JP2013106509A - Decelerating energy regenerative system for vehicle - Google Patents

Decelerating energy regenerative system for vehicle Download PDF

Info

Publication number
JP2013106509A
JP2013106509A JP2011265247A JP2011265247A JP2013106509A JP 2013106509 A JP2013106509 A JP 2013106509A JP 2011265247 A JP2011265247 A JP 2011265247A JP 2011265247 A JP2011265247 A JP 2011265247A JP 2013106509 A JP2013106509 A JP 2013106509A
Authority
JP
Japan
Prior art keywords
vehicle
deceleration
power storage
storage means
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011265247A
Other languages
Japanese (ja)
Other versions
JP5891480B2 (en
Inventor
Kouichi Yamanoue
耕一 山野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011265247A priority Critical patent/JP5891480B2/en
Publication of JP2013106509A publication Critical patent/JP2013106509A/en
Application granted granted Critical
Publication of JP5891480B2 publication Critical patent/JP5891480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To make a regenerative function work in a light load region during constant speed travel in a gently declining slope road, in mounting a decelerating energy regenerative system later on a vehicle originally used without mounting the regenerative system.SOLUTION: The decelerating energy regenerative system 1 for controlling a bidirectional DC-DC converter 14 by a signal from an output of a G sensor 10, can be mounted on the vehicle. When the signal from the output of the G sensor 10 is a deceleration direction larger than 0 m/s, a standby battery means 16 is charged. Regenerative operation can be performed, and fuel consumption can be improved, at an engine 2a load, in which the vehicle speed is maintained by operating an accelerator pedal with minute power, during travel in the gently declining slope road.

Description

本発明は、減速時の車両運動エネルギーを利用して車両用発電機の発電電力を予備蓄電手段に電力回生し、減速時以外には前記予備蓄電手段より車両電気負荷へ電力を供給することにより、減速時以外の車両用発電機の発電量を減らして燃費向上を図る減速エネルギー回生システムであって、特に係る減速エネルギー回生システムと車両との接続配線数を最小限とすることによって、使用過程車両へも容易に装着可能となしたことを特徴とする車両の減速エネルギー回生システムに関するものである。  The present invention uses the vehicle kinetic energy at the time of deceleration to regenerate the power generated by the vehicle generator to the reserve power storage means, and supplies power to the vehicle electrical load from the reserve power storage means at times other than at the time of deceleration. A deceleration energy regeneration system that improves fuel efficiency by reducing the amount of power generated by the vehicle generator when it is not decelerating, especially by minimizing the number of wiring connections between the deceleration energy regeneration system and the vehicle. The present invention relates to a deceleration energy regeneration system for a vehicle, which can be easily mounted on a vehicle.

この種の技術には、走行用エンジンによって駆動される車両用発電機及び主蓄電手段を含む車両用電源と、予備蓄電手段と、前記車両用電源と前記予備蓄電手段間に接続される双方向に切換え接続可能でかつ双方向に電圧変換可能なDC−DCコンバータとを具備し、電子演算装置によって、車両の走行状態を検出し、減速時に前記予備蓄電手段を充電し、減速時以外にこの充電された電力を主蓄電手段よりも優先して放電し車両電気負荷へ供給するように前記DC−DCコンバータを切換制御するものが公知である。  This type of technology includes a vehicle power source including a vehicle generator driven by a traveling engine and main power storage means, a backup power storage means, and a bidirectional connection between the vehicle power supply and the backup power storage means. A DC-DC converter that can be switched and connected in both directions, and can detect the running state of the vehicle by means of an electronic arithmetic unit and charge the reserve power storage means when decelerating. It is known to switch and control the DC-DC converter so that the charged power is discharged with priority over the main power storage means and supplied to the vehicle electrical load.

また、上記電子演算装置は信号受信用端子にアイドリング、加速時、定速走行時、減速時、エンジンの停止時、或いはフューエルカット信号を入力し、係る入力信号から車両が減速状態か否かを判別している(特許文献1参照)。  Further, the electronic arithmetic unit inputs an idling, acceleration, constant speed running, deceleration, engine stop, or fuel cut signal to the signal receiving terminal, and whether or not the vehicle is decelerating from the input signal. It is discriminated (see Patent Document 1).

また、より具体的な減速状態検出手段としては、加速度センサ(以下Gセンサと称す)、車速センサ(車速の微分値)、ブレーキペダルのストロークセンサ、踏力センサ、ブレーキ液圧センサ等がある(特許文献2参照)。  More specific deceleration state detection means include an acceleration sensor (hereinafter referred to as G sensor), a vehicle speed sensor (vehicle speed differential value), a brake pedal stroke sensor, a pedaling force sensor, a brake fluid pressure sensor, and the like (patent) Reference 2).

さらに、車速,スロットル開度およびブレーキのオン/オフの検出結果に基づいて上記車両の減速状態を検出することができる(特許文献3参照)。  Furthermore, the deceleration state of the vehicle can be detected based on the vehicle speed, throttle opening degree, and brake on / off detection results (see Patent Document 3).

加えて、車両に搭載された発電機の回転数から加速度/減速度を検出し、その加速度/減速度の状態に応じて発電電圧の設定値を変化させる技術が開示されている(特許文献4参照)。  In addition, a technique is disclosed in which acceleration / deceleration is detected from the number of rotations of a generator mounted on a vehicle, and the set value of the generated voltage is changed according to the state of the acceleration / deceleration (Patent Document 4). reference).

一方、追加概念として上記減速状態検出手段以外に、ナビゲーションシステムを用いて先行路に存在する降坂路を識別し、かかる降坂路において積極的に電力回生を行う考え方が開示されている(特許文献5参照)。  On the other hand, as an additional concept, in addition to the deceleration state detection means described above, a concept is disclosed in which a downhill road existing on a preceding road is identified using a navigation system and power regeneration is actively performed on the downhill road (Patent Document 5). reference).

特開平6−296332号公報JP-A-6-296332 特開2010−104086号公報JP 2010-104086 A 特開平7−310566号公報Japanese Patent Application Laid-Open No. 7-310566 特開平11−252997号公報JP-A-11-252997 特開2011−116223号公報JP 2011-116223 A

近年の地球環境問題・エネルギー消費問題に鑑み、車両の燃費向上は、新規に開発生産される新型車量のみならず、既に市販されて市場を走行している使用過程車両における対策も重要な技術課題である。  Considering global environmental problems and energy consumption problems in recent years, the improvement of vehicle fuel efficiency is an important technology not only for newly developed and produced new models, but also for measures in use process vehicles that are already on the market. It is a problem.

そこで、課題の一側面は、燃費向上に有意な車両の減速エネルギー回生システムを搭載していない使用過程車両において、係る回生システムを後付けにより搭載するにあたり、特許文献1乃至3に開示された従来技術によると、車両の減速状態を判別するためにアイドリングスイッチ、フューエルカット信号、車速センサ、ブレーキペダルのストロークセンサ、踏力センサ、ブレーキ液圧センサ等との配線手段を要するので、当該システムの装着作業が困難な点である。  Therefore, one aspect of the problem is that the conventional technology disclosed in Patent Documents 1 to 3 is used in retrofitting such a regeneration system in a use process vehicle that is not equipped with a vehicle deceleration energy regeneration system that is significant for improving fuel efficiency. According to the above, in order to determine the deceleration state of the vehicle, wiring means such as an idling switch, a fuel cut signal, a vehicle speed sensor, a brake pedal stroke sensor, a pedaling force sensor, and a brake fluid pressure sensor are required. This is a difficult point.

特許文献4に開示された従来技術によると、上記配線手段が不要であるものの回転数検出機能を付加した専用の発電機が必要となり、該専用発電機を含めた上記減速エネルギー回生システムのコストが増大するという問題がある。  According to the prior art disclosed in Patent Document 4, although the wiring means is unnecessary, a dedicated generator with a rotation speed detection function is required, and the cost of the deceleration energy regeneration system including the dedicated generator is reduced. There is a problem of increasing.

課題の他の側面は、前記車両の減速エネルギー回生システムの回生効率向上にある。即ち、特許文献1〜4の何れかに開示される先行技術は全て車両の減速時に限り、車両運動エネルギーを電力として回生するものである。  Another aspect of the problem is to improve the regeneration efficiency of the deceleration energy regeneration system of the vehicle. That is, all of the prior arts disclosed in any of Patent Documents 1 to 4 regenerate vehicle kinetic energy as electric power only when the vehicle is decelerated.

ところが、緩やかな降坂路を一定走行する場合を前提とすると、エンジンのスロットルバルブ全閉、即ちアクセルペダルから足を離した状態では公知のポンピングロス等によるエンジンの動力損失によって車速が低下する場合がある。そのような場合に運転者は、アクセルペダルに微小の操作量を与えて車速を維持することになる。  However, on the assumption that the vehicle travels on a gentle downhill road, the vehicle speed may decrease due to engine power loss caused by a known pumping loss or the like when the engine throttle valve is fully closed, that is, when the foot is released from the accelerator pedal. is there. In such a case, the driver gives a small operation amount to the accelerator pedal to maintain the vehicle speed.

然る場合に、上記アイドリングスイッチはONとなっていない。また、エンジンは燃焼を継続する必要があるので上記フューエルカットとはならない。さらにブレーキペダルは操作されない。加えて車速は低下していない。
従って、これらの状態からは上記減速状態とは判別されないので車両の運動エネルギーは回生されない。
In that case, the idling switch is not ON. Further, since the engine needs to continue combustion, the fuel cut does not occur. Furthermore, the brake pedal is not operated. In addition, the vehicle speed has not decreased.
Accordingly, since the state is not distinguished from the above deceleration state from these states, the kinetic energy of the vehicle is not regenerated.

一方、理論上は、上記緩やかな降坂路の一定速度走行時に回生作用を働かせると、かかる回生作用によるエンジンの負トルクによって車速が低下するから、運転者はアクセル操作量を増加しなければ一定の車速を維持できないと考えられる。  On the other hand, theoretically, if the regenerative action is applied when traveling at a constant speed on the gentle downhill road, the vehicle speed decreases due to the negative torque of the engine due to the regenerative action. It is thought that the vehicle speed cannot be maintained.

