JP2013105686A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2013105686A
JP2013105686A JP2011250215A JP2011250215A JP2013105686A JP 2013105686 A JP2013105686 A JP 2013105686A JP 2011250215 A JP2011250215 A JP 2011250215A JP 2011250215 A JP2011250215 A JP 2011250215A JP 2013105686 A JP2013105686 A JP 2013105686A
Authority
JP
Japan
Prior art keywords
water
fuel cell
tank
water supply
humidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011250215A
Other languages
Japanese (ja)
Inventor
Akihiro Masao
明宏 正生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2011250215A priority Critical patent/JP2013105686A/en
Publication of JP2013105686A publication Critical patent/JP2013105686A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To save space of a humidifier tank and control water temperature in the humidifier tank with good responsiveness.SOLUTION: A fuel cell system includes: a solid polymer fuel cell 2 and a humidifier tank 9 which humidifies hydrogen by bubbling and supplies hydrogen to the fuel cell 2. The fuel cell system includes: a water supply tank 10 having a heater 14 heating water supply to the humidifier tank 9; a humidification water circulation path 11 supplying water supply in the water supply tank 10 while circulating the water supply to the humidifier tank 9; a coolant circulation path 12 heating the water supply in the water supply tank 10 with heat obtained by a cooling part 7 of the fuel cell 2; and a control unit which energizes the heater 14 and drives a first circulation pump 17 of the humidification water circulation path 11 when the fuel cell 2 is activated, the control unit which drives a second circulation pump 18 of the coolant circulation path 12 after the fuel cell 2 is activated.

Description

この発明は、固体高分子形燃料電池を用いた燃料電池システムに関する。   The present invention relates to a fuel cell system using a polymer electrolyte fuel cell.

水素と酸素の化学反応を利用して電気を取り出す固体高分子形燃料電池と、水素をバブリングして加湿して前記燃料電池へ供給する加湿タンクとを備える燃料電池システムは、特許文献1などで知られている。   A fuel cell system comprising a solid polymer fuel cell that takes out electricity using a chemical reaction between hydrogen and oxygen, and a humidification tank that bubbles and humidifies hydrogen and supplies the fuel cell to the fuel cell is disclosed in Patent Document 1 and the like. Are known.

この特許文献1においては、起動時に加湿タンク内に設けたヒータに通電して、加湿タンク内の水を加温することにより、水素ガスを加温するように構成している。また、特許文献1においては、燃料電池の冷却部で得た熱で加湿タンク内の水を加温する熱交換器を加湿タンク内に設けている。   In this patent document 1, it is comprised so that hydrogen gas may be heated by energizing the heater provided in the humidification tank at the time of starting, and heating the water in a humidification tank. Moreover, in patent document 1, the heat exchanger which heats the water in a humidification tank with the heat obtained in the cooling part of the fuel cell is provided in the humidification tank.

この特許文献1の構成では、容量の大きいヒータと熱交換器を加湿タンクに内蔵させる必要があるので、加湿タンクが大型化してしまい、省スペース化ができない。   In the configuration of Patent Document 1, since it is necessary to incorporate a heater and heat exchanger having a large capacity in the humidification tank, the humidification tank becomes large and space saving cannot be achieved.

特開2007−250326号公報JP 2007-250326 A

この発明が解決しようとする課題は、加湿タンクを小型化して省スペース化を可能とするとともに、加湿タンク内の水温制御を応答性良く行うことである。   The problem to be solved by the present invention is to reduce the size of the humidification tank to save space and to control the water temperature in the humidification tank with good responsiveness.

