

この構成によれば、本光伝送路判別器を光伝送路の伝送特性の安定性等の健全性を調べることが可能となる。これにより、不測の伝送損失異常や瞬断、使用中の光源の出力安定性等をこれらの事態の発生とほぼ同時に解析することが可能となり、早期対応が可能となる。   According to this configuration, the optical transmission path discriminator can check the soundness such as the stability of the transmission characteristics of the optical transmission path. As a result, it is possible to analyze an unexpected transmission loss abnormality, instantaneous interruption, output stability of the light source in use, etc. almost simultaneously with the occurrence of these situations, and early response is possible.

また、本発明は、光検出器が心線対照機能を有し、かつ光漏洩部品が最小の許容曲げ半径が5mm以下の光ファイバを用いた光ファイバコードに適用されることを特徴とする。   The present invention is also characterized by being applied to an optical fiber cord using an optical fiber having an optical fiber having a core line contrast function and a minimum allowable bending radius of 5 mm or less.

ここで、最小の許容曲げ半径が5mm以下の光ファイバとはITU−T G.657.B3勧告に準拠する光ファイバを指す。   Here, an optical fiber having a minimum allowable bending radius of 5 mm or less is ITU-T G.264. 657. An optical fiber that complies with the B3 recommendation.

この構成によれば、光ファイバコードに対して、従来の心線対照器に比し各段に光検出効率に優れるため、従来の心線対照器では困難であったITU−T G.657.B3勧告に準拠する光ファイバなど、曲げに強く、最小の許容曲げ半径が5mm以下の光ファイバを用いた光ファイバコードに対しても心線対照が確実に実施可能となる。更に、検出効率の波長依存性が大幅に抑制されるため、単一モード波長範囲のほぼ全域で低損失心線対照が可能になり、同時に活線判別も可能となるため、心線対照のために誤って現用線を断線させる事故を防ぐことが可能となる。   According to this configuration, the optical fiber cord is superior in light detection efficiency at each stage as compared with the conventional core wire contrast device, and therefore, it is difficult for the conventional core wire contrast device. 657. The optical fiber cord using an optical fiber that is strong in bending and has a minimum allowable bending radius of 5 mm or less, such as an optical fiber that complies with the B3 recommendation, can be reliably performed. Furthermore, since the wavelength dependence of detection efficiency is greatly suppressed, low loss core line contrast is possible in almost the entire range of the single mode wavelength range, and at the same time, live line discrimination is also possible. It is possible to prevent accidents that accidentally disconnect the working line.

我々は本発明の技術を同光ファイバコードに適用することにより、同光ファイバコードの心線対照が可能となり、優れた特性を示すことを実験的に確認し、本発明に至った。   By applying the technique of the present invention to the optical fiber cord, we have experimentally confirmed that the optical fiber cord can be controlled with a cord and that it exhibits excellent characteristics, leading to the present invention.

また、本発明は、光伝送路を形成する光伝送体であって、その少なくとも一部に上記に記載のいずれかの光漏洩部品が備えられていることを特徴とする光伝送体を構成した。   According to another aspect of the present invention, there is provided an optical transmission body that forms an optical transmission path, wherein at least a part of the optical transmission element is provided with at least a part of the light leakage component described above. .

この構成によれば、光伝送体が光漏洩部品を備えているため、本光伝送体を予め局舎、中継局等の必要な場所に配備することにより、本発明による光伝送判別が可能となる。   According to this configuration, since the optical transmission body includes the light leakage component, the optical transmission determination according to the present invention is possible by arranging the optical transmission body in a necessary place such as a station building or a relay station in advance. Become.

本発明によれば、特許文献4〜6に開示された光伝送判別技術を、伝送損失の増加、断線の発生、再現性に劣る測定値、不安定な測定値、長期信頼性の低下等の要因を排除して、光ファイバ心線、光ファイバコード、光ファイバケーブル等に適用するための具体的な新規構成が開示され、性能と作業性と信頼性に優れた光伝送判別技術を効率的に適用することが可能となる。   According to the present invention, the optical transmission discriminating techniques disclosed in Patent Documents 4 to 6 are used to increase transmission loss, occurrence of disconnection, measured values that are inferior in reproducibility, unstable measured values, lower long-term reliability, etc. A specific new configuration for eliminating factors and applying to optical fiber cores, optical fiber cords, optical fiber cables, etc. is disclosed, and efficient optical transmission discrimination technology with excellent performance, workability and reliability is disclosed It becomes possible to apply to.

これにより、光ファイバ心線、光ファイバコード、光ファイバケーブル等の光伝送路において、光伝送路を瞬時的にも遮断することなく光伝送状態を判別することが実用的に可能となる。また、本発明を用いれば、従来から心線対照器を用いて行われていた心線対照に於いても、光伝送路の挿入損失を従来よりも低く安定に抑えたままで、従来よりも高感度に行うことが可能となる。特に、ITU−T G.657.B3勧告に準拠する光ファイバを用いた光ファイバコードに対して低損失で確実に心線対照が可能となる。   Thereby, it is practically possible to determine the optical transmission state in an optical transmission line such as an optical fiber core, an optical fiber cord, and an optical fiber cable without interrupting the optical transmission line instantaneously. In addition, according to the present invention, even in the case of the core line contrast that has been conventionally performed using the core line contrast device, the insertion loss of the optical transmission line is kept low and stable, and higher than the conventional level. It becomes possible to carry out with sensitivity. In particular, ITU-T G.I. 657. With respect to an optical fiber cord using an optical fiber compliant with the B3 recommendation, it is possible to reliably perform the control of the core wire with low loss.

これらのことより、従来に無い光伝送判別器の導入が可能となる。光伝送状態判別技術の導入コストの低価格化が可能となる。また、光デバイス等を使用することなく、配線切替をすることなく、安価に、簡易に伝送中の信号光強度を測定することが可能となる。更に、光伝送路の中長期的な変化を監視する光モニターとしての適用が可能となる。   From these facts, it is possible to introduce an optical transmission discriminator which has not been conventionally used. The introduction cost of the optical transmission state discrimination technology can be reduced. Further, it is possible to easily measure the signal light intensity during transmission at low cost without using an optical device or the like and without switching wiring. Further, it can be applied as an optical monitor for monitoring changes in the medium to long term of the optical transmission line.

本発明に至った実験的な調査結果の1つを表す図。光ファイバ素線を一定の曲率半径で湾曲させた場合の、波長1.55μmでの曲げ損失を基準として、波長1.31μmでの相対的な曲げ損失の曲率半径依存性を測定した実験結果である。The figure showing one of the experimental investigation results which resulted in this invention. Experimental results of measuring the radius-of-curvature dependence of the relative bending loss at a wavelength of 1.31 μm with the bending loss at a wavelength of 1.55 μm as a reference when the optical fiber was bent with a certain radius of curvature. is there. 本発明に至った実験的な調査結果の1つを表す図。光ファイバ素線を一定の曲率半径で湾曲させた場合の、波長1.55μmでの曲げ損失の曲率半径依存性を測定した結果である。ここで、それぞれの曲げの中心角は一定とした。The figure showing one of the experimental investigation results which resulted in this invention. It is the result of having measured the curvature radius dependence of the bending loss in the wavelength of 1.55 micrometers at the time of bending an optical fiber strand with a fixed curvature radius. Here, the central angle of each bend was constant. 本発明の一実施形態による光伝送判別器を構成する光漏洩部品の外観図である。It is an external view of the light leakage component which comprises the optical transmission discriminator by one Embodiment of this invention. (a)は、図3に示す光漏洩部品をその長さ方向に切断した横断面図、(b)は、スライドキャップを外して光漏洩部品を開いた時に観察される光漏洩部品本体の上面図である。3A is a cross-sectional view of the light leakage component shown in FIG. 3 cut in the length direction, and FIG. 3B is an upper surface of the light leakage component body observed when the light leakage component is opened with the slide cap removed. FIG. 光漏洩部品本体内での被覆除去部の湾曲状態を表す図であり、(a)は測定時の状態、(b)は非測定時の状態である。It is a figure showing the curved state of the coating | coated removal part in a light leakage component main body, (a) is the state at the time of measurement, (b) is the state at the time of non-measurement. 本発明の一実施形態による光伝送判別器を構成する光検出器の外観構成図である。It is an external appearance block diagram of the photodetector which comprises the optical transmission discriminator by one Embodiment of this invention. (a)は、図6に示す光検出器の検出部を構成するレバー付き上ケースをケース面に水平な面で破断した際の検出部の断面図、(b)は検出部の筐体を構成する検出部外ケースおよびレバー付き上ケースをケース面に垂直な面で破断した際の検出部の縦断面図である。(A) is sectional drawing of a detection part at the time of fracture | rupturing the upper case with a lever which comprises the detection part of the photodetector shown in FIG. 6 on a surface horizontal to a case surface, (b) is the housing | casing of a detection part. It is a longitudinal cross-sectional view of the detection part when the detection part outer case and lever upper case which comprise are fractured | ruptured by the surface perpendicular | vertical to a case surface. (a)は、図7に示す検出部の光漏洩部品保持部に光漏洩部品を挿入し、保持させた状態を示す横断面図、(b)は、更にその状態から光漏洩部品の光ファイバ折り返し部と検出部の光ファイバ押さえを嵌合させた状態を示す横断面図、(c)は、光漏洩部品本体の光ファイバ折り返し部と検出部の光ファイバ押さえとの嵌合状態を示す縦断面図である。(A) is a cross-sectional view showing a state in which the light leakage component is inserted and held in the light leakage component holding part of the detection unit shown in FIG. 7, and (b) is an optical fiber of the light leakage component from that state. FIG. 4C is a cross-sectional view illustrating a state in which the optical fiber retainer of the folded portion and the detection unit is fitted, and FIG. FIG. 本発明の一実施形態による光伝送判別器を光モニターとして使用した場合に必要となる検出光の安定性を試験した結果を示すグラフ図である。It is a graph which shows the result of having tested the stability of the detection light required when using the optical transmission discriminator by one Embodiment of this invention as an optical monitor.

次に、本発明による光伝送判別器を実施するための一形態について説明する。   Next, an embodiment for implementing the optical transmission discriminator according to the present invention will be described.

図3は、この一実施形態による光伝送判別器を構成する光漏洩部品10の外観図である。   FIG. 3 is an external view of the light leakage component 10 constituting the optical transmission discriminator according to this embodiment.

光コード11は、本実施形態による光伝送判別器が適用された光伝送体を構成し、外径2mm、長さ3mの標準単一モード光ファイバの光コードで、両端には図示しないSC型光ファイバコネクタが装着されている。本実施形態による光伝送判別器は、この光伝送路中を伝搬する光信号の伝送状態を判別する。光コード11の少なくとも一部には、光漏洩部品10が備えられている。光漏洩部品10は2段の円柱状をしており、その外形寸法(長さL×直径φ)は約60×φ6[mm]である。光漏洩部品10の中央部にはスライドキャップ12が、その両側にはエンドチューブ13が装着されている。   The optical cord 11 constitutes an optical transmission body to which the optical transmission discriminator according to the present embodiment is applied, and is an optical cord of a standard single mode optical fiber having an outer diameter of 2 mm and a length of 3 m. An optical fiber connector is attached. The optical transmission discriminator according to the present embodiment discriminates the transmission state of the optical signal propagating in the optical transmission path. At least a part of the optical cord 11 is provided with a light leakage component 10. The light leakage component 10 has a two-stage cylindrical shape, and its outer dimensions (length L × diameter φ) are about 60 × φ6 [mm]. A slide cap 12 is attached to the center of the light leakage component 10, and end tubes 13 are attached to both sides thereof.

図4(a)は光漏洩部品10をその長さ方向に切断した横断面図である。   FIG. 4A is a cross-sectional view of the light leakage component 10 cut in the length direction.

光漏洩部品10は、光漏洩部品本体14とスライドキャップ12と、両側のエンドチューブ13を備えている。光漏洩部品本体14は、材質がABS樹脂で直方体状をしており、エンドチューブ13が被さる両端部は半円柱状になっている。直方体状をした部分の光漏洩部品本体14および各エンドチューブ13の端部は、中空円筒状をしたスライドキャップ12内に収納した。   The light leakage component 10 includes a light leakage component main body 14, a slide cap 12, and end tubes 13 on both sides. The light leakage component main body 14 is made of ABS resin and has a rectangular parallelepiped shape, and both end portions covered by the end tube 13 have a semi-cylindrical shape. The light leakage component main body 14 and the end portions of each end tube 13 in a rectangular parallelepiped shape were housed in a slide cap 12 having a hollow cylindrical shape.

光漏洩部品10内部の光コード11は切断されることなく内部の光ファイバ素線11aを露出させ被覆除去部を構成しており、その光ファイバ素線11aの両端部は、光コード11のコード外被11bの端部と光コード11内の2次被覆材11cおよび抗張力体11dの露出部分と共に、接着剤で光漏洩部品本体14の光ファイバ固定部15のエンドチューブ13内に接着固定した。   The optical cord 11 inside the light leakage component 10 is not cut and the inner optical fiber 11a is exposed to form a coating removal portion, and both ends of the optical fiber 11a are connected to the cord of the optical cord 11. Along with the end portion of the outer cover 11b and the exposed portion of the secondary covering material 11c and the strength member 11d in the optical cord 11, it was adhesively fixed in the end tube 13 of the optical fiber fixing portion 15 of the light leakage component main body 14 with an adhesive.

被覆除去部である光ファイバ素線11aは、光ファイバ固定部15間において光伝送状態判別時の湾曲構造により決定される長さに設定するため、図示しない治具を用いてその所定の光伝送路長さでかつそれにより決定される所定の予長を持って、光漏洩部品10の長さ方向の両側に構成された一対の光ファイバ固定部15に両端部が固定され、一対の光ファイバ固定部15間に、遊動自在に保持されている。ここで、余長とは、一対の光ファイバ固定部15間に張られた光ファイバ素線11aの長さと、一対の光ファイバ固定部15間の距離との差である。   In order to set the length of the optical fiber 11a, which is the sheath removing portion, determined by the curved structure at the time of determining the optical transmission state between the optical fiber fixing portions 15, the predetermined optical transmission using a jig (not shown) Both ends are fixed to a pair of optical fiber fixing parts 15 formed on both sides in the length direction of the light leakage component 10 with a predetermined length determined by the path length and a pair of optical fibers. It is held freely between the fixed portions 15. Here, the extra length is the difference between the length of the optical fiber 11 a stretched between the pair of optical fiber fixing portions 15 and the distance between the pair of optical fiber fixing portions 15.

光漏洩部品10の光漏洩部品本体14は、中央部上面に湾曲形成部17が形成されており、その光信号を漏洩させる光ファイバ素線11aの光伝送路湾曲部が湾曲形成部17によって形成される箇所とその両側の光ファイバ固定部15との間には光ファイバ素線11aをその湾曲部分から光ファイバ固定部15に導く光ファイバ処理領域18が備えられている。湾曲形成部17は、光伝送状態判別時に光ファイバ素線11aが伝送路湾曲部を形成する曲率を持った湾曲形状を有している。その横幅は光ファイバ素線11aの外径よりも大きく、その湾曲形成部17の両側面には光ファイバを湾曲形成部17に誘導するための斜面23が斜めに形成されている(図4(b))。また、光ファイバ処理領域18は、湾曲形成部17の両側に光ファイバ素線11aを互いに整列させ、光ファイバ固定部15に固定された光コード11に光ファイバ素線11aをスムーズに導入させるための空間となっている。   The light leakage component main body 14 of the light leakage component 10 is formed with a curve forming portion 17 on the upper surface of the central portion, and the light transmission path bending portion of the optical fiber 11 a that leaks the optical signal is formed by the curve forming portion 17. An optical fiber processing region 18 for guiding the optical fiber 11a from the curved portion to the optical fiber fixing portion 15 is provided between the place where the optical fiber is fixed and the optical fiber fixing portions 15 on both sides thereof. The bend forming portion 17 has a bend shape having a curvature with which the optical fiber 11a forms a bend portion of the transmission path when determining the optical transmission state. The lateral width is larger than the outer diameter of the optical fiber 11a, and slopes 23 for guiding the optical fiber to the curve forming portion 17 are formed obliquely on both side surfaces of the curve forming portion 17 (FIG. 4 ( b)). Further, the optical fiber processing region 18 aligns the optical fiber strands 11 a on both sides of the bending portion 17, and smoothly introduces the optical fiber strand 11 a into the optical cord 11 fixed to the optical fiber fixing portion 15. It has become a space.

光ファイバ処理領域18は、光伝送状態判別時に湾曲形成部17によって湾曲した光ファイバ素線11aを両側の光ファイバ固定部15に導入するための光ファイバ折り返し領域と、光伝送状態非判別時に光ファイバ折り返し領域とその外側で光ファイバ素線11aの曲げ損失が発生するのを抑制するための光ファイバ整列領域とからなるが、本実施例では、光ファイバ折り返し領域には光ファイバ折り返し部19が光ファイバ整列領域には平坦部20が形成されている。光ファイバ折り返し部19は、湾曲形成部17の長さ方向の両側に、湾曲形成部17の湾曲方向と反対に湾曲する湾曲面を持って湾曲形成部17に連続して、光漏洩部品本体14に形成されている。平坦部20は、光ファイバ折り返し部19の外側における、光ファイバ折り返し部19上の空間と光ファイバ固定部15との間の光ファイバ整列領域に、光ファイバ折り返し部19に連続して光漏洩部品本体14に所定長さで形成されている。また、光漏洩部品本体14の中央底部には凹部21が形成されており、光伝送状態判別時に、後述する光検出器30を構成する検出部31と嵌合する際の位置決めに供される。   The optical fiber processing region 18 includes an optical fiber turning region for introducing the optical fiber 11a bent by the bending forming unit 17 into the optical fiber fixing unit 15 at the time of determining the optical transmission state, and light at the time of determining the optical transmission state. The optical fiber return region includes an optical fiber return region 19 and an optical fiber alignment region for suppressing the occurrence of bending loss of the optical fiber 11a outside the optical fiber return region. A flat portion 20 is formed in the optical fiber alignment region. The optical fiber folded portion 19 has a curved surface that is curved opposite to the curved direction of the curved forming portion 17 on both sides in the length direction of the curved forming portion 17, and continues to the curved forming portion 17. Is formed. The flat portion 20 is a light leakage component that is continuous with the optical fiber return portion 19 in the optical fiber alignment region between the space on the optical fiber return portion 19 and the optical fiber fixing portion 15 outside the optical fiber return portion 19. The main body 14 is formed with a predetermined length. In addition, a concave portion 21 is formed at the center bottom portion of the light leakage component main body 14, and is used for positioning when fitting with a detection portion 31 constituting a photodetector 30 described later when determining the light transmission state.

