JP2013107279A - Method of manufacturing wood board - Google Patents
Method of manufacturing wood board Download PDFInfo
- Publication number
- JP2013107279A JP2013107279A JP2011254003A JP2011254003A JP2013107279A JP 2013107279 A JP2013107279 A JP 2013107279A JP 2011254003 A JP2011254003 A JP 2011254003A JP 2011254003 A JP2011254003 A JP 2011254003A JP 2013107279 A JP2013107279 A JP 2013107279A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- wood
- thermoplastic resin
- fibers
- wood board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
本発明は、木質板の製造方法に関する。 The present invention relates to a method for manufacturing a wooden board.
内装建材に使用される木質板は、表面化粧材で仕上げられるため、表面平滑性の良さが求められる。一般的にはMDF(Medeium Density Fiberboard)、パーティクルボード等の植物短繊維や細かく砕いたチップにメラミン樹脂や尿素樹脂等の熱硬化性樹脂を散布混合して加熱加圧成形したボードが使用される。 Since the wooden board used for the interior building material is finished with a surface decorative material, good surface smoothness is required. Generally, boards are used that are formed by spraying and mixing thermosetting resins such as melamine resin and urea resin to plant short fibers such as MDF (Medeium Density Fiberboard) and particle boards and finely crushed chips. .
ただ、これら木質板の場合には、合板に比較して、吸放湿による寸法変化量が大きいため、内装建材へ適応する際には反りが起こりやすい。そこで、寸法安定性を高めて反りを抑制するための工夫として防湿シートを貼ることや、加熱加圧成形した後に調湿工程を行うことの工夫がされている。さらに、加熱加圧成形に際して含水率や加熱温度と圧力を特定範囲に制御し、冷却工程をコントロールすること(例えば特許文献1)等の工夫がされている。 However, in the case of these wood boards, since the amount of dimensional change due to moisture absorption and release is larger than that of plywood, warping is likely to occur when applied to interior building materials. Then, the device of sticking a moisture-proof sheet as a device for improving the dimensional stability and suppressing the warping, or performing the humidity control step after heating and pressure forming has been made. Furthermore, devices such as controlling the water content, heating temperature, and pressure within a specific range and controlling the cooling process during heat-press molding (for example, Patent Document 1) have been devised.
一方、麻や竹、ジュート等の植物長繊維はマット状にフォーミングし、加熱加圧して板状にする形での利用が多い。例えば50mm長程度にカットされた植物長繊維は解繊機で解繊される際、熱可塑性樹脂繊維と同時に解繊混合しフォーミングし、加熱加圧成形されて板状となる。熱可塑性樹脂繊維はバインダーとしての役割を果たしている。 On the other hand, plant long fibers such as hemp, bamboo, and jute are often used in the form of a mat that is formed into a plate by heating and pressing. For example, when a plant long fiber cut to a length of about 50 mm is defibrated by a defibrating machine, it is defibrated and mixed simultaneously with the thermoplastic resin fiber, and formed into a plate shape by heating and pressing. The thermoplastic resin fiber plays a role as a binder.
しかし、このような植物長繊維からの木質板においては加熱加圧成形時にバインダーとしての熱可塑性樹脂繊維の溶融にともなって植物長繊維間の拘束力が低下しやすく、接着性に難点が生じやすい。そこで、バインダーとして芯・鞘構造を有し、鞘の融点が芯の融点よりも低い熱可塑性樹脂繊維を用い、加熱加圧成形温度を鞘の融点よりも高く芯の融点よりも低い温度にして加熱加圧成形し、寸法安定性、接着性を高める工夫が提案されている(特許文献2)。 However, in the wood board from such a plant long fiber, the binding force between the plant long fibers tends to decrease with the melting of the thermoplastic resin fiber as a binder at the time of heat and pressure molding, and the adhesion tends to be difficult. . Therefore, a thermoplastic resin fiber having a core / sheath structure as the binder and having a melting point of the sheath lower than the melting point of the core is used, and the heating and pressing temperature is set higher than the melting point of the sheath and lower than the melting point of the core. There has been proposed a device for improving the dimensional stability and adhesion by heating and pressing (Patent Document 2).
