JP2013108600A - Friction roller type speed reducer - Google Patents

Friction roller type speed reducer Download PDF

Info

Publication number
JP2013108600A
JP2013108600A JP2011255855A JP2011255855A JP2013108600A JP 2013108600 A JP2013108600 A JP 2013108600A JP 2011255855 A JP2011255855 A JP 2011255855A JP 2011255855 A JP2011255855 A JP 2011255855A JP 2013108600 A JP2013108600 A JP 2013108600A
Authority
JP
Japan
Prior art keywords
roller
annular
annular roller
peripheral surface
sun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011255855A
Other languages
Japanese (ja)
Other versions
JP5849645B2 (en
Inventor
Ichiu Tanaka
一宇 田中
Yasuyuki Matsuda
靖之 松田
Hiroyasu Yoshioka
宏泰 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011255855A priority Critical patent/JP5849645B2/en
Publication of JP2013108600A publication Critical patent/JP2013108600A/en
Application granted granted Critical
Publication of JP5849645B2 publication Critical patent/JP5849645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a structure, with which repair and replacement work can be easily performed when an annular roller is damaged, in a friction roller type speed reducer of a type in which the annular roller rotates.SOLUTION: The annular roller 5b and an output shaft 3b are connected with a connection bracket 30 to enable synchronized rotation. A holding tube part 32 of the connection bracket 30 is disposed around the annular roller 5b. The holding tube part 32 and the annular roller 5b are coupled enabling torque transmission, by engaging a recessed part 35 formed on an inner circumferential surface of the holding tube part 32 and a protrusion 37 formed on the outer circumferential surface of the annular roller 5b. Further, a retaining ring 43 prevents the annular roller 5b from exiting from the holding tube part 32.

Description

この発明は、例えば電気自動車の駆動系に組み込んだ状態で、電動モータから駆動輪にトルクを伝達する、摩擦ローラ式減速機の改良に関する。   The present invention relates to an improvement of a friction roller type speed reducer that transmits torque from an electric motor to driving wheels in a state where the electric motor is incorporated in a driving system of an electric vehicle, for example.

[従来技術の説明]
近年普及し始めている電気自動車の利便性を向上させるべく、充電1回当りの走行可能距離を長くする為に、電動モータの効率を向上させる事が重要である。この効率を向上させるには、高速回転する小型の電動モータを使用し、この電動モータの出力軸の回転を減速してから駆動輪に伝達する事が効果がある。この場合に使用する減速機のうち、少なくとも前記電動モータの出力軸に直接繋がる第一段目の減速機は、運転速度が非常に速くなるので、運転時の振動及び騒音を抑える為に、摩擦ローラ式減速機を使用する事が考えられる。この様な場合に使用可能な摩擦ローラ式減速機として、例えば特許文献1〜3に記載されたものが知られている。このうちの特許文献3に記載された従来構造に就いて、図21〜23により説明する。
[Description of prior art]
In order to improve the convenience of electric vehicles that have begun to spread in recent years, it is important to improve the efficiency of the electric motor in order to increase the travelable distance per charge. In order to improve this efficiency, it is effective to use a small electric motor that rotates at high speed, and to reduce the rotation of the output shaft of this electric motor before transmitting it to the drive wheels. Of the speed reducers used in this case, at least the first stage speed reducer directly connected to the output shaft of the electric motor has a very high operating speed, so friction and noise during operation can be reduced. It is conceivable to use a roller speed reducer. As a friction roller type speed reducer that can be used in such a case, for example, those described in Patent Documents 1 to 3 are known. Of these, the conventional structure described in Patent Document 3 will be described with reference to FIGS.

この摩擦ローラ式減速機1は、入力軸2と、出力軸3と、太陽ローラ4と、環状ローラ5と、それぞれが中間ローラである複数個の遊星ローラ6、6と、ローディングカム装置7とを備える。
このうちの太陽ローラ4は、軸方向に分割された1対の太陽ローラ素子8a、8bを前記入力軸2の周囲に、互いの先端面同士の間に隙間を介在させた状態で互いに同心に、且つ、このうちの太陽ローラ素子8aを前記入力軸2に対する相対回転を可能に配置して成る。前記両太陽ローラ素子8a、8bの外周面は、それぞれの先端面に向かうに従って外径が小さくなる方向に傾斜した傾斜面であって、これら両傾斜面を転がり接触面としている。従ってこの転がり接触面の外径は、軸方向中間部で小さく、両端部に向かうに従って大きくなる。
The friction roller speed reducer 1 includes an input shaft 2, an output shaft 3, a sun roller 4, an annular roller 5, a plurality of planetary rollers 6 and 6, each of which is an intermediate roller, a loading cam device 7, Is provided.
Among these, the sun roller 4 is concentric with each other with a pair of sun roller elements 8a and 8b divided in the axial direction around the input shaft 2 and with a gap interposed between the tip surfaces of each other. Of these, the sun roller element 8a is arranged so as to be rotatable relative to the input shaft 2. The outer peripheral surfaces of the two sun roller elements 8a and 8b are inclined surfaces that are inclined in a direction in which the outer diameter becomes smaller toward the respective front end surfaces, and these inclined surfaces serve as rolling contact surfaces. Therefore, the outer diameter of this rolling contact surface is small at the axially intermediate portion and becomes larger toward both ends.

又、前記環状ローラ5は、全体を円環状としたもので、前記太陽ローラ4の周囲にこの太陽ローラ4と同心に配置した状態で、図示しないハウジング等の固定の部分に支持固定している。又、前記環状ローラ5の内周面は、軸方向中央部に向かうに従って内径が大きくなる方向に傾斜した転がり接触面としている。
又、前記各遊星ローラ6、6は、前記太陽ローラ4の外周面と前記環状ローラ5の内周面との間の環状空間9の円周方向複数箇所に配置している。前記各遊星ローラ6、6は、それぞれが前記入力軸2及び前記出力軸3と平行に配置された、自転軸である遊星軸10、10の周囲に、ラジアルニードル軸受を介して、回転自在に支持している。これら各遊星軸10、10の基端部は、前記出力軸3の基端部に結合固定された、支持フレームであるキャリア11に、支持固定されている。前記各遊星ローラ6、6の外周面は、母線形状が部分円弧状の凸曲面で、それぞれ前記太陽ローラ4の外周面と前記環状ローラ5の内周面とに転がり接触している。
The annular roller 5 has a circular shape as a whole, and is supported and fixed to a fixed portion such as a housing (not shown) in a state of being arranged concentrically with the sun roller 4 around the sun roller 4. . The inner peripheral surface of the annular roller 5 is a rolling contact surface inclined in a direction in which the inner diameter increases toward the axial center.
The planetary rollers 6 and 6 are disposed at a plurality of locations in the circumferential direction of the annular space 9 between the outer peripheral surface of the sun roller 4 and the inner peripheral surface of the annular roller 5. The planetary rollers 6, 6 are rotatable around planetary shafts 10, 10, which are rotation shafts, which are arranged in parallel with the input shaft 2 and the output shaft 3, respectively, via radial needle bearings. I support it. The base end portions of the planetary shafts 10 and 10 are supported and fixed to a carrier 11 that is a support frame and is fixedly coupled to the base end portion of the output shaft 3. The outer peripheral surfaces of the planetary rollers 6, 6 are convex curved surfaces having a partial arc shape on the generatrix, and are in rolling contact with the outer peripheral surface of the sun roller 4 and the inner peripheral surface of the annular roller 5, respectively.

更に、前記ローディングカム装置7は、一方の太陽ローラ素子8aと、前記入力軸2との間に設けている。この為に、この入力軸2の中間部に、止め輪12により支え環13を係止し、この支え環13と前記一方の太陽ローラ素子8aとの間に、この支え環13の側から順番に、皿ばね14と、カム板15と、複数個の玉16、16とを設けている。そして、互いに対向する、前記一方の太陽ローラ素子8aの基端面と前記カム板15の片側面との、それぞれ円周方向複数箇所ずつに、被駆動側カム面17、17と駆動側カム面18、18とを設けている。これら各カム面17、18はそれぞれ、軸方向に関する深さが円周方向に関して中央部で最も深く、同じく両端部に向かうに従って漸次浅くなる形状を有する。   Further, the loading cam device 7 is provided between one sun roller element 8 a and the input shaft 2. For this purpose, a support ring 13 is locked to the intermediate portion of the input shaft 2 by a retaining ring 12, and the support ring 13 and the one sun roller element 8a are arranged in this order from the support ring 13 side. A disc spring 14, a cam plate 15, and a plurality of balls 16, 16 are provided. Then, the driven cam surfaces 17 and 17 and the driving cam surface 18 are respectively provided at a plurality of circumferential positions on the base end surface of the one sun roller element 8a and the one side surface of the cam plate 15 facing each other. , 18 are provided. Each of the cam surfaces 17 and 18 has a shape in which the depth in the axial direction is deepest in the central portion in the circumferential direction, and gradually becomes shallower toward both ends.

この様なローディングカム装置7は、前記入力軸2が停止している状態では、前記各玉16、16が、図23の(A)に示す様に、前記各カム面17、18の最も深くなった部分に位置する。この状態では、前記皿ばね14の弾力により、前記一方の太陽ローラ素子8aを前記他方の太陽ローラ素子8bに向け押圧する。これに対して、前記入力軸2が回転すると、前記各玉16、16が、図23の(B)に示す様に、前記各カム面17、18の浅くなった部分に移動する。そして、前記一方の太陽ローラ素子8aと前記カム板15との間隔を拡げ、前記一方の太陽ローラ素子8aを前記他方の太陽ローラ素子8bに向け押圧する。この結果、この一方の太陽ローラ素子8aは前記他方の太陽ローラ素子8bに向け、前記皿ばね14の弾力と、前記各カム面17、18に対して前記各玉16、16が乗り上げる事により発生する推力とのうちの、大きな方の力で押圧されつつ回転駆動される。   In such a loading cam device 7, when the input shaft 2 is stopped, the balls 16, 16 are deepest on the cam surfaces 17, 18 as shown in FIG. Located in the part. In this state, the one sun roller element 8a is pressed toward the other sun roller element 8b by the elasticity of the disc spring 14. On the other hand, when the input shaft 2 rotates, the balls 16 and 16 move to shallow portions of the cam surfaces 17 and 18 as shown in FIG. Then, the distance between the one sun roller element 8a and the cam plate 15 is increased, and the one sun roller element 8a is pressed toward the other sun roller element 8b. As a result, the one sun roller element 8a is generated by the elasticity of the disc spring 14 and the balls 16, 16 riding on the cam surfaces 17, 18 toward the other sun roller element 8b. It is driven to rotate while being pressed by the larger force of the thrust to be applied.

上述の様な摩擦ローラ式減速機1の運転時には、前記ローディングカム装置7が発生する軸方向の推力により、前記両太陽ローラ素子8a、8bの間隔が縮まる。そして、これら両太陽ローラ素子8a、8bにより構成される前記太陽ローラ4の外周面と、前記各遊星ローラ6、6の外周面との転がり接触部の面圧が上昇する。この面圧上昇に伴ってこれら各遊星ローラ6、6が、前記太陽ローラ4及び前記環状ローラ5の径方向に関して外方に押される。すると、この環状ローラ5の内周面と前記各遊星ローラ6、6の外周面との転がり接触部の面圧も上昇する。この結果、前記入力軸2と前記出力軸3との間に存在する、動力伝達に供されるべき、それぞれがトラクション部である複数の転がり接触部の面圧が、これら両軸2、3同士の間で伝達すべきトルクの大きさに応じて上昇する。   During operation of the friction roller type speed reducer 1 as described above, the distance between the two sun roller elements 8a and 8b is reduced by the axial thrust generated by the loading cam device 7. And the surface pressure of the rolling contact portion between the outer peripheral surface of the sun roller 4 constituted by both the sun roller elements 8a and 8b and the outer peripheral surface of the planetary rollers 6 and 6 increases. As the surface pressure increases, the planetary rollers 6 and 6 are pushed outward in the radial direction of the sun roller 4 and the annular roller 5. Then, the surface pressure of the rolling contact portion between the inner peripheral surface of the annular roller 5 and the outer peripheral surfaces of the planetary rollers 6 and 6 also increases. As a result, the surface pressures of the plurality of rolling contact portions, which are provided between the input shaft 2 and the output shaft 3 and are to be used for power transmission, each of which is a traction portion, are determined by It rises according to the magnitude of the torque to be transmitted between.