図5は光ファイバ固定部15間の光ファイバ素線11aの湾曲状態を表す図である。図5(a)が嵌合時の光ファイバ素線11aの状態、図5(b)が非嵌合時の状態である。同図(a)より、嵌合時の光ファイバ素線11aは湾曲形成部17と光ファイバ折り返し部19に沿って湾曲しているため、光ファイバ固定部15間の光ファイバ素線11aの長さ(L)は光ファイバ固定部間の距離(W)より長くなっており、予長が発生していることが判る。その予長(w)は
w =L−W
で計算される値となる。従って、被覆除去部となる光ファイバ素線11aは、長さは嵌合時の湾曲形状により決定される長さ(L)に設定されており、それによって決定される予長(w)を持って光ファイバ固定部15間に遊動自在に保持されていることが判る。
FIG. 5 is a diagram illustrating a curved state of the optical fiber 11 a between the optical fiber fixing portions 15. FIG. 5A shows the state of the optical fiber 11a when fitted, and FIG. 5B shows the state when not fitted. From FIG. 5A, since the optical fiber 11a at the time of fitting is bent along the bending portion 17 and the optical fiber turn-back portion 19, the length of the optical fiber 11a between the optical fiber fixing portions 15 is shown. The length (L) is longer than the distance (W) between the optical fiber fixing portions, and it can be seen that the pre-length is generated. The length (w) is w = L−W
The value calculated by. Therefore, the length of the optical fiber 11a serving as the coating removal portion is set to a length (L) determined by the curved shape at the time of fitting, and has a pre-length (w) determined thereby. Thus, it can be seen that the optical fiber fixing portion 15 is held freely.

図5(a)に示すように、光伝送状態判別時に光ファイバ素線11aに光漏洩を生じさせる湾曲形成部17の扇形曲率半径Rは4.5mmに、光ファイバ折り返し部19の扇形曲率半径rは9mmに設定した。光ファイバ素線11aは、光伝送状態判別時に、湾曲形成部17と光ファイバ折り返し部19と平坦部20とに沿って一時的に保持・固定されるが、各光ファイバ折り返し部19は、その湾曲面の曲率半径rが湾曲形成部17の湾曲面の曲率半径Rの1.3倍以上、本実施形態では、光ファイバ折り返し部19の曲率半径rが湾曲形成部17の曲率半径Rの2倍あるため(r=2R)、測定時に光ファイバ折り返し部19で光信号が漏洩することによる実効的な光損失増加を抑えることが可能となっている。   As shown in FIG. 5A, the sectoral curvature radius R of the bending portion 17 that causes light leakage to the optical fiber 11a when determining the optical transmission state is 4.5 mm, and the sectoral curvature radius of the optical fiber folded portion 19 r was set to 9 mm. The optical fiber 11a is temporarily held and fixed along the curve forming portion 17, the optical fiber folded portion 19 and the flat portion 20 when determining the optical transmission state. The radius of curvature r of the curved surface is 1.3 times or more the radius of curvature R of the curved surface of the curved forming portion 17. In this embodiment, the radius of curvature r of the optical fiber folded portion 19 is 2 of the radius of curvature R of the curved forming portion 17. Since it is twice (r = 2R), it is possible to suppress an effective increase in optical loss due to an optical signal leaking at the optical fiber turn-back portion 19 during measurement.

また、同図5に示すように、光ファイバ折り返し部19の扇形の中心角θは両側で等しく、それらの和が湾曲形成部17の扇形の中心角βと一致するように(β=2θ)、設計した。つまり、湾曲形成部17は、その光伝送路湾曲部が形成する弧の中心角βが各光ファイバ折り返し部19の被覆除去部が形成する弧の各中心角の和2θに等しい。これにより、測定時の光ファイバ折り返し部19の外側の光ファイバ素線11aは、互いに一直線上に保持され、原理的には曲げを生じることなく光ファイバ固定部15に誘導される。   Further, as shown in FIG. 5, the fan-shaped central angle θ of the optical fiber folded portion 19 is equal on both sides, and the sum thereof coincides with the fan-shaped central angle β of the curve forming portion 17 (β = 2θ). Designed. That is, in the curve forming portion 17, the center angle β of the arc formed by the optical transmission line curve portion is equal to the sum 2θ of the center angles of the arc formed by the coating removal portions of the optical fiber folded portions 19. Thereby, the optical fiber strands 11a outside the optical fiber folded portion 19 at the time of measurement are held in a straight line with each other, and are guided to the optical fiber fixing portion 15 without being bent in principle.

また非嵌合時の光ファイバ素線11aは図5(b)に示すように、光ファイバ整列領域を含めた全体で、一定の曲率半径で湾曲した状態で保持される。ここで、この光ファイバ整列領域の幅はこの湾曲形状から計算される値に設定される。ここで、光ファイバ素線11aはその長期信頼性を劣化させない範囲の湾曲状態に保持する必要がある。一般にこの曲率半径は15mmまたは30mm以上である。   Further, as shown in FIG. 5B, the optical fiber 11a at the time of non-fitting is held in a curved state with a constant curvature radius as a whole including the optical fiber alignment region. Here, the width of the optical fiber alignment region is set to a value calculated from the curved shape. Here, the optical fiber 11a needs to be held in a curved state in a range that does not deteriorate the long-term reliability. Generally, this radius of curvature is 15 mm or 30 mm or more.

本実施例では、光ファイバ素線11aは、非嵌合時には、光ファイバ整列領域としての平坦部20の効果により、湾曲形成部17と光ファイバ折り返し部19とから多少浮いた状態で、尚且つ光漏洩部品本体14の高さ方向においてはみ出さない状態を保持している。この状態で光ファイバ素線11aは、その全体が図5(b)に示すように曲率半径(Ro)が15mmの曲率で保持され、長期信頼性が確保される。これは光ファイバ整列領域として平坦部20を形成した効果として奏されるものである。この曲率半径は使用した光ファイバ素線の長期信頼性を確保するための規格値である。   In the present embodiment, the optical fiber 11a is slightly lifted from the curved forming portion 17 and the optical fiber folded portion 19 due to the effect of the flat portion 20 as the optical fiber alignment region when not fitted, and The state where the light leakage component main body 14 does not protrude in the height direction is maintained. In this state, the entire optical fiber 11a is held with a curvature radius (Ro) of 15 mm as shown in FIG. 5B, and long-term reliability is ensured. This is produced as an effect of forming the flat portion 20 as the optical fiber alignment region. This radius of curvature is a standard value for ensuring long-term reliability of the used optical fiber.

従って、非嵌合時には、光ファイバ固定部15間の光ファイバ素線11aは光ファイバ折り返し部19の曲率より更に1.5倍以上大きい曲率で保持されるため光損失は発生せず、同光ファイバ素線11aの長期信頼性に規定された曲率で保持され、光ファイバ整列領域の幅はその曲率から換算され、設定されていることになる。   Therefore, at the time of non-fitting, the optical fiber 11a between the optical fiber fixing portions 15 is held with a curvature that is 1.5 times or more larger than the curvature of the optical fiber folded portion 19, so that no optical loss occurs and the same light It is held at a curvature defined by the long-term reliability of the fiber strand 11a, and the width of the optical fiber alignment region is converted from the curvature and set.

スライドキャップ12は、光伝送状態判別のための嵌合時には、光漏洩部品本体14の長さ方向にスライドされて外され、光漏洩部品本体14の湾曲形成部17と光ファイバ処理領域18は露出状態となる。図4(b)は、スライドキャップ12をスライドして開いた時の光漏洩部品本体14の上面図であり、スライドキャップ12は省略している。同図に示すように、光漏洩部品本体14両側の光ファイバ整列領域に形成された挿入溝24には、光ファイバ素線11aが一直線状になって嵌っている。光漏洩部品本体14の両側の光ファイバ整列領域の間(ここでは両側の挿入溝24の間)の上方は開口部22が幅広く形成されている。開口部22の光ファイバ折り返し部19に相当する空間には、光伝送状態判別時に、後述する光検出器30を構成する検出部31の光ファイバ押さえ58が挿入されて嵌合し、それと同時に湾曲形成部17に相当する空間には検出部31の受光素子59が近接し、測定に供される。開口部22中央の光漏洩部品本体14の各側壁には、中央の光ファイバ素線11aに向かって下り傾斜する対向する斜面として一対の斜面23が形成されている。   When the slide cap 12 is fitted to determine the light transmission state, the slide cap 12 is slid and removed in the length direction of the light leaking component main body 14, and the curve forming portion 17 and the optical fiber processing region 18 of the light leaking component main body 14 are exposed. It becomes a state. FIG. 4B is a top view of the light leakage component main body 14 when the slide cap 12 is opened by sliding, and the slide cap 12 is omitted. As shown in the drawing, the optical fiber 11a is fitted in a straight line in the insertion grooves 24 formed in the optical fiber alignment regions on both sides of the light leakage component main body 14. A wide opening 22 is formed between the optical fiber alignment regions on both sides of the light leakage component main body 14 (here, between the insertion grooves 24 on both sides). In the space corresponding to the optical fiber turn-back portion 19 of the opening 22, an optical fiber retainer 58 of the detection portion 31 constituting the photodetector 30 described later is inserted and fitted when determining the optical transmission state, and at the same time, curved. The light receiving element 59 of the detection unit 31 is close to the space corresponding to the formation unit 17 and is used for measurement. On each side wall of the light leakage component main body 14 at the center of the opening 22, a pair of inclined surfaces 23 are formed as opposing inclined surfaces that are inclined downward toward the central optical fiber 11 a.

図6は、本実施形態による光伝送判別器を構成する光検出器30の外観構成図である。   FIG. 6 is an external configuration diagram of the photodetector 30 constituting the optical transmission discriminator according to the present embodiment.

光検出器30は検出部31と光検出器本体32とに分離して構成されており、同軸ケーブル33で互いに接続されている。光検出器本体32は、光検出部31の替わりに、図示しない受光ユニットを光検出部31の代わりに装着すれば、光パワーメータとしても機能し、例えば光コネクタ付き光ファイバをその受光ユニットに接続して、その光ファイバを伝送する光信号のパワーを測定することができる。   The photodetector 30 is configured to be separated into a detection unit 31 and a photodetector main body 32 and is connected to each other by a coaxial cable 33. The light detector main body 32 functions as an optical power meter if a light receiving unit (not shown) is mounted instead of the light detecting unit 31 instead of the light detecting unit 31, for example, an optical fiber with an optical connector is attached to the light receiving unit. It is possible to connect and measure the power of an optical signal transmitted through the optical fiber.

検出部31は、外形寸法(長さL×幅D×高さH)が約60×35×20mmで、その筐体は検出部外ケース34とレバー付き上ケース35とから構成されている。レバー35aを有するレバー付き上ケース35には、少なくとも光伝送路を伝搬する光信号の有無を表示する検出部表示部36が設けられている。この検出部表示部36は、3個のLED(発光ダイオード)から構成され、検出結果として、無信号、対照光、通信光の3つの信号状態の何れかをそれらの点灯状態によって表示する。無信号は光伝送路に光信号の検出が無かったことを表し、対照光は光伝送路に伝送路対照のために入力された対照光が検出されたこと、通信光は光伝送路に通信のために伝搬する通信光が検出されたことを表す。   The detection unit 31 has an outer dimension (length L × width D × height H) of about 60 × 35 × 20 mm, and the housing is composed of a detection unit outer case 34 and an upper case 35 with a lever. The upper case 35 with a lever having the lever 35a is provided with a detection unit display unit 36 that displays at least the presence or absence of an optical signal propagating through the optical transmission line. The detection unit display unit 36 includes three LEDs (light emitting diodes), and displays any one of three signal states of no signal, control light, and communication light as a detection result, depending on their lighting state. No signal indicates that no optical signal was detected in the optical transmission line, the reference light was detected in the optical transmission line for the control of the transmission line, and the communication light was communicated to the optical transmission line. This means that the communication light propagating for the purpose is detected.

光検出器本体32は、外形寸法(長さL×幅D×高さH)が約120×60×30mmで、検出情報を表示する3個のLEDから構成される本体表示部37が設けられている。この本体表示部37は、検出部表示部36と同様に、無信号、対照光、通信光の3つの信号状態の何れかを表示する。また、光検出器本体32は、検出結果としての3つの信号状態の区別を音を発して知らせる機能も備えている。また、光検出器本体32には液晶表示装置などからなる表示パネル38が設けられており、通常この表示パネル38には、光伝送路を伝送する信号光強度の換算値(dBm)が数値で表示される。この換算値は予め測定した光検出器30の光結合度を用いて、光検出部31で測定した光強度の値を換算して求められる。この光結合度は光漏洩部品10の構造にも依存するため、光伝送路を切り替えて、光伝送路端面から直接伝送する光信号を測定した場合に比し測定精度は劣るものも、簡易モニターとしては充分な精度を有している。本実施例では光伝送路として使用する光ファイバを曲げに強いタイプに選定しており、光ファイバ素線の被覆色は白色に指定したため、測定精度はほぼ1dB以下に抑制されていた。   The photodetector main body 32 has an external dimension (length L × width D × height H) of about 120 × 60 × 30 mm and is provided with a main body display unit 37 composed of three LEDs for displaying detection information. ing. Similar to the detection unit display unit 36, the main body display unit 37 displays one of three signal states of no signal, control light, and communication light. The photodetector main body 32 also has a function of emitting a sound to notify the distinction between the three signal states as a detection result. Further, the photodetector main body 32 is provided with a display panel 38 made of a liquid crystal display device or the like. Usually, the converted value (dBm) of the signal light intensity transmitted through the optical transmission path is a numerical value on the display panel 38. Is displayed. This conversion value is obtained by converting the value of the light intensity measured by the light detection unit 31 using the optical coupling degree of the light detector 30 measured in advance. The degree of optical coupling also depends on the structure of the light leakage component 10, so that the measurement accuracy is inferior to that obtained when the optical transmission line is switched and the optical signal transmitted directly from the end face of the optical transmission line is measured. As such, it has sufficient accuracy. In this embodiment, the optical fiber used as the optical transmission line is selected as a type that is resistant to bending, and the coating color of the optical fiber is designated white, so that the measurement accuracy is suppressed to approximately 1 dB or less.

従って、本検出器は予め測定された光結合効率から測定値を光伝送路を伝搬する信号光強度に換算する機能を有している。   Therefore, this detector has a function of converting the measured value into the intensity of the signal light propagating through the optical transmission line from the optical coupling efficiency measured in advance.

また、本光検出器30は光パワーメータの機能を有しており、検出部31の替わりに図示しない受光ユニットを装着すれば、光検出器本体のモードが光パワーメータに自動で切り替わり、この場合、表示パネル38は測定した光強度を表示する。   The photodetector 30 has a function of an optical power meter. If a light receiving unit (not shown) is attached instead of the detector 31, the mode of the photodetector main body is automatically switched to the optical power meter. In this case, the display panel 38 displays the measured light intensity.

また、光検出器本体32には、電源を入切するための電源ボタン39と、外来光の影響がある場合に検出部31の感度を補正して外来光の影響を相殺するための感度補正ボタン40が設けられている。電源ボタン39が操作されて電源が入っている時には、電源ボタン39の右方に設けられたLEDが点灯して、電源が入っている電源状態が表示される。また、感度補正ボタン40が操作されるなどして外来光の影響が無い状態の時には、感度補正ボタン40の上方に設けられたLEDが点灯して光伝送状態の判別が可能な準備(Ready)状態であることが知らされ、外来光の影響の有無が表示される。   Further, the photodetector main body 32 has a power button 39 for turning on / off the power, and a sensitivity correction for correcting the sensitivity of the detection unit 31 when there is an influence of external light to offset the influence of the external light. A button 40 is provided. When the power button 39 is operated and the power is turned on, an LED provided on the right side of the power button 39 is lit to display a power state in which the power is turned on. In addition, when the sensitivity correction button 40 is operated and there is no influence of extraneous light, the LED provided above the sensitivity correction button 40 is lit and ready to determine the light transmission state (Ready) It is informed that the condition is present, and the presence or absence of the influence of extraneous light is displayed.

図7(a)は、検出部31の筐体を構成するレバー付き上ケース35をケース面に水平な面で破断した際の検出部31の断面図、同図(b)は検出部31の筐体を構成する検出部外ケース34およびレバー付き上ケース35をケース面に垂直な面で破断した際の検出部31の縦断面図である。   FIG. 7A is a cross-sectional view of the detection unit 31 when the upper case 35 with a lever constituting the housing of the detection unit 31 is broken in a plane parallel to the case surface, and FIG. It is a longitudinal cross-sectional view of the detection part 31 at the time of fracture | rupturing the detection part outer case 34 and the upper case 35 with a lever which comprise a housing | casing in a surface perpendicular | vertical to a case surface.