この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、水素と酸素の化学反応を利用して電気を取り出す固体高分子形燃料電池と、水素をバブリングにより加湿して前記燃料電池へ供給する加湿タンクとを備える燃料電池システムにおいて、前記加湿タンクへの給水を貯留し、この給水を加熱するヒータを備える給水タンクと、第一循環ポンプを備え、前記給水タンク内の給水を前記加湿タンクへ循環させながら供給する加湿水循環路と、第二循環ポンプを備え、前記燃料電池の冷却部で得た熱で前記給水タンク内の給水を加熱する冷却水循環路と、前記燃料電池の起動時、前記ヒータに通電するとともに前記第一循環ポンプを駆動することにより、前記給水タンク内の給水を加温し、前記燃料電池の起動後、前記第二循環ポンプを駆動することにより、前記燃料電池を冷却するとともに前記給水タンク内の給水を加温する制御器とを備えることを特徴としている。   The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 is directed to a polymer electrolyte fuel cell that takes out electricity using a chemical reaction between hydrogen and oxygen, and hydrogen is bubbled. A fuel cell system comprising a humidification tank that humidifies and supplies the fuel cell, wherein the water supply tank includes a water supply tank that stores water supplied to the humidification tank and that heats the water supply, and a first circulation pump. A humidification water circulation path for supplying the water supply in the tank while circulating it to the humidification tank; and a cooling water circulation path for heating the water supply in the water supply tank with heat obtained by the cooling section of the fuel cell, the second circulation pump When the fuel cell is started, the heater is energized and the first circulation pump is driven to heat the water supply in the water supply tank. By driving the second circulation pump is characterized by comprising a controller for heating the water in the water supply tank to cool the fuel cell.

請求項1に記載の発明によれば、特許文献1の従来技術と比較して、前記加湿タンク内に前記ヒータおよび熱交換器を設けることなく、前記燃料電池の起動時および起動後において前記加湿タンク内の水を加温することができるので、前記加湿タンクを小型化して省スペース化を実現できる。また、前記給水タンクと前記加湿タンクとを前記加湿水循環路で接続しているので、前記給水タンク内の水温変化を速やかに前記加湿タンクに伝えることができ、前記加湿タンク内の水温制御を応答性良く行うことができるという効果を奏する。   According to the first aspect of the present invention, compared with the prior art disclosed in Patent Document 1, the humidification tank is not provided with the heater and the heat exchanger, and the humidification is performed at and after the start of the fuel cell. Since the water in the tank can be heated, the humidification tank can be downsized to save space. Further, since the water supply tank and the humidification tank are connected by the humidification water circulation path, the water temperature change in the water supply tank can be quickly transmitted to the humidification tank, and the water temperature control in the humidification tank is responded. There is an effect that it can be performed with good performance.

請求項2に記載の発明は、請求項1において、前記冷却水循環路に放熱量調整手段を有
する放熱器を備え、前記制御器は、前記燃料電池の起動後、前記第二循環ポンプの回転数制御および/または前記放熱量調整手段の制御により前記冷却部出口の冷却水の温度を制御することを特徴としている。
According to a second aspect of the present invention, in the first aspect, the cooling water circulation path includes a heat radiator having a heat radiation amount adjusting unit, and the controller rotates the second circulation pump after the fuel cell is started. The temperature of the cooling water at the outlet of the cooling unit is controlled by control and / or control of the heat radiation amount adjusting means.

請求項2に記載の発明によれば、請求項1に記載の発明による効果に加えて、前記冷却部出口の冷却水の温度を制御するので、前記燃料電池の冷却を効果的に行うことができるという効果を奏する。   According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, the temperature of the cooling water at the outlet of the cooling unit is controlled, so that the fuel cell can be effectively cooled. There is an effect that can be done.

さらに、請求項3に記載の発明は、請求項1または請求項2において、前記給水タンクへの給水手段と、前記給水タンクの水位を検出する水位検出手段とを備え、前記制御器は、前記水位検出手段により前記給水手段を制御し、前記給水タンク内の水位を設定水位に制御することで、前記加湿タンク内の水位を設定水位に制御することを特徴としている。   The invention according to claim 3 further comprises water supply means to the water supply tank and water level detection means for detecting the water level of the water supply tank according to claim 1 or claim 2, wherein the controller is The water level is controlled by the water level detection unit and the water level in the water supply tank is controlled to a set water level, whereby the water level in the humidification tank is controlled to the set water level.