MDFをはじめとする繊維長がおよそ10mm以下の木質短繊維をメラミン樹脂等の熱硬化性樹脂とともに加熱加圧成形した木質板は、その良好な表面平滑性から内装建材向けなどに有用である。しかしながら、この木質板については前記のように様々に工夫されてきているものの、吸放湿による寸法変化、反りの発生を抑制するとの点においては依然として改善の余地が残されている。 A wood board obtained by heat-pressing wood short fibers having a fiber length of about 10 mm or less including MDF together with a thermosetting resin such as melamine resin is useful for interior building materials because of its good surface smoothness. However, although this wood board has been devised in various ways as described above, there is still room for improvement in terms of suppressing dimensional changes due to moisture absorption and release and warpage.
これらの改善のために、繊維間の拘束を強め、接着性を向上させるとの観点から、特許文献2のような、植物長繊維ボードの場合の知見を活用することが考えられる。熱可塑性樹脂繊維を配合することや、芯・鞘構造のものを用いること等である。 In order to improve these, it is conceivable to utilize the knowledge in the case of a plant long fiber board such as Patent Document 2 from the viewpoint of strengthening restraint between fibers and improving adhesiveness. These include blending thermoplastic resin fibers and using a core / sheath structure.
しかしながら、特許文献2には熱硬化性樹脂の併用について言及されているが、およそ50mm繊維長の植物の長繊維ボードのみに係わる技術検討に終始し、前記のような内装建材向けの木質短繊維と熱硬化性樹脂による木質板とは技術的な共通性が多くない。 However, Patent Document 2 refers to the combined use of a thermosetting resin, but since the technical study related only to the long fiber board of a plant having a fiber length of about 50 mm, the wood short fiber for interior building materials as described above was used. And wooden boards made of thermosetting resin have little technical commonality.
実際、内装建材としては、特許文献2の植物長繊維マットを加熱加圧成形して得られたボードは表面平滑性が不十分である。例えば、一般的な化粧オレフィンシートを接着すると繊維凹凸が意匠性を損なう場合がある。 In fact, as an interior building material, the board obtained by heat-pressing the plant long fiber mat of Patent Document 2 has insufficient surface smoothness. For example, when a general decorative olefin sheet is bonded, the fiber irregularities may impair the design.
本発明は、以上のことから、木質短繊維と熱硬化性樹脂とを加熱加圧成形することによる、内装建材向け等として有用な木質板の製造において、改善された新しい方法を提供する。すなわち、本発明は、植物長繊維ボード等に係わる従来技術の知見をも生かし、表面平滑性を良好とし、木質板の吸放湿による寸法安定性を向上させることのできる新しい木質板の製造方法を提供することを課題としている。 In view of the above, the present invention provides a new and improved method in the production of wood boards useful for interior building materials and the like by heat-press molding wood short fibers and thermosetting resins. That is, the present invention makes use of the knowledge of the prior art related to plant long fiber boards, etc., and provides a new method for producing a wooden board that can improve surface smoothness and improve dimensional stability due to moisture absorption and desorption of the wooden board. It is an issue to provide.
本発明の木質板の製造方法は、木質短繊維と熱硬化性樹脂とともに熱可塑性樹脂繊維を混合して加熱加圧成形する木質板の製造方法であって、前記木質短繊維は繊維長が10mm以下であり、前記熱可塑性樹脂繊維は、繊維長が15mm以下で、少なくともその表面部分は成形する加熱温度以下で溶融することを特徴としている。 The method for producing a wood board of the present invention is a wood board production method in which thermoplastic resin fibers are mixed together with wood short fibers and a thermosetting resin, and are heated and pressed, and the wood short fibers have a fiber length of 10 mm. The thermoplastic resin fiber has a fiber length of 15 mm or less, and at least a surface portion thereof is melted at a heating temperature or lower for molding.