同図(a)に示すように、検出部外ケース34は、レバー付き上ケース35より一回り大きく構成されており、上面が開放した箱状をしている。また、レバー付き上ケース35は、下面が開放した箱状をしており、検出部外ケース34内に収納されている。レバー付き上ケース35の両外側には、同図(b)に示すように、外方に突出したレール51が形成された側板52が設けられている。検出部外ケース34の両内側にはレール用溝53が形成されており、レバー付き上ケース35のレール51が検出部外ケース34のレール用溝53に嵌め込まれることで、レバー付き上ケース35はレール用溝53に沿って検出部外ケース34に対して移動する。また、検出部外ケース34の底面に形成された突起34aとレバー付き上ケース35との間にはバネ54が設けられており、レバー付き上ケース35は検出部外ケース34内で図の上方に付勢されている。レバー付き上ケース35は、このバネ54の付勢力に抗してレバー35aが図の下方に移動操作されると、検出部外ケース34のレール用溝53に沿って図の下方に移動する。   As shown in FIG. 5A, the detection portion outer case 34 is configured to be slightly larger than the upper case 35 with a lever, and has a box shape with an open upper surface. The upper case 35 with a lever has a box shape with an open lower surface and is accommodated in the outer case 34 of the detection unit. Side plates 52 on which rails 51 projecting outward are formed on both outer sides of the upper case 35 with a lever, as shown in FIG. Rail grooves 53 are formed on both inner sides of the detection unit outer case 34, and the rail 51 of the upper case 35 with lever is fitted into the rail groove 53 of the detection unit outer case 34, so that the upper case 35 with lever is fitted. Moves along the rail groove 53 with respect to the detector outer case 34. In addition, a spring 54 is provided between the protrusion 34a formed on the bottom surface of the detection unit outer case 34 and the upper case 35 with a lever. Is being energized. When the lever 35a is operated to move downward in the figure against the urging force of the spring 54, the upper case 35 with lever moves downward in the figure along the rail groove 53 of the outer case 34 of the detection unit.

検出部外ケース34には、光伝送状態判別時に光漏洩部品10を収納して保持するための空間が光漏洩部品保持部55として設けられている。この光漏洩部品保持部55に面する検出部外ケース34の内側壁には凸部56が設けられており、また、この凸部56を挟む両側の検出部外ケース34の底面には一対の光漏洩部品挿入用ガイド57が立設されている。光漏洩部品挿入用ガイド57は、光漏洩部品10が光漏洩部品保持部55に挿入されるときにガイドとして機能すると共に、同図(b)に示すように頭部が張り出して形成されていることで、光漏洩部品保持部55に挿入された光漏洩部品10を保持する機能も果たす。レバー35aの非操作時におけるレバー付き上ケース35の位置は、バネ54の付勢力によって光漏洩部品保持部55を覆う位置に保持されている。   A space for storing and holding the light leakage component 10 when determining the light transmission state is provided in the detection unit outer case 34 as the light leakage component holding unit 55. A convex portion 56 is provided on the inner side wall of the detection portion outer case 34 facing the light leakage component holding portion 55, and a pair of detection portion outer cases 34 on both sides sandwiching the convex portion 56 are provided with a pair of bottom portions. A light leakage component insertion guide 57 is erected. The light leakage component insertion guide 57 functions as a guide when the light leakage component 10 is inserted into the light leakage component holding portion 55, and is formed with its head protruding as shown in FIG. Thus, the function of holding the light leakage component 10 inserted in the light leakage component holding portion 55 is also achieved. The position of the upper case 35 with the lever when the lever 35 a is not operated is held at a position that covers the light leakage component holding portion 55 by the urging force of the spring 54.

レバー付き上ケース35には、光漏洩部品10の光ファイバ折り返し部19と嵌合する形状をした一対の光ファイバ押さえ58が形成されており、光ファイバ押さえ58の間には、漏洩光を検出する受光素子59が1つ設けられている。レバー付き上ケース35に形成されたレール51、検出部外ケース34に形成されたレール用溝53、レバー35a、およびバネ54は、レバー35aの未操作時に、光ファイバ押さえ58によって光ファイバ素線11aを湾曲形成部17に押さえ付けて光ファイバ素線11aに湾曲部を形成させ、レバー35aの操作時に、光ファイバ押さえ58および湾曲形成部17によるこの湾曲部の湾曲形成をしない操作機構を構成する。   The upper case 35 with a lever is formed with a pair of optical fiber retainers 58 shaped to fit with the optical fiber folded portion 19 of the light leakage component 10, and leak light is detected between the optical fiber retainers 58. One light receiving element 59 is provided. The rail 51 formed in the upper case 35 with a lever, the rail groove 53 formed in the outer case 34, the lever 35a, and the spring 54 are optical fiber strands by the optical fiber holder 58 when the lever 35a is not operated. 11a is pressed against the bending portion 17 to form a bending portion on the optical fiber 11a, and an operation mechanism that does not form the bending portion of the bending portion with the optical fiber presser 58 and the bending forming portion 17 when the lever 35a is operated is configured. To do.

また、レバー付き上ケース35には、受光素子59を制御する制御回路が形成された制御回路基板60と、検出部31による光計測を開始するためのトリガースイッチ61が取付けられている。トリガースイッチ61は、同図(a)の右方に示される光漏洩部品挿入用ガイド57に開けられた穴に挿入され、図示しないバネのバネ力によりその先端が光漏洩部品保持部55に露出した状態で保持される。光漏洩部品保持部55に光漏洩部品10が挿入されるとその先端が、バネ力に反して図の下方に押される。トリガースイッチ61はこの状態変化を検出すると、制御回路基板60へトリガー信号を出力して、検出部31による測定を開始させる。この測定で検出された光信号は受光素子59により電気信号に変換され、制御回路基板60に形成された受光素子59の制御回路により、同軸ケーブル33を介して光検出器本体32へ送出される。光検出器本体32には、受光素子59で計測された光信号の光強度を計測し、伝送状態を判別する制御回路が備えられており、この制御回路によって光伝送状態の判別が行われる。これらの結果は、検出部31の検出部表示部36および光検出器本体32の本体表示部37に表示され、更に光検出器本体32から発せられる音によって表現される。   The upper case 35 with a lever is attached with a control circuit board 60 on which a control circuit for controlling the light receiving element 59 is formed, and a trigger switch 61 for starting the optical measurement by the detection unit 31. The trigger switch 61 is inserted into a hole formed in the light leakage component insertion guide 57 shown on the right side of FIG. 4A, and its tip is exposed to the light leakage component holding portion 55 by the spring force of a spring (not shown). It is held in the state. When the light leakage component 10 is inserted into the light leakage component holding portion 55, the tip thereof is pushed downward in the figure against the spring force. When the trigger switch 61 detects this state change, the trigger switch 61 outputs a trigger signal to the control circuit board 60 to start measurement by the detection unit 31. The optical signal detected by this measurement is converted into an electric signal by the light receiving element 59 and sent to the photodetector main body 32 via the coaxial cable 33 by the control circuit of the light receiving element 59 formed on the control circuit board 60. . The photodetector main body 32 is provided with a control circuit for measuring the light intensity of the optical signal measured by the light receiving element 59 and discriminating the transmission state, and the optical transmission state is discriminated by this control circuit. These results are displayed on the detection unit display unit 36 of the detection unit 31 and the main unit display unit 37 of the photodetector main body 32, and are further expressed by sound emitted from the photodetector main body 32.

更に光検出器本体32の表示パネル38には光伝送路を伝送する光信号の強度が表示される。   Further, the intensity of the optical signal transmitted through the optical transmission path is displayed on the display panel 38 of the photodetector main body 32.

このように光伝送路とは別個に構成された光検出器30は、湾曲することで光ファイバ素線11aに形成される湾曲部分から漏洩する光信号を計測する受光素子59を含む検出部31と、受光素子59で計測される光信号の伝送状態判別制御を行う制御回路を含む光検出器本体32とに分離されている。   The light detector 30 configured separately from the optical transmission path in this way includes a light receiving element 59 that measures an optical signal leaking from a curved portion formed in the optical fiber strand 11a by being bent. And a photodetector main body 32 including a control circuit that performs transmission state discrimination control of an optical signal measured by the light receiving element 59.

また、光伝送判別器は、光漏洩部品10と光検出器30とから構成され、一方の光漏洩部品10には、光ファイバ素線11aに形成される湾曲部分の湾曲形状を有する湾曲形成部17が設けられ、他方の光検出器30には、光ファイバ素線11aを湾曲形成部17に押さえ付けて光ファイバ素線11aを湾曲形成部17の湾曲形状に沿って湾曲させる光ファイバ押さえ58が設けられている。   The optical transmission discriminator includes a light leakage component 10 and a light detector 30, and the one light leakage component 10 has a curve forming portion having a curved shape of a curved portion formed in the optical fiber 11 a. 17, and the other optical detector 30 presses the optical fiber 11 a against the bending portion 17 to bend the optical fiber 11 a along the curved shape of the bending portion 17. Is provided.

光ファイバ押さえ58には、有効深さが0.25mm、有効幅が1.0mmの溝62が、挿入される光伝送路の長さ方向に形成されている。この溝深さは、光ファイバ素線11aの外径±0.1mm以内に設定されており、光ファイバ素線11aの外径と同等である。溝幅は、光ファイバ素線11aの外径以上で、かつ、受光素子59の図示しない受光面の幅以下に設定した。また、光ファイバ押さえ58の扇形曲率半径は光漏洩部品10の光ファイバ折り返し部19と同一で、約9mmに設定した。また、この光ファイバ押え58の受光素子59に近接する側面には、この溝を含め、光信号を受光素子59側に反射する金属メッキのコーティングを施した。   In the optical fiber retainer 58, a groove 62 having an effective depth of 0.25 mm and an effective width of 1.0 mm is formed in the length direction of the optical transmission line to be inserted. This groove depth is set within ± 0.1 mm of the outer diameter of the optical fiber 11a, and is equal to the outer diameter of the optical fiber 11a. The groove width was set to be equal to or larger than the outer diameter of the optical fiber 11a and equal to or smaller than the width of the light receiving surface (not shown) of the light receiving element 59. The sector radius of curvature of the optical fiber retainer 58 is the same as that of the optical fiber folded portion 19 of the light leakage component 10 and is set to about 9 mm. In addition, the side surface of the optical fiber retainer 58 close to the light receiving element 59 is coated with a metal plating that reflects the optical signal to the light receiving element 59 side including the groove.

次に、光漏洩部品10を装着した光コード11を伝搬する光信号の有無、および光信号の検出結果を確認する光伝送状態の判別手順を図8を用いて説明する。図8(a)は、検出部31の光漏洩部品保持部55に光漏洩部品10を挿入した状態を示す横断面図、同図(b)は、更にその状態から光漏洩部品10の光漏洩部品本体14の光ファイバ折り返し部19と検出部31の光ファイバ押さえ58とを嵌合させ、保持した状態を示す横断面図である。   Next, a procedure for determining the presence or absence of an optical signal propagating through the optical cord 11 on which the light leakage component 10 is mounted and the optical transmission state for confirming the detection result of the optical signal will be described with reference to FIG. 8A is a cross-sectional view showing a state in which the light leakage component 10 is inserted into the light leakage component holding unit 55 of the detection unit 31, and FIG. 8B is a light leakage of the light leakage component 10 from that state. It is a cross-sectional view showing a state in which the optical fiber turn-back portion 19 of the component main body 14 and the optical fiber retainer 58 of the detection portion 31 are fitted and held.

光伝送状態の判別に際し、まず、レバー35aを操作し、同図(a)に示すように、光検出器30の検出部31のレバー付き上ケース35をスライドさせて光漏洩部品保持部55を露出させる。このとき、検出部外ケース34とレバー付き上ケース35との間に設けられているバネ54のバネ力により、レバー付き上ケース35は光漏洩部品保持部55を覆う状態に戻ろうとするため、レバー35aに一定の荷重をかけてレバー付き上ケース35をスライドさせた状態に保持する。   When discriminating the optical transmission state, first, the lever 35a is operated, and the upper case 35 with a lever of the detection unit 31 of the photodetector 30 is slid as shown in FIG. Expose. At this time, because the upper case 35 with the lever tries to return to the state of covering the light leakage component holding part 55 by the spring force of the spring 54 provided between the outer case 34 and the upper case 35 with the lever, A constant load is applied to the lever 35a to hold the upper case 35 with the lever slid.

次に、スライドキャップ12を外した光漏洩部品10を所定の方向に設定して、同図(a)に示すように、一対の光漏洩部品挿入用ガイド57の間の光漏洩部品保持部55に挿入する。この時、光漏洩部品本体14の凹部21と光漏洩部品保持部55の凸部56とが嵌合して合致することにより、光漏洩部品本体14と検出部31との相対的な位置が決定される。光漏洩部品保持部55に挿入された光漏洩部品本体14の、検出部外ケース34の深さ方向の高さ位置は、光漏洩部品保持部55に面する検出部外ケース34の内側面で決められる。また、光漏洩部品本体14は、両側のエンドチューブ13が一対の光漏洩部品挿入用ガイド57によって保持されており、光漏洩部品保持部55から移動しない。   Next, the light leakage component 10 with the slide cap 12 removed is set in a predetermined direction, and the light leakage component holding portion 55 between the pair of light leakage component insertion guides 57 as shown in FIG. Insert into. At this time, the concave portion 21 of the light leaking component main body 14 and the convex portion 56 of the light leaking component holding unit 55 are fitted and matched, whereby the relative position between the light leaking component main body 14 and the detection unit 31 is determined. Is done. The height position of the light leakage component main body 14 inserted in the light leakage component holding portion 55 in the depth direction of the detection portion outer case 34 is the inner surface of the detection portion outer case 34 facing the light leakage component holding portion 55. It is decided. Further, the end tube 13 on both sides of the light leakage component main body 14 is held by a pair of light leakage component insertion guides 57 and does not move from the light leakage component holding portion 55.

光漏洩部品10を光漏洩部品保持部55に挿入後、一定の荷重をかけてスライドさせた状態に保持していたレバー35aを放すと、バネ54のバネ力によってレバー付き上ケース35が光漏洩部品保持部55を覆う通常時の位置にスライドする。レバー付き上ケース35が通常時の位置にスライドすると、レバー付き上ケース35に形成された光ファイバ押さえ58が光漏洩部品10の光ファイバ処理領域18に挿入され、バネ54のバネ力によって光ファイバ折り返し部19と一定の加重で嵌合する。(光ファイバ押さえ58は、各光ファイバ折り返し部19の少なくとも一部と嵌合する形状を有している。)光ファイバ押さえ58が光ファイバ折り返し部19と嵌合すると、同図(b)に示すように、光ファイバ素線11aは、光ファイバ折り返し部19と光ファイバ押さえ58との間に挟まれ、湾曲形成部17と光ファイバ折り返し部19と平坦部20とに沿って変形する。この状態は操作機構によって安定的に保持される。つまり、光検出器30は光伝送路とは別個の、測定時に光漏洩部品10を収納して保持し、その一部を互いに嵌合し、その嵌合状態を安定的に保持する保持構造を具備している。また、光ファイバ押さえ58が光ファイバ折り返し部19と嵌合すると、トリガースイッチ61の先端が光漏洩部品10のエンドチューブ13に押されてスライドし、制御回路基板60に設置された図示しない測定開始用スイッチが押され、検出部31が測定を開始する。   After the light leakage component 10 is inserted into the light leakage component holding portion 55, when the lever 35a that has been held in a state of being slid by applying a certain load is released, the upper case 35 with a lever leaks light by the spring force of the spring 54. Slide to the normal position covering the component holding part 55. When the upper case 35 with lever slides to the normal position, the optical fiber retainer 58 formed on the upper case 35 with lever is inserted into the optical fiber processing region 18 of the light leakage component 10, and the optical fiber is pressed by the spring force of the spring 54. The folded part 19 is fitted with a constant load. (The optical fiber retainer 58 has a shape that fits with at least a part of each optical fiber folded portion 19.) When the optical fiber retainer 58 is fitted with the optical fiber folded portion 19, FIG. As shown, the optical fiber 11a is sandwiched between the optical fiber folded portion 19 and the optical fiber retainer 58 and deformed along the curved forming portion 17, the optical fiber folded portion 19 and the flat portion 20. This state is stably held by the operation mechanism. That is, the optical detector 30 has a holding structure that is separate from the optical transmission line and holds and holds the light leakage component 10 at the time of measurement, a part of which is fitted to each other, and the fitting state is stably held. It has. When the optical fiber retainer 58 is fitted to the optical fiber turn-back portion 19, the tip of the trigger switch 61 is pushed and slid by the end tube 13 of the light leakage component 10, and the measurement start (not shown) installed on the control circuit board 60 is started. Switch is pressed, and the detector 31 starts measurement.

この測定開始により、光ファイバ素線11aに光信号が伝送されていれば、光ファイバ素線11aの湾曲形成部17で湾曲した部分である光伝送路湾曲部からのみ光信号が漏洩する。この際、受光素子59は、検出部31の検出部外ケース34と光漏洩部品10の光漏洩部品本体14とによって2重に密閉されるため、太陽光その他の自然界のノイズの影響を受けることなく、光ファイバ素線11aの湾曲形成部17で湾曲した部分からの漏洩光のみを検出する。   If an optical signal is transmitted to the optical fiber strand 11a by the start of the measurement, the optical signal leaks only from the optical transmission line bending portion which is a curved portion of the bending portion 17 of the optical fiber strand 11a. At this time, the light receiving element 59 is double-sealed by the detection portion outer case 34 of the detection portion 31 and the light leakage component main body 14 of the light leakage component 10, so that it is affected by sunlight and other natural noises. Instead, only leakage light from the curved portion of the optical fiber 11a is detected.