この状態で前記入力軸2を回転させると、この回転が、前記太陽ローラ4から前記各遊星ローラ6、6に伝わり、これら各遊星ローラ6、6がこの太陽ローラ4の周囲で、自転しつつ公転する。これら各遊星ローラ6、6の公転運動は、前記キャリア11を介して前記出力軸3により取り出せる。前記各トラクション部の面圧は、前記両軸2、3同士の間で伝達すべきトルクの大きさに応じた適正なものとなり、前記各トラクション部で過大な滑りが発生したり、或いは、これら各トラクション部の面圧が過大になる事に伴う転がり抵抗が徒に増大する事を防止できる。   When the input shaft 2 is rotated in this state, the rotation is transmitted from the sun roller 4 to the planetary rollers 6, 6, and the planetary rollers 6, 6 are rotating around the sun roller 4. Revolve. The revolving motion of these planetary rollers 6 and 6 can be taken out by the output shaft 3 through the carrier 11. The surface pressure of each of the traction portions is appropriate according to the magnitude of torque to be transmitted between the two shafts 2 and 3, and excessive slip occurs in each of the traction portions, or these It is possible to prevent the rolling resistance from increasing due to excessive surface pressure of each traction section.

[先発明の説明]
上述の従来構造は、遊星ローラの公転運動をキャリアを介して取り出す、遊星ローラ式の摩擦ローラ式減速機であるが、環状ローラの回転を出力軸に取り出す構造によれば、キャリアを回転させずに済む。キャリアを回転させずに済む事は、各部の強度及び剛性を高くして、摩擦ローラ式減速機の耐久性を確保し易い事に加えて、各ローラの周面同士の転がり接触部である各トラクション部等へのトラクションオイルの供給を行い易い等の利点がある。この様な、環状ローラを回転させる型式の摩擦ローラ式減速機として、特願2011−57869に係る発明がある。この先発明に係る摩擦ローラ式減速機に就いて、図24〜25により説明する。
[Description of Prior Invention]
The above-described conventional structure is a planetary roller type friction roller type speed reducer that takes out the revolving motion of the planetary roller through the carrier. However, according to the structure in which the rotation of the annular roller is taken out to the output shaft, the carrier is not rotated. It will end. The fact that it is not necessary to rotate the carrier is to increase the strength and rigidity of each part and to ensure the durability of the friction roller type reducer, and in addition to each rolling contact part between the peripheral surfaces of each roller There are advantages such as easy supply of traction oil to the traction section and the like. As such a friction roller type speed reducer that rotates an annular roller, there is an invention according to Japanese Patent Application No. 2011-57869. The friction roller type speed reducer according to the present invention will be described with reference to FIGS.

この先発明に係る摩擦ローラ式減速機1aは、入力軸2aにより太陽ローラ4aを回転駆動し、この太陽ローラ4aの回転を、複数個の中間ローラ19、19を介して環状ローラ5aに伝達し、この環状ローラ5aの回転を出力軸3aから取り出す様にしている。前記各中間ローラ19、19は、それぞれの中心部に設けた自転軸20、20を中心として自転するのみで、前記太陽ローラ4aの周囲で公転する事はない。この太陽ローラ4aは、互いに同じ形状を有する1対の太陽ローラ素子8c、8cを互いに同心に組み合わせて成り、これら両太陽ローラ素子8c、8cを軸方向両側から挟む位置に、1対のローディングカム装置7a、7aを設置している。これら各部は、軸方向中間部の径が大きく、両端部の径が小さくなった、段付円筒状のハウジング21内に収納している。   The friction roller type speed reducer 1a according to the present invention rotationally drives the sun roller 4a by the input shaft 2a, and transmits the rotation of the sun roller 4a to the annular roller 5a through a plurality of intermediate rollers 19, 19. The rotation of the annular roller 5a is taken out from the output shaft 3a. Each of the intermediate rollers 19, 19 rotates only around the rotation shafts 20, 20 provided at the center thereof, and does not revolve around the sun roller 4 a. This sun roller 4a is formed by concentrically combining a pair of sun roller elements 8c, 8c having the same shape, and a pair of loading cams at a position sandwiching both the sun roller elements 8c, 8c from both sides in the axial direction. Devices 7a and 7a are installed. Each of these parts is housed in a stepped cylindrical housing 21 in which the diameter of the intermediate part in the axial direction is large and the diameters at both ends are small.

前記入力軸2aの基半部(図24の右半部)は前記ハウジング21の入力側小径円筒部22の内側に、多列玉軸受ユニット23により、前記出力軸3aは同じく出力側小径円筒部24の内側に複列玉軸受ユニット25により、それぞれ回転自在に支持している。この複列玉軸受ユニット25を構成する1対の玉軸受同士の間にラビリンスシール26を設け、外部空間側に位置する前記出力軸3aの設置部分を通じて、前記ハウジング21内に異物が入り込む事を防止している。又、前記出力軸3aの基端部は、断面L字形の連結部27により、前記環状ローラ5aと連結している。   The base half of the input shaft 2a (the right half of FIG. 24) is placed inside the input side small diameter cylindrical portion 22 of the housing 21 and a multi-row ball bearing unit 23, and the output shaft 3a is also the output side small diameter cylindrical portion. Each is supported rotatably by a double row ball bearing unit 25 inside 24. A labyrinth seal 26 is provided between a pair of ball bearings constituting the double row ball bearing unit 25, and foreign matter enters the housing 21 through the installation portion of the output shaft 3a located on the outer space side. It is preventing. The base end portion of the output shaft 3a is connected to the annular roller 5a by a connecting portion 27 having an L-shaped cross section.

前記両太陽ローラ素子8c、8cは、前記入力軸2aの先半部の周囲に、この入力軸2aと同心に、この入力軸2aに対する相対回転を可能に、且つ、互いの先端面(互いに対向する面)同士の間に隙間を介在させた状態で配置している。又、前記両ローディングカム装置7a、7aを構成する1対のカム板15a、15aは、前記入力軸2aの中間部と先端部との2箇所位置で、前記両太陽ローラ素子8c、8cを軸方向両側から挟む位置に外嵌固定して、前記入力軸2aと同期して回転する様にしている。そして、互いに対向する、前記両太陽ローラ素子8c、8cの基端面と前記両カム板15a、15aの片側面との、それぞれ円周方向複数箇所ずつに、被駆動側カム面17、17と駆動側カム面18、18とを設け、これら各カム面17、18同士の間にそれぞれ玉16、16を挟持して、前記両ローディングカム装置7a、7aを構成している。前記各カム面17、18は、軸方向に関する深さが円周方向に関して漸次変化するもので、円周方向中央部で最も深く、同じく両端部に向かうに従って浅くなる。   The two sun roller elements 8c, 8c are concentric with the input shaft 2a around the front half of the input shaft 2a so as to be able to rotate relative to the input shaft 2a, and have their front end surfaces (opposing each other). Are arranged with a gap between them. The pair of cam plates 15a and 15a constituting the both loading cam devices 7a and 7a are positioned at two positions of the intermediate portion and the tip portion of the input shaft 2a, and the sun roller elements 8c and 8c are pivoted. It is fitted and fixed at positions sandwiched from both sides in the direction so as to rotate in synchronization with the input shaft 2a. Then, the driven cam surfaces 17 and 17 are driven at a plurality of positions in the circumferential direction between the base end surfaces of the sun roller elements 8c and 8c and the one side surfaces of the cam plates 15a and 15a, which face each other. Side cam surfaces 18 and 18 are provided, and balls 16 and 16 are sandwiched between the cam surfaces 17 and 18 to constitute both loading cam devices 7a and 7a. Each of the cam surfaces 17 and 18 has a depth in the axial direction that gradually changes in the circumferential direction, and is deepest at the central portion in the circumferential direction, and also becomes shallower toward both ends.

前記入力軸2aにトルクが入力されていない状態では、図25の(A)に示す様に、前記両ローディングカム装置7a、7aを構成する前記各玉16、16が、前記各カム面17、18の底部若しくは底部に近い側に存在する。この状態から、前記入力軸2aにトルクが入力される(前記摩擦ローラ式減速機1aが起動する)と、前記各玉16、16と前記各カム面17、18との係合に基づき、図25の(B)に示す様に、前記両ローディングカム装置7a、7aの軸方向厚さが増大する。そして、前記両太陽ローラ素子8c、8cが、前記摩擦ローラ式減速機1aの径方向に関して、前記各中間ローラ19、19の内側に食い込み、これら各中間ローラ19、19を、この径方向に関して外方に押す。この結果、前記各トラクション部の面圧が上昇して、これら各トラクション部に過大な滑りを発生させる事なく、前記太陽ローラ4aから前記環状ローラ5aに動力を伝達できる。尚、前記両ローディングカム装置7a、7aを構成する前記太陽ローラ素子8cと前記カム板15aとの間にばねを設けて、これら両部材8c、15a同士の間に、回転方向に関して相対回転させる方向の弾力を付与している。そして、この弾力に基づき、前記各玉16、16を前記各カム面17、18の浅い側に乗り上げる傾向として、前記両ローディングカム装置7a、7aに、動力の非伝達時にも或る程度の推力を発生させている(予圧を付与している)。   In a state where torque is not input to the input shaft 2a, as shown in FIG. 25A, the balls 16, 16 constituting the loading cam devices 7a, 7a are connected to the cam surfaces 17, It exists on the bottom of 18 or the side close to the bottom. From this state, when torque is input to the input shaft 2a (the friction roller type speed reducer 1a is activated), the engagement between the balls 16 and 16 and the cam surfaces 17 and 18 As shown in FIG. 25B, the axial thicknesses of both loading cam devices 7a and 7a increase. The sun roller elements 8c, 8c bite into the intermediate rollers 19, 19 with respect to the radial direction of the friction roller type speed reducer 1a, and remove the intermediate rollers 19, 19 with respect to the radial direction. Push towards. As a result, the surface pressure of each of the traction portions increases, and power can be transmitted from the sun roller 4a to the annular roller 5a without causing excessive slippage in the traction portions. A direction in which a spring is provided between the sun roller element 8c constituting the loading cam devices 7a, 7a and the cam plate 15a, and the members 8c, 15a are relatively rotated with respect to the rotation direction. Of elasticity. Based on this elasticity, the balls 16, 16 tend to run on the shallow sides of the cam surfaces 17, 18, and a certain amount of thrust is applied to the loading cam devices 7a, 7a even when power is not transmitted. Is generated (preload is applied).

前記摩擦ローラ式減速機1aの運転時に前記各中間ローラ19、19は、それぞれの自転軸20、20を中心として回転すると同時に、伝達トルクの変動に伴って前記摩擦ローラ式減速機1aの径方向に変位する。この様な、前記各中間ローラ19、19の自転及び径方向変位を円滑に行わせる為に先発明の構造の場合には、これら各中間ローラ19、19の回転中心である前記各自転軸20、20を、前記ハウジング21の内側に支持固定した支持フレーム28に対し、前記太陽ローラ4a及び前記環状ローラ5aの径方向に関する変位を可能に支持している。   At the time of operation of the friction roller type speed reducer 1a, each of the intermediate rollers 19 and 19 rotates around the respective rotation shafts 20 and 20, and at the same time, the radial direction of the friction roller type speed reducer 1a is accompanied by a change in transmission torque. It is displaced to. In the case of the structure of the previous invention in order to smoothly perform the rotation and radial displacement of the intermediate rollers 19 and 19, the rotation shafts 20 that are the rotation centers of the intermediate rollers 19 and 19. , 20 with respect to the support frame 28 that is supported and fixed inside the housing 21 so as to be capable of displacement in the radial direction of the sun roller 4a and the annular roller 5a.