この木質板の製造方法では、前記熱可塑性樹脂繊維は、繊維長が5mm以下であることが好ましい。 In this wood board manufacturing method, the thermoplastic resin fibers preferably have a fiber length of 5 mm or less.
この木質板の製造方法では、前記熱可塑性樹脂繊維は、芯・鞘構造を有し、鞘部分が加熱温度以下で溶融することがより好ましい。 In this wood board manufacturing method, it is more preferable that the thermoplastic resin fiber has a core / sheath structure, and the sheath part melts at a heating temperature or lower.
この木質板の製造方法では、前記木質短繊維は、繊維長が6mm以下であることがさらに好ましい。 In this wood board manufacturing method, it is more preferable that the wood short fibers have a fiber length of 6 mm or less.
この木質板の製造方法では、前記木質短繊維は、前記木質板において50質量%以上で配合されていることが一層好ましい。 In this wood board manufacturing method, the wood short fibers are more preferably blended in the wood board at 50% by mass or more.
本発明によれば、内装建材向け等として有用な木質板を、良好な表面平滑性を有し、しかも吸放湿による反りを抑えて寸法安定性を向上させたものとして製造可能としている。 According to the present invention, a wood board useful for interior building materials and the like can be manufactured as having excellent surface smoothness, and having improved dimensional stability by suppressing warpage due to moisture absorption and desorption.
本発明の製造方法では、繊維長10mm以下の木質短繊維と、熱硬化性樹脂、そして繊維長15mm以下の熱可塑性樹脂繊維とを混合して加熱加圧成形する。 In the production method of the present invention, a woody short fiber having a fiber length of 10 mm or less, a thermosetting resin, and a thermoplastic resin fiber having a fiber length of 15 mm or less are mixed and heated and pressed.
繊維長10mm以下の木質短繊維としては各種の天然木材をチップに細断し、解繊したもの等、従来からMDFの製造に使用されているもの等を適宜使用することができる。例えば杉等の天然木材を解繊して一般に利用されているものでよい。なお、木質短繊維の繊維径としては、50〜500μm程度が好ましい。 As the woody short fibers having a fiber length of 10 mm or less, various natural woods that have been conventionally used for the production of MDF, such as those obtained by chopping various chips and breaking them, can be used as appropriate. For example, natural wood such as cedar can be defibrated and used in general. In addition, as a fiber diameter of a wood short fiber, about 50-500 micrometers is preferable.
表面平滑性が得られる木質短繊維としては、好ましくは一般的には繊維長6mm以下で、1〜3mm長近辺の繊維がより好ましい。 As the wood short fiber from which surface smoothness is obtained, the fiber length is generally 6 mm or less, and a fiber in the vicinity of 1 to 3 mm long is more preferable.
これらの木質短繊維には熱硬化性樹脂を混合する。この場合の熱硬化性樹脂は、従来より用いられているように、メラミン樹脂、尿素樹脂、フェノール樹脂等の各種のものから選択されてよい。木質板の用途や、望まれる吸湿性、成形性等を考慮して木質短繊維との組合わせが選択されてよい。これらの熱硬化性樹脂としては水溶液、水分散液等の状態のものとして使用可能である。 These wood short fibers are mixed with a thermosetting resin. The thermosetting resin in this case may be selected from various materials such as melamine resin, urea resin, phenol resin and the like as conventionally used. A combination with a wood short fiber may be selected in consideration of the use of the wood board, desired hygroscopicity, moldability, and the like. These thermosetting resins can be used in the form of an aqueous solution, an aqueous dispersion or the like.
木質短繊維と熱硬化性樹脂とを加熱加圧成形することでボード化できるが、従来の木質板では吸放湿による寸法安定性が不足している。 Although it can be made into a board by heat-press molding wood short fibers and thermosetting resin, the conventional wood board lacks dimensional stability due to moisture absorption and desorption.