同図(c)は光漏洩部品本体14の光ファイバ折り返し部19と検出部31の光ファイバ押さえ58との嵌合状態を示す縦断面図である。同図(c)に示すように、光ファイバ折り返し部19と光ファイバ押さえ58とに挟まれた光ファイバ素線11aは、光ファイバ押さえ58の溝62の中に収まるため、光ファイバ折り返し部19から過度な応力を加えられることなく湾曲状態を保持する。この際、光伝送状態判別時の湾曲形成部17での光ファイバ素線11aの表面と、受光素子59の図示しない受光端面との最短距離は約1.7mmになるように設定されている。つまり、光ファイバ押さえ58によって湾曲形成部17の湾曲形状に沿って湾曲させられた光ファイバ素線11aの光伝送路表面と、受光素子59の図示しない受光面との最短距離は2mm以下になるように設定されている。この数値は、受光素子59の外表面と受光素子59の内部における図示しない受光面との間の距離が約1.5mmあり、受光素子59の外表面と光ファイバ素線11aの光伝送路表面との間の距離を出来るだけ短い0.5mmに設定することで導かれるものである。   FIG. 2C is a longitudinal sectional view showing a fitting state between the optical fiber folded portion 19 of the light leakage component main body 14 and the optical fiber presser 58 of the detection portion 31. As shown in FIG. 3C, the optical fiber 11a sandwiched between the optical fiber folded portion 19 and the optical fiber retainer 58 is accommodated in the groove 62 of the optical fiber retainer 58. The curved state is maintained without being excessively stressed. At this time, the shortest distance between the surface of the optical fiber 11a and the light receiving end surface (not shown) of the light receiving element 59 in the bending portion 17 when determining the optical transmission state is set to be about 1.7 mm. That is, the shortest distance between the optical transmission line surface of the optical fiber 11a bent along the curved shape of the bending portion 17 by the optical fiber presser 58 and the light receiving surface (not shown) of the light receiving element 59 is 2 mm or less. Is set to This value indicates that the distance between the outer surface of the light receiving element 59 and a light receiving surface (not shown) inside the light receiving element 59 is about 1.5 mm, and the outer surface of the light receiving element 59 and the optical transmission line surface of the optical fiber 11a. Is set to 0.5 mm as short as possible.

よって、本実施形態による光伝送判別器を用いた光伝送状態の判別時には、光検出器30の検出部31の取扱い作業が主となり、光検出器30の光検出器本体32は図示しないストラップ等を取り付けて、作業者の首か、作業場付近の壁に掛けておけば、判別結果は検出器本体32から発せられる音と検出部表示部36で確認される。また、光検出器本体32の本体表示部37でも確認され、作業性の向上が図られている。   Therefore, when determining the optical transmission state using the optical transmission discriminator according to the present embodiment, the handling work of the detection unit 31 of the photodetector 30 is mainly performed, and the photodetector main body 32 of the photodetector 30 is not illustrated. Is attached to the operator's neck or a wall in the vicinity of the work place, and the determination result is confirmed by the sound emitted from the detector main body 32 and the detection unit display unit 36. Further, it is confirmed on the main body display unit 37 of the photodetector main body 32, and the workability is improved.

更に表示パネル38には測定結果から換算された光伝送路を伝送する光信号の強度が表示される。   Further, the display panel 38 displays the intensity of the optical signal transmitted through the optical transmission path converted from the measurement result.

波長1.31μmと波長1.55μmの光源を用いて、本光伝送判別器を評価した。その結果、波長1.55μmの光信号を光コード11に伝送させた場合、本光伝送判別器の挿入損失は約0.8dBであり、この挿入損失は、一般的な光伝送システムにおいて光伝送の阻害要因とはならない大きさであることが、確認された。また、同様に波長1.31μmの光信号を光コード11に伝送させた場合、光信号の検出限界は約−45dBmであり、一般的な光伝送システムにおける最低信号光強度(約−40dBm)以下であることが確認された。また、これらの測定は非常に安定しており、かつ再現性に優れており、何れの試験でも波長1.55μmでの挿入損失のばらつきは±0.05dB以下であり、波長1.31μmでの光信号の検出限界のばらつきは±0.2dB以下であった。   The optical transmission discriminator was evaluated using a light source having a wavelength of 1.31 μm and a wavelength of 1.55 μm. As a result, when an optical signal having a wavelength of 1.55 μm is transmitted to the optical cord 11, the insertion loss of this optical transmission discriminator is about 0.8 dB. This insertion loss is an optical transmission in a general optical transmission system. It was confirmed that the size was not an inhibitory factor. Similarly, when an optical signal having a wavelength of 1.31 μm is transmitted to the optical cord 11, the detection limit of the optical signal is about −45 dBm, which is less than the minimum signal light intensity (about −40 dBm) in a general optical transmission system. It was confirmed that. In addition, these measurements are very stable and excellent in reproducibility. In any test, the variation in insertion loss at a wavelength of 1.55 μm is ± 0.05 dB or less, and at a wavelength of 1.31 μm. The variation in the detection limit of the optical signal was ± 0.2 dB or less.

これらの結果より、本光伝送判別器は光伝送状態を阻害することなく、光信号の伝送状態を波長1.31μmと波長1.55μmの両方の波長で判別することが出来ると、判断される。   From these results, it is determined that the present optical transmission discriminator can discriminate the transmission state of the optical signal with both wavelengths of 1.31 μm and 1.55 μm without hindering the optical transmission state. .

伝送状態判別試験を、特許文献1や特許文献2等に開示されているような、一般に市販されている典型的な心線対照器を用いて、光漏洩部品10を備えていない一般的な光コード(標準単一モード光ファイバ、外径2.0mm、長さ3m、両端SCコネクタ付き)で行った。その結果、波長1.55μmの光信号を伝送させた場合のその心線対照器の挿入損失は約2.5dBであり、この心線対照器の挿入が遮断等の光伝送システムの伝送品質の阻害要因になる可能性があることが判明した。また、波長1.31μmの光信号で同様な試験を行った結果、光信号の検出限界は約−12dBmであった。また、これらの挿入損失、検出限界の値は再現性に乏しく、ばらつきが大きかった。従って、この場合、一般的な光伝送システムで微弱な光信号が伝送している場合に、その伝送路が非活線であるという誤った判断をする可能性があることが、確認された。   A general light that does not include the light leakage component 10 by using a typical commercially available core contrast device, such as disclosed in Patent Literature 1 and Patent Literature 2, for the transmission state discrimination test. A cord (standard single mode optical fiber, outer diameter 2.0 mm, length 3 m, with SC connectors at both ends) was used. As a result, when an optical signal having a wavelength of 1.55 μm is transmitted, the insertion loss of the optical fiber contrast device is about 2.5 dB. It has been found that it may become an obstacle. Moreover, as a result of performing the same test with an optical signal having a wavelength of 1.31 μm, the detection limit of the optical signal was about −12 dBm. Also, these insertion loss and detection limit values were poorly reproducible and varied widely. Therefore, in this case, when a weak optical signal is transmitted in a general optical transmission system, it has been confirmed that there is a possibility of erroneous determination that the transmission path is inactive.

上記の比較試験は、外径2mmの光ファイバコードを用いて行った。しかし、本光伝送判別器の基本特性は、光漏洩部品10を備えて光ファイバ素線11aの状態で計測するその特徴的な構造から、光コード11の外径等に依存しないが、従来の心線対照器の特性は、測定対象となる光ファイバコードの構造に大きく依存し、外径が大きな光コードの場合には検出特性が大幅に劣化することが予想される。また、同じ外径の光コードでも、内部にナイロン心線を使用している場合は測定不能になる等、従来の心線対照器を用いた光伝送状態判別には様々な制限が存在する。   The comparative test was performed using an optical fiber cord having an outer diameter of 2 mm. However, the basic characteristics of the present optical transmission discriminator do not depend on the outer diameter of the optical cord 11 or the like because of its characteristic structure of measuring the optical fiber strand 11a with the light leakage component 10; The characteristics of the cord contrast greatly depend on the structure of the optical fiber cord to be measured, and it is expected that the detection characteristics are greatly deteriorated in the case of an optical cord having a large outer diameter. In addition, even with an optical cord having the same outer diameter, there are various limitations on optical transmission state discrimination using a conventional cord contrast device, such as measurement being impossible when a nylon cord is used inside.

これらの結果より、従来の心線対照器は、光伝送判別器として活線状態を判別する手段として用いるのに適切でなく、構造上の問題から、測定中の測定値の値が安定せず、伝送信号光強度の簡易測定器として使用することも、中長期的な信号光強度の変化を測定するモニターとして使用することも適切でないと思われる。   From these results, the conventional cord contrast device is not suitable for use as a means for discriminating the live line state as an optical transmission discriminator, and the measured value during measurement is not stable due to structural problems. It seems that it is not appropriate to use it as a simple measuring device for transmission signal light intensity or as a monitor for measuring changes in signal light intensity over the medium to long term.

白色被覆の光ファイバ素線を用いた外径2.0mmの光ファイバコードを用いて、光漏洩部品付き光コード11を10本作成し、それぞれを接続替えすることなく簡易的にこれらの光コードを伝送する信号光強度を波長1.55μmで測定した。測定する信号光強度は約−20dBmに設定した。信号光は偏波コントローラを用いて単一偏波とし、偏波面を回転させて、測定値の変動を求めた。その際、光漏洩部品10の湾曲形成部17の中央にはその湾曲表面の長さ方向に沿って、有効深さ0.25mmで中心角90度の対称V溝を形成し、そのV溝にはアルミめっきを施した。   Using optical fiber cords with an outer diameter of 2.0 mm using white coated optical fiber strands, ten optical cords 11 with light leakage components are prepared, and these optical cords can be simply connected without changing each of them. Was measured at a wavelength of 1.55 μm. The signal light intensity to be measured was set to about −20 dBm. The signal light was changed to a single polarization using a polarization controller, and the fluctuation of the measured value was obtained by rotating the polarization plane. At that time, a symmetrical V-groove having an effective depth of 0.25 mm and a central angle of 90 degrees is formed at the center of the curved forming portion 17 of the light leakage component 10 along the length direction of the curved surface. Applied aluminum plating.

全ての試料で10回測定を実施した処、信号光強度測定値のPDL誤差は0.2dB以下、測定値の測定誤差は再現性を含めて±0.2dB以下であった。これにより、光伝送路用パワーチェッカーとして実用性があることが確認された。   When 10 measurements were performed on all the samples, the PDL error of the signal light intensity measurement value was 0.2 dB or less, and the measurement error of the measurement value was ± 0.2 dB or less including reproducibility. As a result, it was confirmed that there is practicality as a power checker for optical transmission lines.

なお、測定値の再現性誤差は0.1dB以下であり非常に安定していた。   The reproducibility error of the measured value was 0.1 dB or less and was very stable.

本発明による光伝送路判別器をファンアウト付き光ファイバコード等に適用した場合、複数の被覆色の光ファイバ素線に対応する必要が生じる。従って、光伝送判別器の光検出効率の光ファイバ被覆色依存性を測定した処、最大で約5dBの検出効率の差があることが判明した。   When the optical transmission line discriminator according to the present invention is applied to a fan-out optical fiber cord or the like, it is necessary to cope with a plurality of coated-color optical fiber strands. Therefore, when the dependence of the light detection efficiency of the optical transmission discriminator on the optical fiber coating color was measured, it was found that there was a difference in detection efficiency of about 5 dB at the maximum.

そこで、その検出効率を補正するため、光漏洩部品10の検出効率を測定し、補正値を算出して、スライドキャップ12に2桁の英数字の識別コードとして記録した。また、測定時にその識別コードを入力するように、検出器のソフトウエアを改良した。   Therefore, in order to correct the detection efficiency, the detection efficiency of the light leakage component 10 was measured, a correction value was calculated, and recorded on the slide cap 12 as a two-digit alphanumeric identification code. In addition, the software of the detector has been improved so that the identification code is input during measurement.

この識別コードを適用し、4色(青、白、茶、灰)の光ファイバ素線を用いた光漏洩部付き光ファイバコードを作成し、波長1.55μmで伝送光強度測定試験を実施した。結果として上記の例と同様に、測定誤差は再現性を含め±0.2dB以下であった。   By applying this identification code, an optical fiber cord with a light leakage part using optical fiber strands of four colors (blue, white, brown, ash) was created, and a transmission light intensity measurement test was conducted at a wavelength of 1.55 μm. . As a result, as in the above example, the measurement error was ± 0.2 dB or less including reproducibility.

この様に、識別コードを導入すれば、検出効率の光ファイバ素線被覆色依存性を補正できることが確認された。原理的にはこれらの色以外の被覆色の光ファイバ素線を用いた場合も検出効率の補正は可能となる他、光ファイバ素線の遮断波長等が大幅に異なる場合や光ファイバ素線の被覆材料のメーカ間の相違等、様々な要因に起因する検出効率の相違の補正が可能になる。   Thus, it was confirmed that the dependence of the detection efficiency on the optical fiber coating color can be corrected by introducing the identification code. In principle, the detection efficiency can be corrected even when optical fiber strands other than these colors are used, and when the cutoff wavelength of the optical fiber strand is significantly different or the optical fiber strand It is possible to correct a difference in detection efficiency caused by various factors such as a difference between coating material manufacturers.

また、図9は、本光伝送判別器を光伝送路の長期健全性を調べる光モニターとして使用した場合に必要となる検出光の安定性を試験した結果を示すグラフである。同グラフの縦軸は受光素子59で測定された光信号の受光強度[dBm]、横軸は測定時間[h]である。ここで測定波長は1.55μmとした。なお、この測定値は光検出器本体32の表示パネル38に表示される換算された伝送信号光強度でなく、図示しない光検出器本体32の制御回路の出力端子から出力された実値である。   FIG. 9 is a graph showing the results of testing the stability of the detection light required when the present optical transmission discriminator is used as an optical monitor for examining the long-term soundness of the optical transmission line. The vertical axis of the graph represents the received light intensity [dBm] of the optical signal measured by the light receiving element 59, and the horizontal axis represents the measurement time [h]. Here, the measurement wavelength was 1.55 μm. This measured value is not the converted transmission signal light intensity displayed on the display panel 38 of the photodetector main body 32 but the actual value output from the output terminal of the control circuit of the photodetector main body 32 (not shown). .

検出光の強度変化は約1500時間経過後も0.3dB以内で安定していた。この結果、例えば0.4dB程度の伝送光強度の変動を長期的に監視することができることになる。また、図9の測定値の変動は長期的な僅かなドリフトが要因である。このドリフトは漏洩部品の初期アニール処理の効果により抑えきれなかったドリフトの残りの成分と考えられる。このドリフトの影響について、ドリフトによる基準値の変化を補正することで、判定限界を向上させることが可能で、このドリフト補正をした場合、光伝送路の伝送光強度変化の検出限界を0.2dB以下にすることが可能になると考えられる。   The intensity change of the detection light was stable within 0.3 dB even after about 1500 hours. As a result, for example, fluctuations in transmitted light intensity of about 0.4 dB can be monitored for a long time. Further, the fluctuation of the measured value in FIG. 9 is caused by a long-term slight drift. This drift is considered to be the remaining component of the drift that could not be suppressed due to the effect of the initial annealing treatment of the leaking part. Regarding the influence of this drift, it is possible to improve the determination limit by correcting the change of the reference value due to the drift. When this drift correction is performed, the detection limit of the change in the transmitted light intensity of the optical transmission line is set to 0.2 dB. It will be possible to:

その他に、ITU−T G.657.B3勧告に準拠する光ファイバを用いて、外径2mmの光漏洩部品つき光コードを10本作成し、それらを用いて心線対照試験を行った。ここで、光漏洩部品10の湾曲形成部17の扇形曲率半径Rは2.5mmに設定し、光ファイバ折り返し部19の扇形曲率半径rや平坦部20の長さ等はそれに沿って適宜最適化した。   In addition, ITU-T G. Ten optical cords with a light leakage part with an outer diameter of 2 mm were prepared using optical fibers compliant with the 657.B3 recommendation, and a core-wire control test was performed using them. Here, the sectoral curvature radius R of the curved forming portion 17 of the light leakage component 10 is set to 2.5 mm, and the sectoral curvature radius r of the optical fiber folded portion 19 and the length of the flat portion 20 are optimized accordingly. did.

対照光源として波長1.31μm、強度−10dBmの270Hz変調光源を用い、対照光源より約10kmの位置で試験した。測定は100回行ったが、全て正常に対照光を検出した。測定時の挿入損失は最大でも0.1dB以下であった。また、試験後に湾曲形成部17付近の光ファイバ素線の外観に異常は観測されず、光ファイバコードとしても光損失が発生することはなかった。   A 270 Hz modulated light source having a wavelength of 1.31 μm and an intensity of −10 dBm was used as a control light source, and the test was performed at a position of about 10 km from the control light source. The measurement was performed 100 times, but all detected control light normally. The insertion loss at the time of measurement was at most 0.1 dB. Further, no abnormality was observed in the appearance of the optical fiber in the vicinity of the bending portion 17 after the test, and no optical loss occurred as an optical fiber cord.

比較のために、従来のITU−T B.657.A1勧告の光ファイバを用いた光ファイバコードに対応した心線対照器を用いて、ITU−T G.657.B3勧告に準拠する光ファイバを用いた外径2mmの光ファイバコードについて同様な試験を実施したが、対照光は全く検出されなかった。従来の心線対照器の場合、光ファイバ素線であれば、ITU−T G.657.B3勧告に準拠した光ファイバでも心線対照は可能であると思われるが、実使用で用いる光ファイバコードでは実用性に乏しいと考えられる。   For comparison, the conventional ITU-T B.I. 657. An optical fiber cord corresponding to an optical fiber cord using an optical fiber recommended by A1 is used. A similar test was performed on an optical fiber cord having an outer diameter of 2 mm using an optical fiber compliant with the 657.B3 recommendation, but no control light was detected. In the case of a conventional optical fiber contrast device, an ITU-T G. 657. Although it is considered that the optical fiber cord conforming to the B3 recommendation can be used for the optical fiber cord, it is considered that the optical fiber cord used in actual use is not practical.

上記のように、本実施形態による光伝送判別器によれば、光ファイバ素線11aの状態にされた光コード11の被覆除去部は、光漏洩部品10によって光伝送路中に保持される。光漏洩部品10によって保持された光ファイバ素線11aは、湾曲形成部17と光ファイバ押さえ58との嵌合時、光ファイバ押さえ58によって湾曲形成部17に押さえ付けられることで、湾曲形成部17の湾曲形状に沿って湾曲させられ、光伝送路湾曲部を形成する。光信号の伝送状態判別時にはこの光伝送路湾曲部からは光伝送路を伝搬する光信号が漏洩し、漏洩した光信号は、光伝送路とは別個の光検出器30に備えられた受光素子59によって計測される。   As described above, according to the optical transmission discriminator according to the present embodiment, the coating removal portion of the optical cord 11 in the state of the optical fiber 11a is held in the optical transmission path by the light leakage component 10. The optical fiber 11a held by the light leakage component 10 is pressed against the curve forming portion 17 by the optical fiber presser 58 when the bend forming portion 17 and the optical fiber presser 58 are fitted, so that the curve forming portion 17 is pressed. Are bent along a curved shape of the optical transmission path to form a curved portion of the optical transmission path. When determining the transmission state of an optical signal, an optical signal propagating through the optical transmission line leaks from the curved portion of the optical transmission line, and the leaked optical signal is a light receiving element provided in a photodetector 30 separate from the optical transmission line. 59.