上述の様に構成する先発明に係る摩擦ローラ式減速機1aの運転時に、前記入力軸2aを回転駆動すると、この入力軸2aに外嵌した前記両カム板15a、15aが回転し、前記両太陽ローラ素子8c、8cが、前記各玉16、16と前記各カム面17、18との係合に基づき、互いに近づく方向に押圧されつつ、前記入力軸2aと同方向に同じ速度で回転する。そして、前記両太陽ローラ素子8c、8cにより構成される前記太陽ローラ4aの回転が、前記各中間ローラ19、19を介して前記環状ローラ5aに伝わり、前記出力軸3aから取り出される。前記摩擦ローラ式減速機1aの運転時に、前記ハウジング21内には、トラクションオイルを循環させる為、前記各ローラ4a、19、5aの周面同士の転がり接触部(トラクション部)には、トラクションオイルの薄膜が存在する状態となる。又、これら各トラクション部の面圧は、前記両ローディングカム装置7a、7aにより適正に調節される。従って、前記摩擦ローラ式減速機1aの運転状態の変化に拘らず、前記各トラクション部で過大な滑りを発生させる事なく、動力伝達を行える。   When the input shaft 2a is rotationally driven during the operation of the friction roller type speed reducer 1a according to the previous invention configured as described above, both the cam plates 15a, 15a fitted on the input shaft 2a rotate, The sun roller elements 8c, 8c rotate at the same speed in the same direction as the input shaft 2a while being pressed toward each other based on the engagement between the balls 16, 16 and the cam surfaces 17, 18. . Then, the rotation of the sun roller 4a constituted by the both sun roller elements 8c and 8c is transmitted to the annular roller 5a through the intermediate rollers 19 and 19, and is taken out from the output shaft 3a. In order to circulate traction oil in the housing 21 during operation of the friction roller type speed reducer 1a, traction oil is provided at the rolling contact portion (traction portion) between the peripheral surfaces of the rollers 4a, 19, 5a. The thin film exists. Further, the surface pressure of each of these traction portions is appropriately adjusted by the both loading cam devices 7a and 7a. Therefore, power transmission can be performed without causing excessive slippage in each traction section, regardless of changes in the operating state of the friction roller type speed reducer 1a.

前述した従来の、或いは上述した先発明に係る摩擦ローラ式減速機1、1aの運転時に、前記環状ローラ5、5aの内周面には、前記ローディングカム装置7、7aから前記太陽ローラ4、4aを介して前記各遊星ローラ6、6或いは前記各中間ローラ19、19に加わる径方向の力により、大きなラジアル荷重が加わる。又、前記環状ローラ5、5aのうちでこのラジアル荷重が加わる部分は、前記各遊星ローラ6、6の公転、或いは、前記環状ローラ5aの回転に伴って周方向に移動する。この様に、周方向の一部に大きなラジアル荷重が加わり、しかも加わる位置が絶えず円周方向に移動する状況は、前記環状ローラ5、5aの耐久性確保の面から厳しい状況である。   During the operation of the friction roller type speed reducers 1 and 1a according to the above-described conventional or the above-described prior invention, the inner surfaces of the annular rollers 5 and 5a are connected to the sun rollers 4 and 7 from the loading cam devices 7 and 7a. A large radial load is applied by the radial force applied to the planetary rollers 6 and 6 or the intermediate rollers 19 and 19 via 4a. Further, a portion of the annular rollers 5 and 5a to which this radial load is applied moves in the circumferential direction along with the revolution of the planetary rollers 6 and 6 or the rotation of the annular roller 5a. As described above, a situation in which a large radial load is applied to a part of the circumferential direction and the applied position is constantly moved in the circumferential direction is a severe situation from the viewpoint of ensuring the durability of the annular rollers 5 and 5a.

図21に示した遊星ローラ式の摩擦ローラ式減速機1の場合には、前記環状ローラ5が固定である為、この環状ローラ5をハウジング等により補強し易く、耐久性確保の面から有利である。又、この環状ローラ5の形状が単純である為、傷んだ環状ローラ5を修理・交換する際にも、コストを抑えられる。一方、図24に示した先発明に係る摩擦ローラ式減速機1aの場合には、前記環状ローラ5aが回転する為、前記ハウジング21により補強する事はできず、耐久性確保の面から不利である。又、前記環状ローラ5aと前記連結部27と出力軸3aとが一体である為、この環状ローラ5aが傷んだ場合に修理・交換に要するコストも嵩んでしまう。   In the case of the planetary roller type friction roller speed reducer 1 shown in FIG. 21, since the annular roller 5 is fixed, the annular roller 5 is easily reinforced by a housing or the like, which is advantageous from the viewpoint of ensuring durability. is there. Further, since the shape of the annular roller 5 is simple, the cost can be reduced when the damaged annular roller 5 is repaired or replaced. On the other hand, in the case of the friction roller type speed reducer 1a according to the previous invention shown in FIG. 24, the annular roller 5a rotates, so that it cannot be reinforced by the housing 21, which is disadvantageous from the viewpoint of ensuring durability. is there. Further, since the annular roller 5a, the connecting portion 27, and the output shaft 3a are integrated, when the annular roller 5a is damaged, the cost required for repair and replacement increases.

特開昭59−187154号公報JP 59-187154 A 特開昭61−136053号公報JP-A-61-136053 特開2004−116670号公報JP 2004-116670 A

本発明は、上述の様な事情に鑑みて、環状ローラが回転する型式の摩擦ローラ式減速機で、この環状ローラが傷んだ場合に修理・交換作業を容易に行う事ができる構造を実現すべく発明したものである。   In view of the above-described circumstances, the present invention is a friction roller type speed reducer of a type in which an annular roller rotates, and realizes a structure that can be easily repaired and replaced when the annular roller is damaged. Invented accordingly.

本発明の摩擦ローラ式減速機は、入力軸と、出力軸と、太陽ローラと、環状ローラと、複数個の中間ローラと、ローディングカム装置とを備える。
このうちの太陽ローラは、軸方向に分割された1対の太陽ローラ素子を前記入力軸の周囲に、互いの先端面同士の間に隙間を介在させた状態で互いに同心に、且つ、この入力軸に対する相対回転を可能に配置して成る。又、前記両太陽ローラ素子の外周面は、それぞれの先端面に向かうに従って外径が小さくなる方向に傾斜した傾斜面であって、これら両傾斜面を転がり接触面としている。
又、前記環状ローラは、前記太陽ローラの周囲にこの太陽ローラと同心に配置されたもので、内周面を転がり接触面とすると共に、連結ブラケットを介して前記出力軸と同心に結合されていて、この出力軸と共に回転自在としている。
又、前記各中間ローラは、前記太陽ローラの外周面と前記環状ローラの内周面との間の環状空間の円周方向複数箇所に、それぞれが前記入力軸と平行に配置された自転軸を中心とする回転自在に支持された状態で、それぞれの外周面を前記太陽ローラの外周面と前記環状ローラの内周面とに転がり接触させている。
又、前記ローディングカム装置は、前記両太陽ローラ素子のうちの少なくとも一方の太陽ローラ素子である可動太陽ローラ素子と前記入力軸との間に設けられて、この入力軸の回転に伴ってこの可動太陽ローラ素子を相手方の太陽ローラ素子に向けて軸方向に押圧しつつ回転させる。
又、前記各中間ローラは、前記入力軸の回転に伴って前記ローディングカム装置が発生する押圧力に基づき、前記環状ローラの内周面に押し付けられつつ前記各自転軸を中心として回転する。
更に、前記連結ブラケットは、前記出力軸の端部にトルク伝達を可能に連結された基部と、前記環状ローラの周囲に配置された保持筒部と、これら基部と保持筒部とを連結した連結部とを備える。そして、前記環状ローラと前記連結ブラケットとは、この環状ローラの円周方向複数箇所に形成した突起と、前記保持筒部の円周方向複数箇所に形成した凹部とを係合させる事によりトルク伝達を可能に結合している。
The friction roller type speed reducer of the present invention includes an input shaft, an output shaft, a sun roller, an annular roller, a plurality of intermediate rollers, and a loading cam device.
Of these, the sun rollers are concentric to each other with a pair of sun roller elements divided in the axial direction around the input shaft, with a gap between the tip surfaces of the elements. It is arranged so that it can rotate relative to the shaft. The outer peripheral surfaces of the two sun roller elements are inclined surfaces that are inclined in a direction in which the outer diameter decreases toward the respective tip surfaces, and both the inclined surfaces serve as rolling contact surfaces.
The annular roller is disposed around the sun roller concentrically with the sun roller, and has an inner peripheral surface which is a rolling contact surface and is concentrically coupled to the output shaft via a connecting bracket. Thus, it can be rotated together with this output shaft.
Each of the intermediate rollers has a rotation shaft arranged in parallel with the input shaft at a plurality of locations in the circumferential direction of the annular space between the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller. Each outer peripheral surface is in rolling contact with the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller while being rotatably supported around the center.
The loading cam device is provided between the movable sun roller element, which is at least one of the two sun roller elements, and the input shaft. The sun roller element is rotated while being pressed in the axial direction toward the other sun roller element.
The intermediate rollers rotate about the rotation shafts while being pressed against the inner peripheral surface of the annular roller based on a pressing force generated by the loading cam device as the input shaft rotates.
Further, the connection bracket includes a base portion that is connected to an end portion of the output shaft so as to be able to transmit torque, a holding cylinder portion disposed around the annular roller, and a connection that connects the base portion and the holding cylinder portion. A part. The annular roller and the coupling bracket transmit torque by engaging protrusions formed at a plurality of circumferential positions of the annular roller and recesses formed at a plurality of circumferential positions of the holding cylinder portion. Is possible to combine.

上述の様な本発明の摩擦ローラ式減速機を実施する場合に、より具体的には、例えば請求項2に記載した発明の様に、前記環状ローラと前記連結ブラケットとを、この環状ローラの外周面の円周方向複数箇所に形成した突起と、前記保持筒部の内周面の円周方向複数箇所に形成した、径方向に凹んだ状態で軸方向に連続する凹部とを係合させる事によりトルク伝達を可能に結合する。そして、前記保持筒部の内周面のうちで、軸方向に関して前記環状ローラよりも開口寄り部分に係止した止め輪により、前記各突起が前記各凹部から抜け出るのを防止する。
この様な請求項2に記載した発明を実施する場合に好ましくは、請求項3に記載した発明の様に、前記各突起を、それぞれの頂部に、径方向内方に凹入する切り欠き部を設けた形状とする。
更に、この様な請求項3に記載した発明を実施する場合に、より好ましくは、請求項4に記載した発明の様に、前記各突起を軸方向から見た形状を、円周方向両外側面と前記環状ローラの外周面とを部分円弧により滑らかに連続させて、径方向内方程周方向に関する幅寸法が大きくなる形状とする。且つ、前記各突起の頂部に形成した前記切り欠き部を、それぞれ部分円弧状とする。
When the friction roller type speed reducer according to the present invention as described above is implemented, more specifically, for example, as in the invention described in claim 2, the annular roller and the connecting bracket are connected to the annular roller. The protrusions formed at a plurality of locations in the circumferential direction of the outer peripheral surface are engaged with the recesses formed in a plurality of locations in the circumferential direction of the inner peripheral surface of the holding cylinder portion and continuously recessed in the axial direction in a radially recessed state. It is possible to couple torque transmission. The projections are prevented from coming out of the recesses by a retaining ring locked to a portion closer to the opening than the annular roller in the axial direction in the inner peripheral surface of the holding cylinder portion.
When the invention described in claim 2 is implemented, preferably, as in the invention described in claim 3, the protrusions are notched into the tops of the notches so as to be recessed radially inward. The shape is provided.
Further, when the invention described in claim 3 is carried out, more preferably, as in the invention described in claim 4, the shape of each of the protrusions viewed from the axial direction is set to both sides in the circumferential direction. The side surface and the outer peripheral surface of the annular roller are smoothly continuous by a partial arc so that the width dimension in the circumferential direction increases in the radially inner direction. And the said notch part formed in the top part of each said protrusion is each made into partial arc shape.