そこで、本発明では、接着剤としての熱硬化性樹脂に加えて、加熱加圧による成板時の加熱温度以下で溶融する熱可塑性樹脂繊維を配合することで、木質短繊維の接着交点を増す。更には熱可塑性樹脂が加熱加圧成形中に熱硬化性樹脂接着交点へ流動し補強する効果を得る。つまり、木質短繊維間の拘束を高め、寸法安定性を向上させる。 Therefore, in the present invention, in addition to the thermosetting resin as an adhesive, by adding thermoplastic resin fibers that melt at a temperature equal to or lower than the heating temperature at the time of lamination by heating and pressurization, the bonding intersection of the wood short fibers is increased. . Furthermore, an effect is obtained in which the thermoplastic resin flows and reinforces to the thermosetting resin adhesion intersection during the heat and pressure molding. That is, the restraint between the short wood fibers is increased and the dimensional stability is improved.
熱可塑性樹脂繊維としては、加熱加圧成形時の加熱温度で少なくともその表面部が溶融するものから選択される。例えば、ポリプロピレン(PP)樹脂、ポリエチレン(PE)樹脂、ポリエステル樹脂などである。 The thermoplastic resin fiber is selected from those in which at least the surface portion melts at the heating temperature at the time of heat and pressure molding. For example, polypropylene (PP) resin, polyethylene (PE) resin, polyester resin, and the like.
熱可塑性樹脂繊維は芯・鞘構造を持つものでもよい。加熱加圧成形によっても溶けない芯部は木質短繊維を繋ぐ役目となり、加熱加圧成形により溶融する鞘部が接着交点を増す役目となる。 The thermoplastic resin fiber may have a core / sheath structure. The core portion that does not melt even by heat-pressure molding serves to connect the short wood fibers, and the sheath portion that melts by heat-pressure molding serves to increase the bonding intersection.
このような熱可塑性樹脂繊維については、その繊維長15mm以下であることが欠かせない。木質短繊維の繊維長10mm以下の要件との組合わせとして必須である。なお、熱可塑性樹脂繊維の繊維径としては、50〜500μm程度が好ましい。 About such a thermoplastic resin fiber, it is indispensable that the fiber length is 15 mm or less. It is indispensable as a combination with the requirement that the fiber length of wood short fibers is 10 mm or less. In addition, as a fiber diameter of a thermoplastic resin fiber, about 50-500 micrometers is preferable.
熱可塑性樹脂繊維は長繊維での流通が多い(例えば50mm長程度が一般的)が、木質短繊維に長繊維の熱可塑性樹脂繊維を混合すれば、長繊維同士が絡まり易くなり均一分散が困難である。 Thermoplastic resin fibers are often distributed through long fibers (for example, a length of about 50 mm is common), but if long thermoplastic resin fibers are mixed with short wood fibers, the long fibers tend to get entangled and difficult to disperse uniformly. It is.
本発明では熱可塑性樹脂繊維の繊維長を15mm以下、好ましくは5mm以下とすることで、木質短繊維への熱可塑性樹脂繊維の分散を均一にすることができる。この均一分散で、寸法安定性等も確保されることになる。 In the present invention, by making the fiber length of the thermoplastic resin fibers 15 mm or less, preferably 5 mm or less, the thermoplastic resin fibers can be uniformly dispersed in the wood short fibers. With this uniform dispersion, dimensional stability and the like are ensured.
熱可塑性樹脂繊維の混合方法は特に限定されない。例えば木質短繊維と共に気流中で混合してもよく、ミキサー等で物理的に攪拌混合してもよい。また、熱硬化性樹脂を散布等で混合するタイミングも特に限定されない。例えば木質短繊維と熱可塑性樹脂繊維を混合した後に、熱硬化性樹脂を散布混合してもよく、熱硬化性樹脂を散布混合した後に熱可塑性樹脂繊維を混合してもよい。 The method for mixing the thermoplastic resin fibers is not particularly limited. For example, it may be mixed in an air stream with woody short fibers, or physically stirred and mixed with a mixer or the like. Moreover, the timing which mixes thermosetting resin by spreading etc. is not specifically limited, either. For example, after mixing the wood short fiber and the thermoplastic resin fiber, the thermosetting resin may be sprayed and mixed, or after the thermosetting resin is sprayed and mixed, the thermoplastic resin fiber may be mixed.