このため、漏洩光の計測は、光ファイバ素線11aの状態にされた光コード11の被覆除去部の一部から漏洩する光信号に対して行われ、特許文献1や特許文献2等に開示された従来の心線対照用光検出器を単に用いた場合より、光検出効率を大幅に向上させ、かつ安定させることが可能となる。   For this reason, the measurement of the leaked light is performed on the optical signal leaking from a part of the coating removing portion of the optical cord 11 in the state of the optical fiber 11a, and is disclosed in Patent Literature 1, Patent Literature 2, and the like. The light detection efficiency can be greatly improved and stabilized as compared with the case where the conventional optical fiber for detecting a core wire is simply used.

また、測定に供される光伝送路は、その一部に光漏洩部品10が設置されており、その光伝送路とは別個の、測定時に光漏洩部品10を収納して保持し、更にその一部と互いに嵌合し、その嵌合状態を安定的に保持する構造を光検出器30が具備するため、特許文献5等に開示された従来の光伝送判別器を用いた場合より、挿入損失、検出値等の光学特性の再現性、安定性を大幅に向上させることが可能となる。   In addition, the optical transmission line used for the measurement is provided with a light leakage component 10 in a part thereof. The optical leakage component 10 is stored and held separately from the optical transmission line during measurement. Since the photodetector 30 has a structure that fits partly with each other and stably holds the fitted state, it is inserted more than when a conventional optical transmission discriminator disclosed in Patent Document 5 is used. The reproducibility and stability of optical characteristics such as loss and detection value can be greatly improved.

また、光コード11の被覆除去部分の光ファイバ素線11aは、一対の光ファイバ固定部15間に所定の予長を持った開放状態で遊動自在に両端が固定されることにより、嵌合時と非嵌合時とのそれぞれにおいて、不要な伸張応力、圧縮応力や、局所的な屈曲を生じない状態が安定して確保される。   Further, the optical fiber 11a at the coating removal portion of the optical cord 11 is fixed freely at both ends in an open state with a predetermined length between the pair of optical fiber fixing portions 15, so that the optical fiber 11a is fitted. And in a non-fitted state, it is possible to stably ensure a state in which unnecessary extension stress, compression stress, and local bending do not occur.

また、光漏洩部品本体14における、嵌合時に湾曲形成部17によって形成される伝送路湾曲部に相当する箇所とその両側の光ファイバ固定部15との間に光ファイバ処理領域18を備えるため、光ファイバ素線11aが湾曲部分から光ファイバ固定部15に導かれると共に、非嵌合時における光ファイバ素線11aの湾曲半径を一定以上に大きく確保することが可能となり、非嵌合時の湾曲に依存する光損失増加の発生を安定的に防止し、用いる光ファイバの長期信頼性を確保することが可能となる。   Further, in the light leakage component main body 14, since the optical fiber processing region 18 is provided between the portion corresponding to the transmission path bending portion formed by the bending forming portion 17 at the time of fitting and the optical fiber fixing portions 15 on both sides thereof, The optical fiber 11a is guided from the curved portion to the optical fiber fixing portion 15, and the bending radius of the optical fiber 11a at the time of non-fitting can be ensured to be larger than a certain value. It is possible to stably prevent an increase in optical loss depending on the optical fiber and to ensure long-term reliability of the optical fiber to be used.

この結果、特許文献4〜6に開示された技術を光ファイバ心線、光ファイバコード、光ファイバケーブル等に適用するための、光ファイバ心線、光ファイバコード、光ファイバケーブル等の詳細な新規な保持構造、嵌合時のみに漏洩光を発生させ、非嵌合時には光損失増加を発生させないための新規な構造、および、検出光が安定するために光検出器30に要求される新規な構造を備え、長期信頼性に優れた光伝送判別器が提供されることとなる。   As a result, in order to apply the techniques disclosed in Patent Documents 4 to 6 to optical fiber cores, optical fiber cords, optical fiber cables, and the like, new details such as optical fiber cores, optical fiber cords, optical fiber cables, etc. A new holding structure, a new structure for generating leakage light only when fitted, and not causing an increase in light loss when not fitted, and a new structure required for the photodetector 30 in order to stabilize the detection light An optical transmission discriminator having a structure and excellent in long-term reliability will be provided.

本発明の光漏洩部品10では、当初光ファイバコネクタと同様にその内部で光ファイバ素線11aを固定せずに試作を行ったが、この場合には測定の繰り返しにより予長が変化し、返って光ファイバ素線11aの屈曲の要因となることが判明した。そこで、光漏洩部品10内部の両側の光ファイバ固定部15で、光ファイバ素線11aの固定を試みた処、光ファイバ素線11aの屈曲の発生が根本的に抑制された。これが本発明の光伝送判別器の新規な構成の提案に至った1つの要因である。   In the light leakage component 10 of the present invention, the prototype was made without fixing the optical fiber 11a in the same manner as the optical fiber connector at the beginning, but in this case, the pre-length changes due to repeated measurement. As a result, it has been found that this causes bending of the optical fiber 11a. Therefore, when the optical fiber strands 11a are tried to be fixed at the optical fiber fixing portions 15 on both sides inside the light leakage component 10, the occurrence of bending of the optical fiber strands 11a is fundamentally suppressed. This is one factor that led to the proposal of a new configuration of the optical transmission discriminator of the present invention.

また、本実施形態による光伝送判別器によれば、光漏洩部品10によって保持された光ファイバ素線11aは、嵌合時、光検出器30に備えられた光ファイバ押さえ58により、光漏洩部品10に備えられた湾曲形成部17に押さえ付けられることで、湾曲形成部17の湾曲形状に沿って湾曲させられ、光伝送路湾曲部を形成する。そして、この光伝送路湾曲部から漏洩した光信号が、光伝送判別に供される。   Further, according to the optical transmission discriminator according to the present embodiment, the optical fiber 11a held by the light leakage component 10 is fitted into the light leakage component by the optical fiber retainer 58 provided in the photodetector 30 when fitted. By being pressed down by the curve forming portion 17 provided in 10, the curve forming portion 17 is bent along the curve shape of the curve forming portion 17 to form an optical transmission line bending portion. The optical signal leaked from the curved portion of the optical transmission path is used for optical transmission discrimination.

このように湾曲形成部17が光漏洩部品10に備えられることで、予長を持って光ファイバ固定部15間に遊動自在に保持された光コード11の被覆除去部分としての光ファイバ素線11aは、非嵌合時の湾曲方向が制限されるため、嵌合時に光ファイバ素線11aが所定の位置に導くことが容易になるという利点を有している。   Thus, by providing the light leakage component 10 with the curve forming portion 17, the optical fiber 11 a as a coating removal portion of the optical cord 11 that is held freely between the optical fiber fixing portions 15 with a pre-length. Since the bending direction at the time of non-fitting is limited, it has an advantage that the optical fiber 11a can be easily guided to a predetermined position at the time of fitting.

また、湾曲形成部17を光漏洩部品本体14に一体化して構成することで、嵌合時に僅かな段差が発生し、光ファイバ素線11aが屈曲することを未然に防ぐ効果がある。   In addition, by forming the bending portion 17 integrally with the light leakage component main body 14, there is an effect that a slight step is generated at the time of fitting and the optical fiber 11 a is prevented from being bent.

また、光ファイバ押さえ58を光検出器30に備えることで、光漏洩部品10の小型化、低価格化が可能になる。   Further, by providing the optical fiber holder 58 in the photodetector 30, the light leakage component 10 can be reduced in size and price.

また、本実施形態による光伝送判別器では、一対の光ファイバ固定部15間の光ファイバ素線11aは、長さが嵌合時の湾曲構造により決定される長さに設定され、それにより決定される余長を持って光ファイバ固定部15間に遊動自在に保持されるため、光ファイバ素線11aの予長が最適値に設定され、光ファイバ素線11aが光ファイバ固定部15間に遊動自在に適切に保持固定されることにより、嵌合時に光ファイバ素線11aに伸張応力や圧縮応力が生じない構造となる特徴を有する。また、必要最小限の余長が確保されるため、非嵌合時に曲げ等により生じる損失の発生が効果的に抑制させることが可能となる。   In the optical transmission discriminator according to the present embodiment, the length of the optical fiber 11a between the pair of optical fiber fixing portions 15 is set to a length determined by the curved structure at the time of fitting. Therefore, the pre-length of the optical fiber 11a is set to an optimum value, and the optical fiber 11a is placed between the optical fiber fixing portions 15. By being appropriately held and fixed so as to be freely movable, the optical fiber 11a has a structure that does not generate a tensile stress or a compressive stress during fitting. In addition, since the necessary minimum extra length is ensured, it is possible to effectively suppress the occurrence of loss caused by bending or the like when not fitted.

また、本実施形態による光伝送判別器は、湾曲形成部17の曲率半径が1.5mm以上で、かつ5.5mm以下であるため、湾曲により生じる挿入損失の波長依存性を最小限に抑制することが可能となり、長波長側での挿入損失を低く抑えたままで、短波長側での検出可能な信号光強度の最低限度を低く保つことが可能となるため、光伝送判別器の適用範囲が従来に無く広く確保される。   Further, in the optical transmission discriminator according to the present embodiment, since the radius of curvature of the bending portion 17 is 1.5 mm or more and 5.5 mm or less, the wavelength dependency of insertion loss caused by the bending is minimized. This makes it possible to keep the minimum signal light intensity detectable on the short wavelength side low while keeping the insertion loss on the long wavelength side low. Widely secured than ever before.

また、本実施形態による光伝送判別器では、光ファイバ処理領域18が、湾曲形成部17に連続して形成され、嵌合時に前記被覆除去部が湾曲形成部17の湾曲方向と反対に湾曲される光ファイバ折り返し部19と、この光ファイバ折り返し部19と光ファイバ固定部15との間に形成され、嵌合時に光ファイバ固定部15に保持された被覆除去部としての光ファイバ素線11aの一部を光ファイバ固定部15から屈曲することなく直線状に保持し、かつ非嵌合時に被覆除去部としての光ファイバ素線11aが湾曲構造を形成する空間の一部となる、所定長さの光ファイバ整列領域を平坦部20として備える。   Further, in the optical transmission discriminator according to the present embodiment, the optical fiber processing region 18 is formed continuously with the curve forming portion 17, and the covering removal portion is bent opposite to the curve direction of the curve forming portion 17 during fitting. Of the optical fiber strand 11a as a coating removal portion formed between the optical fiber return portion 19 and the optical fiber return portion 19 and held by the optical fiber fixation portion 15 when fitted. A predetermined length that holds a part of the optical fiber fixing part 15 in a straight line without being bent, and the optical fiber 11a serving as a sheath removal part forms a part of a space that forms a curved structure when not fitted. The optical fiber alignment region is provided as the flat portion 20.

このため、嵌合時における一対の光ファイバ固定部15間の光ファイバ素線11aは、湾曲形成部17と光ファイバ押さえ58とにより強制的に湾曲形成部17の湾曲形状に沿った形状に変形させられるとともに、光ファイバ折り返し部19で折り返され、更に、各平坦部20における各光ファイバ素線11aは直線状に近い状態で保持される。従って、嵌合時に光ファイバ素線11aに局所的な屈曲や応力の発生を防ぎ易くなり、必要外の光伝送損失の発生を効果的に抑制させることが可能となる。   For this reason, the optical fiber 11a between the pair of optical fiber fixing portions 15 at the time of fitting is forcibly deformed into a shape along the curved shape of the curved forming portion 17 by the curved forming portion 17 and the optical fiber presser 58. In addition, each optical fiber 11a in each flat portion 20 is held in a state close to a straight line. Therefore, it becomes easy to prevent local bending and stress from occurring in the optical fiber 11a during fitting, and it is possible to effectively suppress the occurrence of unnecessary optical transmission loss.

一方、非嵌合時における一対の光ファイバ固定部15間の光ファイバ素線11aは、それらの応力から解放され、所定の予長を持った状態で両端が固定されているため、特定の曲率で湾曲したまま保持される。この時の湾曲曲率は、平坦部20にある光ファイバ素線11aの寄与により、湾曲形成部17や光ファイバ折り返し部19の湾曲曲率より十分に大きな曲率となる。従って、平坦部20は、伝送状態非判別時に、光漏洩部品10内の光ファイバ素線11aが過剰な湾曲を受けて光信号の挿入損失を生じさせることを安定的に防止する効果を発揮する。   On the other hand, the optical fiber 11a between the pair of optical fiber fixing portions 15 at the time of non-fitting is released from those stresses and is fixed at both ends with a predetermined pre-length. Is held curved. The curvature of curvature at this time is sufficiently larger than the curvature of curvature of the curvature forming portion 17 and the optical fiber folding portion 19 due to the contribution of the optical fiber 11a in the flat portion 20. Accordingly, the flat portion 20 exhibits an effect of stably preventing the optical fiber strand 11a in the light leakage component 10 from being excessively bent and causing an optical signal insertion loss when the transmission state is not determined. .

また、本実施形態による光伝送判別器によれば、嵌合時における光漏洩部品10内の一対の光ファイバ固定部15間で、光ファイバ素線11aは、図5に示すように、湾曲形成部17によって中央に形成させられる湾曲部の弧の中心角βが、この湾曲部の両側に光ファイバ折り返し部19で等しく形成させられる各湾曲部の弧の各中心角θの和に等しくなって、湾曲させられる。   Further, according to the optical transmission discriminator according to the present embodiment, the optical fiber strand 11a is formed between the pair of optical fiber fixing portions 15 in the light leakage component 10 at the time of fitting, as shown in FIG. The central angle β of the arc of the curved portion formed in the center by the portion 17 becomes equal to the sum of the central angles θ of the arcs of the curved portions formed on the both sides of the curved portion by the optical fiber folded portion 19 equally. Curved.

このため、伝送状態判別時における光漏洩部品10内で、光ファイバ折り返し部19で形成させられる各湾曲部の両外側の光ファイバ固定部15付近における光ファイバ素線11aは、一直線上に保持される。従って、両端の光コード11が一直線上に保持されるため、光漏洩部品10の小型化に寄与すると共に、取り扱いが容易となる。   For this reason, in the light leakage component 10 when determining the transmission state, the optical fiber 11a in the vicinity of the optical fiber fixing portions 15 on both outer sides of the curved portions formed by the optical fiber folded portion 19 is held in a straight line. The Accordingly, since the optical cords 11 at both ends are held in a straight line, the light leakage component 10 can be reduced in size and handled easily.

また、本実施形態による光伝送判別器によれば、遊動自在に固定された光ファイバ固定15部間の被覆除去部を形成する前記光ファイバ素線11aの非嵌合時における湾曲曲率が、被覆除去部を形成する前記光ファイバ素線11aの長期信頼性に規定された曲率で保持され、光ファイバ整列領域としての平坦部20の幅はその曲率から換算され、設定されている。このため、非嵌合時の光漏洩部品10の挿入損失の発生を高度に抑制することが可能となり、光ファイバ素線11aの機械的強度が長期間保証されるなど、光漏洩部品10の唯一の可動部である光ファイバ素線11aの長期信頼性が確保されるため、光漏洩部品10の長期信頼性に大きく寄与する。   Further, according to the optical transmission discriminator according to the present embodiment, the curvature of curvature when the optical fiber 11a that forms the sheath removal portion between the optical fiber fixing 15 portions that are freely movably fixed is not covered. The optical fiber strand 11a forming the removal portion is held at a curvature defined by the long-term reliability, and the width of the flat portion 20 as the optical fiber alignment region is set by converting from the curvature. For this reason, it becomes possible to highly suppress the occurrence of insertion loss of the light leaking component 10 when not fitted, and the mechanical strength of the optical fiber 11a is guaranteed for a long period of time. The long-term reliability of the optical fiber 11a, which is the movable part, is ensured, which greatly contributes to the long-term reliability of the light leakage component 10.

また、本実施形態による光伝送判別器では、光ファイバ押さえ58は、湾曲形成部17と嵌合する領域に、隙間として光ファイバ押え隙間部が形成され、嵌合時に、光ファイバ素線11aは、光ファイバ押さえ58が各光ファイバ折り返し部19の少なくとも一部と嵌合することで、湾曲形成部17によってその湾曲形状に沿って湾曲させられ光伝送路湾曲部を形成し、この光伝送路湾曲部は設計に沿った光挿入損失を発生させると共に、各光ファイバ折り返し部19の光ファイバ素線11aをこれらの形状に沿って変形させることができるので、湾曲形成部17以外の領域で光ファイバの伝送損失の増加を防ぐことができる。   Further, in the optical transmission discriminator according to the present embodiment, the optical fiber retainer 58 is formed with an optical fiber retainer gap as a gap in the region where the bend forming portion 17 is fitted. The optical fiber retainer 58 is fitted to at least a part of each optical fiber turn-back portion 19 to be bent along the curved shape by the bending forming portion 17 to form a light transmission path bending portion. The bending portion generates an optical insertion loss according to the design and can deform the optical fiber strands 11a of the respective optical fiber folded portions 19 along these shapes. An increase in fiber transmission loss can be prevented.