或いは、本発明の摩擦ローラ式減速機を実施する場合の別の具体的構造として、例えば請求項5に記載した発明の様に、前記環状ローラと前記連結ブラケットとを、この環状ローラの軸方向側面の円周方向複数箇所に形成した突起と、前記保持筒部の内側の円周方向複数箇所に、それぞれ軸方向に凹んだ状態で形成した凹部とを係合させる事によりトルク伝達を可能に結合させる。そして、前記保持筒部の内周面のうちで、軸方向に関して前記環状ローラよりも開口寄り部分に係止した止め輪により、前記各突起が前記各凹部から抜け出るのを防止する。   Alternatively, as another specific structure when implementing the friction roller type speed reducer of the present invention, for example, as in the invention described in claim 5, the annular roller and the connecting bracket are arranged in the axial direction of the annular roller. Torque transmission is possible by engaging protrusions formed at multiple locations in the circumferential direction of the side surface and recesses formed in the axially recessed state at multiple locations in the circumferential direction inside the holding cylinder. Combine. The projections are prevented from coming out of the recesses by a retaining ring locked to a portion closer to the opening than the annular roller in the axial direction in the inner peripheral surface of the holding cylinder portion.

上述の様に構成する本発明の摩擦ローラ式減速機によれば、環状ローラが傷んだ場合に修理・交換作業を容易に行う事ができる。
即ち、前記環状ローラと出力軸との間でトルクの伝達を行わせる為の連結ブラケットを、この環状ローラと別体としている為、この環状ローラを修理・交換する際に、この環状ローラを前記連結ブラケットから分離する事で、この修理・交換作業を容易に、低コストで行える。
According to the friction roller type speed reducer of the present invention configured as described above, repair and replacement work can be easily performed when the annular roller is damaged.
That is, since the connecting bracket for transmitting torque between the annular roller and the output shaft is separated from the annular roller, when the annular roller is repaired or replaced, the annular roller is By separating from the connecting bracket, this repair and replacement work can be done easily and at low cost.

本発明の摩擦ローラ式減速機を組み込んだ、電気自動車用駆動装置の動力伝達装置を示す断面図。Sectional drawing which shows the power transmission device of the drive device for electric vehicles incorporating the friction roller type reduction gear of this invention. 図1のa部拡大図。The a section enlarged view of FIG. 図1の右方から見た図。The figure seen from the right side of FIG. 摩擦ローラ式減速機を取り出し、太陽ローラ及び環状ローラを省略して、図1の右上方から見た状態で示す斜視図。The perspective view shown in the state which took out the friction roller type reduction gear, abbreviate | omitted the sun roller and the annular roller, and was seen from the upper right of FIG. 同じく図1の右方から見た状態で示す正投影図。The orthographic projection shown in the state similarly seen from the right side of FIG. 同じく図5の左方から見た正投影図。The orthographic view seen from the left of FIG. 図6のb−b断面図。Bb sectional drawing of FIG. 連結ブラケットと環状ローラと止め輪とを組み立てた状態を示す斜視図。The perspective view which shows the state which assembled the connection bracket, the annular roller, and the retaining ring. 同じく組み立てる以前の状態で示す斜視図。The perspective view shown in the state before assembling similarly. 図9のc部拡大図。The c section enlarged view of FIG. 図8のd−d断面図。Dd sectional drawing of FIG. 環状ローラの断面形状を、突起を形成した部分(A)と突起から外れた部分(B)とで示す略図。The schematic diagram which shows the cross-sectional shape of an annular roller with the part (A) which formed the protrusion, and the part (B) which removed from the protrusion. 環状ローラの形状の第1例を示す、斜視図(A)及び端面図(B)。The perspective view (A) and end view (B) which show the 1st example of the shape of an annular roller. 同第2例を示す、図13と同様の図。The figure similar to FIG. 13 which shows the said 2nd example. 同第3例を示す、図13と同様の図。The figure similar to FIG. 13 which shows the 3rd example. 同第4例を示す、図13と同様の図。The figure similar to FIG. 13 which shows the same 4th example. 同第5例を示す、図13と同様の図。The figure similar to FIG. 13 which shows the said 5th example. 環状ローラ外周面の突起の形状の別の3例を示す端面図。The end view which shows another 3 examples of the shape of the processus | protrusion of an annular roller outer peripheral surface. 環状ローラの形状の第6例を示す斜視図。The perspective view which shows the 6th example of the shape of an annular roller. この第6例の環状ローラの連結ブラケットに対する組み付け状態の3例を示す、図11と同様の断面図。Sectional drawing similar to FIG. 11 which shows three examples of the assembly state with respect to the connection bracket of the annular roller of this 6th example. 従来から知られている摩擦ローラ式減速機の1例を示す断面図。Sectional drawing which shows an example of the friction roller type reduction gear conventionally known. 一部を省略して示す、図21のe−e断面図。FIG. 22 is a cross-sectional view taken along the line ee of FIG. ローディングカム装置が推力を発生していない状態(A)と同じく発生している状態(B)とをそれぞれ示す、図22のf−f断面に相当する模式図。The schematic diagram equivalent to the ff cross section of FIG. 22 which each shows the state (B) which has generate | occur | produced similarly to the state (A) in which the loading cam apparatus is not generating thrust. 先発明に係る摩擦ローラ式減速機の断面図。Sectional drawing of the friction roller type reduction gear which concerns on a prior invention. ローディングカム装置の作用に基づいて中間ローラが変位する状況を、トルクの非伝達時(A)と伝達時(B)とで示す模式図。The schematic diagram which shows the condition where an intermediate | middle roller displaces based on the effect | action of a loading cam apparatus at the time of non-transmission of a torque (A) and transmission (B).

[実施の形態の第1例]
図1〜13は、請求項1、2に対応する本発明の実施の形態の第1例を示している。本例の摩擦ローラ式減速機1bは、図24に示したハウジング21の如き減速機ケース内に収納される。そして、この減速機ケース外に設けた、図示しない電動モータの駆動軸に結合した入力軸2bにより太陽ローラ4bを回転駆動し、この太陽ローラ4bの回転を、複数個の中間ローラ19a、19aを介して環状ローラ5bに伝達し、この環状ローラ5bの回転を、出力軸3bを通じて取り出す様にしている。この出力軸3bを設置する為、前記減速機ケースの一端側壁部に軸受ケース29を、油密に固定する。そして、この軸受ケース29の内径側に前記出力軸3bを、出力側転がり軸受ユニット45と出力側シーリングユニット46とにより、油密を保持した状態で、回転自在に支持している。この出力軸3bと前記環状ローラ5bとは、互いに同心に配置した状態で、連結ブラケット30により結合している。
[First example of embodiment]
FIGS. 1-13 has shown the 1st example of embodiment of this invention corresponding to Claim 1,2. The friction roller type speed reducer 1b of this example is housed in a speed reducer case such as the housing 21 shown in FIG. Then, the sun roller 4b is rotationally driven by an input shaft 2b that is provided outside the speed reducer case and is coupled to a drive shaft of an electric motor (not shown), and the rotation of the sun roller 4b is caused by rotating a plurality of intermediate rollers 19a and 19a. The rotation of the annular roller 5b is taken out through the output shaft 3b. In order to install the output shaft 3b, a bearing case 29 is oil-tightly fixed to one end side wall portion of the speed reducer case. The output shaft 3b is rotatably supported by the output side rolling bearing unit 45 and the output side sealing unit 46 on the inner diameter side of the bearing case 29 while maintaining oil tightness. The output shaft 3b and the annular roller 5b are coupled to each other by a connection bracket 30 in a state of being arranged concentrically with each other.

この連結ブラケット30は、基部31と、保持筒部32と、連結部33とを備える。このうちの基部31は、円筒状に造られたもので、前記出力軸3bの基端部に外嵌固定している。この基部31の内周面のうち、この出力軸3bの基端部に対する嵌合方向に関して前半部(図1の左半部)は円筒面部とし、同じく後半部(図1の右半部)は雌スプライン部としている。この雌スプライン部の歯底円直径(最大内径)は、前記円筒面部の内径以下としている。この様な基部31は、前記円筒面部と前記出力軸3bの外周面側の円筒面部とを締り嵌めで嵌合させると共に、前記雌スプライン部とこの出力軸3bの外周面側の雄スプライン部とをスプライン係合させて、トルクの伝達を可能に組み合わせる。又、この状態で、前記出力軸3bの外周面に形成した鍔部34と前記基部31の軸方向端面とを当接させて、出力軸3bと、この基部31を含む前記連結ブラケット30との、軸方向に関する位置決めを図っている。   The connection bracket 30 includes a base portion 31, a holding cylinder portion 32, and a connection portion 33. Of these, the base portion 31 is formed in a cylindrical shape, and is fitted and fixed to the base end portion of the output shaft 3b. Of the inner peripheral surface of the base 31, the front half (left half in FIG. 1) is a cylindrical surface and the latter half (right half in FIG. 1) is the fitting direction with respect to the base end of the output shaft 3b. It is a female spline part. The root diameter (maximum inner diameter) of the female spline portion is equal to or smaller than the inner diameter of the cylindrical surface portion. Such a base 31 fits the cylindrical surface portion and the cylindrical surface portion on the outer peripheral surface side of the output shaft 3b with an interference fit, and also includes the female spline portion and the male spline portion on the outer peripheral surface side of the output shaft 3b. Are combined to enable torque transmission. Further, in this state, the flange 34 formed on the outer peripheral surface of the output shaft 3b is brought into contact with the axial end surface of the base portion 31, so that the output shaft 3b and the connection bracket 30 including the base portion 31 are brought into contact with each other. The positioning in the axial direction is intended.

又、前記保持筒部32は、炭素鋼等の、必要とする強度及び剛性を確保できる金属材料に、削り加工、押し出し加工等の適切な加工処理を施す事により、全体を略円筒状に形成している。前記保持筒部32は、円周方向複数箇所(図示の例では6箇所)を径方向外方に向け、略「凹」字形に突出させる事により、当該部分の内周面に凹部35、35を形成している。又、前記保持筒部32の内周面のうちで、これら各凹部35、35を除く部分は、単一円筒面上に位置させている。   Further, the holding cylinder portion 32 is formed into a substantially cylindrical shape by subjecting a metal material such as carbon steel, which can ensure the required strength and rigidity, to appropriate processing such as cutting and extrusion. doing. The holding cylinder portion 32 has a plurality of circumferential locations (six locations in the example shown in the figure) directed outward in the radial direction and projecting into a substantially “concave” shape, thereby forming recesses 35, 35 on the inner circumferential surface of the portion. Is forming. Of the inner peripheral surface of the holding cylinder portion 32, the portions excluding these concave portions 35, 35 are positioned on a single cylindrical surface.

更に、前記連結部33は、前記基部31と一体に形成されたもので、全体を段付の部分円すい筒状としており、基端部(図1の左端部)をこの基部31に連続させ、先端部(図1〜2の右端部)に、前記保持筒部32を結合固定している。この保持筒部32と前記連結部33(及び前記基部31)とは、一体に構成しても良いが、本例の構造の場合には、この連結部33と前記保持筒部32とを、別体に構成したものを後から締り嵌めで嵌合する事により、連結固定している。この為に本例の場合には、前記連結部33の先端部に、前記保持筒部32の基端部(図1〜2の左端部)を外嵌固定する為の支持筒部36を形成している。この保持筒部32と前記連結部33とは、この保持筒部32の基端部(図1〜2の左端部)を前記支持筒部36に、焼き嵌め、冷やし嵌め等により、大きな締め代で外嵌する事より、或いは溶接等で接合する事により、トルクの伝達を可能に、互いに同心に結合固定している。   Further, the connecting portion 33 is formed integrally with the base portion 31 and has a stepped partial conical cylindrical shape as a whole, and the base end portion (left end portion in FIG. 1) is continued to the base portion 31. The holding cylinder portion 32 is coupled and fixed to the distal end portion (the right end portion in FIGS. 1 and 2). The holding cylinder part 32 and the connecting part 33 (and the base part 31) may be configured integrally, but in the case of the structure of this example, the connecting part 33 and the holding cylinder part 32 are The separate parts are connected and fixed by fitting them with an interference fit afterwards. For this reason, in the case of this example, a support cylinder part 36 for externally fixing and fixing the base end part (the left end part in FIGS. 1 and 2) of the holding cylinder part 32 is formed at the distal end part of the connecting part 33. doing. The holding cylinder part 32 and the connecting part 33 have a large tightening allowance by shrink fitting or cold fitting or the like on the support cylinder part 36 at the base end part (left end part in FIGS. 1 and 2) of the holding cylinder part 32. They are concentrically coupled and fixed to each other so that torque can be transmitted by external fitting or by welding.