請求項3に記載の発明によれば、請求項1または請求項2に記載の発明による効果に加えて、前記給水タンクに設けた水位制御手段により、前記加湿タンク内の水位を適切に制御でき、安定した加湿を行うことができるとともに、新たに水位検出手段を設ける必要が無いので、システム構成の簡素化と前記加湿タンクを一層小型化できるという効果を奏する。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, the water level control means provided in the water supply tank can appropriately control the water level in the humidification tank. In addition to being able to perform stable humidification, there is no need to newly provide a water level detection means, so that the system configuration can be simplified and the humidification tank can be further reduced in size.

この発明によれば、加湿タンクを小型化して省スペース化を可能とするとともに、加湿タンク内の水温制御を応答性良く行うことができる。   According to the present invention, the humidification tank can be reduced in size to save space, and the water temperature in the humidification tank can be controlled with good responsiveness.

この発明の実施の形態の概略構成を説明する説明図である。It is explanatory drawing explaining the schematic structure of embodiment of this invention. 同実施の形態の制御手順を説明するフローチャート図である。It is a flowchart figure explaining the control procedure of the embodiment.

この発明の燃料電池システムの実施の形態を図面に従い説明する。
<実施の形態の構成>
この実施の形態の燃料電池システム1は、水素と酸素の化学反応を利用して電気を取り出す固体高分子形燃料電池(以下、単に燃料電池という。)2と、燃料電池2へ水素を供給する水素供給路3と、燃料電池2へ酸素を供給する酸素供給路4とを備えている。
An embodiment of a fuel cell system of the present invention will be described with reference to the drawings.
<Configuration of the embodiment>
The fuel cell system 1 of this embodiment supplies a solid polymer fuel cell (hereinafter simply referred to as a fuel cell) 2 that takes out electricity using a chemical reaction between hydrogen and oxygen, and supplies hydrogen to the fuel cell 2. A hydrogen supply path 3 and an oxygen supply path 4 for supplying oxygen to the fuel cell 2 are provided.

燃料電池2は、公知のもので、イオン交換膜(図示省略)を挟んで、酸素極5と、水素極6と、燃料電池の冷却部7とを備え、酸素極5に酸化剤としての酸素を、水素極6に還元剤としての水素を供給することにより発電するように構成されている。   The fuel cell 2 is a known one, and includes an oxygen electrode 5, a hydrogen electrode 6, and a fuel cell cooling unit 7 sandwiching an ion exchange membrane (not shown), and the oxygen electrode 5 has oxygen as an oxidant. Is configured to generate electricity by supplying hydrogen as a reducing agent to the hydrogen electrode 6.

水素供給路3には、水素を吹出部8からバブリングにより加湿して燃料電池2へ供給する加湿タンク9を備えている。   The hydrogen supply path 3 is provided with a humidification tank 9 for humidifying the hydrogen from the blowing portion 8 by bubbling and supplying the hydrogen to the fuel cell 2.

さらに、燃料電池システム1には、給水タンク10と、加湿水循環路11と、冷却水循環路12と、制御器13とを主要部として備えている。   Further, the fuel cell system 1 includes a water supply tank 10, a humidified water circulation path 11, a cooling water circulation path 12, and a controller 13 as main parts.

給水タンク10は、加湿タンク9への給水を貯留し、この給水を加熱するヒータ14と、給水タンク10の水位を検出する水位検出手段としての水位センサ15と、給水タンク10への給水手段としての逆浸透膜濾過装置からなる純水製造器16とを備えている。純水製造器16は、原水を純水化して給水タンク10内へ供給する機能を有する。   The water supply tank 10 stores water supplied to the humidification tank 9, a heater 14 for heating the water supply, a water level sensor 15 as water level detection means for detecting the water level of the water supply tank 10, and water supply means for the water supply tank 10. And a pure water producing device 16 comprising a reverse osmosis membrane filtration apparatus. The pure water producing device 16 has a function of purifying raw water and supplying it into the water supply tank 10.