また、各光ファイバ押さえ58が光信号を透過しない材料で形成されている場合、光ファイバ押さえ58が湾曲形成部17との間に所定の隙間を形成する形状を有し、光伝送路湾曲部は光ファイバ押さえ58によって押さえられないため、光伝送路の外部に放射された光信号は光ファイバ押さえ58に遮られることなく、光検出器30の受光素子59で効率的に計測される。   In addition, when each optical fiber retainer 58 is formed of a material that does not transmit an optical signal, the optical fiber retainer 58 has a shape that forms a predetermined gap with the bend forming portion 17, and the optical transmission path curved portion Therefore, the optical signal emitted to the outside of the optical transmission line is not blocked by the optical fiber holder 58 and is efficiently measured by the light receiving element 59 of the photodetector 30.

また、本実施形態による光伝送判別器によれば、各前記光ファイバ折り返し部19の各光ファイバ押さえ58と嵌合する部分で、被覆除去部としての光ファイバ素線11aに接触する湾曲面の曲率半径rが湾曲形成部17の湾曲面の曲率半径Rの1.3倍以上であるため、伝送状態判別時における、光ファイバ折り返し部19での光ファイバ素線11aの曲げによる伝送損失の発生を最小限に抑えることが可能となり、光伝送状態への影響を最小限とすることが可能となる。但し、1.3倍は測定値より換算した最小限の値であり、本実施形態の場合はこれを2倍として、光ファイバ折り返し部19での伝送損失の発生を効果的に抑制した。   Further, according to the optical transmission discriminator according to the present embodiment, the curved surface that comes into contact with the optical fiber 11a serving as the coating removal portion at the portion that fits with each optical fiber retainer 58 of each of the optical fiber folded portions 19 is provided. Since the curvature radius r is 1.3 times or more of the curvature radius R of the curved surface of the curve forming portion 17, transmission loss occurs due to the bending of the optical fiber 11a at the optical fiber folded portion 19 when determining the transmission state. Can be minimized, and the influence on the optical transmission state can be minimized. However, 1.3 times is the minimum value converted from the measured value, and in the case of the present embodiment, this is doubled to effectively suppress the occurrence of transmission loss in the optical fiber folding section 19.

また、本実施形態による光伝送判別器によれば、湾曲形成部17の湾曲方向と反対に湾曲した、湾曲形成部17の湾曲に連続する湾曲面を持つ光ファイバ折り返し部19が、湾曲形成部17の両側の光ファイバ折り返し領域に形成され、その光ファイバ折り返し部19が嵌合時に光ファイバ押さえ58と対向して嵌合し、それらの間に被覆除去部としての光ファイバ素線11aの一部を安定的に保持することで、伝送状態判別時における光漏洩部品本体14内での光ファイバ素線11aの位置が安定し、光ファイバ固定部15間の光ファイバ素線11aの局所的な屈曲の発生を抑えることが可能となる。   In addition, according to the optical transmission discriminator according to the present embodiment, the optical fiber turning portion 19 having a curved surface that is curved opposite to the bending direction of the curved forming portion 17 and that is continuous with the curved shape of the curved forming portion 17 is provided. 17 is formed in the optical fiber folding region on both sides of the optical fiber, and the optical fiber folding part 19 is fitted to face the optical fiber holder 58 when fitted, and one of the optical fiber strands 11a serving as a coating removing part is interposed therebetween. By stably holding the part, the position of the optical fiber 11a in the light leakage component main body 14 at the time of transmission state determination is stabilized, and the local position of the optical fiber 11a between the optical fiber fixing parts 15 is stabilized. It becomes possible to suppress the occurrence of bending.

また、本実施形態による光伝送判別器は、有効深さが光ファイバ素線11aの外径±0.1mm以内で、有効幅が光ファイバ素線11aの外径以上でかつ受光素子59の受光面の幅以下の溝62が、湾曲形成部17または光ファイバ押さえ58または光ファイバ折り返し部19の少なくとも1箇所に光伝送路の長さ方向に形成されている。   The optical transmission discriminator according to the present embodiment has an effective depth within the outer diameter ± 0.1 mm of the optical fiber 11a, an effective width equal to or larger than the outer diameter of the optical fiber 11a, and the light receiving element 59. A groove 62 having a width equal to or smaller than the width of the surface is formed in the length direction of the optical transmission path in at least one portion of the bending portion 17, the optical fiber retainer 58, or the optical fiber folded portion 19.

このため、伝送状態判別時における一対の光ファイバ固定部15間の光ファイバ素線11aは、光ファイバ押さえ58に光伝送路の長さ方向に形成された溝62により、光ファイバ素線11aの光ファイバに側面から応力が加わることなく、かつ光ファイバと受光素子59との間の距離が増加することなく、光伝送路の長さ方向に整列させられる。このため、伝送状態判別時に光ファイバ素線11aに形成させられる湾曲部付近での光ファイバの位置を安定させることが可能となり、受光効率が位置的な要因で低下することが防げ、光ファイバ素線11aの湾曲部と受光素子59との光結合度を安定的に向上させることが可能となる。   For this reason, the optical fiber 11a between the pair of optical fiber fixing portions 15 at the time of determining the transmission state is formed by the groove 62 formed in the optical fiber retainer 58 in the length direction of the optical transmission line. The optical fibers are aligned in the length direction of the optical transmission line without applying stress from the side surface and without increasing the distance between the optical fiber and the light receiving element 59. For this reason, it becomes possible to stabilize the position of the optical fiber in the vicinity of the curved portion formed in the optical fiber strand 11a when determining the transmission state, and it is possible to prevent the light receiving efficiency from being lowered due to a positional factor. It is possible to stably improve the optical coupling degree between the curved portion of the line 11a and the light receiving element 59.

また、本実施形態による光伝送判別器は、湾曲形成部17または光ファイバ押さえ58または光ファイバ折り返し部19の少なくとも1箇所に光伝送路の長さ方向に形成されている溝の断面形状が左右対称なV溝を基本とする形状であり、かつその溝内面の少なくとも1部に光反射面が形成されていることを特徴とする。   Further, in the optical transmission discriminator according to the present embodiment, the cross-sectional shape of the groove formed in the length direction of the optical transmission path in at least one portion of the bending portion 17, the optical fiber retainer 58, or the optical fiber turn-back portion 19 is right and left. The shape is based on a symmetric V-groove, and a light reflecting surface is formed on at least a part of the inner surface of the groove.

この構成によれば、検出部の受光素子に対峙した光ファイバ表面から放射される漏洩光だけでなく、光ファイバ表面から、それに対して垂直な方向に放射される漏洩光が効率よく受光素子に到達するため、光検出効率が大幅に上昇するだけでなく、光検出効率の偏波依存性が大幅に解消され、光ファイバ中を伝送する光信号の偏波状態に依存することなく、再現性と安定性に優れた光検出特性を得ることが可能となる。   According to this configuration, not only the leaked light emitted from the surface of the optical fiber facing the light receiving element of the detection unit, but also the leaked light emitted from the surface of the optical fiber in a direction perpendicular to the optical fiber surface efficiently enters the light receiving element. Therefore, not only does the light detection efficiency increase significantly, but the polarization dependency of the light detection efficiency is greatly eliminated, and reproducibility is not dependent on the polarization state of the optical signal transmitted through the optical fiber. In addition, it is possible to obtain light detection characteristics with excellent stability.

また、本実施形態による光伝送判別器は、嵌合時に湾曲形成部17の湾曲形状に沿って湾曲させられた光伝送路湾曲部としての光ファイバ素線11aの表面と、受光素子59の受光面との最短距離が2mm以下であるため、伝送状態判別時における、光ファイバ素線11aの湾曲部と受光素子59との間の距離が最小限に抑えられ、光ファイバ素線11aの光伝送路湾曲部と受光素子59との光結合効率を向上させることが可能となる。   In addition, the optical transmission discriminator according to the present embodiment has the surface of the optical fiber 11a as the optical transmission line bending portion bent along the curved shape of the bending forming portion 17 at the time of fitting, and the light receiving element 59 receives light. Since the shortest distance to the surface is 2 mm or less, the distance between the curved portion of the optical fiber 11a and the light receiving element 59 when determining the transmission state is minimized, and the optical transmission of the optical fiber 11a is performed. It is possible to improve the optical coupling efficiency between the path bending portion and the light receiving element 59.

また、本実施形態による光伝送判別器は、光ファイバ押さえ58の受光素子59側の側面に、光信号を反射する光反射処理が施されているため、光信号の結合効率を向上させることが可能となる。   In addition, since the optical transmission discriminator according to the present embodiment is subjected to the light reflection process for reflecting the optical signal on the side surface of the optical fiber holder 58 on the light receiving element 59 side, the optical signal coupling efficiency can be improved. It becomes possible.

また、本実施形態による光伝送判別器によれば、操作レバー35aの未操作時に光漏洩部品10と光検出器30との嵌合が保持される操作機構により、嵌合時に光ファイバ押さえ58および湾曲形成部17に対する作用によって光ファイバ素線11aの一部に光伝送路湾曲部が形成され、光伝送路湾曲部に漏洩光が生じさせられて、漏洩光の計測が行われる。このため、光ファイバ押さえ58および湾曲形成部17により光ファイバ素線11aに湾曲部が形成されて行われる伝送状態の判別時には、操作機構が操作されないので、操作に起因して光ファイバ押さえ58と湾曲形成部17との相対位置が変化することはなく、光ファイバ押さえ58と湾曲形成部17との嵌合状態が安定し、漏洩光計測の再現性が向上する。従って、伝送状態判別時における光伝送路の挿入損失および光ファイバ素線11aの湾曲部と受光素子59との光結合度が安定し、人的な要因によって生じる漏洩光の計測値の差異を最小限に抑えることが可能となる。また、伝送状態判別時の挿入損失および光信号受信効率が長期的に安定するので、光伝送路中の光信号の中長期的な安定性を測定する光モニターとして、光伝送判別器を使用することが可能となる。   In addition, according to the optical transmission discriminator according to the present embodiment, the optical fiber holder 58 and the optical fiber presser 58 at the time of fitting are held by the operation mechanism that holds the fitting between the light leakage component 10 and the photodetector 30 when the operation lever 35a is not operated. The optical transmission line bending portion is formed in a part of the optical fiber 11a by the action on the bending forming portion 17, leakage light is generated in the optical transmission line bending portion, and leakage light is measured. For this reason, since the operation mechanism is not operated at the time of determining the transmission state performed by forming the bending portion in the optical fiber strand 11a by the optical fiber holding portion 58 and the bending forming portion 17, the optical fiber holding portion 58 is caused by the operation. The relative position with respect to the bending portion 17 does not change, the fitting state between the optical fiber retainer 58 and the bending portion 17 is stabilized, and the reproducibility of leakage light measurement is improved. Therefore, the insertion loss of the optical transmission line and the optical coupling degree between the curved portion of the optical fiber 11a and the light receiving element 59 at the time of determining the transmission state are stabilized, and the difference in the measured value of the leaked light caused by human factors is minimized. It becomes possible to limit to the limit. In addition, since the insertion loss and optical signal reception efficiency at the time of determining the transmission state are stable over the long term, an optical transmission discriminator is used as an optical monitor for measuring the medium to long-term stability of the optical signal in the optical transmission path. It becomes possible.

また、本実施形態による光伝送判別器によれば、光検出器30が検出部31と光検出器本体32とに分離され、光ファイバ素線11aの一部として形成された光伝送路湾曲部からの漏洩光を検出する受光素子59を光検出器本体32と別体の検出部31に構成することで、検出部31の大幅な小型化が可能となり、光伝送状態判別作業の作業性が大幅に向上する。また、光伝送路中の光信号の中長期的な安定性を測定する光モニターとして光伝送判別器が使用された場合、光伝送路近傍で光伝送判別器が占有する空間の体積が大幅に削減され、収納性、保持性に優れる光モニターが提供される。   Further, according to the optical transmission discriminator according to the present embodiment, the optical detector 30 is separated into the detector 31 and the optical detector main body 32, and the optical transmission line bending portion formed as a part of the optical fiber 11a. By configuring the light receiving element 59 for detecting the leaked light from the light detector main body 32 as a separate detection unit 31, the detection unit 31 can be greatly reduced in size, and the workability of the optical transmission state determination work is improved. Greatly improved. In addition, when an optical transmission discriminator is used as an optical monitor that measures the medium to long-term stability of optical signals in the optical transmission line, the volume of space occupied by the optical transmission discriminator in the vicinity of the optical transmission line is greatly increased. An optical monitor that is reduced and has excellent storage and retention is provided.

また、複数の光検出部31に対し、光検出器本体32を共有させることが可能となり、効率的な運用が可能になる。   Moreover, it becomes possible to share the photodetector main body 32 with respect to the plurality of photodetectors 31, and efficient operation becomes possible.

また、本実施形態では、光検出器30は、予め測定された光結合効率から測定値を光伝送路を伝送する信号光強度に換算する機能を有する。   In the present embodiment, the photodetector 30 has a function of converting the measured value into the signal light intensity transmitted through the optical transmission line from the optical coupling efficiency measured in advance.

本発明による光伝送判別器では、製造時に光結合特性を一定範囲内に特定することが可能となったため、伝送信号の強度を換算することが可能となった。また、本発明による光伝送判別器では、測定値の再現性、安定性に優れるため、信頼性に優れた測定を行うことが可能となった。   In the optical transmission discriminator according to the present invention, it is possible to specify the optical coupling characteristics within a certain range at the time of manufacture, so that the intensity of the transmission signal can be converted. In addition, the optical transmission discriminator according to the present invention is excellent in reproducibility and stability of measurement values, and thus can perform measurement with excellent reliability.

従来の心線対照器では測定対象となる光伝送路を特定することが出来ず、光結合度の再現性、安定性に劣るため、伝送信号の強度を換算することが出来なかった。この場合、測定値は作業者による人的要因もあり、検出器の測定値は更に信頼性に劣り、従って、強度を確保した対照光の有無のみを判断することが主な機能であった。   In the conventional optical fiber contrast device, the optical transmission line to be measured cannot be specified, and the reproducibility and stability of the optical coupling degree is inferior, so that the intensity of the transmission signal cannot be converted. In this case, the measurement value is also due to human factors by the operator, and the measurement value of the detector is further inferior in reliability. Therefore, the main function is to determine only the presence or absence of control light that ensures the intensity.

また、本実施形態では、光漏洩部品10は、予め測定された光結合効率の光漏洩部品による固体差を補正する補正値を示す識別コードが表記されていることを特徴とする。   Further, in the present embodiment, the light leakage component 10 is characterized in that an identification code indicating a correction value for correcting a solid difference due to a light leakage component having a light coupling efficiency measured in advance is described.

本発明による光伝送判別器では、識別コードを導入すれば、光ファイバ素線の被覆色の相違や光ファイバ素線の遮断波長等の相違や光ファイバ素線の被覆材料のメーカ間の相違等、様々な要因に起因する検出効率の光漏洩部品個体差の補正が可能になる。   In the optical transmission discriminator according to the present invention, if an identification code is introduced, a difference in the coating color of the optical fiber, a difference in the cutoff wavelength of the optical fiber, a difference between manufacturers of the coating material of the optical fiber, etc. Thus, it is possible to correct individual differences in light leakage components due to various factors.

また、本実施形態では、光検出器30は光線路モニター機能を有し、かつ光漏洩部品10を把持した状態で中長期的に保持されることを特徴とする。   Further, in the present embodiment, the photodetector 30 has an optical line monitoring function and is held in the middle and long term in a state where the light leakage component 10 is held.

本発明による光伝送判別器では、本光伝送路判別器を光伝送路の伝送特性の安定性等の健全性を調べることが可能となる。これにより、不測の伝送損失異常や瞬断、使用中の光源の出力安定性等をこれらの事態の発生とほぼ同時に解析することが可能となり、早期対応が可能となる。   In the optical transmission discriminator according to the present invention, the optical transmission path discriminator can check the soundness such as the stability of the transmission characteristics of the optical transmission path. As a result, it is possible to analyze an unexpected transmission loss abnormality, instantaneous interruption, output stability of the light source in use, etc. almost simultaneously with the occurrence of these situations, and early response is possible.

また、本実施形態では、光検出器30は心線対照機能を有し、かつ光漏洩部品10は最小の許容曲げ半径が5mm以下の光ファイバを用いた光ファイバコードに適用されることを特徴とする。   Further, in the present embodiment, the photodetector 30 has a core line contrast function, and the light leakage component 10 is applied to an optical fiber cord using an optical fiber having a minimum allowable bending radius of 5 mm or less. And

本発明による光伝送判別器では、光ファイバコードに対して、従来の心線対照器に比し各段に光検出効率に優れるため、従来の心線対照器では困難であったITU−T G.657.B3勧告に準拠する光ファイバなど、曲げに強く、最小の許容曲げ半径が5mm以下の光ファイバを用いた光ファイバコードに対しても心線対照が確実となる。更に、検出効率の波長依存性が大幅に抑制されるため、単一モード波長範囲のほぼ全域で低損失心線対照が可能になり、同時に活線判別も可能となるため、心線対照のために誤って現用線を断線させる事故を防ぐことが可能となる。   In the optical transmission discriminator according to the present invention, the optical fiber cord is superior in light detection efficiency at each stage as compared with the conventional optical fiber contrast device. . 657. The optical fiber cord using an optical fiber that is strong in bending and has a minimum allowable bending radius of 5 mm or less, such as an optical fiber that complies with the B3 recommendation, can be reliably controlled. Furthermore, since the wavelength dependence of detection efficiency is greatly suppressed, low loss core line contrast is possible in almost the entire range of the single mode wavelength range, and at the same time, live line discrimination is also possible. It is possible to prevent accidents that accidentally disconnect the working line.

また、本実施形態では、光伝送体である光コード11が光漏洩部品10を備えているため、本光伝送体を予め局舎、中継局等の必要な場所に配備することにより、本実施形態の光伝送判別器による光伝送判別が可能となる。   Further, in the present embodiment, since the optical cord 11 that is an optical transmission body includes the light leakage component 10, the present optical transmission body is installed in a necessary place such as a station building or a relay station in advance. The optical transmission discrimination by the optical transmission discriminator of the form becomes possible.