そして、前記保持筒部32の中間部に前記環状ローラ5bを、この保持筒部32との間でのトルク伝達を可能に内嵌している。この環状ローラ5bは、軸受鋼、高速度鋼、高炭素鋼等の、十分な強度及び剛性を確保できる金属材料により全体を円環状に造られたもので、外周面の円周方向等間隔の複数箇所に、それぞれ突起37、37を形成している。これら各突起37、37は、前記保持筒部32の内周面の凹部35、35のうちの、全部又は一部の凹部35、35と、周方向(回転伝達方向)のがたつきなく係合する。図示の例では、前記環状ローラ5bの外周面の円周方向等間隔の3箇所位置に前記各突起37、37を設け、これら各突起37、37を、前記各凹部35、35のうちの一つ置きの凹部35、35に係合させている。   The annular roller 5b is fitted in the intermediate portion of the holding cylinder portion 32 so as to be able to transmit torque to and from the holding cylinder portion 32. The annular roller 5b is made of a metal material that can ensure sufficient strength and rigidity, such as bearing steel, high speed steel, high carbon steel, etc. Protrusions 37 and 37 are formed at a plurality of locations, respectively. Each of the protrusions 37 and 37 is connected to all or a part of the recesses 35 and 35 on the inner peripheral surface of the holding cylinder portion 32 without rattling in the circumferential direction (rotation transmission direction). Match. In the example shown in the figure, the projections 37 are provided at three positions on the outer circumferential surface of the annular roller 5b at equal intervals in the circumferential direction, and the projections 37 are connected to one of the recesses 35, 35. It engages with the recesses 35, 35.

又、本例の場合には、前記保持筒部32の内周面のうちで前記各凹部35、35から周方向に外れた部分、並びに、前記環状ローラ5bの外周面を、軸方向に関する段付形状としている。具体的には、前記保持筒部32の内周面の軸方向中間部に内周面側段差部38を形成し、この保持筒部32の内径を、この内周面側段差部38を境として、先端側(図8〜10の右側)で基端側(図8〜10の左側)よりも大きくしている。これに合わせて、前記環状ローラ5bの外周面の軸方向中間部に外周面側段差部39を形成し、この環状ローラ5bの外径を、この外周面側段差部39を境として、前記先端側で前記基端側よりも大きくしている。前記各突起37、37は、前記環状ローラ5bの外周面のうちで、外径が大きくなった先端側部分に形成している。本例の場合に前記各突起37、37は、周方向両側面が互いに平行で、それぞれの頂部に、径方向内方に凹入する部分円弧状の切り欠き部40を設けている。   Further, in the case of this example, the portion of the inner peripheral surface of the holding cylinder portion 32 that is removed from the concave portions 35 and 35 in the circumferential direction and the outer peripheral surface of the annular roller 5b are stepped in the axial direction. It has a shape. Specifically, an inner peripheral surface side stepped portion 38 is formed at an axially intermediate portion of the inner peripheral surface of the holding cylinder portion 32, and the inner diameter of the holding cylinder portion 32 is defined as the boundary between the inner peripheral surface side stepped portion 38. As shown in FIG. 8, the distal end side (the right side in FIGS. 8 to 10) is larger than the proximal end side (the left side in FIGS. 8 to 10). In accordance with this, an outer peripheral surface side stepped portion 39 is formed at an axially intermediate portion of the outer peripheral surface of the annular roller 5b, and the outer diameter of the annular roller 5b is set at the front end with the outer peripheral surface side stepped portion 39 as a boundary. The side is larger than the base end side. Each of the protrusions 37 is formed on the tip end portion of the outer peripheral surface of the annular roller 5b where the outer diameter is increased. In the case of this example, the projections 37, 37 are parallel to each other on both sides in the circumferential direction, and are provided with partial arc-shaped notches 40 that are recessed inward in the radial direction at the tops.

更に、前記保持筒部32の内周面のうちで、前記内周面側段差部38よりも先端側に寄った部分に、係止凹溝41を形成している。この係止凹溝41は、前記各凹部35、35部分で途切れている点を除き、実質的に全周に亙って形成している。前記支持筒部36の先端面42から前記係止凹溝41の基端側縁までの距離は、前記環状ローラ5bの軸方向厚さと一致させている。   Further, a locking groove 41 is formed in a portion of the inner peripheral surface of the holding cylinder portion 32 that is closer to the distal end side than the inner peripheral surface side stepped portion 38. The locking groove 41 is formed over substantially the entire circumference except for the point where the recesses 35 are interrupted. The distance from the front end surface 42 of the support cylinder part 36 to the base end side edge of the locking groove 41 is made to coincide with the axial thickness of the annular roller 5b.

それぞれが上述の様な構成を有する、前記環状ローラ5bと前記保持筒部32とは、互いに軸方向に近付けて、前記各凹部35、35と前記各突起37、37とを係合させる事により、互いの間でのトルク伝達を可能に組み合わせる。更に、前記係止凹溝41に止め輪43を係止する事で、前記環状ローラ5bが前記保持筒部32から抜け出す方向に移動するのを阻止する。前記止め輪43は、ばね鋼板等の、弾性並びに十分な強度及び剛性を有する金属板により欠円環状に造られており、周方向両端部に係止孔44、44を有する。この様な止め輪43は、これら両係止孔44、44に工具の先端部を係止して外径を縮めた状態で前記保持筒部32内に挿入し、前記係止凹溝41の内径側に位置させた状態で、前記工具を外す。そして、この係止凹溝41に前記止め輪43の外径寄り部分を係止する。この状態で、前記環状ローラ5bと前記保持筒部32とが、トルク伝達を可能に、且つ、軸方向の分離も阻止された状態で組み合わされる。これら環状ローラ5bと保持筒部32とを分離する際には、前記工具により前記止め輪43の外径を縮めて、この止め輪43を前記保持筒部32から抜き取った後、前記環状ローラ5bをこの保持筒部32から抜き取る。   The annular roller 5b and the holding cylinder portion 32, each having the above-described configuration, are brought close to each other in the axial direction, and the concave portions 35, 35 and the projections 37, 37 are engaged with each other. , Combining torque transmission between each other. Further, by locking the retaining ring 43 in the locking concave groove 41, the annular roller 5b is prevented from moving in the direction of coming out of the holding cylinder portion 32. The retaining ring 43 is formed in a ring shape with a metal plate having elasticity and sufficient strength and rigidity, such as a spring steel plate, and has locking holes 44 and 44 at both ends in the circumferential direction. Such a retaining ring 43 is inserted into the holding cylinder portion 32 in a state where the distal end portion of the tool is locked in the locking holes 44, 44 and the outer diameter is reduced, The tool is removed while being positioned on the inner diameter side. Then, a portion closer to the outer diameter of the retaining ring 43 is locked in the locking groove 41. In this state, the annular roller 5b and the holding cylinder portion 32 are combined in a state where torque transmission is possible and separation in the axial direction is also prevented. When the annular roller 5b and the holding cylinder part 32 are separated from each other, the outer diameter of the retaining ring 43 is reduced by the tool, and the retaining ring 43 is extracted from the holding cylinder part 32, and then the annular roller 5b. Is extracted from the holding cylinder portion 32.

又、前記入力軸2bは、前記減速機ケースの他端側壁部(図示せず)の内側に、入力側転がり軸受ユニット47と入力側シーリングユニット48とにより、油密を保持した状態で、回転自在に支持している。そして、前記入力軸2bの先端部に、前記太陽ローラ4bを設けて、この入力軸2bによりこの太陽ローラ4bを回転駆動する様にしている。この太陽ローラ4bは、前述の図24〜25に示した先発明構造の場合と同様に、互いに対称な形状を有する1対の太陽ローラ素子8d、8dから成り、前記入力軸2bの基半部(図1の左半部)の周囲に配置している。又、これら両太陽ローラ素子8d、8dと前記入力軸2bとの間にそれぞれローディングカム装置7b、7bを設け、これら両太陽ローラ素子8d、8dを互いに近付く方向に押圧しつつ、これら両太陽ローラ素子8d、8dが前記入力軸2bと共に回転駆動する様にしている。尚、前記両ローディングカム装置7b、7bを構成するカム板15b、15bは、それぞれ前記入力軸2bに対し締り嵌めで外嵌固定して、この入力軸2bと共に回転する様にしている。又、前記両カム板15b、15bの互いに反対側面を、それぞれ前記入力軸2bの中間部に形成した鍔部49、又は、この入力軸2bの基端部に螺合固定したローディングナット50に突き当てている。尚、前記両ローディングカム装置7b、7bは、前述の図21に示した従来構造のローディングカム装置7と同様の、それぞれ複数ずつの被駆動側、駆動側各カム面及び玉に加えて、予圧付与の為に、前記両カム板15b、15bと前記両太陽ローラ素子8d、8dとを相対回転方向に押圧する為のコイルばねを設けている。この部分の構造に関しては、本発明の要旨とは関係しないし、別の構造を採用する事もできる。   The input shaft 2b is rotated in an oil tight state by an input side rolling bearing unit 47 and an input side sealing unit 48 inside the other end side wall (not shown) of the speed reducer case. Supports freely. And the said sun roller 4b is provided in the front-end | tip part of the said input shaft 2b, and this sun roller 4b is rotated by this input shaft 2b. This sun roller 4b is composed of a pair of sun roller elements 8d and 8d having symmetrical shapes as in the case of the prior invention structure shown in FIGS. 24 to 25, and the base half of the input shaft 2b. It arrange | positions around (the left half part of FIG. 1). Further, loading cam devices 7b and 7b are provided between the sun roller elements 8d and 8d and the input shaft 2b, respectively, and these sun roller elements 8d and 8d are pressed in a direction approaching each other. The elements 8d and 8d are driven to rotate together with the input shaft 2b. The cam plates 15b and 15b constituting the both loading cam devices 7b and 7b are fitted and fixed to the input shaft 2b by an interference fit, and rotate together with the input shaft 2b. Further, the opposite side surfaces of the cam plates 15b and 15b are respectively pushed into a flange portion 49 formed at the intermediate portion of the input shaft 2b or a loading nut 50 screwed and fixed to the base end portion of the input shaft 2b. I guess. The loading cam devices 7b and 7b are similar to the loading cam device 7 having the conventional structure shown in FIG. 21 described above, in addition to a plurality of driven-side and driving-side cam surfaces and balls. For application, a coil spring is provided for pressing both the cam plates 15b, 15b and the two sun roller elements 8d, 8d in the relative rotational direction. The structure of this part is not related to the gist of the present invention, and another structure can be adopted.

前記各中間ローラ19a、19aは、前記減速機ケース内に支持固定される支持フレーム28aに対し、回転及びこの支持フレーム28aの径方向に関する若干の変位を可能に支持している。この径方向変位を可能にする理由は、前記両ローディングカム装置7b、7bに作用により前記両太陽ローラ素子8d、8dが互いに近付き、前記各中間ローラ19a、19aが前記支持フレーム28aの径方向外方に押圧された場合に、これら各中間ローラ19a、19aの変位を円滑に許容する為である。この様な理由で、前記径方向に関する変位を可能にする為の構造に就いては、例えば前記支持フレーム28aに対してそれぞれの基端部を枢支した揺動フレーム51、51の中間部に前記各中間ローラ19a、19aを、玉軸受52、52により回転自在に支持する構造を採用できる。或いは、前記支持フレーム28aに形成した径方向に長い長孔の内側に、前記各中間ローラ19a、19aの両端部に設けた玉軸受52、52の外輪を緩く内嵌する構造を採用する事もできる。何れにしても、前記径方向の変位を可能にする構造に関しては、本発明の要旨とは関係しない為、詳しい説明は省略する。   Each of the intermediate rollers 19a and 19a supports the support frame 28a supported and fixed in the reduction gear case so as to be able to rotate and slightly displace in the radial direction of the support frame 28a. The reason why this radial displacement is possible is that the sun roller elements 8d and 8d approach each other due to the action of the loading cam devices 7b and 7b, and the intermediate rollers 19a and 19a are located radially outside the support frame 28a. This is because the displacement of each of the intermediate rollers 19a, 19a is allowed smoothly when pressed in the opposite direction. For this reason, the structure for enabling the displacement in the radial direction is, for example, in the middle part of the swing frames 51, 51 pivotally supporting the respective base end parts with respect to the support frame 28a. A structure in which the intermediate rollers 19a and 19a are rotatably supported by ball bearings 52 and 52 can be employed. Alternatively, a structure may be employed in which the outer rings of the ball bearings 52, 52 provided at both ends of the intermediate rollers 19a, 19a are loosely fitted inside the long holes in the radial direction formed in the support frame 28a. it can. In any case, the structure that enables the radial displacement is not related to the gist of the present invention, and a detailed description thereof will be omitted.