加湿水循環路11は、第一循環ポンプ17を備え、給水タンク10内の給水を加湿タン
ク9へ循環させながら供給するように構成されている。
The humidification water circulation path 11 includes a first circulation pump 17 and is configured to supply the supply water in the supply water tank 10 while circulating it to the humidification tank 9.

冷却水循環路12は、第二循環ポンプ18を備え、燃料電池2の冷却部7で燃料電池2を冷却するとともに、冷却部7で得た熱で給水タンク10内の水を加熱するように構成されている。また、この冷却水循環路12には、放熱量調整手段としてのファン19を有する放熱器20を備えている。   The cooling water circulation path 12 includes a second circulation pump 18 and is configured to cool the fuel cell 2 with the cooling unit 7 of the fuel cell 2 and to heat the water in the water supply tank 10 with the heat obtained by the cooling unit 7. Has been. Further, the cooling water circulation path 12 is provided with a radiator 20 having a fan 19 as a heat radiation amount adjusting means.

制御器13は、水位センサ15および冷却水循環路12の冷却部7出口の水温を検出する水温センサ21などの信号を入力して、予め記憶した制御手順に基づき、ヒータ14,純水製造器16,第一循環ポンプ17,第二循環ポンプ18,ファン19などを制御するように構成されている。   The controller 13 receives signals from the water level sensor 15 and the water temperature sensor 21 for detecting the water temperature at the outlet of the cooling unit 7 of the cooling water circulation path 12 and the like, and based on the control procedure stored in advance, the heater 14 and the pure water producing device 16. , The first circulation pump 17, the second circulation pump 18, the fan 19 and the like are configured to be controlled.

制御器13の制御手順には、燃料電池2の起動時の給水温度制御手順と、起動後の電池冷却・給水加温制御手順と、給水タンク10および加湿タンク9の水位制御手順を含んでいる。給水温度制御手順および電池冷却・給水加温制御手順の一例を図2に示しているが、これに限定されるものではない。   The control procedure of the controller 13 includes a water supply temperature control procedure when the fuel cell 2 is started, a battery cooling / feed water heating control procedure after the startup, and a water level control procedure for the water supply tank 10 and the humidification tank 9. . An example of the water supply temperature control procedure and the battery cooling / water supply warming control procedure is shown in FIG. 2, but is not limited thereto.

給水温度制御手順は、燃料電池2の起動時、ヒータ14に通電するとともに第一循環ポンプ17を駆動することにより、給水タンク10内の給水を加温する手順である。   The feed water temperature control procedure is a procedure for heating the feed water in the feed water tank 10 by energizing the heater 14 and driving the first circulation pump 17 when the fuel cell 2 is started.

また、電池冷却・給水加温制御手順は、燃料電池2の起動後、第二循環ポンプ18を駆動することにより、燃料電池2を冷却するとともに、給水タンク10内の給水を加温する手順である。第二循環ポンプ18は、燃料電池2の起動時から駆動することができる。この電池冷却・給水加温制御手順には、燃料電池2の冷却を給水タンク10の給水加温よりも優先するように、燃料電池2の起動後、ファン19の制御により冷却部7出口の冷却水の温度を一定範囲に制御する冷却調整手順を含んでいる。この冷却調整手順は、ファン19の制御に代わる第二循環ポンプ18の回転数制御によって、またはファン19の制御と第二循環ポンプ18の回転数制御との組合せにより、冷却部7出口の冷却水の温度を一定範囲に制御するように構成できる。   The battery cooling / feed water heating control procedure is a procedure for cooling the fuel cell 2 by driving the second circulation pump 18 after starting the fuel cell 2 and heating the feed water in the feed water tank 10. is there. The second circulation pump 18 can be driven when the fuel cell 2 is started. In this battery cooling / feed water heating control procedure, the cooling of the outlet of the cooling unit 7 is controlled by the fan 19 after the fuel cell 2 is started so that the cooling of the fuel cell 2 has priority over the heating of the feed water in the water tank 10. It includes a cooling adjustment procedure that controls the temperature of the water within a certain range. This cooling adjustment procedure is performed by controlling the rotational speed of the second circulation pump 18 instead of the control of the fan 19, or by combining the control of the fan 19 and the rotational speed control of the second circulation pump 18. The temperature can be controlled within a certain range.