なお、本実施形態では、光漏洩部品10が光コード11に取付けられた構成を一例として説明したが、光ファイバ心線、光ケーブル等の他の光伝送体に取付けられる場合もあり、図3に示す態様に限定されることはない。また、光ファイバ素線11aの代わりに光ファイバ心線状態等で光漏洩部品10を構成する場合もあり、光漏洩部品10の内部に保持される光ファイバは光ファイバ素線11aのみに限定されるものではない。また、光ファイバ固定部15における光コード11の固定方法に接着剤を用いたが、かしめ等の方法を用いて固定してもよい。   In the present embodiment, the configuration in which the light leakage component 10 is attached to the optical cord 11 has been described as an example. However, the light leakage component 10 may be attached to another optical transmission body such as an optical fiber core or an optical cable. It is not limited to the mode shown. In some cases, the light leakage component 10 may be configured in an optical fiber core state or the like instead of the optical fiber strand 11a, and the optical fiber held inside the light leakage component 10 is limited to the optical fiber strand 11a only. It is not something. Moreover, although the adhesive was used for the fixing method of the optical cord 11 in the optical fiber fixing | fixed part 15, you may fix using methods, such as caulking.

光漏洩部品10内の光ファイバを光ファイバ心線とした場合は、光検出効率は低下するものの、光コードを加工して光漏洩部品10を取付ける作業が簡易になり、タイト構造の既に作成された既存の光ファイバコードへの適用(加工)が容易になるという利点を有する。   If the optical fiber in the light leakage component 10 is an optical fiber core, the light detection efficiency is reduced, but the work of processing the optical cord and mounting the light leakage component 10 is simplified, and a tight structure has already been created. In addition, there is an advantage that application (processing) to an existing optical fiber cord becomes easy.

また、本実施形態において光ファイバ押さえ58に施した光信号反射用の金属メッキは誘電体多層膜フィルタ等の他の方法で代用しても良い、光信号の反射処理を施さない場合もある。   Further, in this embodiment, the optical signal reflection metal plating applied to the optical fiber holder 58 may be replaced by another method such as a dielectric multilayer filter, or the optical signal reflection process may not be performed.

また、湾曲形成部17の表面に信号光の反射処理を施しても良い。この場合、光漏洩部品14の価格は上昇するが、光検出器30で検出する場合の光結合度が数dB向上する。   Further, the surface of the curve forming portion 17 may be subjected to a signal light reflection process. In this case, the price of the light leakage component 14 increases, but the degree of optical coupling when detected by the photodetector 30 is improved by several dB.

また、検出部31が光ファイバ折り返し部19を備えてもよい。光ファイバ折り返し部19は省略される場合もある。   Further, the detection unit 31 may include the optical fiber folding unit 19. The optical fiber turn-back portion 19 may be omitted.

また、本実施形態では、光ファイバ整列領域として平坦部20を設けた場合について説明したが、光ファイバ整列領域は、平坦部20である必要はない。例えば、光ファイバ折り返し部19と光ファイバ固定部15との間に空間として光ファイバ整列領域を設けてもよく、この場合も、その光ファイバ整列領域の効果は有効となる。   In this embodiment, the case where the flat portion 20 is provided as the optical fiber alignment region has been described. However, the optical fiber alignment region does not have to be the flat portion 20. For example, an optical fiber alignment region may be provided as a space between the optical fiber folded portion 19 and the optical fiber fixing portion 15, and in this case, the effect of the optical fiber alignment region is effective.

また、本実施形態においては、光漏洩部品10が湾曲形成部17を備え、検出部31が光ファイバ押さえ58を備えた場合について説明したが、この構成に限られることはない。例えば、検出部31が湾曲形成部17と光ファイバ押さえ58とを備えていてもよい。   Further, in the present embodiment, the case where the light leakage component 10 includes the curve forming unit 17 and the detection unit 31 includes the optical fiber retainer 58 has been described. However, the present invention is not limited to this configuration. For example, the detection unit 31 may include the curve forming unit 17 and the optical fiber holder 58.

この構成によれば、光漏洩部品10は、例えば湾曲形成部17と光ファイバ折り返し部19と平坦部20とを備えず、光漏洩部品10の両光ファイバ固定部15間には、非測定時、測定時を含め、光ファイバ素線11aを保持する構造は存在せず、中央の湾曲形成部17に相当する空間とその両側の光ファイバ処理領域18とから成る構成となる。この際、光漏洩部品10の光漏洩部品本体14は、図4(b)に示す光漏洩部品10の開口部22を挟む図の上下にある両側壁と、開口部22と、光ファイバ固定部15の部分とから構成されれば良く、最も単純な構造の1つとなる。   According to this configuration, the light leakage component 10 does not include, for example, the curve forming portion 17, the optical fiber turn-back portion 19, and the flat portion 20, and between the optical fiber fixing portions 15 of the light leakage component 10 is not measured. There is no structure for holding the optical fiber 11a, including the time of measurement, and it is configured by a space corresponding to the central curve forming portion 17 and optical fiber processing regions 18 on both sides thereof. At this time, the light leakage component main body 14 of the light leakage component 10 includes both upper and lower side walls, an opening 22 and an optical fiber fixing portion sandwiching the opening 22 of the light leakage component 10 shown in FIG. It is sufficient if it is composed of 15 parts, which is one of the simplest structures.

この場合、光漏洩部品10によって保持された光ファイバ素線11aは、光漏洩部品10と光検出器30との嵌合時、検出部31に備えられた光ファイバ押さえ58と、同じく検出部31に備えられた湾曲形成部17とに押さえ付けられることで、湾曲形成部17の湾曲形状に沿って湾曲させられる。そして、湾曲した光ファイバ素線11a(光伝送路湾曲部)から漏洩した光信号が、光伝送判別に供される。   In this case, the optical fiber 11a held by the light leakage component 10 is the same as the optical fiber retainer 58 provided in the detection unit 31 and the detection unit 31 when the light leakage component 10 and the photodetector 30 are fitted. By being pressed against the curve forming portion 17 provided in the curve, the curve forming portion 17 is bent along the curve shape. Then, the optical signal leaked from the curved optical fiber 11a (light transmission path curved portion) is used for optical transmission discrimination.

このように湾曲形成部17および光ファイバ押さえ58が共に検出部31に備えられることで、光コード11の被覆除去部分に湾曲部を形成させる部品の構造が単純になり、精密な加工精度が必要とされなくなる。このため、光伝送判別器の性能を維持したまま、更なる低価格化が可能となる。また、予め測定された光結合効率から測定値を光伝送路を伝送する信号光強度に換算する場合の換算精度の向上が可能となる。また、光伝送システムの光伝送路中に、光伝送路の被覆除去部分を保持・固定する構造および検出部31に嵌合する構造のみを備えた光漏洩部品10を予め設けておくことで、既に光伝送システムに設置されている光漏洩部品10を交換することなく、検出部31に備えられた湾曲形成部17を交換することにより、湾曲形成部17が有する湾曲形状を変更し、光伝送判別器の挿入損失や光信号受信効率等を適宜変更することが可能となる。また、光伝送判別器を光伝送路の中長期的な安定性を監視する光モニターに適用する場合、異なる要求仕様に柔軟に対応することが可能となる。   As described above, since both the bending portion 17 and the optical fiber retainer 58 are provided in the detection portion 31, the structure of the part for forming the bending portion in the coating removal portion of the optical cord 11 becomes simple, and precise machining accuracy is required. It will not be. For this reason, it is possible to further reduce the price while maintaining the performance of the optical transmission discriminator. Further, it is possible to improve the conversion accuracy when the measured value is converted into the signal light intensity transmitted through the optical transmission line from the optical coupling efficiency measured in advance. Further, by providing in advance in the optical transmission line of the optical transmission system, the light leakage component 10 having only the structure for holding and fixing the coating removal portion of the optical transmission line and the structure for fitting to the detection unit 31, By replacing the bending portion 17 provided in the detection unit 31 without replacing the light leakage component 10 already installed in the optical transmission system, the bending shape of the bending portion 17 is changed, and the optical transmission is performed. It becomes possible to appropriately change the insertion loss of the discriminator, the optical signal reception efficiency, and the like. In addition, when the optical transmission discriminator is applied to an optical monitor that monitors the medium to long-term stability of the optical transmission path, it is possible to flexibly cope with different required specifications.

また、本実施形態による光伝送判別器では、光ファイバ押さえ58は、湾曲形成部17の領域に、隙間として光ファイバ押え隙間部を形成したが、湾曲形成部17の領域に、光信号が通過する所定の光通過部材部として透明部材部と、嵌合時に光ファイバ折り返し領域の一部と嵌合する部分とを一体化した構造としても良い。この場合、嵌合時に光ファイバ折り返し領域の一部と嵌合する部分は光信号が通過しない材料を用いることにより、光伝送路湾曲部から漏洩した一部の光信号の受光素子59への受光効率を向上させることができる。但し、光信号が通過する光通過部材と光ファイバ折り返し領域の部材との境界に光信号反射処理を施す場合はこの限りではない。   In the optical transmission discriminator according to the present embodiment, the optical fiber retainer 58 forms an optical fiber retainer gap as a gap in the region of the curve forming portion 17, but an optical signal passes through the region of the curve forming portion 17. It is good also as a structure which integrated the transparent member part as a predetermined | prescribed light passage member part and the part fitted to a part of optical fiber folding | turning area | region at the time of a fitting. In this case, by using a material that does not allow the optical signal to pass through the part that fits with a part of the optical fiber folded region during fitting, a part of the optical signal leaking from the curved portion of the optical transmission path is received by the light receiving element 59. Efficiency can be improved. However, this is not the case when the optical signal reflection process is applied to the boundary between the light passing member through which the optical signal passes and the member in the optical fiber folding region.

また、スライドキャップ12は必ずしも一体とは限らず、測定時に光漏洩部品本体14から外す構造でなくてもよい。例えば、測定時には中央から2つに分離し、光漏洩部品本体14の側面をレールとしてスライドする構造とし、その分離した2つのスライドキャップ12が光ファイバ固定部15に留まり、その2つの何れか一方のスライドキャップ12を保持することにより、光漏洩部品10を検出部31の検出部外ケース34に挿入する手順を採用してもよい。また、スライドキャップ12は一体のまま、スライドした時に光ファイバ固定部15に止まり、そのスライドキャップ12を保持することにより、光漏洩部品10を検出部31の検出部外ケース34に挿入する手順を採用してもよい。   Further, the slide cap 12 is not necessarily integrated, and may not be structured to be removed from the light leakage component main body 14 at the time of measurement. For example, at the time of measurement, it is separated into two from the center, and the side of the light leakage component main body 14 is slid as a rail, and the two separated slide caps 12 stay on the optical fiber fixing portion 15, and either one of the two A procedure for inserting the light leakage component 10 into the outer case 34 of the detection unit 31 by holding the slide cap 12 may be adopted. Further, the slide cap 12 remains integrated with the optical fiber fixing portion 15 when it is slid, and the slide cap 12 is held to insert the light leakage component 10 into the detection portion outer case 34 of the detection portion 31. It may be adopted.

また、識別コードは英数字の2桁としたが、識別コードはこれに限定されるものではない。バーコード、2次元コード、ICタグ(RFID)等用いて自動読み取りに対応させても良い。この場合、識別コードは光漏洩部品本体に取付けても良い。識別コードに心線管理のデータを記入し、管理用タグとして心線管理システムに適用する場合もある。   Moreover, although the identification code is two alphanumeric characters, the identification code is not limited to this. Bar code, two-dimensional code, IC tag (RFID), etc. may be used to support automatic reading. In this case, the identification code may be attached to the light leakage component main body. In some cases, the core management data is written in the identification code and applied to the core management system as a management tag.

また、本実施形態による光伝送判別器は、有効深さが光ファイバ素線11aの外径±0.1mm以内で、有効幅が光ファイバ素線11aの外径以上でかつ受光素子59の受光面の幅以下の溝62が、光ファイバ押さえ58に形成されている場合について説明したが、この溝62は、湾曲形成部17または光ファイバ押さえ58または光ファイバ折り返し部19の少なくとも1箇所に光伝送路の長さ方向に形成されていればよい。   The optical transmission discriminator according to the present embodiment has an effective depth within the outer diameter ± 0.1 mm of the optical fiber 11a, an effective width equal to or larger than the outer diameter of the optical fiber 11a, and the light receiving element 59. Although the case where the groove 62 having a width equal to or smaller than the width of the surface is formed in the optical fiber retainer 58 has been described, the groove 62 does not transmit light to at least one portion of the curve forming portion 17 or the optical fiber retainer 58 or the optical fiber folded portion 19. What is necessary is just to be formed in the length direction of the transmission line.

また、光漏洩部品本体14の材質はABS樹脂に限定されず、無機材料や金属、ゴム、または他のプラスチックであってもよい。また、検出部31における受光素子59の数は、1個に限定されず、2個以上の場合もある。また、検出部31の検出部表示部36や光検出器本体32の表示パネル38は必ずしも必要とはならず、場合によっては省略することも可能である。   Further, the material of the light leakage component main body 14 is not limited to ABS resin, and may be an inorganic material, metal, rubber, or other plastic. Further, the number of the light receiving elements 59 in the detection unit 31 is not limited to one and may be two or more. Further, the detection unit display unit 36 of the detection unit 31 and the display panel 38 of the photodetector main body 32 are not necessarily required, and may be omitted depending on circumstances.

また、本実施形態では、光検出器30の検出部31のレバー35aの非操作時におけるレバー付き上ケース35の位置は、バネ54の付勢力によって光漏洩部品保持部55を覆う位置に保持されており、このバネ54の付勢力に抗してレバー35aが図の下方に移動操作されている状態でのみ、検出部外ケース34のレール用溝53に沿って図の下方に移動するが、例えばレバー35が最下方に移動された時にレバー付き上ケース35がその位置に保持され、再度レバー35が最下方に移動された時にレバー付き上ケースが光漏洩部品保持部55を覆う位置に保持されるような、非操作時の安定位置が2つある構造としても良い。   Further, in the present embodiment, the position of the upper case 35 with the lever when the lever 35 a of the detection unit 31 of the photodetector 30 is not operated is held at a position that covers the light leakage component holding unit 55 by the biasing force of the spring 54. However, only when the lever 35a is operated to move downward in the figure against the urging force of the spring 54, it moves downward in the figure along the rail groove 53 of the detection unit outer case 34. For example, when the lever 35 is moved to the lowermost position, the upper case 35 with the lever is held at that position, and when the lever 35 is moved again to the lowermost position, the upper case with the lever is held at a position that covers the light leakage component holding portion 55. It is good also as a structure with two stable positions at the time of non-operation.

本実施形態による光伝送判別器は、光ファイバ心線、光ファイバコード、光ファイバケーブル等へ適用することにより、光通信システム、光配線、光センサーシステム等に用いられる光伝送路の接続状態や活線状態等の伝送状態を判別するものとして、利用することができる。また、検出可能な最低信号光強度を改善した心線対照器(IDテスタ)の光検出器として使用することができる。   The optical transmission discriminator according to the present embodiment is applied to an optical fiber core wire, an optical fiber cord, an optical fiber cable, and the like, so that a connection state of an optical transmission path used in an optical communication system, an optical wiring, an optical sensor system, etc. It can be used to determine the transmission state such as a live line state. Further, it can be used as a photodetector of a cord contrast device (ID tester) with improved minimum detectable signal light intensity.

更に、伝送中の信号光強度を、伝送状態を保持したままで、簡易に測定する伝送光強度測定器や、光伝送路の中長期的な変化を監視する光モニターとしての適用が可能となる。   Furthermore, it is possible to apply as a transmission light intensity measuring device that simply measures the signal light intensity during transmission while maintaining the transmission state, and an optical monitor that monitors medium- to long-term changes in the optical transmission path. .