しかしながら、実際の道路環境下で上記緩やかな降坂路を一定速度走行している場合には、路面勾配がさらに下り方向へ微増変化した場合にも、一般的に運転者のアクセルペダル操作が該路面勾配の変化に伴わないことによって車速が増加してしまう。その瞬間には、上記減速判別の各因子は“減速でない“となっており、加えて車速は加速方向にあるのにも係わらず、車両としては回生作用を働かせて車両の運動エネルギーを回生するとともに、増加する車速を抑えることが望ましい。  However, when the vehicle is traveling on the gentle downhill road at a constant speed in an actual road environment, the driver generally operates the accelerator pedal even when the road surface gradient slightly increases downward. The vehicle speed is increased by not following the change of the gradient. At that moment, each factor for determining the deceleration is “not decelerating”. In addition, although the vehicle speed is in the acceleration direction, the vehicle regenerates the kinetic energy of the vehicle by using the regenerative action. At the same time, it is desirable to suppress the increasing vehicle speed.

このように、回生機能の作動・停止の判定において、路面勾配変化に対する運転者のアクセル操作が理論上の最適操作とは成り得ないので、上記従来の減速状態判定手段だけでは該回生機能の作動を最適化して効率良く車両の減速エネルギーを回生することができない。  As described above, in the determination of the activation / stop of the regeneration function, the driver's accelerator operation with respect to the change in the road surface gradient cannot be the theoretical optimum operation. Therefore, the operation of the regeneration function can be performed only by the conventional deceleration state determination means. The deceleration energy of the vehicle cannot be regenerated efficiently by optimizing the above.

そこで、新たな概念として、前記特許文献5に開示されるように路面勾配を識別することによって、降坂路では積極的に回生システムを作動させるものがある。
この技術によると、車速を維持可能な理想的スロットル開度値と比較して、運転者によるアクセルペダルの操作量に多少の差異があったとしても、全体では降坂路のようにエンジン負荷が微小な運転領域で積極的に回生動作を働かせることができるので、車両の減速エネルギー回生領域が広がり燃費向上に有利になる。
Therefore, as a new concept, there is one that positively activates the regeneration system on downhill roads by identifying the road surface gradient as disclosed in Patent Document 5.
According to this technology, even if there is a slight difference in the amount of accelerator pedal operation by the driver compared to the ideal throttle opening value that can maintain the vehicle speed, the engine load is small as a whole on a downhill road. Since the regenerative operation can be made to work positively in a wide driving range, the deceleration energy regeneration range of the vehicle widens, which is advantageous for improving fuel efficiency.

しかしながら、降坂時にも運転者によって意図的な加速操作が行われた場合には回生動作を停止させるべきである。然るに、前記路面勾配のみならず、車両の走行速度とアクセル操作量とエンジン回転数等との多くの制御因子を基に、上記回生システムの作動を制御することが望ましい。  However, the regenerative operation should be stopped when the driver performs an intentional acceleration operation even on a downhill. However, it is desirable to control the operation of the regenerative system based not only on the road surface gradient but also on many control factors such as the traveling speed of the vehicle, the accelerator operation amount, the engine speed, and the like.

ところが、このような多くの制御因子を基にした回生制御を行うには、ナビゲーションシステムとの連携、及び各種センサ情報の収集を必要とするから車両と前記減速エネルギー回生システムとの接続配線が増加するとともに、マイクロプロセッサ等を用いた大規模な制御装置が必要であるので、前記使用過程車両への装着は困難で、且つコスト増を招くといった問題がある。  However, in order to perform regenerative control based on such many control factors, it is necessary to cooperate with the navigation system and collect various sensor information, so the connection wiring between the vehicle and the deceleration energy regeneration system increases. In addition, since a large-scale control device using a microprocessor or the like is necessary, there is a problem in that it is difficult to mount on the in-use vehicle and the cost is increased.

そこで、車両に搭載したGセンサを利用して、該Gセンサの出力信号が車両の減速方向であるときに、前記減速エネルギー回生システムを作動させることが考えられる。即ち、Gセンサは降坂路の下り勾配においても重力加速度によって、減速時と同方向の信号を出力するから、上記ナビゲーションシステムを用いなくても路面勾配に応じた回生システムの制御が可能となる。  Therefore, it is conceivable to use the G sensor mounted on the vehicle to operate the deceleration energy regeneration system when the output signal of the G sensor is in the deceleration direction of the vehicle. That is, since the G sensor outputs a signal in the same direction as that when decelerating due to gravitational acceleration even on a downward slope on a downhill road, the regeneration system can be controlled according to the road surface slope without using the navigation system.

しかし、車両が下り勾配路面上で停車している場合の前記Gセンサ出力は前記重力加速度によって減速状態と同じ方向の信号を出し続けるから、車両が停止状態であるにも係わらず、前記回生システムが作動してしまうといった問題が発生する。逆に、車両が上り勾配路を走行している場合の前記Gセンサ出力は該上り勾配の重力加速度に応じて加速時と同方向の信号を出力しているから、車両がスロットル全閉でエンジンブレーキによる緩減速へ移行したとしても、前記Gセンサ出力が減速方向とならないので回生システムが作動しないといった問題がある。  However, since the output of the G sensor when the vehicle is stopped on a downgraded road surface continues to output a signal in the same direction as the deceleration state due to the gravitational acceleration, the regeneration system is in spite of the vehicle being stopped. The problem that will work will occur. Conversely, when the vehicle is traveling on an uphill road, the G sensor output outputs a signal in the same direction as that during acceleration in accordance with the gravitational acceleration of the uphill road. Even when shifting to slow deceleration by braking, there is a problem that the regenerative system does not operate because the G sensor output is not in the deceleration direction.

かかる問題の解決手段として、Gセンサ信号と車輪速センサ信号を組み合わせて車両の進行方向加速度と路面勾配とを分離して演算する技術が公知である。しかしながら、これを実現するには車両との間で配線手段を要する、またマイクロプロセッサ等を用いた大規模な制御装置が必要であるので前記使用過程車両への装着は困難で、且つコスト増を招くといった問題がある。  As a means for solving such a problem, a technique is known in which a G sensor signal and a wheel speed sensor signal are combined to separate and calculate a vehicle traveling direction acceleration and a road surface gradient. However, in order to realize this, wiring means is required between the vehicle and a large-scale control device using a microprocessor or the like is required. There is a problem of inviting.

本願の発明は以上のような課題に鑑み案出されたもので、使用過程車両において、既存の主蓄電池と減速エネルギー回生装置とを接続するだけで搭載可能であり、上記緩やかな降坂路を含む車両の走行状態における微小エンジン負荷領域で積極的に減速エネルギーを回生可能な、車両の減速エネルギー回生システムを、簡単な構成にして低価格で提供することを目的とする。  The invention of the present application has been devised in view of the problems as described above, and can be installed in a process-use vehicle by simply connecting an existing main storage battery and a deceleration energy regeneration device, and includes the gentle downhill road described above. It is an object of the present invention to provide a vehicle deceleration energy regeneration system capable of actively regenerating deceleration energy in a minute engine load region in a running state of the vehicle with a simple configuration and at a low price.

上記目的を達成するために請求項1に記載された発明によれば、走行用エンジンによって駆動される車両用発電機及び主蓄電手段を含む車両用電源と、予備蓄電手段と、前記車両用電源と前記予備蓄電手段間に接続される双方向DC−DCコンバータと、車両の進行方向における減速度を検出するGセンサと、前記Gセンサの出力信号と接続されるとともに、車両の平均的走行速度における単位時間当たりの道路勾配変化周期に近い周波数をカットオフ周波数としたハイパスフィルターと、前記ハイパスフィルターの出力信号が前記Gセンサの0m/sより大きい減速方向の信号を出力しているか否かを検出する減速検出手段と、前記減速検出手段が減速を検出した時に前記予備蓄電手段を充電し、減速検出時以外にこの充電された電力を主蓄電手段よりも優先して放電して車両電気負荷へ供給するように前記双方向DC−DCコンバータを制御する制御手段と、を具備することを特徴とする、車両の減速エネルギー回生システムが提案される。In order to achieve the above object, according to the invention described in claim 1, a vehicle power source including a vehicle generator driven by a traveling engine and a main power storage unit, a reserve power storage unit, and the vehicle power source are provided. And a bidirectional DC-DC converter connected between the auxiliary power storage means, a G sensor for detecting deceleration in the traveling direction of the vehicle, an output signal of the G sensor, and an average traveling speed of the vehicle A high-pass filter with a frequency close to the road gradient change period per unit time as a cutoff frequency, and whether the output signal of the high-pass filter outputs a signal in a deceleration direction greater than 0 m / s 2 of the G sensor A deceleration detecting means for detecting the charge, and the reserve power storage means is charged when the deceleration detecting means detects a deceleration, and the charged electric power is used at times other than when the deceleration is detected. And a control means for controlling the bidirectional DC-DC converter so as to discharge and supply the vehicle electrical load with priority over the main power storage means, and a vehicle deceleration energy regeneration system is proposed. Is done.

請求項2に記載された発明によれば、請求項1に記載の構成に加えて、前記ハイパスフィルターのカットオフ周波数は0.0001Hzから0.01Hzであることを特徴とする。  According to a second aspect of the present invention, in addition to the structure of the first aspect, the cutoff frequency of the high pass filter is 0.0001 Hz to 0.01 Hz.

請求項3に記載された発明によれば、請求項1又は請求項2の何れか1項に記載の構成に加え前記減速検出手段は、減速を判定する減速度閾値において0.1m/sから0.5m/sであることを特徴とする。According to a third aspect of the present invention, in addition to the configuration of the first aspect or the second aspect, the deceleration detection means has a deceleration threshold value for determining deceleration of 0.1 m / s 2. To 0.5 m / s 2 .

請求項4に記載された発明によれば請求項1〜3の何れか1項に記載の構成に加えて、前記制御手段は、前記主蓄電手段の電圧値と前記予備蓄電手段の電圧値と、の差電圧が所定の値以下となった場合に、前記双方向DC−DCコンバータが前記予備蓄電手段を充電する動作を停止するように構成したことを特徴とする。  According to the invention described in claim 4, in addition to the configuration described in any one of claims 1 to 3, the control means includes a voltage value of the main power storage means and a voltage value of the reserve power storage means. The bidirectional DC-DC converter is configured to stop the operation of charging the reserve power storage means when the difference voltage between the two becomes a predetermined value or less.