本発明の製造方法では、必要に応じてワックスなどを添加した後、マット化した繊維体を加熱加圧する。 In the production method of the present invention, after adding wax or the like as necessary, the matted fiber body is heated and pressurized.
混合する熱可塑性樹脂繊維の配合割合は特に限定されないが、木質板としての表面平滑性、寸法安定性、そして木質板としての切断等の加工性を維持する観点、加熱加圧成形時の離型性を維持する観点を考慮することができる。具体的には、木質短繊維が50質量%以上となる様にし、残りを熱硬化性樹脂と熱可塑性樹脂繊維に分けて配合するのがよい。好ましくは木質短繊維が70〜90質量%の範囲内とする。熱硬化性樹脂、熱可塑性樹脂繊維は各々、25質量%以内、より好ましくは5〜15質量%の範囲内とする。 The mixing ratio of the thermoplastic resin fibers to be mixed is not particularly limited, but the viewpoint of maintaining the surface smoothness, dimensional stability, and cutting properties as a wood board as a wood board, mold release during heat and pressure molding It is possible to consider the viewpoint of maintaining the sex. Specifically, it is preferable that the wood short fiber is 50% by mass or more, and the remainder is divided into a thermosetting resin and a thermoplastic resin fiber. Preferably, the short wood fiber is in the range of 70 to 90% by mass. Each of the thermosetting resin and the thermoplastic resin fiber is within 25% by mass, more preferably within the range of 5 to 15% by mass.
加熱加圧成形の条件は、一般的な木質ボード(例:MDFやパーチクルボード)と同等でよく、仕上げ厚さに応じて加熱時間と加圧力を調整することができる。例えば成形厚みも考慮して160℃〜200℃、10kg/cm2〜30kg/cm2程度が目安として考慮される。 The conditions for heat and pressure molding may be the same as those of a general wood board (eg, MDF or particle board), and the heating time and pressure can be adjusted according to the finished thickness. For example, even considering to 160 ° C. to 200 DEG ° C. molding thickness, 10kg / cm 2 ~30kg / cm 2 approximately are considered as a guide.
本発明による木質板は、例えば、床や収納家具材等の内装建材として有用なものとなる。 The wood board by this invention becomes a useful thing as interior building materials, such as a floor and storage furniture material, for example.
以下に実施例を示し、さらに詳しく説明する。もちろん本発明は以下の例に限定されることはない。 Hereinafter, examples will be shown and described in more detail. Of course, the present invention is not limited to the following examples.
<実施例1〜4>
表1に示した配合材として次のものを用いた。
・木質短繊維:杉チップを湿熱処理し叩解機で繊維化した6mm以下の繊維
・熱硬化性樹脂接着剤:メラミン樹脂
・熱可塑性樹脂繊維:10〜30μm径で、長さを5mm〜15mmに調整して使用。
PP(ポリプロピレン)繊維;融点170℃
PET(ポリエチレンテレフタレート)繊維;芯部の融点250℃、鞘部の融点 110℃
<Examples 1-4>
The following materials were used as the compounding materials shown in Table 1.
・ Wood short fiber: fiber of 6mm or less made by wet heat treatment of cedar chips and beating with a beater ・ thermosetting resin adhesive: melamine resin ・ thermoplastic resin fiber: 10-30 μm in diameter and 5-15 mm in length Adjust and use.
PP (polypropylene) fiber; melting point 170 ° C
PET (polyethylene terephthalate) fiber; melting point of core portion 250 ° C., sheath portion melting point 110 ° C.