なお、水位制御手順は、図示しないが、水位センサ15により純水製造器16を制御(ONすると給水開始、OFFすると給水停止)し、給水タンク10内の水位H1を第一設定水位H10に制御するとともに、給水タンク10内の水位制御により、間接的に加湿タンク9内の水位H2を第二設定水位H20に制御するように構成されている。この加湿タンク9の間接的な水位制御の原理はつぎの通りである。給水タンク10と加湿タンク9の水位差ΔHは、次式で求めることができる。
ΔH(=H1−H2)∝P1
但し、P1は、加湿タンク9内の圧力で、加湿タンク9以降の水素供給路3の圧損と水素極6での圧損の和により算出できる。
Although the water level control procedure is not shown, the pure water producing device 16 is controlled by the water level sensor 15 (water supply starts when it is turned on, water supply stops when it is turned off), and the water level H1 in the water tank 10 is controlled to the first set water level H10. In addition, the water level H2 in the humidification tank 9 is indirectly controlled to the second set water level H20 by controlling the water level in the water supply tank 10. The principle of indirect water level control of the humidifying tank 9 is as follows. The water level difference ΔH between the water supply tank 10 and the humidification tank 9 can be obtained by the following equation.
ΔH (= H1-H2) ∝P1
However, P1 is the pressure in the humidification tank 9 and can be calculated by the sum of the pressure loss in the hydrogen supply path 3 after the humidification tank 9 and the pressure loss in the hydrogen electrode 6.

<実施の形態の動作>
以上の構成を備える実施の形態の動作を図面に基づき説明する。
(燃料電池の起動時)
図2を参照して、処理ステップS1(以下、処理ステップSNは、単にSNと称する。)において、運転開始スイッチ(図示省略)が操作されたかどうかを判定する。YESが判定されると、S2へ移行して、第一循環ポンプ17,第二循環ポンプ18およびヒータ14をONする。なお、S2の前に、給水タンク10内の水位を設定水位とする制御が行われる。S2では、給水タンク10内の給水をヒータ14により加温しつつ、給水タンク10内の給水が加湿水循環路11および冷却水循環路12を並列的に循環する。
<Operation of the embodiment>
The operation of the embodiment having the above configuration will be described with reference to the drawings.
(When starting the fuel cell)
Referring to FIG. 2, it is determined whether or not an operation start switch (not shown) is operated in process step S1 (hereinafter, process step SN is simply referred to as SN). If YES is determined, the process proceeds to S2, and the first circulation pump 17, the second circulation pump 18, and the heater 14 are turned on. In addition, before S2, the control which makes the water level in the water supply tank 10 a setting water level is performed. In S <b> 2, the water supply in the water supply tank 10 is heated by the heater 14, and the water supply in the water supply tank 10 circulates in the humidified water circulation path 11 and the cooling water circulation path 12 in parallel.

(燃料電池の運転)
S3において、水温センサ21の検出温度が設定温度T1となると、S4へ移行して水素供給路3を通しての水素供給と、酸素供給路4を通しての酸素供給とが行われ、燃料電池2の発電(運転)が開始される。
(Fuel cell operation)
In S3, when the temperature detected by the water temperature sensor 21 reaches the set temperature T1, the process proceeds to S4, where hydrogen supply through the hydrogen supply path 3 and oxygen supply through the oxygen supply path 4 are performed, and the fuel cell 2 generates power ( Operation) is started.