10…光漏洩部品
11…光コード
11a…光ファイバ素線
11b…コード外被
11c…2次被覆材
11d…抗張力体
12…スライドキャップ
13…エンドチューブ
14…光漏洩部品本体
15…光ファイバ固定部
17…湾曲形成部
18…光ファイバ処理領域
19…光ファイバ折り返し部
20…平坦部
21…凹部
22…開口部
23…斜面
24…挿入溝
30…光検出器
31…検出部
32…光検出器本体
33…同軸ケーブル
34…検出部外ケース
34a…突起
35…レバー付き上ケース
35a…レバー
36…検出部表示部
37…本体表示部
38…表示パネル
39…電源ボタン
40…感度補正ボタン
51…レール
52…側板
53…レール用溝
54…バネ
55…光漏洩部品保持部
56…凸部
57…光漏洩部品挿入用ガイド
58…光ファイバ押さえ
59…受光素子
60…制御回路基板
61…トリガースイッチ
62…溝
DESCRIPTION OF SYMBOLS 10 ... Light leaking part 11 ... Optical cord 11a ... Optical fiber strand 11b ... Cord jacket 11c ... Secondary coating | coated material 11d ... Strength body 12 ... Slide cap
DESCRIPTION OF SYMBOLS 13 ... End tube 14 ... Light leak component main body 15 ... Optical fiber fixing | fixed part 17 ... Curve formation part
DESCRIPTION OF SYMBOLS 18 ... Optical fiber process area | region 19 ... Optical fiber return part 20 ... Flat part 21 ... Concave part 22 ... Opening part
DESCRIPTION OF SYMBOLS 23 ... Slope 24 ... Insertion groove 30 ... Photodetector 31 ... Detection part 32 ... Photodetector main body 33 ... Coaxial cable 34 ... Detection part outer case 34a ... Protrusion 35 ... Upper case with lever 35a ... Lever 36 ... Detection part display part 37 ... Main body display unit 38 ... Display panel 39 ... Power button 40 ... Sensitivity correction button 51 ... Rail 52 ... Side plate 53 ... Rail groove 54 ... Spring 55 ... Light leakage component holding portion 56 ... Convex portion 57 ... For light leakage component insertion Guide 58 ... Optical fiber holder 59 ... Light receiving element 60 ... Control circuit board 61 ... Trigger switch 62 ... Groove

Claims (22)

光伝送路中に設置され、光ファイバ素線または光ファイバ心線のいずれか一方の状態にされた前記光伝送路の被覆除去部を保持する光漏洩部品と、前記光伝送路とは別個の、測定時に前記光漏洩部品を収納して保持し、更にその一部と互いに嵌合し、その嵌合状態を安定的に保持する保持構造を具備した光検出器とを備え、
前記光検出器は、嵌合時のみに前記光漏洩部品中の前記被覆除去部の一部を湾曲させることにより形成される光伝送路湾曲部から漏洩する伝送光信号を計測する受光素子を有し、
前記光漏洩部品および前記光検出器のいずれか一方に設けられた、嵌合時に前記光伝送路湾曲部の湾曲形状を形成する湾曲形成部と、
前記光漏洩部品および前記光検出器のいずれか一方に設けられた、前記被覆除去部の一部を嵌合時に前記湾曲形成部に押さえ付け、前記湾曲形成部の湾曲形状に沿って湾曲させる光ファイバ押さえを備え、
前記被覆除去部は、両端部が前記光漏洩部品の長さ方向の両側に構成された一対の光ファイバ固定部に固定されて、一対の前記光ファイバ固定部間に所定の余長を持って所定の長さで遊動自在に保持され、
前記光漏洩部品は、嵌合時の前記光伝送路湾曲部に相当する箇所とその両側の前記光ファイバ固定部との間に、前記被覆除去部を前記光伝送路湾曲部から前記光ファイバ固定部に導く光ファイバ処理領域を備えていることを特徴とする、前記光伝送路中を伝搬する光信号の伝送状態を判別する光伝送判別器。
A light leakage component that is installed in the optical transmission line and holds the coating removal portion of the optical transmission line that is in either the optical fiber strand or the optical fiber core, and the optical transmission line is separate A light detector having a holding structure for storing and holding the light leakage component at the time of measurement, further fitting with a part thereof, and stably holding the fitted state;
The photodetector has a light receiving element that measures a transmission optical signal leaking from an optical transmission path bending portion formed by bending a part of the coating removal portion in the light leakage component only at the time of fitting. And
A curve forming portion that is provided on any one of the light leakage component and the light detector and forms a curve shape of the light transmission path bending portion at the time of fitting;
Light that is provided on one of the light leakage component and the light detector, presses a part of the coating removal portion against the curve forming portion when fitted, and curves along the curve shape of the curve forming portion. With a fiber retainer,
The covering removal portion is fixed to a pair of optical fiber fixing portions whose both ends are configured on both sides in the length direction of the light leakage component, and has a predetermined extra length between the pair of optical fiber fixing portions. It is held freely for a predetermined length,
The light leakage component is configured such that the coating removal portion is fixed from the light transmission path curved portion to the optical fiber between a portion corresponding to the light transmission path curved portion at the time of fitting and the optical fiber fixing portions on both sides thereof. An optical transmission discriminator for discriminating a transmission state of an optical signal propagating in the optical transmission path, comprising an optical fiber processing region leading to a part.
前記光漏洩部品が前記湾曲形成部を備え、
前記光検出器が前記光ファイバ押さえを備えていることを特徴とする請求項1に記載の光伝送判別器。
The light leakage component includes the curve forming portion;
The optical transmission discriminator according to claim 1, wherein the optical detector includes the optical fiber retainer.
前記光検出器が前記湾曲形成部および前記光ファイバ押さえを備えていることを特徴とする請求項1に記載の光伝送判別器。   The optical transmission discriminator according to claim 1, wherein the optical detector includes the bending portion and the optical fiber retainer. 前記被覆除去部は、長さが前記光漏洩部品と前記光検出器との嵌合時の湾曲形状により決定される長さに設定され、それにより決定される余長を持って前記光ファイバ固定部間に遊動自在に保持されることを特徴とする請求項1から請求項3のいずれか1項に記載の光伝送判別器。   The length of the sheath removing unit is set to a length determined by a curved shape when the light leakage component and the photodetector are fitted, and the optical fiber fixing unit has a surplus length determined by the length. The optical transmission discriminator according to any one of claims 1 to 3, wherein the optical transmission discriminator is held freely between the sections. 前記湾曲形成部の曲率半径が1.5mm以上で、かつ5.5mm以下であることを特徴とする請求項1から請求項4のいずれか1項に記載の光伝送判別器。   The optical transmission discriminator according to any one of claims 1 to 4, wherein a curvature radius of the curved forming portion is 1.5 mm or more and 5.5 mm or less. 前記光ファイバ処理領域は、前記湾曲形成部に連続して形成され、嵌合時に前記被覆除去部が前記湾曲形成部の湾曲方向と反対に湾曲される光ファイバ折り返し領域と、前記光ファイバ折り返し領域と前記光ファイバ固定部との間に形成され、嵌合時に前記光ファイバ固定部に保持された前記被覆除去部の一部を前記光ファイバ固定部から屈曲することなく直線状に保持し、かつ非嵌合時に前記被覆除去部が湾曲構造を形成する空間の一部となる、所定の長さの光ファイバ整列領域を備えることを特徴とする請求項1から請求項5のいずれか1項に記載の光伝送判別器。   The optical fiber processing region is formed continuously with the curve forming portion, and the sheath removing portion is bent opposite to the bending direction of the curve forming portion when fitted, and the optical fiber folded region. A portion of the coating removal portion formed between the optical fiber fixing portion and the optical fiber fixing portion is held in a straight line without being bent from the optical fiber fixing portion. 6. The optical fiber alignment region according to claim 1, further comprising an optical fiber alignment region having a predetermined length that becomes a part of a space forming the curved structure when the cover is removed. The optical transmission discriminator described. 嵌合時に前記光伝送路湾曲部が形成する弧の中心角が、嵌合時のその両側の前記光ファイバ折り返し領域の前記被覆除去部が形成する弧の各中心角の和に等しいことを特徴とする請求項6に記載の光伝送判別器。   The center angle of the arc formed by the optical transmission line bending portion at the time of fitting is equal to the sum of the center angles of the arcs formed by the coating removal portions of the optical fiber folded region on both sides thereof at the time of fitting. The optical transmission discriminator according to claim 6. 遊動自在に固定された前記光ファイバ固定部間の前記被覆除去部の非嵌合時における湾曲曲率が、前記被覆除去部を形成する前記光ファイバ素線または前記光ファイバ心線の長期信頼性に規定された曲率で保持され、前記光ファイバ整列領域の幅はその曲率から換算され、設定されていることを特徴とする請求項6または請求項7に記載の光伝送判別器。   The curvature of curvature when the sheath removal portion is not fitted between the optical fiber fixing portions fixed in a freely movable manner contributes to the long-term reliability of the optical fiber strand or the optical fiber core wire forming the sheath removal portion. 8. The optical transmission discriminator according to claim 6, wherein the optical transmission discriminator is held at a prescribed curvature, and the width of the optical fiber alignment region is set by converting from the curvature. 前記光ファイバ押さえは、前記湾曲形成部と嵌合する領域に、光信号が通過する所定の光通過部材部または隙間として光ファイバ押え隙間部が形成され、かつ嵌合時に各前記光ファイバ折り返し領域の少なくとも一部と嵌合する構造を有することを特徴とする請求項6から請求項8のいずれか1項に記載の光伝送判別器。   The optical fiber retainer has an optical fiber holding gap portion formed as a predetermined light passing member portion or a gap through which an optical signal passes in a region fitted with the curve forming portion, and each optical fiber folded region at the time of fitting. 9. The optical transmission discriminator according to claim 6, wherein the optical transmission discriminator has a structure that fits at least a part of the optical transmission discriminator. 各前記光ファイバ折り返し領域の前記光ファイバ押さえと嵌合する部分で、前記被覆除去部に接触する曲面の曲率半径が、前記湾曲形成部の曲率半径の1.3倍以上であることを特徴とする請求項9に記載の光伝送判別器。   The curvature radius of the curved surface that contacts the coating removal portion at a portion that fits with the optical fiber retainer in each of the optical fiber folding regions is 1.3 times or more of the curvature radius of the curve forming portion. The optical transmission discriminator according to claim 9. 前記湾曲形成部の湾曲方向と反対に湾曲した、前記湾曲形成部の湾曲に連続する湾曲面を持つ光ファイバ折り返し部が、前記湾曲形成部の両側の前記光ファイバ折り返し領域に形成され、その光ファイバ折り返し部が嵌合時に前記光ファイバ押さえと対向して嵌合し、それらの間に前記被覆除去部の一部を安定的に保持することを特徴とする請求項9または請求項10に記載の光伝送判別器。   An optical fiber folded portion having a curved surface that is curved opposite to the bending direction of the curved forming portion and is continuous with the curved shape of the curved forming portion is formed in the optical fiber folded region on both sides of the curved forming portion, and the light 11. The fiber turn-back portion is fitted to face the optical fiber retainer when fitted, and a part of the coating removal portion is stably held between them. Optical transmission discriminator. 有効深さが前記被覆除去部の外径±0.1mm以内で、有効幅が前記被覆除去部の外径以上でかつ前記受光素子の受光面の幅以下の溝が、前記湾曲形成部または前記光ファイバ押さえまたは前記光ファイバ折り返し部の少なくとも1箇所に前記光伝送路の長さ方向に形成されていることを特徴とする請求項1から請求項11のいずれか1項に記載の光伝送判別器。   A groove having an effective depth within an outer diameter of ± 0.1 mm of the coating removal portion and an effective width equal to or larger than the outer diameter of the coating removal portion and the width of the light receiving surface of the light receiving element is the curve forming portion or the The optical transmission discrimination according to any one of claims 1 to 11, wherein the optical transmission discriminator is formed in at least one place of an optical fiber presser or the optical fiber folded portion in the length direction of the optical transmission path. vessel. 前記溝の断面形状が左右対称なV溝を基本とする形状であり、かつその溝内面の少なくとも1部に光反射面が形成されていることを特徴とする請求項12に記載の光伝送判別器。   13. The optical transmission discrimination according to claim 12, wherein the cross-sectional shape of the groove is a shape based on a symmetrical V-groove, and a light reflecting surface is formed on at least a part of the inner surface of the groove. vessel. 前記光漏洩部品と前記光検出器との嵌合時に前記湾曲形成部の湾曲形状に沿って湾曲させられた前記光伝送路湾曲部の表面と、前記受光素子の受光面との最短距離が2mm以下であることを特徴とする請求項1から請求項13のいずれか1項に記載の光伝送判別器。   The shortest distance between the surface of the light transmission path curved portion bent along the curved shape of the curve forming portion and the light receiving surface of the light receiving element when the light leakage component and the photodetector are fitted is 2 mm. The optical transmission discriminator according to any one of claims 1 to 13, wherein: 前記光ファイバ押えは、前記光通過部材部または前記光ファイバ押え隙間部の前記光ファイバ折り返し領域側の側面の少なくとも一部に光信号を前記受光素子側に反射する光反射面が形成されていることを特徴とする請求項9から請求項11のいずれか1項に記載の光伝送判別器。   The optical fiber retainer is formed with a light reflecting surface that reflects an optical signal toward the light receiving element on at least a part of a side surface of the light passage member portion or the optical fiber retainer gap portion on the optical fiber return region side. 12. The optical transmission discriminator according to claim 9, wherein the optical transmission discriminator is any one of claims 9 to 11. 未操作時に、前記光漏洩部品と前記光検出器との嵌合が保持される操作機構を備えることを特徴とする請求項1から請求項15のいずれか1項に記載の光伝送判別器。   The optical transmission discriminator according to any one of claims 1 to 15, further comprising an operation mechanism that holds a fitting between the light leakage component and the photodetector when not operated. 前記光検出器は、前記受光素子を含む検出部と、前記受光素子で計測される光信号の伝送状態判別の測定の制御を行う制御回路を含む光検出器本体とに分離されていることを特徴とする請求項1から請求項16のいずれか1項に記載の光伝送判別器。   The photodetector is separated into a detection unit including the light receiving element and a photodetector main body including a control circuit for controlling measurement of transmission state determination of an optical signal measured by the light receiving element. The optical transmission discriminator according to any one of claims 1 to 16, characterized in that: 前記光検出器は、予め測定された光結合効率から測定値を光伝送路を伝送する信号光強度に換算する機能を有することを特徴とする請求項1から請求項17のいずれか1項に記載の光伝送判別器。   The said photodetector has a function which converts a measured value into the signal light intensity which transmits an optical transmission line from the optical coupling efficiency measured previously, The any one of Claims 1-17 characterized by the above-mentioned. The optical transmission discriminator described. 前記光漏洩部品は、予め測定された光結合効率の光漏洩部品による固体差を補正する補正値を示す識別コードが表記されていることを特徴とする請求項18に記載の光伝送判別器。   19. The optical transmission discriminator according to claim 18, wherein the light leakage component is labeled with an identification code indicating a correction value for correcting a solid difference due to the light leakage component having a light coupling efficiency measured in advance. 前記光検出器は光線路モニター機能を有し、かつ光漏洩部品を把持した状態で中長期的に保持されることを特徴とする請求項1から請求項19のいずれか1項に記載の光伝送判別器。   The light according to any one of claims 1 to 19, wherein the photodetector has an optical line monitoring function and is held for a long period in a state where a light leakage component is held. Transmission discriminator. 前記光検出器は心線対照機能を有し、かつ前記光漏洩部品は最小の許容曲げ半径が5 mm以下の光ファイバを用いた光ファイバコードに適用されることを特徴とする請求項1から請求項20のいずれか1項に記載の光伝送判別器。   2. The optical detector according to claim 1, wherein the photodetector has a core contrast function, and the light leakage component is applied to an optical fiber cord using an optical fiber having a minimum allowable bending radius of 5 mm or less. The optical transmission discriminator according to claim 20. 前記光伝送路を形成する光伝送体であって、その少なくとも一部に請求項1から請求項8、または請求項10から請求項13、または請求項19から請求項21のいずれか1項に記載の光漏洩部品が備えられていることを特徴とする光伝送体。   An optical transmission body forming the optical transmission path, wherein at least a part of the optical transmission body is defined in any one of claims 1 to 8, or 10 to 13, or 19 to 21. An optical transmission body comprising the light leakage component described above.
JP2011256259A 2011-11-24 2011-11-24 Optical transmission discriminator and optical transmission body to which the same is applied Active JP5778008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011256259A JP5778008B2 (en) 2011-11-24 2011-11-24 Optical transmission discriminator and optical transmission body to which the same is applied

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011256259A JP5778008B2 (en) 2011-11-24 2011-11-24 Optical transmission discriminator and optical transmission body to which the same is applied

Publications (2)

Publication Number Publication Date
JP2013108941A true JP2013108941A (en) 2013-06-06
JP5778008B2 JP5778008B2 (en) 2015-09-16

Family

ID=48705824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011256259A Active JP5778008B2 (en) 2011-11-24 2011-11-24 Optical transmission discriminator and optical transmission body to which the same is applied

Country Status (1)

Country Link
JP (1) JP5778008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141245A (en) * 2014-01-27 2015-08-03 日本電信電話株式会社 Optical fiber lateral input/output device
CN108710181A (en) * 2018-05-29 2018-10-26 南京光金通信科技有限公司 A kind of low-loss detection light extracting method and take ray machine structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061398A (en) * 2002-07-31 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Light receiver for optical signal for collating coated optical fiber ribbon and using method
JP2009257833A (en) * 2008-04-14 2009-11-05 Hokkaido Electric Power Co Inc:The Optical transmission apparatus, optical transmission discriminator used for optical transmission apparatus, and optical transmission management system using optical transmission apparatus and optical transmission discriminator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061398A (en) * 2002-07-31 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Light receiver for optical signal for collating coated optical fiber ribbon and using method
JP2009257833A (en) * 2008-04-14 2009-11-05 Hokkaido Electric Power Co Inc:The Optical transmission apparatus, optical transmission discriminator used for optical transmission apparatus, and optical transmission management system using optical transmission apparatus and optical transmission discriminator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141245A (en) * 2014-01-27 2015-08-03 日本電信電話株式会社 Optical fiber lateral input/output device
CN108710181A (en) * 2018-05-29 2018-10-26 南京光金通信科技有限公司 A kind of low-loss detection light extracting method and take ray machine structure
CN108710181B (en) * 2018-05-29 2023-11-14 南京锦龙装饰工程有限公司 Low-loss detection light extraction method and light extraction mechanism

Also Published As

Publication number Publication date
JP5778008B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
US11022520B2 (en) Optical test instrument with removable cartridge
EP1960815B1 (en) Apparatus and methods for verifying an acceptable splice termination
EP1977279B1 (en) Installation tool with integrated visual fault indicator for field-installable mechanical splice connector
US10509185B2 (en) Optical connector with photodetector, adaptor for optical connector, and system
US7192195B2 (en) Methods and apparatus for estimating optical insertion loss
US10241002B2 (en) Optical fiber test apparatus with combined light measurement and fault detection
US20190052357A1 (en) Apparatus for monitoring fiber signal traffic at a fiber connector
US11726002B2 (en) Optical test instrument with removable cartridge
JP2007085934A (en) Optical transmission path discriminating device, optical termination tray using the same, optical termination unit, optical termination device, and optical transmission path control system
JP5778008B2 (en) Optical transmission discriminator and optical transmission body to which the same is applied
JP5734552B2 (en) Optical detector and optical transmission system using the same
JP2009014681A (en) Hot-line detector for optical fiber, and optical termination box
JP5203020B2 (en) Optical transmission equipment, optical transmission discriminator used in the optical transmission equipment, and optical transmission management system using these optical transmission equipment and optical transmission discriminator
US7825365B2 (en) Fiber-optic harness testing apparatus and related methods
US20110096563A1 (en) Method, device, and system for controlling encircled flux
KR200453204Y1 (en) Monitoring apparatus for optical communication connector mounted on optical line
CN220732774U (en) Optical fiber on-off detector
JP5203021B2 (en) Optical transmission line discrimination device, optical transmission device using the same, and optical transmission line management system using the same
JP2004061398A (en) Light receiver for optical signal for collating coated optical fiber ribbon and using method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150708

R150 Certificate of patent or registration of utility model

Ref document number: 5778008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250