又、前記支持フレーム28aの円輪状の連結部56の軸方向片側面の円周方向等間隔複数箇所(図示の例では3箇所)から前記各中間ローラ19a、19aの設置側に向けて、前記支持フレーム28aの軸方向に対し平行に突出した柱部57、57を設けている。そして、これら各柱部57、57の内側に、トラクションオイルの供給路53、53を設けて、前記各中間ローラ19a、19aの外周面と、前記太陽ローラ4bの外周面及び前記環状ローラ5bの内周面との転がり接触部(トラクション部)に、トラクションオイルを送り込める様にしている。この様な潤滑剤の供給路53、53に関しても、前記各トラクション部に必要とされるトラクションオイルを供給できる構造であれば良く、本発明の要旨とも関係しない為、図示のみで、詳しい説明は省略する。   Also, from the plural circumferentially equidistantly spaced locations (three locations in the illustrated example) on the one axial side surface of the annular connection portion 56 of the support frame 28a toward the installation side of the intermediate rollers 19a, 19a, Column portions 57 and 57 projecting parallel to the axial direction of the support frame 28a are provided. Further, traction oil supply passages 53 and 53 are provided inside the pillars 57 and 57, and the outer peripheral surfaces of the intermediate rollers 19a and 19a, the outer peripheral surface of the sun roller 4b, and the annular roller 5b. Traction oil can be sent to the rolling contact part (traction part) with the inner peripheral surface. The lubricant supply paths 53 and 53 need only have a structure capable of supplying the traction oil required for each traction section, and are not related to the gist of the present invention. Omitted.

電気自動車用駆動装置等に組み込んだ摩擦ローラ式減速機1bの運転時には、図示しない電動モータにより前記入力軸2bを介して、前記太陽ローラ4bを回転駆動する。この太陽ローラ4bの回転は、前記各中間ローラ19a、19aを介して前記環状ローラ5bに伝わる。この太陽ローラ4bを構成する、前記両太陽ローラ素子8d、8dには、予圧ばねを組み込んで成る前記両ローディングカム装置7b、7bにより、互いに近付く方向の予圧が付与されている。従って、前記各ローラ4b、19a、5bの周面同士の転がり接触部(トラクション部)の面圧は、これら各ローラ4b、19a、5b同士の間でトルクを伝達しない状態でも或る程度確保されている。又、これら各ローラ4b、19a、5b同士の間で伝達するトルクが大きくなると、前記両ローディングカム装置7b、7bが前記両太陽ローラ素子8d、8d同士を互いに近付ける方向に押圧する力(推力)が大きくなり、前記各トラクション部の面圧が更に高くなる。前記各中間ローラ19a、19aは、前記支持フレーム28aに、径方向の変位を可能に支持されている為、これら各中間ローラ19a、19aの外周面と、前記太陽ローラ4bの外周面及び前記環状ローラ5bの内周面との転がり接触部の面圧は、効果的に上昇する。この結果、前記各ローラ4b、19a、5b同士の間で伝達するトルクの変動に拘らず、前記太陽ローラ4bから前記環状ローラ5bへの動力伝達を効率良く行える。   During operation of the friction roller type reduction gear 1b incorporated in a drive device for an electric vehicle or the like, the sun roller 4b is rotationally driven by the electric motor (not shown) via the input shaft 2b. The rotation of the sun roller 4b is transmitted to the annular roller 5b through the intermediate rollers 19a and 19a. The sun roller elements 8d and 8d constituting the sun roller 4b are preloaded in a direction approaching each other by the loading cam devices 7b and 7b each incorporating a preload spring. Accordingly, the surface pressure of the rolling contact portion (traction portion) between the peripheral surfaces of the rollers 4b, 19a, and 5b is ensured to some extent even when no torque is transmitted between the rollers 4b, 19a, and 5b. ing. Further, when the torque transmitted between the rollers 4b, 19a, and 5b increases, the force (thrust) that the loading cam devices 7b and 7b press the sun roller elements 8d and 8d closer to each other. Increases, and the surface pressure of each of the traction portions is further increased. Since each of the intermediate rollers 19a and 19a is supported by the support frame 28a so as to be capable of radial displacement, the outer peripheral surface of each of the intermediate rollers 19a and 19a, the outer peripheral surface of the sun roller 4b, and the annular The surface pressure of the rolling contact portion with the inner peripheral surface of the roller 5b effectively increases. As a result, power transmission from the sun roller 4b to the annular roller 5b can be performed efficiently regardless of fluctuations in torque transmitted between the rollers 4b, 19a, 5b.

この様にして前記環状ローラ5bに伝達された動力は、この環状ローラ5bの外周面に突設した前記各突起37、37と、前記保持筒部32の内周面に形成した前記各凹部35、35との係合に基づいて、この保持筒部32に伝達される。更に、この保持筒部32に伝達された動力が、前記連結部33及び前記基部31を介して前記出力軸3bに伝達される。この結果、この出力軸3bが、前記入力軸2bよりも低速且つ高トルクで回転駆動される。尚、前記環状ローラ5bと前記保持筒部32との間での動力伝達時に、前記各突起37、37に周方向の応力が発生する。これら各突起37、37の設置部分の直径は大きいので、これら各突起37、37の大きさ(周方向幅、軸方向長さ)を特に大きくしなくても、これら各突起37、37に亀裂等の損傷が発生する可能性は低い。但し、前記摩擦ローラ式減速機1bの小型・軽量化を図りつつ、前記各突起37、37の損傷防止をより確実に図る為には、前記動力の伝達に伴ってこれら各突起37、37に発生する応力を、より低く抑える事が好ましい。本例の場合には、これら各突起37、37の頂部中央に切り欠き部40を形成している。この為、これら各突起37、37を、周方向に関して適度に弾性変形し易くして、トルク伝達時にこれら各突起37、37に発生する応力を低く抑えられる。   The power transmitted to the annular roller 5b in this way is the projections 37, 37 protruding from the outer peripheral surface of the annular roller 5b and the concave portions 35 formed on the inner peripheral surface of the holding cylinder portion 32. , 35 is transmitted to the holding cylinder portion 32 based on the engagement with. Further, the power transmitted to the holding cylinder portion 32 is transmitted to the output shaft 3 b via the connecting portion 33 and the base portion 31. As a result, the output shaft 3b is rotationally driven at a lower speed and with a higher torque than the input shaft 2b. In addition, when power is transmitted between the annular roller 5 b and the holding cylinder portion 32, circumferential stress is generated in the protrusions 37 and 37. Since the diameters of the installation portions of the projections 37 and 37 are large, the projections 37 and 37 are cracked without particularly increasing the size (circumferential width and axial length) of the projections 37 and 37. It is unlikely that such damage will occur. However, in order to more reliably prevent damage to the protrusions 37 and 37 while reducing the size and weight of the friction roller type speed reducer 1b, the protrusions 37 and 37 are attached to the protrusions 37 and 37 as the power is transmitted. It is preferable to suppress the generated stress to a lower level. In the case of this example, a notch 40 is formed at the center of the top of each of the protrusions 37. For this reason, these protrusions 37 and 37 are appropriately elastically deformed in the circumferential direction, and the stress generated in the protrusions 37 and 37 during torque transmission can be kept low.

上述の様な摩擦ローラ式減速機1bの運転に伴って前記各ローラ4b、19a、5bには、前記両ローディングカム装置7b、7bの作用に基づいて、それぞれの径方向に向いた大きな力が繰り返し加わり、前記各ローラ4b、19a、5bに内部応力が発生する。特に、前記環状ローラ5bには、径方向外方に向いた大きな力が加わる為、引っ張り方向の応力が発生する。この環状ローラ5bの径方向厚さを相当に大きくしない限り、前記摩擦ローラ式減速機1bを長期間使用した場合、上述の様な引っ張り応力に基づいて前記環状ローラ5bに、亀裂等の損傷が発生する可能性を否定できない。そして、損傷が発生した場合に、前記摩擦ローラ式減速機1b全体を交換するのでは、電気自動車用駆動装置等の修繕費が徒に嵩む。又、前述の図24に示した先発明の構造の様に、環状ローラ5aと連結部27と出力軸3aとが一体構造の場合には、修繕の為に交換する部分が多く、部品コストが嵩むだけでなく、交換作業も面倒になり、摩擦ローラ式減速機1a全体を交換する場合よりは抑えられるにしても、依然として修繕費が嵩む。   Along with the operation of the friction roller type speed reducer 1b as described above, each of the rollers 4b, 19a, 5b receives a large force directed in the radial direction based on the action of the loading cam devices 7b, 7b. Repeatedly applied, an internal stress is generated in each of the rollers 4b, 19a and 5b. In particular, since a large force directed radially outward is applied to the annular roller 5b, a tensile stress is generated. Unless the thickness of the annular roller 5b in the radial direction is considerably increased, when the friction roller type speed reducer 1b is used for a long period of time, the annular roller 5b is not damaged due to the tensile stress as described above. The possibility of occurrence cannot be denied. If the entire friction roller type speed reducer 1b is replaced when damage occurs, the repair cost of the drive device for the electric vehicle and the like increases. In addition, as in the structure of the previous invention shown in FIG. 24 described above, when the annular roller 5a, the connecting portion 27, and the output shaft 3a are integrated, there are many parts to be replaced for repair, and the parts cost is low. Not only does it increase, but also the replacement work becomes cumbersome, and even if it can be suppressed as compared with the case where the entire friction roller type speed reducer 1a is replaced, repair costs still increase.

これに対して本例の構造の場合によれば、前記環状ローラ5bが傷んだ場合に、この環状ローラ5bのみを交換すれば良く、しかも交換作業を容易に行える為、修繕費を低く抑えられる。即ち、損傷した環状ローラ5bと前記保持筒部32とは、前述した様に、工具により前記止め輪43の外径を縮めて、この止め輪43をこの保持筒部32から抜き取った後、前記環状ローラ5bをこの保持筒部32から抜き取る事により、互いに分離できる。そして、新たな環状ローラ5bをこの保持筒部32に内嵌した後、前述した様に、前記係止凹溝41に前記止め輪43を係止すれば、前記環状ローラ5bの交換作業を終了できる。この際、この環状ローラ5b及び前記止め輪43以外の部品を着脱する必要がないので、この環状ローラ5bの修理・交換作業を容易に、低コストで行える。   On the other hand, according to the structure of this example, when the annular roller 5b is damaged, it is only necessary to replace the annular roller 5b, and the replacement work can be easily performed, so that the repair cost can be kept low. . That is, as described above, the damaged annular roller 5b and the holding cylinder portion 32 reduce the outer diameter of the retaining ring 43 with a tool, and after removing the retaining ring 43 from the holding cylinder portion 32, The annular rollers 5b can be separated from each other by being extracted from the holding cylinder portion 32. Then, after the new annular roller 5b is fitted into the holding cylinder portion 32, as described above, if the retaining ring 43 is locked in the locking groove 41, the replacement operation of the annular roller 5b is completed. it can. At this time, since it is not necessary to attach or detach parts other than the annular roller 5b and the retaining ring 43, the repair / replacement work of the annular roller 5b can be performed easily and at low cost.

[実施の形態の第2〜5例]
環状ローラの外周面の突起の形状を異ならせた、本発明の実施の形態の第2〜5例に就いて、図14〜18により説明する。
先ず、図14に示した第2例の環状ローラ5cは、請求項4に対応するもので、外周面に形成した各突起37a、37aを軸方向から見た形状を、円周方向両側面と前記環状ローラ5cの外周面とを部分円弧により滑らかに連続させて、径方向内方程周方向に関する幅寸法が大きくなる形状としている。又、前記各突起37a、37aの頂部に、径方向内方に凹入する部分円弧状の切り欠き部40、40を設けている。
[Second to fifth examples of embodiment]
The second to fifth examples of the embodiment of the present invention in which the shape of the protrusion on the outer peripheral surface of the annular roller is different will be described with reference to FIGS.
First, the annular roller 5c of the second example shown in FIG. 14 corresponds to claim 4, and the shape of the projections 37a, 37a formed on the outer peripheral surface viewed from the axial direction is defined as the both side surfaces in the circumferential direction. The outer circumferential surface of the annular roller 5c is smoothly continuous with a partial arc so that the width dimension in the circumferential direction increases radially inward. Further, partial arc-shaped notches 40, 40 that are recessed inward in the radial direction are provided at the tops of the projections 37a, 37a.