加湿タンク9内では、吹出部8からバブリングにより水素が給水内に供給されて、水素が加湿される。この加湿は、加湿タンク9内の水位と水温に支配される。すなわち、水位が低いと加湿効果が悪くなり、水温が低いと加湿効果が悪くなる。この実施の形態では、給水タンク10内の水位を制御することで、加湿タンク9内の水位が設定範囲に制御されるとともに、加湿水循環路11による加湿水の循環により、加湿タンク9内の水が安定的に加温されるので、安定した加湿が行われる。   In the humidification tank 9, hydrogen is supplied into the feed water from the blowing part 8 by bubbling to humidify the hydrogen. This humidification is governed by the water level and water temperature in the humidification tank 9. That is, when the water level is low, the humidifying effect is deteriorated, and when the water temperature is low, the humidifying effect is deteriorated. In this embodiment, by controlling the water level in the water supply tank 10, the water level in the humidification tank 9 is controlled within the set range, and the water in the humidification tank 9 is circulated by the circulation of the humidification water through the humidification water circulation path 11. Is stably heated, so that stable humidification is performed.

S3でYESが判定されてから設定時間t1が経過すると、S5で、YESが判定され、ヒータ14をOFFするとともに、それまでOFFしていたファン19をONして、放熱量制御を開始する。   When the set time t1 has elapsed since YES is determined in S3, YES is determined in S5, the heater 14 is turned off, the fan 19 that has been turned off is turned on, and the heat radiation amount control is started.

この放熱量制御は、冷却部7出口の水温センサ21の検出温度が設定温度T1となるように、ファン19の回転数を制御して行われる。この放熱量制御によって、冷却部7を通過する冷却水により、燃料電池2を効果的に冷却することができ、冷却不良による燃料電池2の故障を防止することができる。   This heat radiation amount control is performed by controlling the rotation speed of the fan 19 so that the detected temperature of the water temperature sensor 21 at the outlet of the cooling unit 7 becomes the set temperature T1. By this heat radiation amount control, the fuel cell 2 can be effectively cooled by the cooling water passing through the cooling unit 7, and failure of the fuel cell 2 due to poor cooling can be prevented.

(燃料電池の運転停止)
運転停止スイッチ(図示省略)が操作されると、S7で、YESが判定され、S8とS9の処理が実行される。S8では、水素供給および酸素供給が停止され、S9では、第一循環ポンプ17,第二循環ポンプ18およびファン19をOFFする。
(Fuel cell shutdown)
When the operation stop switch (not shown) is operated, YES is determined in S7, and the processes in S8 and S9 are executed. In S8, hydrogen supply and oxygen supply are stopped, and in S9, the first circulation pump 17, the second circulation pump 18, and the fan 19 are turned off.

以上の実施の形態によれば、加湿タンク9内にヒータおよび加温用の熱交換器を設けることなく、燃料電池2の起動時および起動後において加湿タンク9内の水を加温することができる。このため、加湿タンク9を小型化して、省スペース化を実現できる。また、給水タンク10と加湿タンク9とを加湿水循環路11で接続しているので、給水タンク10内の水温変化を速やかに加湿タンク9に与えることができる。その結果、加湿タンク10内の水温制御を応答性良く行うことができる。   According to the above embodiment, the water in the humidification tank 9 can be heated at the start and after the start of the fuel cell 2 without providing a heater and a heat exchanger for heating in the humidification tank 9. it can. For this reason, the humidification tank 9 can be miniaturized and space saving can be realized. Moreover, since the water supply tank 10 and the humidification tank 9 are connected by the humidification water circulation path 11, the water temperature change in the water supply tank 10 can be given to the humidification tank 9 rapidly. As a result, the water temperature control in the humidification tank 10 can be performed with good responsiveness.