請求項5に記載された発明によれば請求項1〜3の何れか1項に記載の構成に加えて、前記制御手段は、前記予備蓄電手段の電圧値が所定の値以下となった場合に、前記双方向DC−DCコンバータが前記予備蓄電手段を放電する動作を停止するように構成したことを特徴とする。  According to the invention described in claim 5, in addition to the configuration described in any one of claims 1 to 3, the control means is configured such that the voltage value of the reserve power storage means becomes a predetermined value or less. In addition, the bidirectional DC-DC converter is configured to stop the operation of discharging the reserve power storage means.

請求項6に記載された発明によれば請求項1〜5の何れか1項に記載の構成に加えて、前記制御手段は、前記ハイパスフィルターの出力信号が前記Gセンサの0m/sより大きい減速方向の信号を出力しているか否かを検出する減速検出手段の出力信号からローパスフィルターを介して生成した信号に比例して、前記予備蓄電手段の充放電電流を制御するように構成したことを特徴とする。According to the invention described in claim 6, in addition to the configuration described in any one of claims 1 to 5, the control means is configured such that the output signal of the high-pass filter is based on 0 m / s 2 of the G sensor. The charge / discharge current of the reserve power storage means is controlled in proportion to the signal generated through the low-pass filter from the output signal of the deceleration detection means for detecting whether or not a large deceleration direction signal is output. It is characterized by that.

上記構成によれば、上記予備蓄電手段と、上記双方向DC−DCコンバータと、上記Gセンサと、上記ハイパスフィルターと、上記減速検出手段と、上記制御手段と、を一体として構成することによって、かかる減速エネルギー回生システムは車両のバッテリと接続するだけで、簡単に使用過程車両へ搭載することができる。  According to the above configuration, the backup power storage unit, the bidirectional DC-DC converter, the G sensor, the high-pass filter, the deceleration detection unit, and the control unit are configured integrally. Such a deceleration energy regeneration system can be easily mounted on an in-use vehicle simply by connecting to a vehicle battery.

また、請求項1の車両の減速エネルギー回生システムによれば、前記減速検出手段によって前記Gセンサ出力から前記ハイパスフィルターを介した信号が0m/sより大きい減速方向であることを検出して減速検出とし、かかる減速検出に従って上記予備蓄電手段を充電するものとしたから、前記緩やかな降坂路走行時に運転者が、アクセルペダルに微小の操作量を与えて車速を維持している前記微小エンジン負荷領域場合においても、前記Gセンサが、前記降坂路の下り勾配に応じた重力加速度の大きさによって等価的に減速検出となるので、前記予備蓄電手段を充電して車両の運動エネルギーが回生される。According to the vehicle deceleration energy regeneration system of claim 1, the deceleration detection means detects from the G sensor output that the signal passing through the high-pass filter is a deceleration direction greater than 0 m / s 2 and decelerates. Since the reserve power storage means is charged in accordance with the deceleration detection, the minute engine load in which the driver maintains a vehicle speed by giving a minute operation amount to the accelerator pedal when traveling on the gentle downhill road. Even in the case of the region, the G sensor can detect the deceleration equivalently by the magnitude of the gravitational acceleration according to the descending slope of the downhill road, so that the reserve power storage means is charged and the kinetic energy of the vehicle is regenerated. .

また、車両が走行中に平坦路から上り勾配へ差し掛かった直後に車両の進行方向加速度は、路面勾配による走行負荷によって車速が低下して減速加速度が発生する。しかし、前記Gセンサは上り勾配における重力加速度の大きさによって等価的に0m/sより小さい加速方向の加速度を同時に受けることになるから、前記減速検出手段は減速検出せず、前記走行負荷による車速の低下によって誤って回生システムが作動することがない。In addition, immediately after the vehicle reaches an ascending slope from a flat road while the vehicle is traveling, the acceleration in the traveling direction of the vehicle decreases due to the traveling load due to the road surface gradient, and deceleration acceleration is generated. However, since the G sensor simultaneously receives acceleration in an acceleration direction smaller than 0 m / s 2 equivalently depending on the magnitude of gravitational acceleration in the upward gradient, the deceleration detection means does not detect deceleration but depends on the traveling load. The regenerative system does not operate accidentally due to a decrease in vehicle speed.

また、前記Gセンサの出力に前記ハイパスフィルターを設けたから、車両が下り勾配路で停車した場合には、Gセンサ出力信号が前記重力加速度に応じた所定の減速状態を示しているにも係わらず、前記ハイパスフィルター出力信号は所定時間後に0m/s相当になるので前記回生作用は停止し、予備蓄電手段に充電された電力を主蓄電手段よりも優先して放電して車両電気負荷へ供給するから、前記車両用発電機の負荷が低下して燃費向上が図られる。In addition, since the high-pass filter is provided for the output of the G sensor, when the vehicle stops on a downhill road, the G sensor output signal indicates a predetermined deceleration state corresponding to the gravitational acceleration. Since the high-pass filter output signal becomes equivalent to 0 m / s 2 after a predetermined time, the regenerative operation is stopped, and the electric power charged in the reserve power storage means is discharged with priority over the main power storage means and supplied to the vehicle electrical load. As a result, the load on the vehicular generator is reduced and fuel efficiency is improved.

また、前記Gセンサの出力に前記ハイパスフィルターを設けたから、車両が所定期間の間、連続して上り勾配路を走行している場合に前記Gセンサ出力は該上り勾配の重力加速度に応じて加速時と同方向の信号を出力しているにも係わらず、前記ハイパスフィルター出力信号は所定時間後に0m/s相当になるので、車両が登坂走行中に緩減速した場合には、前記減速検出手段は速やかに減速検出が可能であり、前記予備蓄電手段を充電して車両の運動エネルギーが回生される。In addition, since the high-pass filter is provided for the output of the G sensor, the G sensor output is accelerated according to the gravitational acceleration of the upward gradient when the vehicle continuously travels on the upward gradient road for a predetermined period. The high-pass filter output signal is equivalent to 0 m / s 2 after a predetermined time even though a signal in the same direction as the time is being output, so that the deceleration detection is performed when the vehicle slowly decelerates while traveling uphill. The means can promptly detect deceleration and charge the reserve power storage means to regenerate the kinetic energy of the vehicle.

また、請求項2の車両の減速エネルギー回生システムによれば、前記ハイパスフィルターのカットオフ周波数は、車両の平均的走行速度における単位時間当たりの道路勾配変化周期に近い周波数である0.0001Hz〜0.01Hzの範囲で適宜設定するものとしたから、前記減速検出手段によって検出される減速検出信号は、車両の平坦路走行時の減速継続時間、及び走行中に遭遇する降坂路の継続時間において、前記予備蓄電手段を充電するのに十分な減速検出時間を得ることができる。  According to the vehicle deceleration energy regeneration system of claim 2, the cutoff frequency of the high-pass filter is a frequency close to a road gradient change period per unit time at an average traveling speed of the vehicle. The deceleration detection signal detected by the deceleration detection means is used for the deceleration continuation time when the vehicle is traveling on a flat road and the downhill road continuation time encountered during traveling. It is possible to obtain a deceleration detection time sufficient to charge the reserve power storage means.

また、請求項3の車両の減速エネルギー回生システムによれば、前記減速検出手段が、車両の減速を判定する減速加速度閾値において0.1m/sから0.5m/sであるとしたから、車両が平坦路から僅かに下り勾配となる緩やかな降坂路を一定速度で走行する場合にも確実に降坂路として検出することができると同時に、前記平坦路の一定速度走行時に誤って減速状態であると検知することが無い。According to the vehicle deceleration energy regeneration system of claim 3, the deceleration detection means has a deceleration acceleration threshold value for determining vehicle deceleration from 0.1 m / s 2 to 0.5 m / s 2. Even when the vehicle travels at a constant speed on a gentle downhill road with a slight downward slope from the flat road, it can be reliably detected as a downhill road, and at the same time, erroneously decelerates when traveling on the flat road at a constant speed Is not detected.

また、請求項4及び請求項5に記載の車両の減速エネルギー回生システムによれば、前記双方向DC−DCコンバータの不要な作動が防止されるので、かかる減速エネルギー回生システムを車両のバッテリと直接、接続しても車両停止中に前記双方向DC−DCコンバータ電流が暗電流として消費されることが無いので、バッテリ上がり等の問題を生じることがない。  In addition, according to the vehicle deceleration energy regeneration system according to claims 4 and 5, since unnecessary operation of the bidirectional DC-DC converter is prevented, the deceleration energy regeneration system is directly connected to the vehicle battery. Even if connected, the bidirectional DC-DC converter current is not consumed as a dark current while the vehicle is stopped, so that problems such as battery exhaustion do not occur.

また、請求項6に記載の車両の減速エネルギー回生システムによれば、前記ハイパスフィルターの出力信号が前記Gセンサの0m/sより大きい減速方向の信号を出力しているか否かを検出する減速検出手段の出力信号からローパスフィルターを介して生成した信号に比例して、前記予備蓄電手段の充放電電流を制御するように構成したから、車両の平坦路走行中に発生する上下振動によって、前記減速検出手段の出力信号が短時間にON/OFFする場合にも前記双方向DC−DCコンバータの制御電流が急変することが無いので、車両の主蓄電手段の電圧変動や電源ノイズ発生の問題がない。According to the vehicle deceleration energy regeneration system according to claim 6, the deceleration for detecting whether or not the output signal of the high-pass filter outputs a signal in a deceleration direction larger than 0 m / s 2 of the G sensor. Since the charge / discharge current of the reserve power storage means is controlled in proportion to the signal generated from the output signal of the detection means via the low-pass filter, the vertical vibration generated during traveling on a flat road of the vehicle causes the Since the control current of the bidirectional DC-DC converter does not change suddenly even when the output signal of the deceleration detection means is turned ON / OFF in a short time, there is a problem of voltage fluctuation of the main power storage means of the vehicle and generation of power supply noise. Absent.