木質短繊維と熱可塑性樹脂繊維を大気中の気流攪拌により充分拡散混合した後、水溶性の熱硬化性樹脂接着剤を均一に散布した後、マット状にフォーミング、秤量した後、加熱加圧成形して木質板を得た。また、熱硬化性樹脂接着剤にはパラフィン系撥水剤を一定量加えた。(条件として、180℃、20kg/cm2圧、1分間の加熱加圧により、3mm厚、比重0.8の木質板を得た) After sufficiently dispersing and mixing wood short fibers and thermoplastic resin fibers by stirring in the airflow in the atmosphere, water-soluble thermosetting resin adhesive is uniformly sprayed, then formed into a mat, weighed, and heated and pressed To obtain a wooden board. A certain amount of paraffinic water repellent was added to the thermosetting resin adhesive. (As a condition, a wood board with a thickness of 3 mm and a specific gravity of 0.8 was obtained by heating and pressing at 180 ° C., 20 kg / cm 2 pressure for 1 minute)
<比較例1>
熱可塑性樹脂繊維(PET)の長さを20mmに調整した以外は、実施例2〜4と同様の条件で成形して木質板を得た。
<比較例2>
熱可塑性樹脂繊維を配合せず、その他の条件は、実施例1〜4と同様の条件で成形して木質板を得た。
<Comparative Example 1>
Except having adjusted the length of the thermoplastic resin fiber (PET) to 20 mm, it shape | molded on the conditions similar to Examples 2-4, and obtained the wooden board.
<Comparative example 2>
The thermoplastic resin fibers were not blended, and other conditions were molded under the same conditions as in Examples 1 to 4 to obtain a wood board.
得られた木質板について、「混合性」「長さ寸法変化」「表面平滑性」を以下の判定基準により評価し、その結果も表1に示した。 The obtained wood board was evaluated for “mixability”, “length variation”, and “surface smoothness” according to the following criteria, and the results are also shown in Table 1.
(判定基準)
(1)「混合性」
木質短繊維と熱可塑性樹脂繊維を混合した際、明らかに熱可塑性樹脂繊維がダマになり、混合できない状態を×、外観上で繊維混合のバラつきが見られない状態を○とした。
(2)「長さ寸法変化」
作成した木質板を20℃65%環境で恒温状態にした後、40℃90%の加湿環境に置き、恒量に達した際の寸法変化率を測定し、反りやねじれが目立ち難い0.15%以下の変化率となるものを○とし、0.15%より大きい場合を×とした。
(3)「表面平滑性」
作成した木質板を180番手サンディング仕上げした後、約60μm厚の化粧シートをPUR(ポリウレタン系)接着剤で接着した際の表面外観を確認し、繊維束が目視確認できる場合を×、確認できない場合を○とした。(ただし、×に該当する木質板なし)
(1) “Mixability”
When the short wood fibers and the thermoplastic resin fibers were mixed, the thermoplastic resin fibers were clearly lumped and could not be mixed, and the state where no fiber mixing variation was observed on the appearance was rated as ◯.
(2) “Change in length”
The prepared wood board is brought to a constant temperature in an environment of 20 ° C. and 65%, then placed in a humidified environment of 40 ° C. and 90%, and the rate of dimensional change when reaching a constant weight is measured. The following change rate was marked with ◯, and the case where it was greater than 0.15% was marked with ×.
(3) "Surface smoothness"
After finishing the 180th sanding finish of the wood board you created, check the surface appearance when a decorative sheet with a thickness of about 60 μm is bonded with a PUR (polyurethane) adhesive, and if the fiber bundle can be visually confirmed ×, if you can not confirm Was marked as ○. (However, there is no wood board corresponding to ×)
実施例1〜4では、混合性、寸法安定性(長さ寸法変化)、表面平滑性がいずれも良好(判定:○)であった。繊維長6mm以下の木質短繊維に、熱硬化性樹脂に加え、成板加熱温度以下で溶融する繊維長15mm以下の熱可塑性樹脂繊維を含有することで、表面平滑性が良好で、且つ、吸放湿による寸法安定性が良好な木質板を得られることが確認された。 In Examples 1 to 4, the mixing property, dimensional stability (length dimensional change), and surface smoothness were all good (judgment: ◯). By containing thermoplastic resin fibers having a fiber length of 15 mm or less that melts at a temperature not higher than the heating temperature of the laminated plate in addition to the thermosetting resin, the wood short fibers having a fiber length of 6 mm or less have good surface smoothness and absorbability. It was confirmed that a wood board with good dimensional stability by moisture release can be obtained.