この発明は、前記実施の形態に限定されるものではなく、種々変更可能である。例えば、前記実施の形態では、冷却水循環路12の循環水が直接給水タンク10を通過するように構成しているが、給水タンク10内に、冷却水循環路12の循環水と給水タンク10内の給水が間接的に熱交換する熱交換部(図示省略)を設けて、冷却部7で得た熱を給水タンク10内の給水へ伝えるように構成することができる。また、加湿タンク9内の水位を給水タンク10の水位で間接的に制御するように構成しているが、加湿タンク9に水位センサ(図示省略)を設けて、水位制御するように構成できる。さらに、放熱器20は、水冷式熱交換器とすることができ、その場合の放熱量調整手段は、放熱器20の冷却水量を調整するものとする。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above-described embodiment, the circulating water in the cooling water circulation path 12 is configured to pass directly through the water supply tank 10, but the circulating water in the cooling water circulation path 12 and the water in the water supply tank 10 are included in the water supply tank 10. A heat exchanging unit (not shown) for indirectly exchanging heat with the water supply can be provided, and the heat obtained by the cooling unit 7 can be transmitted to the water supply in the water supply tank 10. Further, the water level in the humidifying tank 9 is indirectly controlled by the water level of the water supply tank 10, but the water level sensor (not shown) may be provided in the humidifying tank 9 to control the water level. Furthermore, the radiator 20 can be a water-cooled heat exchanger, and in this case, the heat radiation amount adjusting means adjusts the cooling water amount of the radiator 20.

1 燃料電池システム
2 固体高分子形燃料電池
3 水素供給手段
7 冷却部
9 加湿タンク
10 給水タンク
11 加湿水循環路
12 冷却水循環路
13 制御器
16 純水製造器(給水手段)
17 第一循環ポンプ
18 第二循環ポンプ
19 ファン(放熱量調整手段)
20 放熱器
DESCRIPTION OF SYMBOLS 1 Fuel cell system 2 Polymer electrolyte fuel cell 3 Hydrogen supply means 7 Cooling part 9 Humidification tank 10 Water supply tank 11 Humidification water circulation path 12 Cooling water circulation path 13 Controller 16 Pure water production device (water supply means)
17 1st circulation pump 18 2nd circulation pump 19 Fan (heat dissipation amount adjustment means)
20 Heatsink

Claims (3)