本発明の一実施形態に係る車両の減速エネルギー回生システムを模式的に示す図である。It is a figure showing typically the deceleration energy regeneration system of vehicles concerning one embodiment of the present invention. 本発明の一実施形態に係る車両の減速エネルギー回生システムにおいて、車両が平坦路を走行した場合の制御様態を表す図である。In the deceleration energy regeneration system of the vehicle concerning one embodiment of the present invention, it is a figure showing the control mode when vehicles run on a flat road. 本発明の一実施形態に係る車両の減速エネルギー回生システムにおいて、車両が平坦路から降坂路へ移行した場合の制御様態を表す図である。In the deceleration energy regeneration system of the vehicle concerning one embodiment of the present invention, it is a figure showing the control mode when a vehicle shifts from a flat road to a downhill road. 本発明の一実施形態に係る車両の減速エネルギー回生システムにおいて、車両が降坂路において停止した場合の制御様態を表す図である。In the deceleration energy regeneration system of the vehicle concerning one embodiment of the present invention, it is a figure showing the control mode when a vehicle stops on a downhill road. 本発明の一実施形態に係る車両の減速エネルギー回生システムにおいて、車両が平坦路から登坂路へ移行した場合の制御様態を表す図である。In the deceleration energy regeneration system of the vehicle concerning one embodiment of the present invention, it is a figure showing the control mode when a vehicle shifts from a flat road to an uphill road. 本発明の一実施形態に係る車両の減速エネルギー回生システムの減速検出手段の実施様態を示す図である。It is a figure which shows the implementation aspect of the deceleration detection means of the deceleration energy regeneration system of the vehicle which concerns on one Embodiment of this invention. 本発明の一実施形態に係る車両の減速エネルギー回生システムの制御手段と双方向DC−DCコンバータの実施様態を示す図である。It is a figure which shows the implementation aspect of the control means and bidirectional | two-way DC-DC converter of the deceleration energy regeneration system of the vehicle which concerns on one Embodiment of this invention. 発明の一実施形態に係る車両の減速エネルギー回生システムにおいて、車両が凸凹路を走行した場合の制御様態を示す図である。It is a figure which shows the control mode when the vehicle drive | works the uneven road in the deceleration energy regeneration system of the vehicle which concerns on one Embodiment of invention.

以下、各図に従って、本発明の一実施様態について説明する。
図1は、本発明の車両の減速エネルギー回生システムを模式的に示した図であり、1は本発明の車両の減速エネルギー回生システム、2は走行用エンジンによって駆動される車両用発電機2b及び主蓄電手段2cを含む車両用電源、10は車両の減速エネルギー回生システム1に内蔵されて車両の減速度を検知するGセンサであり、かかるGセンサ10は定電圧電源VDDと接地VSSとに接続されて作動用電源を供給されるとともに、コンデンサ11と抵抗12、抵抗13とによって構成されたハイパスフィルターを介して、端子15aから、減速検出手段15へ減速信号を入力する。また、前記減速検出手段15は定電圧電源VDDと接地VSSとに接続されて作動用電源が供給される。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing a vehicle deceleration energy regeneration system according to the present invention, wherein 1 is a vehicle deceleration energy regeneration system according to the present invention, 2 is a vehicle generator 2b driven by a traveling engine, and A power source for the vehicle including the main power storage means 2c, 10 is a G sensor that is incorporated in the deceleration energy regeneration system 1 of the vehicle and detects the deceleration of the vehicle. The G sensor 10 is connected to the constant voltage power supply VDD and the ground VSS. Then, a power supply for operation is supplied, and a deceleration signal is input from the terminal 15 a to the deceleration detection means 15 through a high-pass filter constituted by the capacitor 11, the resistor 12, and the resistor 13. Further, the deceleration detecting means 15 is connected to a constant voltage power supply VDD and a ground VSS and supplied with operating power.

次に、前記減速検出手段15の出力端子15bは前記制御手段17と接続してあり、該制御手段17は端子T1を介して前記主蓄電手段2cと接続するとともに端子14bと接続して予備蓄電手段16の充放電を行う双方向DC−DCコンバータ14を制御するが如く構成してある。  Next, the output terminal 15b of the deceleration detecting means 15 is connected to the control means 17, and the control means 17 is connected to the main power storage means 2c via the terminal T1 and is connected to the terminal 14b for reserve power storage. The bidirectional DC-DC converter 14 that charges and discharges the means 16 is controlled.

また、前記車両の減速エネルギー回生システム1は、端子T2を介して前記主蓄電手段2cの接地電位と接続するように構成される。  The vehicle deceleration energy regeneration system 1 is configured to be connected to the ground potential of the main power storage means 2c via a terminal T2.

前記減速検出手段15は、図6に示す如く前記ハイパスフィルターからの信号15aと、定電圧電源VDDから接地VSS間の電圧を分圧した抵抗151と抵抗152との分圧電位153aとを比較する比較器153によって構成され、該比較器153の出力信号は端子15bから出力される。  As shown in FIG. 6, the deceleration detection means 15 compares the signal 15a from the high-pass filter with the divided potential 153a of the resistor 151 and the resistor 152 obtained by dividing the voltage between the constant voltage power supply VDD and the ground VSS. The comparator 153 is configured, and an output signal of the comparator 153 is output from the terminal 15b.

尚、前記分圧電位153aは、車両が減速方向へ0.3m/sの時に前記Gセンサが出力する信号と同等の電位となるように設定してある。The divided potential 153a is set to be equal to the signal output from the G sensor when the vehicle is 0.3 m / s 2 in the deceleration direction.

前記制御手段17の詳細は、図7に示す如く前記減速検出手段15の出力端子15bの信号を受けて、抵抗171とコンデンサ172とによるローパスフィルターを介して誤差増幅器173の一方の端子へ入力してある。該誤差増幅器173の他方の端子は前記双方向DC−DCコンバータ14の出力端子へ直列に挿入した電流検出抵抗175の両端を差動増幅する電流検出増幅器176の出力信号が入力してある。  As shown in FIG. 7, the details of the control means 17 are received at the output terminal 15b of the deceleration detection means 15 and input to one terminal of the error amplifier 173 through a low-pass filter formed by a resistor 171 and a capacitor 172. It is. The other terminal of the error amplifier 173 receives an output signal of a current detection amplifier 176 that differentially amplifies both ends of a current detection resistor 175 inserted in series with the output terminal of the bidirectional DC-DC converter 14.

また図7において、前記主蓄電手段2cの高電位側と接続した端子14aの電圧と、前記予備蓄電手段16の高電位側と接続した端子14bとの信号を入力して、前記双方向DC−DCコンバータ14の、後述する駆動回路手段143の作動/停止を制御する駆動判定手段174を具備している。  In FIG. 7, the bidirectional DC− is input by inputting the voltage of the terminal 14a connected to the high potential side of the main power storage means 2c and the signal of the terminal 14b connected to the high potential side of the reserve power storage means 16. The DC converter 14 includes drive determination means 174 for controlling operation / stop of drive circuit means 143 (to be described later).

次に、前記双方向DC−DCコンバータ14は図7に示す如く、図示しない三角波発振回路、の出力信号141と、前記誤差増幅器173の出力信号を入力したコンパレータ142の出力信号と、を前記駆動回路手段143に入力して、トランジスタ群144を相補的に駆動することによってコイル145の一端を公知のPWM駆動し、前記電流検出抵抗175に流れる電流を双方向に可変するが如く構成してある。  Next, as shown in FIG. 7, the bidirectional DC-DC converter 14 drives the output signal 141 of a triangular wave oscillation circuit (not shown) and the output signal of the comparator 142 to which the output signal of the error amplifier 173 is inputted. By inputting to the circuit means 143 and driving the transistor group 144 in a complementary manner, one end of the coil 145 is driven by a known PWM, and the current flowing through the current detection resistor 175 is variable in both directions. .

以上のように構成して、本発明の車両の減速エネルギー回生システム1はハイパスフィルターを介したGセンサ10の出力信号が、車両の減速方向へ0.3m/sより大きい場合に、前記制御手段17が前記双方向DC−DCコンバータ14をPWM駆動して、前記主蓄電手段2cから前記予備蓄電手段16へ、所定の電流が流れるように制御して車両の運動エネルギーを、該予備蓄電手段16へ回生するように作用する。With the above-described configuration, the vehicle deceleration energy regeneration system 1 according to the present invention controls the control when the output signal of the G sensor 10 through the high-pass filter is greater than 0.3 m / s 2 in the vehicle deceleration direction. The means 17 drives the bidirectional DC-DC converter 14 by PWM so that a predetermined current flows from the main power storage means 2c to the standby power storage means 16 to control the kinetic energy of the vehicle. It acts to regenerate to 16.

また、上記Gセンサ10の出力信号が、車両の減速方向へ0.3m/s未満の場合に、前記制御手段17が前記双方向DC−DCコンバータ14をPWM駆動して、前記予備蓄電手段16から前記主蓄電手段2cへ所定の電流を放電するように制御して、該予備蓄電手段16に充電された電力を主蓄電手段2cよりも優先して放電して車両電気負荷へ供給して、前記車両用発電機2bの負荷を低下することによって燃費向上を図るように作用する。When the output signal of the G sensor 10 is less than 0.3 m / s 2 in the deceleration direction of the vehicle, the control means 17 drives the bidirectional DC-DC converter 14 by PWM, and the reserve power storage means 16 is controlled to discharge a predetermined current from the main power storage means 2c to the main power storage means 2c, and the electric power charged in the reserve power storage means 16 is discharged in preference to the main power storage means 2c and supplied to the vehicle electrical load. The fuel generator 2b acts to reduce fuel consumption by reducing the load.

さらに、前記駆動判定手段174は端子14aから主蓄電手段2cの電圧を検出するとともに、端子14bから前記予備蓄電手段16の電圧を検出して、かかる主蓄電手段2cの電圧と予備蓄電手段16の電圧の差が小さい場合には、該予備蓄電手段16の充電電圧が飽和状態であるとして前記双方向DC−DCコンバータ14の駆動回路手段143を停止する。  Further, the drive determination means 174 detects the voltage of the main power storage means 2c from the terminal 14a and also detects the voltage of the reserve power storage means 16 from the terminal 14b, and the voltage of the main power storage means 2c and the reserve power storage means 16 When the voltage difference is small, the drive circuit means 143 of the bidirectional DC-DC converter 14 is stopped because the charging voltage of the reserve power storage means 16 is saturated.