前記各突起37a、37aの円周方向両側面と前記環状ローラ5cの外周面とを連続させる部分円弧の曲率半径は、大きい程、トルク伝達に伴って発生する応力を低減できる。但し、余り大きくすると、前記各突起37a、37aと、保持筒部32の凹部35、35(図1〜3、8〜10参照)とを係合させ難くなる。これらを考慮すると、前記環状ローラ5cの内径が60〜80mm程度、前記各突起37a、37aの外接円の直径が80〜100mm程度の場合で、前記部分円弧の曲率半径を1.5〜2.5mm程度に規制する事が好ましい。勿論、この曲率半径の値は、前記環状ローラ5cの寸法、前記各凹部35、35の形状及び寸法等により適宜変更する。   The larger the radius of curvature of the partial arc that connects the circumferential side surfaces of the projections 37a and 37a and the outer circumferential surface of the annular roller 5c, the more the stress generated with torque transmission can be reduced. However, if it is too large, it becomes difficult to engage the projections 37a and 37a with the recesses 35 and 35 (see FIGS. 1 to 3 and 8 to 10) of the holding cylinder portion 32. Considering these, when the inner diameter of the annular roller 5c is about 60 to 80 mm and the diameter of the circumscribed circle of the projections 37a and 37a is about 80 to 100 mm, the radius of curvature of the partial arc is 1.5 to 2 mm. It is preferable to regulate to about 5 mm. Of course, the value of the radius of curvature is appropriately changed according to the dimensions of the annular roller 5c, the shapes and dimensions of the recesses 35 and 35, and the like.

更に、前記各突起37a、37aの周方向両側面の、径方向に対する傾斜角度に関しても、大きくする(周面に対する傾斜を緩やかにする)程発生する応力を低減できるが、余り大きくすると、前記各突起37a、37aと、保持筒部32の凹部35、35(図1〜3、8〜10参照)とを係合させ難くなる。これらを考慮すると、前記径方向に対する傾斜角度を20〜40度程度(頂部と側面との交差角度を110〜130度程度)程度に規制する事が好ましい。勿論、この角度に関しても、前記各凹部35、35の形状等により適宜変更する。   Furthermore, the stress generated as the inclination angle with respect to the radial direction of both side surfaces of the projections 37a and 37a with respect to the radial direction is increased (the inclination with respect to the circumferential surface is moderated) can be reduced. It becomes difficult to engage the protrusions 37a and 37a with the concave portions 35 and 35 (see FIGS. 1 to 3 and 8 to 10) of the holding cylinder portion 32. Considering these, it is preferable to regulate the inclination angle with respect to the radial direction to about 20 to 40 degrees (the intersection angle between the top and the side surface is about 110 to 130 degrees). Of course, this angle is appropriately changed depending on the shape of each of the concave portions 35 and 35.

上述の様な本例の構造の場合には、前記各突起37a、37aの形状の工夫により、トルク伝達に伴ってこれら各突起37a、37aに加わる応力を十分に低減できる。尚、前述の実施の形態の第1例の様に、各突起37、37の周方向両側面を周方向に関してほぼ直交させる構造でも、これら両側面と環状ローラ5bの外周面との連続部を、曲率半径が1.5〜2mm程度の曲面により滑らかに連続させれば、前記各突起37、37に加わる応力を低く抑えられる。   In the case of the structure of this example as described above, the stress applied to each of the protrusions 37a and 37a along with torque transmission can be sufficiently reduced by devising the shape of the protrusions 37a and 37a. Note that, as in the first example of the above-described embodiment, even in a structure in which the circumferential side surfaces of the protrusions 37 and 37 are substantially orthogonal to each other in the circumferential direction, the continuous portion between these side surfaces and the outer circumferential surface of the annular roller 5b If the curved surface having a curvature radius of about 1.5 to 2 mm is smoothly continuous, the stress applied to each of the protrusions 37 and 37 can be kept low.

図15〜17に示した第3〜5例の環状ローラ5d〜5fは、上述した第2例の環状ローラ5cに比べ、トルク伝達時に各突起37b、37に加わる応力を低減する効果が多少劣るが、摩擦ローラ式減速機が伝達するトルクの大きさによっては、十分に実用化できるものである。
先ず、図15に示した第3例の環状ローラ5dの場合には、外周面の円周方向複数箇所に矩形の突起37b、37bを形成している。
次に、図16に示した第4例の環状ローラ5eの場合には、外周面の円周方向複数箇所に形成した矩形の突起37b、37bを円周方向両側から挟む部分に、それぞれ切り欠き54、54を形成したものである。尚、図示の例では、これら各切り欠き54、54を、前記各突起37b、37bの厚さ方向に関する全長に亙り形成しているが、一部に形成する事で、応力低減を図る事も可能である。
又、図17に示した第5例の環状ローラ5fの場合には、前述の第1例と同様の突起37、37を円周方向両側から挟む部分に、それぞれ切り欠き54、54を形成したものである。本例の場合も、この切り欠き54、54を形成する位置を、上述の第4例の場合と同様に規制できる。
更に、突起37の形状としては、図18の(A)〜(C)に示した様に、円周方向両側面同士を互いに平行とした形状を採用する事もできる。
The annular rollers 5d to 5f of the third to fifth examples shown in FIGS. 15 to 17 are somewhat inferior to the above-described annular roller 5c of the second example in reducing the stress applied to the protrusions 37b and 37 during torque transmission. However, depending on the magnitude of the torque transmitted by the friction roller type reduction gear, it can be sufficiently put into practical use.
First, in the case of the annular roller 5d of the third example shown in FIG. 15, rectangular protrusions 37b and 37b are formed at a plurality of locations in the circumferential direction of the outer peripheral surface.
Next, in the case of the annular roller 5e of the fourth example shown in FIG. 16, the rectangular protrusions 37b and 37b formed at a plurality of locations in the circumferential direction on the outer circumferential surface are cut out at portions sandwiched from both sides in the circumferential direction. 54 and 54 are formed. In the illustrated example, the notches 54 and 54 are formed over the entire length in the thickness direction of the protrusions 37b and 37b. However, the stress can be reduced by forming the notches 54 and 54 in part. Is possible.
Further, in the case of the annular roller 5f of the fifth example shown in FIG. 17, notches 54 and 54 are formed in the portions sandwiching the projections 37 and 37 similar to those of the first example from both sides in the circumferential direction, respectively. Is. Also in the case of this example, the positions where the notches 54 and 54 are formed can be regulated in the same manner as in the case of the fourth example described above.
Furthermore, as the shape of the protrusion 37, as shown in FIGS. 18A to 18C, it is possible to adopt a shape in which both circumferential sides are parallel to each other.

[実施の形態の第6例]
請求項1、5に対応する本発明の実施の形態の第6例に就いて、図19〜20により説明する。本例の場合には、環状ローラ5gの軸方向片側面の円周方向複数箇所に、それぞれ軸方向に突出する突起37c、37cを形成している。そして、これら各突起37c、37cと連結ブラケット30(図1、2、8、9)の円周方向複数箇所に、それぞれ軸方向に凹んだ状態で形成した凹部55a、55bとを係合させる事により、前記環状ローラ5gと前記連結ブラケット30とをトルク伝達を可能に結合させる。前記環状ローラ5gの軸方向片側面のうちで前記各突起37c、37cを形成する径方向位置は、図20の(A)に示す様に外端位置としたり、(B)に示す様に中央位置としたり、(C)に示す様に内端位置とする事ができる。前記凹部55a、55bは、前記各突起37c、37cの位置に合わせて形成する。尚、これら各凹部55a、55bを設ける為に、前記連結ブラケット30を構成する連結部33の支持筒部36(図1、2)の先端縁に切り欠きを形成し、この切り欠きを前記各凹部55a、55bとして機能させる事もできる。何れにしても、前記各突起37c、37cと、前記連結ブラケット30の円周方向複数箇所に形成した凹部55a、55bとを係合させる事により、前記環状ローラ5gと前記連結ブラケット30とを、トルク伝達を可能に結合させる。そして、保持筒部32の内周面係止した止め輪43により、前記各突起37c、37cが前記各凹部55a、55bから抜け出るのを防止する。
[Sixth Example of Embodiment]
A sixth example of the embodiment of the present invention corresponding to claims 1 and 5 will be described with reference to FIGS. In the case of this example, projections 37c and 37c projecting in the axial direction are formed at a plurality of locations in the circumferential direction on one axial side surface of the annular roller 5g. Then, the projections 37c, 37c and the recesses 55a, 55b formed in the axially recessed state are engaged with a plurality of circumferential positions of the connection bracket 30 (FIGS. 1, 2, 8, 9). Thus, the annular roller 5g and the connecting bracket 30 are coupled so as to be able to transmit torque. Of the one side surface in the axial direction of the annular roller 5g, the radial position for forming the projections 37c, 37c is the outer end position as shown in FIG. 20A, or the central position as shown in FIG. It can be a position or an inner end position as shown in FIG. The recesses 55a and 55b are formed in accordance with the positions of the projections 37c and 37c. In order to provide these recesses 55a and 55b, a notch is formed at the front end edge of the support cylinder portion 36 (FIGS. 1 and 2) of the connecting portion 33 constituting the connecting bracket 30, and this notch is formed in each of the above-mentioned notches. It can also function as the recesses 55a and 55b. In any case, by engaging the projections 37c and 37c with the recesses 55a and 55b formed at a plurality of locations in the circumferential direction of the connection bracket 30, the annular roller 5g and the connection bracket 30 are Combine torque transmission possible. The projections 37c and 37c are prevented from coming out of the recesses 55a and 55b by the retaining ring 43 locked to the inner peripheral surface of the holding cylinder portion 32.

本発明の対象となる摩擦ローラ式減速機は、電気自動車の駆動系に限らず、各種回転機械装置の動力伝達装置として利用できる。   The friction roller type speed reducer which is an object of the present invention is not limited to a drive system of an electric vehicle, and can be used as a power transmission device for various rotary machine devices.