水素と酸素の化学反応を利用して電気を取り出す固体高分子形燃料電池と、水素をバブリングにより加湿して前記燃料電池へ供給する加湿タンクとを備える燃料電池システムにおいて、
第一循環ポンプを備え、前記給水タンク内の給水を前記加湿タンクへ循環させながら供給する加湿水循環路と、
第二循環ポンプを備え、前記燃料電池の冷却部で得た熱で前記給水タンク内の給水を加熱する冷却水循環路と、
前記燃料電池の起動時、前記ヒータに通電するとともに前記第一循環ポンプを駆動することにより、前記給水タンク内の給水を加温し、前記燃料電池の起動後、前記第二循環ポンプを駆動することにより、前記燃料電池を冷却するとともに前記給水タンク内の給水を加温する制御器とを備える
ことを特徴とする燃料電池システム。
In a fuel cell system comprising a solid polymer fuel cell that extracts electricity using a chemical reaction between hydrogen and oxygen, and a humidification tank that humidifies hydrogen by bubbling and supplies the fuel cell to the fuel cell system,
A humidification water circulation path comprising a first circulation pump and supplying the water supply in the water supply tank while circulating it to the humidification tank;
A cooling water circulation path that includes a second circulation pump and heats the feed water in the feed water tank with heat obtained by the cooling unit of the fuel cell;
When the fuel cell is started, the heater is energized and the first circulation pump is driven to heat the water supply in the water tank, and after the fuel cell is started, the second circulation pump is driven. And a controller for cooling the fuel cell and heating the water supply in the water supply tank.
前記冷却水循環路に放熱量調整手段を有する放熱器を備え、
前記制御器は、前記燃料電池の起動後、前記第二循環ポンプの回転数制御および/または前記放熱量調整手段の制御により前記冷却部出口の冷却水の温度を制御する
ことを特徴とする請求項1に記載の燃料電池システム。
A radiator having a heat radiation amount adjusting means in the cooling water circulation path,
The controller controls the temperature of the cooling water at the outlet of the cooling unit by controlling the number of revolutions of the second circulation pump and / or controlling the heat dissipation amount after the fuel cell is started. Item 4. The fuel cell system according to Item 1.
前記給水タンクへの給水手段と、
前記給水タンクの水位を検出する水位検出手段とを備え、
前記制御器は、前記水位検出手段により前記給水手段を制御し、前記給水タンク内の水位を設定水位に制御することで、前記加湿タンク内の水位を設定水位に制御する
ことを特徴とする請求項1または請求項2に記載の燃料電池システム。
Water supply means to the water supply tank;
Water level detection means for detecting the water level of the water supply tank,
The controller controls the water supply means by the water level detection means, and controls the water level in the humidification tank to a set water level by controlling the water level in the water supply tank to a set water level. The fuel cell system according to claim 1 or 2.
JP2011250215A 2011-11-16 2011-11-16 Fuel cell system Pending JP2013105686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011250215A JP2013105686A (en) 2011-11-16 2011-11-16 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250215A JP2013105686A (en) 2011-11-16 2011-11-16 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2013105686A true JP2013105686A (en) 2013-05-30

Family

ID=48625073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250215A Pending JP2013105686A (en) 2011-11-16 2011-11-16 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2013105686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566753B1 (en) 2014-09-22 2015-11-06 현대자동차 주식회사 Rotatable heater of fuel cell system for a vehicle and control method thereof
CN114039068A (en) * 2021-11-30 2022-02-11 大连锐格新能源科技有限公司 Humidification system for small-power fuel cell test board and humidification method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566753B1 (en) 2014-09-22 2015-11-06 현대자동차 주식회사 Rotatable heater of fuel cell system for a vehicle and control method thereof
CN114039068A (en) * 2021-11-30 2022-02-11 大连锐格新能源科技有限公司 Humidification system for small-power fuel cell test board and humidification method thereof

Similar Documents

Publication Publication Date Title
JP4725191B2 (en) Fuel cell system
WO2014002989A1 (en) Water electrolysis system
JP2009123488A (en) Fuel cell system
JP2010153390A (en) Fuel cell co-generation system and operation method of fuel cell co-generation system
JP2008243591A (en) Fuel cell device
JP2019203174A (en) Operational method of water electrolysis system and water electrolysis system
JP2010267471A (en) Device for control of cooling water temperature in fuel cell system
JP2008243594A (en) Fuel cell device
JP5132143B2 (en) Fuel cell device
JP5188086B2 (en) Fuel cell device
JP5279194B2 (en) Fuel cell device
JP2013105686A (en) Fuel cell system
JP4114459B2 (en) Fuel cell system
JP2005259526A (en) Conditioning method for fuel cell
JP4988260B2 (en) Fuel cell system
JP2005285502A (en) Fuel cell system
JP5388419B2 (en) Fuel cell device
US20040072043A1 (en) Fuel cell system
JP2009266472A (en) Heating system of movable body including fuel cell
JP2007194085A (en) Fuel-cell power generation system, its operation method, program, and storage medium
JP2004327083A (en) Fuel cell system and its control method
JP2006209994A (en) Fuel cell system
JP6868830B2 (en) Cogeneration system and its operation method
JP4323290B2 (en) Fuel cell power generation system
JP2002216819A (en) Solid polymer type fuel cell power generating device