加えて、前記駆動判定手段174は端子14bから前記予備蓄電手段16の電圧を検出して、かかる予備蓄電手段16の電圧が0Vに近い低電圧状態となった場合には、前記双方向DC−DCコンバータ14の駆動回路手段143を停止する。
このように作用して、前記駆動判定手段174は前記予備蓄電手段16への充放電が不要な状態を検知して前記双方向DC−DCコンバータ14の作動を停止するので、本発明の減速エネルギー回生システムを車両のバッテリと直接接続しても車両停止中に前記双方向DC−DCコンバータ14の作動電流が暗電流として消費されることが無いので、バッテリ上がり等の問題を生じることがない。
In addition, the drive determination means 174 detects the voltage of the reserve power storage means 16 from the terminal 14b, and when the voltage of the reserve power storage means 16 is in a low voltage state close to 0V, the bidirectional DC- The drive circuit means 143 of the DC converter 14 is stopped.
By acting in this way, the drive determining means 174 detects a state where charging / discharging of the reserve power storage means 16 is unnecessary and stops the operation of the bidirectional DC-DC converter 14, so that the deceleration energy of the present invention is reduced. Even if the regenerative system is directly connected to the battery of the vehicle, the operating current of the bidirectional DC-DC converter 14 is not consumed as a dark current while the vehicle is stopped.

次に、図2を参照して、車両走行状態における本発明の減速エネルギー回生システムの作動様態を説明する。図2は車両が平坦路を、加減速を伴いながら走行している状態を示している。区間▲1▼は、車両が停止状態から等加速する区間であり、前記Gセンサ10の出力は非減速方向へ所定の一定電圧を出力する。この区間では、前記ハイパスフィルター(コンデンサ11、抵抗12、抵抗13)の出力信号は、該Gセンサ10の出力と略等しい電圧波形を出力するので、前記減速検出手段15は車両が減速状態でないと判断して、前記予備蓄電手段16から前記主蓄電手段2cへ所定の放電電流が流れるように、前記双方向DC−DCコンバータ14の制御手段17へ制御信号を送出する。  Next, with reference to FIG. 2, the operation mode of the deceleration energy regeneration system of this invention in a vehicle running state is demonstrated. FIG. 2 shows a state where the vehicle is traveling on a flat road with acceleration / deceleration. Section {circle around (1)} is a section where the vehicle is accelerated at a constant speed from the stop state, and the output of the G sensor 10 outputs a predetermined constant voltage in the non-decelerating direction. In this section, the output signal of the high-pass filter (capacitor 11, resistor 12, resistor 13) outputs a voltage waveform that is substantially equal to the output of the G sensor 10, so that the deceleration detection means 15 does not decelerate the vehicle. Determination is made to send a control signal to the control means 17 of the bidirectional DC-DC converter 14 so that a predetermined discharge current flows from the reserve power storage means 16 to the main power storage means 2c.

尚、上記ハイパスフィルターは前記Gセンサ10の出力状態が加速、又は減速の何れかの状態を示している期間の間、連続して該Gセンサ10の出力信号状態を前記減速検出手段15へ伝達する必要があるので、前記コンデンサ11、抵抗12、抵抗13より成るカットオフ周波数を0.003Hz程度とすることが望ましい。  The high-pass filter continuously transmits the output signal state of the G sensor 10 to the deceleration detection means 15 during a period when the output state of the G sensor 10 indicates either acceleration or deceleration. Therefore, it is desirable that the cut-off frequency composed of the capacitor 11, the resistor 12, and the resistor 13 is about 0.003 Hz.

区間▲2▼で、車両が定速走行へ移行すると前記Gセンサ10の出力信号は0m/s相当の電圧値(1/2VDD)となるが、前記ハイパスフィルターの出力信号は、前記区間▲1▼において前記コンデンサ11が一定量の電荷を蓄積した状態となっているから、該Gセンサ10の出力信号の立下り微分において、一定時間だけ車両の減速方向の加速度を示し、これによって前記減速検出手段15の出力信号は、車両が減速状態であると判断して、前記主蓄電手段2cから、前記予備蓄電手段16へ所定の充電電流が流れるように前記双方向DC−DCコンバータ14の制御手段17へ制御信号を送出する。When the vehicle shifts to constant speed in section ( 2 ), the output signal of the G sensor 10 becomes a voltage value (1/2 VDD) equivalent to 0 m / s 2, but the output signal of the high-pass filter is In 1 ▼, since the capacitor 11 has accumulated a certain amount of electric charge, the acceleration in the deceleration direction of the vehicle is indicated for a certain time in the falling derivative of the output signal of the G sensor 10, and thereby the deceleration The output signal of the detection means 15 determines that the vehicle is in a decelerating state, and controls the bidirectional DC-DC converter 14 so that a predetermined charging current flows from the main power storage means 2c to the reserve power storage means 16. A control signal is sent to the means 17.

このように、車両が一定時間だけ加速状態を継続した後に定速走行へ移行した直後には、該車両の走行速度が減速状態でないにも係わらず、前記減速検出手段が減速であると判断して、車両の運動エネルギーを回生するように作用する。これは、一般的に運転者が加速走行から定速走行へ移行する場合のアクセル操作には減速方向へのオーバーシュートを伴うので、かかるオーバーシュートの期間中は実際のエンジン負荷が負の状態となり、且つ車速は車体の慣性モーメントによって殆ど低下しない状態、であることが多く、そのような場合には、車両が減速状態であると判断して回生機能が働くことが望ましいからである。しかるに、本発明の減速エネルギー回生システムは、区間▲2▼において前記予備蓄電手段16を充電するように回生機能が作用する。  In this way, immediately after the vehicle has been in the acceleration state for a certain time and immediately after shifting to constant speed, it is determined that the deceleration detection means is decelerating even though the vehicle traveling speed is not in the deceleration state. And acts to regenerate the kinetic energy of the vehicle. This is because, in general, the accelerator operation when the driver makes a transition from acceleration to constant speed is accompanied by an overshoot in the deceleration direction, so the actual engine load is negative during the overshoot period. In many cases, the vehicle speed is hardly reduced by the inertial moment of the vehicle body. In such a case, it is desirable that the vehicle is in a decelerating state and the regeneration function is activated. However, in the deceleration energy regeneration system of the present invention, the regeneration function operates so as to charge the reserve power storage means 16 in the section (2).

また、区間▲3▼、区間▲5▼及び区間▲7▼の定速走行区間は、前記ハイパスフィルターの出力信号は、該Gセンサ10の出力と略等しい電圧波形を出力するので、前記減速検出手段15は車両が減速状態でないと判断して、前記予備蓄電手段16から、前記主蓄電手段2cへ所定の放電電流が流れるように前記双方向DC−DCコンバータ14の制御手段17へ制御信号を送出して、該予備蓄電手段16に充電された電力を車両電気負荷へ供給するから、燃費向上が図られる。  Further, in the constant speed traveling sections of section (3), section (5) and section (7), the output signal of the high-pass filter outputs a voltage waveform substantially equal to the output of the G sensor 10, so that the deceleration detection is performed. The means 15 judges that the vehicle is not decelerated, and sends a control signal to the control means 17 of the bidirectional DC-DC converter 14 so that a predetermined discharge current flows from the reserve power storage means 16 to the main power storage means 2c. Since the electric power that has been sent out and charged to the reserve power storage means 16 is supplied to the vehicle electrical load, fuel efficiency can be improved.

また、区間▲4▼及び区間▲6▼の減速走行区間は、前記ハイパスフィルターの出力信号は、該Gセンサ10の出力とほぼ等しい電圧波形を出力するので、前記減速検出手段15は車両が減速状態であると判断して、前記主蓄電手段2cから、前記予備蓄電手段16へ所定の充電電流が流れるように前記双方向DC−DCコンバータ14の制御手段17へ制御信号を送出して、該予備蓄電手段16を充電するから、車両の減速エネルギーが回生される。  Further, in the deceleration traveling sections of section (4) and section (6), the output signal of the high-pass filter outputs a voltage waveform substantially equal to the output of the G sensor 10, so that the deceleration detection means 15 causes the vehicle to decelerate. Determining that it is in a state, sending a control signal from the main power storage means 2c to the control means 17 of the bidirectional DC-DC converter 14 so that a predetermined charging current flows to the reserve power storage means 16; Since the reserve power storage means 16 is charged, the deceleration energy of the vehicle is regenerated.

上述の如く、本発明の減速エネルギー回生システムは、Gセンサの出力信号へ所定の定数からなるハイパスフィルターを付加したので、簡単な構成によって、車両減速時の運動エネルギー回生のみならず、車両が加速走行から定速走行へ移行した直後の運転者のアクセル操作オーバーシュート期間における負のエンジン負荷領域での回生動作を自動的に行うことができるので車両の運動エネルギー回生領域が拡大する。  As described above, in the deceleration energy regeneration system of the present invention, the high-pass filter consisting of a predetermined constant is added to the output signal of the G sensor, so that not only kinetic energy regeneration during vehicle deceleration but also acceleration of the vehicle is achieved with a simple configuration. Since the regenerative operation in the negative engine load region during the accelerator operation overshoot period of the driver immediately after shifting from traveling to constant speed traveling can be automatically performed, the kinetic energy regeneration region of the vehicle is expanded.

次に図3は、車両が平坦路から降坂路走行へ移行する状態を示している。区間▲1▼は、車両が平坦路走行をしている区間であり、前記Gセンサ10の出力は0m/s相当の電圧値(1/2VDD)を出力する。この区間では、前記ハイパスフィルター(コンデンサ11、抵抗12、抵抗13)の出力信号は、該Gセンサ10の出力と略等しい電圧波形を出力するので、前記減速検出手段15は車両が減速状態でないと判断して、前記予備蓄電手段16から、前記主蓄電手段2cへ所定の放電電流が流れるように前記双方向DC−DCコンバータ14の制御手段17へ制御信号を送出する。Next, FIG. 3 shows a state in which the vehicle shifts from a flat road to traveling on a downhill road. Section (1) is a section where the vehicle is traveling on a flat road, and the output of the G sensor 10 outputs a voltage value (1/2 VDD) equivalent to 0 m / s 2 . In this section, the output signal of the high-pass filter (capacitor 11, resistor 12, resistor 13) outputs a voltage waveform that is substantially equal to the output of the G sensor 10, so that the deceleration detection means 15 does not decelerate the vehicle. Judgment is made and a control signal is sent from the reserve power storage means 16 to the control means 17 of the bidirectional DC-DC converter 14 so that a predetermined discharge current flows to the main power storage means 2c.