一方、比較例1では、熱可塑性樹脂繊維のダマが確認され、均一に混合することができず混合性に問題があった(判定:×)。このため、比較例1では、長さ寸法変化、表面平滑性については評価なしとした。また、比較例2では、混合性、表面平滑性は良好であったものの(判定:○)、長さ寸法変化が大きく(変化率0.22%)、寸法安定性に問題があった(判定:×)。 On the other hand, in Comparative Example 1, the lumps of the thermoplastic resin fibers were confirmed, and uniform mixing could not be performed (determination: x). For this reason, in Comparative Example 1, no evaluation was made on the change in length and the surface smoothness. In Comparative Example 2, although the mixing property and the surface smoothness were good (determination: ◯), the length dimensional change was large (change rate 0.22%), and there was a problem in dimensional stability (determination) : X).
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011254003A JP2013107279A (en) | 2011-11-21 | 2011-11-21 | Method of manufacturing wood board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011254003A JP2013107279A (en) | 2011-11-21 | 2011-11-21 | Method of manufacturing wood board |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013107279A true JP2013107279A (en) | 2013-06-06 |
Family
ID=48704577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011254003A Pending JP2013107279A (en) | 2011-11-21 | 2011-11-21 | Method of manufacturing wood board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013107279A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101761534B1 (en) | 2017-01-04 | 2017-07-26 | 이용규 | A method for producing a straw or rice straw board having improved smoothness and a method for producing the straw or rice straw board |
-
2011
- 2011-11-21 JP JP2011254003A patent/JP2013107279A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101761534B1 (en) | 2017-01-04 | 2017-07-26 | 이용규 | A method for producing a straw or rice straw board having improved smoothness and a method for producing the straw or rice straw board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007523270A (en) | Formaldehyde-free duct liner | |
RU2702589C2 (en) | Composite plate made from recycled and recyclable materials | |
JP5244670B2 (en) | Method for producing functional fiber molded body | |
JPH0839517A (en) | Production of oriented strand board | |
KR101979065B1 (en) | A board for indoor interior materials and the manufacturing method of the board and the indoor interior materials comprising the board | |
KR20130110425A (en) | Flooring board using cross-linked polylactic acid and manufacturing method of thereof | |
JP2014151599A (en) | Woody board | |
JP2013107279A (en) | Method of manufacturing wood board | |
JP2008188964A (en) | Woody board | |
CA3127353A1 (en) | Wood fiber-glass composite | |
KR101243489B1 (en) | Structure of composite core for wood flooring | |
JP6064208B2 (en) | Manufacturing method of fiberboard | |
CN112847693A (en) | High-strength shaving board and manufacturing method thereof | |
JP2001032515A (en) | Floor material | |
JP5145280B2 (en) | Method for producing functional fiber molded body | |
JP2663055B2 (en) | Wood fiberboard for molding and method for producing the same | |
JPS6145948B2 (en) | ||
JP2014205268A (en) | Manufacturing method of woody board | |
US20240367340A1 (en) | Wood fiber-glass composite | |
JPS61181610A (en) | Manufacture of mat to be molded | |
EP4259399B1 (en) | Method for producing wood fiber insulating material products, and wood fiber insulating material product | |
JP6065552B2 (en) | Manufacturing method of fiberboard | |
JP6132183B2 (en) | Manufacturing method of fiberboard | |
CN106042124B (en) | A kind of light thermal-insulation curtain wall material manufacturing method | |
JP2002036214A (en) | Core material board and finish material using the core material board |