1、1a、1b 摩擦ローラ式減速機
2、2a、2b 入力軸
3、3a、3b 出力軸
4、4a、4b 太陽ローラ
5、5a〜5g 環状ローラ
6 遊星ローラ
7、7a、7b ローディングカム装置
8a、8b、8c、8d 太陽ローラ素子
9、9a 環状空間
10 遊星軸
11 キャリア
12 止め輪
13 支え環
14 皿ばね
15、15a、15b カム板
16 玉
17 被駆動側カム面
18 駆動側カム面
19、19a 中間ローラ
20 自転軸
21 ハウジング
22 入力側小径円筒部
23 多列玉軸受ユニット
24 出力側小径円筒部
25 複列玉軸受ユニット
26 ラビリンスシール
27 連結部
28、28a 支持フレーム
29 軸受ケース
30 連結ブラケット
31 基部
32 保持筒部
33 連結部
34 鍔部
35 凹部
36 支持筒部
37、37a、37b、37c 突起
38 内周面側段差部
39 外周面側段差部
40 切り欠き部
41 係止凹溝
42 先端面
43 止め輪
44 係止孔
45 出力側転がり軸受ユニット
46 出力側シーリングユニット
47 入力側転がり軸受ユニット
48 入力側シーリングユニット
49 鍔部
50 ローディングナット
51 揺動フレーム
52 玉軸受
53 供給路
54 切り欠き
55a、55b 凹部
56 連結板部
57 柱部
DESCRIPTION OF SYMBOLS 1, 1a, 1b Friction roller type reduction gear 2, 2a, 2b Input shaft 3, 3a, 3b Output shaft 4, 4a, 4b Sun roller 5, 5a-5g Annular roller 6 Planetary roller 7, 7a, 7b Loading cam device 8a , 8b, 8c, 8d Solar roller element 9, 9a Annular space 10 Planetary shaft 11 Carrier 12 Retaining ring 13 Support ring 14 Disc spring 15, 15a, 15b Cam plate 16 Ball 17 Drive side cam surface 18 Drive side cam surface 19, 19a Intermediate roller 20 Rotating shaft 21 Housing 22 Input side small diameter cylindrical portion 23 Multi-row ball bearing unit 24 Output side small diameter cylindrical portion 25 Double row ball bearing unit 26 Labyrinth seal 27 Connecting portion 28, 28a Support frame 29 Bearing case 30 Connecting bracket 31 Base part 32 Holding cylinder part 33 Connecting part 34 Gutter part 35 Recessed part 36 Supporting cylinder part 37, 3 a, 37b, 37c Protrusion 38 Inner peripheral surface side stepped portion 39 Outer peripheral surface side stepped portion 40 Notch portion 41 Locking groove 42 Front end surface 43 Retaining ring 44 Locking hole 45 Output side rolling bearing unit 46 Output side sealing unit 47 Input side rolling bearing unit 48 Input side sealing unit 49 Gutter 50 Loading nut 51 Oscillating frame 52 Ball bearing 53 Supply path 54 Notch 55a, 55b Recess 56 Connection plate 57 Column

Claims (5)

入力軸と、出力軸と、太陽ローラと、環状ローラと、複数個の中間ローラと、ローディングカム装置とを備え、
このうちの太陽ローラは、軸方向に分割された1対の太陽ローラ素子を前記入力軸の周囲に、互いの先端面同士の間に隙間を介在させた状態で互いに同心に、且つ、この入力軸に対する相対回転を可能に配置して成るもので、前記両太陽ローラ素子の外周面は、それぞれの先端面に向かうに従って外径が小さくなる方向に傾斜した傾斜面であって、これら両傾斜面を転がり接触面としており、
前記環状ローラは、前記太陽ローラの周囲にこの太陽ローラと同心に配置されたもので、内周面を転がり接触面とすると共に、連結ブラケットを介して前記出力軸と同心に結合されていて、この出力軸と共に回転自在としており、
前記各中間ローラは、前記太陽ローラの外周面と前記環状ローラの内周面との間の環状空間の円周方向複数箇所に、それぞれが前記入力軸と平行に配置された自転軸を中心とする回転自在に支持された状態で、それぞれの外周面を前記太陽ローラの外周面と前記環状ローラの内周面とに転がり接触させており、
前記ローディングカム装置は、前記両太陽ローラ素子のうちの少なくとも一方の太陽ローラ素子である可動太陽ローラ素子と前記入力軸との間に設けられて、この入力軸の回転に伴ってこの可動太陽ローラ素子を相手方の太陽ローラ素子に向けて軸方向に押圧しつつ回転させるものであり、
前記各中間ローラは、前記入力軸の回転に伴って前記ローディングカム装置が発生する押圧力に基づき、前記環状ローラの内周面に押し付けられつつ前記各自転軸を中心として回転するものであり、
前記連結ブラケットは、前記出力軸の端部にトルク伝達を可能に連結された基部と、前記環状ローラの周囲に配置された保持筒部と、これら基部と保持筒部とを連結した連結部とを備えたものであり、前記環状ローラと前記連結ブラケットとは、この環状ローラの円周方向複数箇所に形成した突起と、前記保持筒部の円周方向複数箇所に形成した凹部とを係合させる事によりトルク伝達を可能に結合されている
摩擦ローラ式減速機。
An input shaft, an output shaft, a sun roller, an annular roller, a plurality of intermediate rollers, and a loading cam device;
Of these, the sun rollers are concentric to each other with a pair of sun roller elements divided in the axial direction around the input shaft, with a gap between the tip surfaces of the elements. The outer peripheral surfaces of the two sun roller elements are inclined surfaces that are inclined in a direction in which the outer diameter decreases toward the respective front end surfaces, and these two inclined surfaces are arranged. Rolling contact surface,
The annular roller is arranged concentrically with the sun roller around the sun roller, has an inner peripheral surface as a rolling contact surface, and is connected concentrically with the output shaft via a connection bracket, It can rotate with this output shaft,
Each of the intermediate rollers is centered on a rotation shaft disposed in parallel with the input shaft at a plurality of locations in the circumferential direction of the annular space between the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller. In a state of being rotatably supported, each outer peripheral surface is in rolling contact with the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller,
The loading cam device is provided between a movable sun roller element, which is at least one of the sun roller elements, and the input shaft, and the movable sun roller is rotated along with the rotation of the input shaft. The element is rotated while being pressed in the axial direction toward the other sun roller element,
The intermediate rollers rotate around the rotation shafts while being pressed against the inner peripheral surface of the annular roller based on the pressing force generated by the loading cam device as the input shaft rotates.
The connection bracket includes a base portion connected to an end portion of the output shaft so as to be able to transmit torque, a holding cylinder portion disposed around the annular roller, and a connection portion connecting the base portion and the holding cylinder portion. The annular roller and the coupling bracket engage with protrusions formed at a plurality of circumferential positions of the annular roller and recesses formed at a plurality of circumferential directions of the holding cylinder portion. Friction roller type speed reducer that is connected to enable torque transmission.
前記環状ローラと前記連結ブラケットとは、この環状ローラの外周面の円周方向複数箇所に形成した突起と、前記保持筒部の内周面の円周方向複数箇所に形成した、径方向に凹んだ状態で軸方向に連続する凹部とを係合させる事によりトルク伝達を可能に結合されており、前記保持筒部の内周面のうちで、軸方向に関して前記環状ローラよりも開口寄り部分に係止した止め輪により、前記各突起が前記各凹部から抜け出るのを防止している、請求項1に記載した摩擦ローラ式減速機。   The annular roller and the connecting bracket are recessed in a radial direction, formed at a plurality of circumferential positions on the outer circumferential surface of the annular roller, and at a plurality of circumferential positions on the inner circumferential surface of the holding cylinder portion. In this state, it is coupled so as to be able to transmit torque by engaging with a concave portion that is continuous in the axial direction. Of the inner peripheral surface of the holding cylinder portion, it is closer to the opening portion than the annular roller in the axial direction. The friction roller type speed reducer according to claim 1, wherein each of the protrusions is prevented from coming out of each of the recesses by a locked retaining ring. 前記各突起の頂部に、径方向内方に凹入する切り欠き部が設けられている、請求項2に記載した摩擦ローラ式減速機。   The friction roller type speed reducer according to claim 2, wherein a notch portion that is recessed radially inward is provided at a top portion of each projection. 前記環状ローラの外周面に形成した前記各突起を軸方向から見た場合の形状が、円周方向両外側面とこの環状ローラの外周面とを部分円弧により滑らかに連続させて、径方向内方程周方向に関する幅寸法が大きくなる形状であり、且つ、前記各突起の頂部に形成された切り欠き部が部分円弧状である、請求項3に記載した摩擦ローラ式減速機。   When the projections formed on the outer peripheral surface of the annular roller are viewed from the axial direction, the outer circumferential surfaces of the circumferential roller and the outer peripheral surface of the annular roller are smoothly connected by partial arcs, The friction roller type speed reducer according to claim 3, wherein the width dimension in the circumferential direction increases, and the notch formed at the top of each protrusion has a partial arc shape. 前記環状ローラと前記連結ブラケットとは、この環状ローラの軸方向側面の円周方向複数箇所に形成した突起と、前記保持筒部の内側の円周方向複数箇所に、それぞれ軸方向に凹んだ状態で形成した凹部とを係合させる事によりトルク伝達を可能に結合されており、前記保持筒部の内周面のうちで、軸方向に関して前記環状ローラよりも開口寄り部分に係止した止め輪により、前記各突起が前記各凹部から抜け出るのを防止している、請求項1に記載した摩擦ローラ式減速機。   The annular roller and the connecting bracket are recessed in the axial direction at the protrusions formed at a plurality of circumferential positions on the axial side surface of the annular roller, and at a plurality of circumferential positions inside the holding cylinder portion. A retaining ring that is coupled to a recess formed in the above-described manner so as to be able to transmit torque and that is locked to a portion closer to the opening than the annular roller in the axial direction on the inner peripheral surface of the holding cylinder portion. The friction roller type speed reducer according to claim 1, wherein the protrusions prevent the protrusions from coming out of the recesses.
JP2011255855A 2011-11-24 2011-11-24 Friction roller reducer Active JP5849645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011255855A JP5849645B2 (en) 2011-11-24 2011-11-24 Friction roller reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011255855A JP5849645B2 (en) 2011-11-24 2011-11-24 Friction roller reducer

Publications (2)

Publication Number Publication Date
JP2013108600A true JP2013108600A (en) 2013-06-06
JP5849645B2 JP5849645B2 (en) 2016-01-27

Family

ID=48705547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011255855A Active JP5849645B2 (en) 2011-11-24 2011-11-24 Friction roller reducer

Country Status (1)

Country Link
JP (1) JP5849645B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048113A (en) * 2014-08-25 2016-04-07 日本精工株式会社 Friction roller type reduction gear
KR20160110133A (en) * 2015-03-09 2016-09-21 나부테스코 가부시키가이샤 Speed reducer and gasket
US10895831B2 (en) 2019-03-19 2021-01-19 Ricoh Company, Ltd. Conveyance control device and image reading apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187154A (en) * 1983-04-06 1984-10-24 Yamaha Motor Co Ltd Planetary gear type reduction gear
JP2004116670A (en) * 2002-09-26 2004-04-15 Ntn Corp Planetary roller type transmission
JP2007155039A (en) * 2005-12-06 2007-06-21 Tama Tlo Kk Traction transmission device
JP2008106923A (en) * 2006-10-27 2008-05-08 Ntn Corp Planetary-roller-type transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187154A (en) * 1983-04-06 1984-10-24 Yamaha Motor Co Ltd Planetary gear type reduction gear
JP2004116670A (en) * 2002-09-26 2004-04-15 Ntn Corp Planetary roller type transmission
JP2007155039A (en) * 2005-12-06 2007-06-21 Tama Tlo Kk Traction transmission device
JP2008106923A (en) * 2006-10-27 2008-05-08 Ntn Corp Planetary-roller-type transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048113A (en) * 2014-08-25 2016-04-07 日本精工株式会社 Friction roller type reduction gear
KR20160110133A (en) * 2015-03-09 2016-09-21 나부테스코 가부시키가이샤 Speed reducer and gasket
KR102499984B1 (en) 2015-03-09 2023-02-15 나부테스코 가부시키가이샤 Speed reducer and gasket
US10895831B2 (en) 2019-03-19 2021-01-19 Ricoh Company, Ltd. Conveyance control device and image reading apparatus

Also Published As

Publication number Publication date
JP5849645B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
KR101541673B1 (en) Continuously variable transmission
JP2013231448A (en) One-way clutch and power generating device
US9482323B2 (en) Friction roller reducer and drive unit for electric automobile
JP6094319B2 (en) Friction roller reducer
JP5903834B2 (en) Friction roller speed reducer and electric vehicle drive device
JP5849645B2 (en) Friction roller reducer
KR101468389B1 (en) Assembled crank for ratio enhancing of rotaion speed
WO2016046955A1 (en) Loading cam device and friction roller-type speed reducer
JP2014040885A (en) Friction roller-type change gear
JP2012193793A (en) Friction roller type reduction gear and electric vehicle drive unit
JP6119372B2 (en) Loading cam device and friction roller reducer
JP2012193792A (en) Friction roller type reduction gear and electric vehicle drive unit
JP5867132B2 (en) Friction roller reducer
EP3101298B1 (en) Divided holder, one-way clutch, and joint for power-generating device
JP2015175388A (en) Bearing pre-load mechanism of reduction gear
JP2013108572A (en) Friction roller type speed reducer
JP4860560B2 (en) Toroidal continuously variable transmission
JP6314534B2 (en) Friction roller reducer
JP2012197930A (en) Friction roller type reduction gear and electric vehicle drive system
JP5899851B2 (en) Friction roller reducer
JP2012193794A (en) Friction roller type reduction gear and electric vehicle drive unit
JP2017141914A (en) Friction roller type speed reduction gear
JP2013130232A (en) Friction roller type reduction gear
JP5966420B2 (en) Friction roller reducer
JP5982326B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5849645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150