区間▲2▼で、車両が降坂路走行へ移行すると、車両走行負荷の低下に伴って車速が増加するが、前記Gセンサ10の出力信号は路面勾配に従った重力加速度を検出して車両の減速方向と等価の電圧値を出力する。従って、前記ハイパスフィルターの出力信号は、該区間▲2▼において車両の減速方向の加速度を示し、これによって前記減速検出手段15の出力信号は、車両が減速状態であると判断して、前記主蓄電手段2cから、前記予備蓄電手段16へ所定の充電電流が流れるように前記双方向DC−DCコンバータ14の制御手段17へ制御信号を送出する。  When the vehicle shifts to downhill traveling in section (2), the vehicle speed increases as the vehicle traveling load decreases, but the output signal of the G sensor 10 detects the gravitational acceleration according to the road surface gradient and detects the vehicle's speed. Outputs a voltage value equivalent to the deceleration direction. Therefore, the output signal of the high-pass filter indicates the acceleration in the deceleration direction of the vehicle in the section (2), whereby the output signal of the deceleration detection means 15 determines that the vehicle is in a deceleration state, and A control signal is sent from the power storage means 2 c to the control means 17 of the bidirectional DC-DC converter 14 so that a predetermined charging current flows to the reserve power storage means 16.

さらに、区間▲2▼において運転者のアクセル操作によって車速が減少及び定速状態となるが、この期間においても前記Gセンサ10の出力信号は車速低下に伴う減速度及び路面勾配による重力加速度を検出するので、前記減速検出手段15の出力信号は、車両が減速状態であると判断して、車両運動エネルギーが回生される。  Furthermore, in section (2), the vehicle speed decreases and becomes constant due to the driver's accelerator operation. Even during this period, the output signal of the G sensor 10 detects the deceleration accompanying the decrease in the vehicle speed and the gravitational acceleration due to the road surface gradient. Therefore, the output signal of the deceleration detection means 15 determines that the vehicle is in a decelerating state, and the vehicle kinetic energy is regenerated.

尚、前記減速検出手段15は、車両の減速を判定する減速度閾値において、一般的な緩降坂路の路面勾配3%程度を検出可能にすべく、0.3m/s程度に設定するのが望ましい。The deceleration detection means 15 is set to about 0.3 m / s 2 in order to enable detection of a road surface gradient of about 3% on a general gentle downhill road at a deceleration threshold value for determining deceleration of the vehicle. Is desirable.

以上のように作用して、車両が平坦路走行から降坂路走行へ移行すると、該車両の走行速度が減速状態でないにも係わらず、前記Gセンサが路面勾配による重力加速度を検出するので、前記減速検出手段15が等価的に減速であると判断して、車両の運動エネルギーを回生するように作用する。  As described above, when the vehicle shifts from flat road traveling to downhill traveling, the G sensor detects the gravitational acceleration due to the road gradient even though the traveling speed of the vehicle is not in a decelerating state. The deceleration detection means 15 determines that the deceleration is equivalent, and acts to regenerate the kinetic energy of the vehicle.

上述の如く、本発明の減速エネルギー回生システムは、Gセンサの出力信号を用いて、該Gセンサが降坂路の路面勾配における重力加速度を検出した場合に車両の減速度判定を行い、回生システムが作動するように構成したので、簡単な構成によって、車両減速時の運動エネルギー回生のみならず、降坂路の道路勾配を同時に検出することによって、車速が減速状態でないエンジンの微小負荷領域での車両運動エネルギーの回生を自動的に行うことができるので車両の運動エネルギー回生領域が拡大する。  As described above, the deceleration energy regeneration system of the present invention uses the output signal of the G sensor to determine the deceleration of the vehicle when the G sensor detects the gravitational acceleration on the road slope of the downhill road, and the regeneration system Since it is configured to operate, not only the kinetic energy regeneration during vehicle deceleration but also the road gradient on the downhill road is detected at the same time by simple configuration, so that the vehicle motion in the minute load region of the engine where the vehicle speed is not decelerated. Since energy regeneration can be performed automatically, the kinetic energy regeneration area of the vehicle is expanded.

次に図4は、車両が降坂路走行中に停止した状態を示している。区間▲1▼は、車両が降坂路走行をしている区間であり、例えば5%下り勾配の降坂路を走行している場合の前記Gセンサ10の出力は車両の減速方向へ0.5m/s相当の電圧値を出力する。このような走行条件が所定期間継続すると、前記ハイパスフィルターのコンデンサ11は、該コンデンサ11の前記Gセンサ側が該0.5m/s相当の電圧値となるとともに、抵抗12/抵抗13側が0m/s相当の電圧値(1/2VDD)となるように、該コンデンサ11が充電される。従って区間▲1▼では前記減速検出手段15は車両が減速状態でないと判断して、前記予備蓄電手段16から、前記主蓄電手段2cへ所定の放電電流が流れるように前記双方向DC−DCコンバータ14の制御手段17へ制御信号を送出する。Next, FIG. 4 shows a state where the vehicle is stopped while traveling on a downhill road. Section {circle around (1)} is a section where the vehicle is traveling on a downhill road. For example, when the vehicle is traveling on a downhill road with a 5% downward slope, the output of the G sensor 10 is 0.5 m / in the deceleration direction of the vehicle. s 2 corresponding to output a voltage value. When such a traveling condition continues for a predetermined period, the capacitor 11 of the high-pass filter has a voltage value equivalent to 0.5 m / s 2 on the G sensor side of the capacitor 11 and 0 m / s on the resistor 12 / resistor 13 side. The capacitor 11 is charged so as to have a voltage value equivalent to s 2 (1 / 2VDD). Therefore, in the section (1), the deceleration detecting means 15 determines that the vehicle is not in a decelerating state, and the bidirectional DC-DC converter so that a predetermined discharge current flows from the reserve power storage means 16 to the main power storage means 2c. A control signal is sent to 14 control means 17.

続いて、車両が停止するに至る区間▲2▼は、車両の走行速度低下に従った減速度が前記Gセンサ10に働くので、該Gセンサ10の出力電圧が減速方向に変化すると共に、前記ハイパスフィルターの出力電圧が減速方向へ略等しく変化して、前記減速検出手段15は、車両が減速状態であると判断し、車両運動エネルギーの回生動作が行われる。  Subsequently, in the section {circle around (2)} in which the vehicle stops, the deceleration according to the decrease in the traveling speed of the vehicle acts on the G sensor 10, so that the output voltage of the G sensor 10 changes in the deceleration direction, and When the output voltage of the high-pass filter changes substantially equally in the deceleration direction, the deceleration detection means 15 determines that the vehicle is in a deceleration state, and a vehicle kinetic energy regeneration operation is performed.

区間▲3▼で、車両が完全に停止すると前記Gセンサ10の出力は上記降坂路走行中と等しく、車両の減速方向へ0.5m/s相当の電圧値を出力するが上記ハイパスフィルターのコンデンサ11の充電電圧によって前記減速検出手段15は車両が減速状態でないと判断して、前記予備蓄電手段16から、前記主蓄電手段2cへ所定の放電電流が流れるように前記双方向DC−DCコンバータ14の制御手段17へ制御信号を送出して予備蓄電手段16に充電された電力を車両電気負荷へ供給する。When the vehicle is completely stopped in section (3), the output of the G sensor 10 is equal to that when the vehicle is traveling on the downhill road, and a voltage value equivalent to 0.5 m / s 2 is output in the deceleration direction of the vehicle. Based on the charging voltage of the capacitor 11, the deceleration detecting means 15 determines that the vehicle is not in a decelerating state, and the bidirectional DC-DC converter so that a predetermined discharge current flows from the reserve power storage means 16 to the main power storage means 2c. A control signal is sent to 14 control means 17 to supply the electric power charged in the reserve power storage means 16 to the vehicle electrical load.

上述の如く、本発明の減速エネルギー回生システムは、Gセンサの出力信号へ所定の定数からなるハイパスフィルターを付加したので、車両が降坂路で停止した場合には、前記減速検出手段15は車両が減速状態でないと判断して、予備蓄電手段16から、放電した電力を車両電気負荷へ供給するから、燃費向上が図られる。  As described above, since the deceleration energy regeneration system of the present invention has added a high-pass filter consisting of a predetermined constant to the output signal of the G sensor, when the vehicle stops on a downhill road, the deceleration detection means 15 Since it is determined that the vehicle is not decelerating and the discharged power is supplied from the reserve power storage means 16 to the vehicle electrical load, fuel efficiency is improved.

次に図5は、車両が平坦路走行中に登坂路走行へ移行した状態を示している。区間▲1▼は、車両が停止から加速し、平坦路を走行している過程であり、前記Gセンサ10の出力は車両の加速に伴う非減速側の電圧値を出力するのに続いて、定速走行中には0m/s相当の電圧値(1/2VDD)を出力するので、前記ハイパスフィルターの出力信号は、車両の非減速方向の加速度信号を出力し、これによって前記減速検出手段15の出力信号は、車両が非減速状態であると判断して、前記予備蓄電手段16から放電した電力を車両電気負荷へ供給する。Next, FIG. 5 shows a state in which the vehicle has shifted to uphill traveling while traveling on a flat road. Section {circle around (1)} is a process in which the vehicle accelerates from a stop and travels on a flat road, and the output of the G sensor 10 outputs a voltage value on the non-decelerating side accompanying the acceleration of the vehicle. Since a voltage value (1/2 VDD) corresponding to 0 m / s 2 is output during constant speed traveling, the output signal of the high-pass filter outputs an acceleration signal in the non-decelerating direction of the vehicle, thereby the deceleration detection means The output signal 15 determines that the vehicle is in a non-decelerated state, and supplies the electric power discharged from the reserve power storage means 16 to the vehicle electrical load.

区間▲2▼は、車両が登坂路へ差し掛かることによる走行負荷の増加によって車速が減少するが、前記Gセンサ10の出力信号は路面勾配に従った重力加速度を検出して車両の減速方向と逆方向の電圧値を出力する。従って、前記ハイパスフィルターの出力信号は、該区間▲2▼において車両の非減速方向の加速度を示し、これによって前記減速検出手段15の出力信号は、車両が減速状態でないと判断して、前記予備蓄電手段16から車両電気負荷へ電力を供給する。  In section {circle around (2)}, the vehicle speed decreases due to an increase in traveling load due to the vehicle approaching the uphill road, but the output signal of the G sensor 10 detects the gravitational acceleration according to the road surface gradient and determines the vehicle deceleration direction. Outputs the voltage value in the reverse direction. Therefore, the output signal of the high-pass filter indicates the acceleration in the non-deceleration direction of the vehicle in the section (2), whereby the output signal of the deceleration detection means 15 determines that the vehicle is not decelerating and Electric power is supplied from the power storage means 16 to the vehicle electrical load.

区間▲3▼は、前記Gセンサ10の出力信号が車速の増加による加速度と、路面勾配に従った重力加速度とを検出して車両の減速方向と逆方向の電圧値を出力する。従って、前記ハイパスフィルターの出力信号は、該区間▲3▼において車両の非減速方向の加速度を示し、これによって前記減速検出手段15の出力信号は、車両が減速状態でないと判断して、前記予備蓄電手段16から車両電気負荷へ電力を供給する。  In section (3), the output signal of the G sensor 10 detects the acceleration due to the increase in vehicle speed and the gravitational acceleration according to the road gradient, and outputs a voltage value in the direction opposite to the deceleration direction of the vehicle. Therefore, the output signal of the high-pass filter indicates the acceleration in the non-decelerating direction of the vehicle in the section (3), whereby the output signal of the deceleration detecting means 15 determines that the vehicle is not decelerating and Electric power is supplied from the power storage means 16 to the vehicle electrical load.

尚、区間▲3▼は、例えば車両が上り勾配5%の登坂路を一定速度で走行している場合の前記Gセンサ10の出力は路面勾配による重力加速度に従って車両の非減速方向へ0.5m/s相当の電圧値を出力する。このような走行条件が所定期間継続すると、前記ハイパスフィルターのコンデンサ11は、該コンデンサ11の前記Gセンサ側が非減速側へ0.5m/s相当の電圧値となるとともに、抵抗12/抵抗13側が0m/s相当の電圧値(1/2VDD)となるように該コンデンサ11が充電されて、前記減速検出手段15は上記と同様に車両が減速状態でないとの判断を継続する。In section {circle around (3)}, for example, when the vehicle is traveling on an uphill road with an upward gradient of 5% at a constant speed, the output of the G sensor 10 is 0.5 m in the non-deceleration direction of the vehicle according to the gravitational acceleration due to the road surface gradient. A voltage value equivalent to / s 2 is output. When such a running condition continues for a predetermined period, the capacitor 11 of the high-pass filter has a voltage value equivalent to 0.5 m / s 2 on the G sensor side of the capacitor 11 toward the non-decelerating side, and a resistance 12 / resistance 13 The capacitor 11 is charged so that the side becomes a voltage value (1/2 VDD) corresponding to 0 m / s 2 , and the deceleration detection means 15 continues to determine that the vehicle is not in the deceleration state as described above.

区間▲4▼は、車両が登坂路走行中に、緩減速した状態を示している。先の区間▲3▼では、例えば車両が上り勾配5%の登坂路を走行している場合の前記Gセンサ10の出力は車両の非減速方向へ0.5m/s相当の電圧値を出力するとともに、前記ハイパスフィルターのコンデンサ11は、該コンデンサ11の抵抗12/抵抗13側が0m/s相当の電圧値に充電されている。しかるに、区間▲4▼で車両が緩減速するとGセンサ10が受ける車両の進行方向減速度によって該センサの出力電圧が低下し、前記ハイパスフィルターの出力電圧が減速方向へ略等しく変化するので、前記減速検出手段15は、車両が減速状態であると判断して、車両運動エネルギーの回生動作が行われる。Section (4) shows a state where the vehicle is slowly decelerated while traveling on an uphill road. In the previous section (3), for example, when the vehicle is traveling on an uphill road with an ascending slope of 5%, the output of the G sensor 10 outputs a voltage value equivalent to 0.5 m / s 2 in the non-decelerating direction of the vehicle. In addition, the capacitor 11 of the high-pass filter is charged to a voltage value equivalent to 0 m / s 2 on the resistor 12 / resistor 13 side of the capacitor 11. However, when the vehicle slowly decelerates in the section (4), the output voltage of the sensor decreases due to the deceleration in the traveling direction of the vehicle received by the G sensor 10, and the output voltage of the high-pass filter changes substantially equally in the deceleration direction. The deceleration detection means 15 determines that the vehicle is in a decelerating state, and performs a regeneration operation for vehicle kinetic energy.

上述の如く、本発明の減速エネルギー回生システムは、Gセンサの出力信号へ所定の定数からなるハイパスフィルターを付加したので、車両が登坂路を継続して走行中に運転者のアクセル操作によって車両が緩減速した場合には、前記減速検出手段15は車両が減速状態であると判断して、予備蓄電手段16へ、車両の運動エネルギーが回生される。  As described above, the deceleration energy regeneration system of the present invention adds a high-pass filter consisting of a predetermined constant to the output signal of the G sensor, so that the vehicle is driven by the driver's accelerator operation while the vehicle continues traveling on the uphill road. In the case of slow deceleration, the deceleration detection means 15 determines that the vehicle is in a decelerating state, and the kinetic energy of the vehicle is regenerated to the reserve power storage means 16.

次に図8は、車両が凹凸のある平坦路走行中に、車速が一定であるにも係わらず車体の傾斜角度変動や、Gセンサ構造による加速度検出方向分離性能の不足、或いは車体に対する前記Gセンサ10の取り付け角度の水平面からのずれによって、該Gセンサの出力信号が短時間に増減して、所謂チャタリングした場合のGセンサ出力信号と、該出力信号から前記制御手段17のローパスフィルター(抵抗171、コンデンサ172)を介した信号との波形を示す。  Next, FIG. 8 shows that when the vehicle is traveling on a flat road with unevenness, the vehicle body tilt angle fluctuations despite the vehicle speed being constant, the lack of acceleration detection direction separation performance by the G sensor structure, or the G against the vehicle body. Due to the deviation of the mounting angle of the sensor 10 from the horizontal plane, the output signal of the G sensor increases or decreases in a short time, so-called chattering, and the low-pass filter (resistance) of the control means 17 from the output signal. 171 and the waveform through the capacitor 172).

かかる状況において、前記Gセンサ出力信号から前記ハイパスフィルターを経由した信号を、そのまま前記誤差増幅器へ入力すると前記双方向DC−DCコンバータの制御電流が急変してエンジンの駆動トルク変動や主蓄電手段の電圧変動、及び電源ノイズの問題が発生することがある。  In such a situation, if a signal passing through the high-pass filter from the G sensor output signal is input to the error amplifier as it is, the control current of the bidirectional DC-DC converter changes suddenly, causing fluctuations in engine driving torque and main power storage means. Problems with voltage fluctuations and power supply noise may occur.

そこで、図8に示す如く前記減速検出手段15の出力信号15bからローパスフィルターを介して、前記誤差増幅器173へ入力することによって前記双方向DC−DCコンバータ14の制御電流の急変を抑制しエンジンの駆動トルク変動や主蓄電手段2cの電圧変動、及び電源ノイズの問題を防止することができる。  Therefore, as shown in FIG. 8, the sudden change in the control current of the bidirectional DC-DC converter 14 is suppressed by inputting the output signal 15b of the deceleration detecting means 15 to the error amplifier 173 through a low-pass filter. It is possible to prevent problems of fluctuations in driving torque, voltage fluctuations of the main power storage means 2c, and power supply noise.

以上のように、本発明の減速エネルギー回生システムは、Gセンサの出力信号へ所定の定数からなるハイパスフィルターを付加したので、車両減速時の運動エネルギー回生のみならず、車両が加速走行から定速走行へ移行した直後の運転者のアクセル操作オーバーシュート期間における負のエンジン負荷領域での回生動作を自動的に行うことができ、さらに、登坂路を継続して走行中に運転者のアクセル操作によって車両が緩減速した場合の走行エネルギーの回生が可能であり、加えて、降坂路の道路勾配を同時に検出することによって、車速が減速状態でない微小なエンジン負荷領域での車両運動エネルギーの回生が可能になるので車両の運動エネルギー回生領域が拡大して燃費性能が改善する。  As described above, in the deceleration energy regeneration system of the present invention, the high-pass filter composed of a predetermined constant is added to the output signal of the G sensor. It is possible to automatically perform regenerative operation in the negative engine load region during the overshoot period of the driver's accelerator operation immediately after shifting to traveling, and further, by continuing the uphill road and driving the driver Driving energy can be regenerated when the vehicle decelerates slowly. In addition, vehicle kinetic energy can be regenerated in a minute engine load area where the vehicle speed is not decelerating by simultaneously detecting the slope of the downhill road. Therefore, the kinetic energy regeneration area of the vehicle is expanded and fuel efficiency is improved.

さらに、上記ハイパスフィルターの効果として、車両が降坂路で停止した場合に、減速検出手段が路面の下り勾配による重力加速度を検出し、車両が減速状態でないと判断することによる誤った回生動作を行うことがない。  Further, as an effect of the high-pass filter, when the vehicle stops on a downhill road, the deceleration detection means detects the gravitational acceleration due to the downward slope of the road surface, and performs an erroneous regeneration operation by determining that the vehicle is not in a deceleration state. There is nothing.

また、本発明の減速エネルギー回生システムは、Gセンサの出力信号を用いて、該Gセンサの3%程度の下り勾配路に対応した出力電圧を閾値として車両の減速度判定を行うように構成したから、車両の運動エネルギー回生領域と非回生領域とを確実に区別して検出することができる。  In addition, the deceleration energy regeneration system of the present invention is configured to use the output signal of the G sensor to determine the deceleration of the vehicle using the output voltage corresponding to about 3% of the downhill road of the G sensor as a threshold value. Therefore, the kinetic energy regeneration region and the non-regeneration region of the vehicle can be reliably distinguished and detected.

加えて、本発明の減速エネルギー回生システムは車両の主蓄電手段(バッテリ)の+/−と本システムとを1対の電線で接続するだけで良く、使用過程車両へも容易に搭載可能である。  In addition, the deceleration energy regeneration system of the present invention only needs to connect +/− of the main power storage means (battery) of the vehicle and the system with a pair of electric wires, and can be easily mounted on the in-use vehicle. .

尚、本実施例におけるGセンサは車両の進行方向の減速度を検出するものとしたが、かかるGセンサを車両の上下方向と進行方向との間の任意の方向へ向けて配置すれば、重力加速度に対応した路面勾配の検出感度と、車両進行方向における車速の変化による加速度の検出感度との比率を任意に設定できることは当該領域の技術者であれば容易に類推可能な設計的事項である。  The G sensor in the present embodiment detects the deceleration in the traveling direction of the vehicle. However, if the G sensor is disposed in an arbitrary direction between the vertical direction and the traveling direction of the vehicle, the gravity sensor The ability to arbitrarily set the ratio of the road surface gradient detection sensitivity corresponding to acceleration to the acceleration detection sensitivity due to changes in vehicle speed in the vehicle traveling direction is a design matter that can be easily analogized by engineers in the relevant area. .

1 減速エネルギー回生システム
10 Gセンサ
14 双方向DC−DCコンバータ
141 三角波発振回路の出力信号
142 コンパレータ
143 駆動回路手段
144 トランジスタ群
145 コイル
15 減速検出手段
153 比較器
16 予備蓄電手段
17 制御手段
173 誤差増幅器
174 駆動判定手段
175 電流検出抵抗
176 電流検出増幅器
2 車両用電源
2a エンジン
2b 車両用発電機
2c 主蓄電手段
DESCRIPTION OF SYMBOLS 1 Deceleration energy regeneration system 10 G sensor 14 Bidirectional DC-DC converter 141 Output signal 142 of a triangular wave oscillation circuit 142 Comparator 143 Drive circuit means 144 Transistor group 145 Coil 15 Deceleration detection means 153 Comparator 16 Preliminary storage means 17 Control means 173 Error amplifier 174 Drive determination means 175 Current detection resistor 176 Current detection amplifier 2 Vehicle power supply 2a Engine 2b Vehicle generator 2c Main power storage means

Claims (6)

走行用エンジンによって駆動される車両用発電機及び主蓄電手段を含む車両用電源と、予備蓄電手段と、前記車両用電源と前記予備蓄電手段間に接続される双方向DC−DCコンバータと、車両の進行方向における減速度を検出するGセンサと、前記Gセンサの出力信号と接続されるとともに、車両の平均的走行速度における単位時間当たりの道路勾配変化周期に近い周波数をカットオフ周波数としたハイパスフィルターと、前記ハイパスフィルターの出力信号が、前記Gセンサの0m/sより大きい減速方向の信号を出力しているか否かを検出する減速検出手段と、前記減速検出手段が減速を検出した時に前記予備蓄電手段を充電し、減速検出時以外にこの充電された電力を主蓄電手段よりも優先して放電して車両電気負荷へ供給するように前記双方向DC−DCコンバータを制御する制御手段と、を具備することを特徴とする、車両の減速エネルギー回生システム。Vehicle power source including a vehicular generator driven by a traveling engine and main power storage means, standby power storage means, a bidirectional DC-DC converter connected between the vehicle power supply and the backup power storage means, and vehicle A high-pass that is connected to a G sensor that detects a deceleration in the traveling direction of the vehicle and an output signal of the G sensor, and has a cutoff frequency that is close to a road gradient change period per unit time at an average traveling speed of the vehicle A filter, deceleration detection means for detecting whether the output signal of the high-pass filter outputs a signal in a deceleration direction larger than 0 m / s 2 of the G sensor, and when the deceleration detection means detects deceleration The spare power storage means is charged, and the charged power is discharged with priority over the main power storage means and supplied to the vehicle electrical load except when deceleration is detected. And a control means for controlling the bidirectional DC-DC converter. 前記ハイパスフィルターのカットオフ周波数は0.0001Hzから0.01Hzであることを特徴とする請求項1記載の、車両の減速エネルギー回生システム。  The vehicle deceleration energy regeneration system according to claim 1, wherein a cutoff frequency of the high-pass filter is 0.0001 Hz to 0.01 Hz. 前記減速検出手段は、車両の減速を判定する減速度閾値において0.1m/sから0.5m/sであることを特徴とする請求項1か請求項2の何れか1項に記載の、車両の減速エネルギー回生システム。The deceleration detection means has a deceleration threshold value for determining deceleration of the vehicle in a range from 0.1 m / s 2 to 0.5 m / s 2 , according to claim 1. The vehicle's deceleration energy regeneration system. 前記制御手段は、前記主蓄電手段の電圧値と前記予備蓄電手段の電圧値と、の差電圧が所定の値以下となった場合に、前記双方向DC−DCコンバータが前記予備蓄電手段を充電する動作を停止するように構成したことを特徴とする請求項1から請求項3の何れか1項に記載の、車両の減速エネルギー回生システム。  When the difference voltage between the voltage value of the main power storage means and the voltage value of the reserve power storage means becomes a predetermined value or less, the control means charges the reserve power storage means by the bidirectional DC-DC converter. The deceleration energy regeneration system for a vehicle according to any one of claims 1 to 3, wherein the operation is stopped. 前記制御手段は、前記予備蓄電手段の電圧値が所定の値以下となった場合に、前記双方向DC−DCコンバータが前記予備蓄電手段を放電する動作を停止するように構成したことを特徴とする請求項1から請求項3の何れか1項に記載の、車両の減速エネルギー回生システム。  The control unit is configured to stop the operation of the bidirectional DC-DC converter discharging the standby storage unit when a voltage value of the backup storage unit becomes a predetermined value or less. The vehicle deceleration energy regeneration system according to any one of claims 1 to 3. 前記制御手段は、前記減速検出手段の出力信号からローパスフィルターを介した信号に比例した電流値で、前記予備蓄電手段の充放電を行うように、前記双方向DC−DCコンバータを制御する構成としたことを特徴とする請求項1から請求項5の何れか1項に記載の、車両の減速エネルギー回生システム。  The control means controls the bidirectional DC-DC converter so as to charge / discharge the reserve power storage means with a current value proportional to a signal through a low-pass filter from an output signal of the deceleration detection means. The vehicle deceleration energy regeneration system according to any one of claims 1 to 5, wherein the vehicle deceleration energy regeneration system is provided.
JP2011265247A 2011-11-15 2011-11-15 Vehicle deceleration energy regeneration system Expired - Fee Related JP5891480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265247A JP5891480B2 (en) 2011-11-15 2011-11-15 Vehicle deceleration energy regeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265247A JP5891480B2 (en) 2011-11-15 2011-11-15 Vehicle deceleration energy regeneration system

Publications (2)

Publication Number Publication Date
JP2013106509A true JP2013106509A (en) 2013-05-30
JP5891480B2 JP5891480B2 (en) 2016-03-23

Family

ID=48625651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265247A Expired - Fee Related JP5891480B2 (en) 2011-11-15 2011-11-15 Vehicle deceleration energy regeneration system

Country Status (1)

Country Link
JP (1) JP5891480B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132966A (en) * 1990-09-25 1992-05-07 Sumitomo Electric Ind Ltd Acceleration detector
JPH06296332A (en) * 1993-04-07 1994-10-21 Nippondenso Co Ltd Electric power controller for motor vehicle
JP2010220392A (en) * 2009-03-17 2010-09-30 Honda Motor Co Ltd Charging system
JP2011037338A (en) * 2009-08-07 2011-02-24 Toyota Motor Corp Vehicle slip determination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132966A (en) * 1990-09-25 1992-05-07 Sumitomo Electric Ind Ltd Acceleration detector
JPH06296332A (en) * 1993-04-07 1994-10-21 Nippondenso Co Ltd Electric power controller for motor vehicle
JP2010220392A (en) * 2009-03-17 2010-09-30 Honda Motor Co Ltd Charging system
JP2011037338A (en) * 2009-08-07 2011-02-24 Toyota Motor Corp Vehicle slip determination device

Also Published As

Publication number Publication date
JP5891480B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP6479760B2 (en) Vehicle high power electrical systems and systems and methods for using voltage bus levels to signal system status
KR100419937B1 (en) Regenerative control apparatus of hybrid electric vehicle
US9227621B2 (en) Hybrid drive
US8439795B2 (en) Apparatus for controlling motor torque
JP3877859B2 (en) Electric vehicle power supply
JP2006087299A (en) Electric vehicle controller
US8768550B2 (en) Electric vehicle
JP3795803B2 (en) Electric vehicle control device
CN101332774A (en) Automobile brake energy regeneration control device and system
WO2014057838A1 (en) Anti-lock brake control system for motor-mounted automobile
CN107323271A (en) The braking control system of electric vehicle, method and device
JP5381888B2 (en) Hybrid car
MX2012012406A (en) Device for improving vehicle behavior when steering.
JP5119229B2 (en) Vehicle control device
CN104245491A (en) Control device of auxiliary-powered movement device, and auxiliary-powered movement device comprising said control device
JP2014039415A (en) Charge control device
JP2011116223A (en) Controller for hybrid electric vehicle
JP5891480B2 (en) Vehicle deceleration energy regeneration system
CN106114491B (en) A kind of auxiliary driving method, DAS (Driver Assistant System) and automobile
JPH07284201A (en) Electric power generation system controller for hybrid electric car
JP2006055000A (en) Electric vehicle controller
JP6002962B2 (en) Deceleration energy regeneration system for vehicles
JP2011121406A (en) Controller for hybrid electric vehicle
JP5537994B2 (en) Electric assist bicycle
JP2021093873A (en) Control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5891480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees