JP2013105034A - Ccd camera operated under very low temperature environment - Google Patents

Ccd camera operated under very low temperature environment Download PDF

Info

Publication number
JP2013105034A
JP2013105034A JP2011248829A JP2011248829A JP2013105034A JP 2013105034 A JP2013105034 A JP 2013105034A JP 2011248829 A JP2011248829 A JP 2011248829A JP 2011248829 A JP2011248829 A JP 2011248829A JP 2013105034 A JP2013105034 A JP 2013105034A
Authority
JP
Japan
Prior art keywords
ccd camera
temperature
heater
cryogenic environment
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011248829A
Other languages
Japanese (ja)
Other versions
JP5896453B2 (en
Inventor
Kenjiro Hata
健二郎 端
Tei Shimizu
禎 清水
Takashi Noguchi
隆志 野口
Shinobu Oki
忍 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2011248829A priority Critical patent/JP5896453B2/en
Publication of JP2013105034A publication Critical patent/JP2013105034A/en
Application granted granted Critical
Publication of JP5896453B2 publication Critical patent/JP5896453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a CCD camera capable of observing the state of an object under a very low temperature environment through various narrow routes as occasion demands.SOLUTION: The CCD camera is operated under the very low temperature environment by mounting a heater and a temperature sensor on the CCD camera operated in only the vicinity of a room temperature to keep the temperature of the CCD camera in an operation temperature range even if a temperature around the CCD camera changes. Since electric wiring is used without requiring vacuum heat insulation, the state of the object under the very low temperature environment can be observed through various narrow routes as occasion demands.

Description

本発明は、20K以下の極低温におかれた物体の状態を観察することができるCCDカメラに関する。更に詳しくは、ヒータと温度計をCCDカメラに近接して設置することによって、観測対象物の温度が20K以下の極低温であってもCCDカメラの温度をカメラの作動温度域である0〜40℃付近に保持することを特徴とする極低温環境で動作するCCDカメラに関する。   The present invention relates to a CCD camera capable of observing the state of an object placed at an extremely low temperature of 20K or less. More specifically, by installing a heater and a thermometer close to the CCD camera, the temperature of the CCD camera can be set to 0 to 40, which is the operating temperature range of the camera, even if the temperature of the observation object is an extremely low temperature of 20K or less. The present invention relates to a CCD camera that operates in a cryogenic environment characterized by being held in the vicinity of ° C.

液体ヘリウムで冷却されている超伝導磁石など極低温に置かれた物体は外部との十分な断熱をとるために断熱された容器に閉じ込められ、室温空間から極低温に置かれた物体へ通じる空間経路は限定せざるを得ず、その空間は狭く、経路は長い場合が多い。しかし、極低温に置かれた物体の状態を随時様々な経路から観察することは、極低温におかれた物体の状態の把握、安全性確認を通じて保守・研究・開発などの作業効率の向上に大きく寄与する。   An object placed at a very low temperature, such as a superconducting magnet cooled with liquid helium, is confined in a heat-insulated container to provide sufficient insulation from the outside, and a space that leads from the room temperature space to the object placed at a cryogenic temperature The route must be limited, the space is narrow, and the route is often long. However, observing the state of an object placed at a cryogenic temperature from various paths as needed improves the efficiency of maintenance, research, development, etc. through grasping the state of the object placed at a cryogenic temperature and confirming safety. A big contribution.

従来、極低温に置かれた物体の状態を確認する方法として、真空断熱された容器に観測用の窓を開け、その中に撮影装置を入れる方法(特許文献1、特許文献2、特許文献3)や、観察したい物体の近傍に光ファイバを設置する方法(特許文献4、特許文献5)がある。   Conventionally, as a method of confirming the state of an object placed at an extremely low temperature, a method of opening an observation window in a vacuum insulated container and placing a photographing device therein (Patent Document 1, Patent Document 2, Patent Document 3) ) And a method of installing an optical fiber in the vicinity of an object to be observed (Patent Document 4 and Patent Document 5).

しかし、真空断熱された容器に撮影装置を入れる方法(特許文献1、特許文献2、特許文献3)では、十分な断熱性能を保つために容器が大きくなり、超伝導磁石の内部などの狭い経路を経て観察することが出来ない。また、光ファイバを設置する方法(特許文献4、特許文献5)では、光ファイバの長さや曲率に制限があるため、観測対象までの距離や経路を任意に選ぶことが出来ない。さらに光ファイバは極低温で可とう性がなくなり、動かすと光ファイバが折れてしまう。したがって、観測対象までの経路をあらかじめ固定しておく必要があり、観測結果に応じて観測対象を随時変更することが出来ないという制約がある。   However, in the method (Patent Document 1, Patent Document 2, and Patent Document 3) in which the imaging device is put in a vacuum insulated container, the container becomes large in order to maintain sufficient heat insulation performance, and a narrow path such as the inside of a superconducting magnet Cannot be observed through. In addition, in the method of installing an optical fiber (Patent Document 4 and Patent Document 5), since the length and curvature of the optical fiber are limited, it is not possible to arbitrarily select the distance and route to the observation target. Furthermore, the optical fiber loses its flexibility at extremely low temperatures, and the optical fiber breaks when moved. Therefore, it is necessary to fix the route to the observation target in advance, and there is a restriction that the observation target cannot be changed at any time according to the observation result.

特開昭63−133047号報JP-A-63-133047 特開平3−223600号報Japanese Unexamined Patent Publication No. 3-223600 特開平5−327036号報JP 5-327036 A 特開平10−211435号報Japanese Laid-Open Patent Publication No. 10-212435 特開2011−128247号報JP 2011-128247 A

極低温におかれた物体の状態を随時狭いさまざまな経路から観察することが可能なCCDカメラを提供することを目的とする。   An object of the present invention is to provide a CCD camera capable of observing the state of an object placed at a very low temperature from various narrow paths at any time.

本発明は、作動温度域が0〜40℃であるCCDカメラを極低温雰囲気中で作動させるため、前記CCDカメラに温度保持用ヒータ、温度計、及び断熱材を取り付け、更に、極低温雰囲気からのCCDカメラ保温用の断熱材によるCCDカメラの外径増加を最小限に抑えることにより、狭い経路を経て極低温におかれた物体の状態観察を可能とする構造を有する極低温環境で動作するCCDカメラを提供するものである。本発明のCCDカメラはCCD素子と表示装置間の配線が電線であるので、極低温雰囲気下において動かしても可撓性があるため、光ファイバのような折断される危険性がないため、随時さまざまな経路から観察することが可能である。   In the present invention, in order to operate a CCD camera having an operating temperature range of 0 to 40 ° C. in a cryogenic atmosphere, a heater for holding a temperature, a thermometer, and a heat insulating material are attached to the CCD camera. Operates in a cryogenic environment with a structure that allows observation of the state of an object placed at a cryogenic temperature through a narrow path by minimizing the increase in the outer diameter of the CCD camera due to the thermal insulation material for keeping the temperature of the CCD camera A CCD camera is provided. In the CCD camera of the present invention, since the wiring between the CCD element and the display device is an electric wire, it is flexible even when moved in a cryogenic atmosphere, so there is no risk of being broken like an optical fiber. It is possible to observe from various routes.

本発明の第1は、極低温におかれた物体の状態観察用のCCDカメラであって、CCDカメラの光信号変換部に密着して温度センサとヒータを設置し、更に、前記ヒータの外側に断熱材を装着することによって、前記CCDカメラの温度を前記温度センサーで検出し、前記CCDカメラ温度を作動温度域に保持するようにヒータに電力を印加・制御し、前記CCDカメラの周囲の温度が極低温であっても、前記CCDカメラの作動温度域に保持する機能を有することを特徴とする極低温環境で動作するCCDカメラを提供する。   A first aspect of the present invention is a CCD camera for observing the state of an object placed at an extremely low temperature, in which a temperature sensor and a heater are installed in close contact with the optical signal conversion unit of the CCD camera, and the outside of the heater By attaching a heat insulating material to the CCD camera, the temperature of the CCD camera is detected by the temperature sensor, and power is applied to and controlled by the heater so as to keep the temperature of the CCD camera in the operating temperature range. Provided is a CCD camera that operates in a cryogenic environment characterized by having a function of maintaining the operating temperature range of the CCD camera even when the temperature is extremely low.

発明の第2は、発明1に記載の極低温環境で動作するCCDカメラであって、前記CCDカメラとヒータ間に高熱伝導率の金属・合金の箔又は薄板が配置されていることを特徴とする極低温環境で動作するCCDカメラを提供する。   A second aspect of the invention is a CCD camera operating in a cryogenic environment according to the first aspect of the invention, wherein a high thermal conductivity metal / alloy foil or thin plate is disposed between the CCD camera and the heater. Provided is a CCD camera that operates in a cryogenic environment.

発明の第3は、発明1又は2に記載の極低温環境で動作するCCDカメラであって、前記ヒータがコンスタンタン線あるいはマンガニン線であることを特徴とする極低温環境で動作するCCDカメラを提供する。   According to a third aspect of the present invention, there is provided a CCD camera operating in a cryogenic environment according to the invention 1 or 2, wherein the heater is a constantan wire or a manganin wire. To do.

発明の第4は、発明1ないし3に記載の極低温環境で動作するCCDカメラであって、前記断熱材の材質がフッ素樹脂テープで、CCDカメラの視野欠けを起こさないように装着されていることを特徴とする極低温環境で動作するCCDカメラを提供する。 A fourth aspect of the invention is a CCD camera that operates in a cryogenic environment according to any one of the first to third aspects of the invention, wherein the heat insulating material is made of fluororesin tape so that the visual field of the CCD camera is not lost. A CCD camera that operates in a cryogenic environment is provided.

CCDカメラを温度制御するときの設定温度は、CCDカメラ動作保証範囲の下限である0℃に設定することが好ましい。設定温度を高くするとヒータが、より多く発熱量を必要とするのでヒータの寿命が短くなるとともに、CCDカメラと周囲の温度差が大きくなるため熱ひずみによるCCDカメラの破損につながる。更に、熱が断熱材を通過して周囲に逃げやすくなり観測したい場所の環境温度を上げてしまうなどの悪影響を及ぼす。ヒータは抵抗値の温度変化が少ないコンスタンタン線やマンガニン線用いると温度制御が容易になる。ヒータ線は直径0.1〜1.0mmの線を用い、長さはヒータの抵抗値が10〜50Ωになるように調整すると、CCDカメラに温度保持機能を付与してもCCDカメラの直径を3mm以上大きくすることがないため小型化することができ、また温度制御機器にとっても出力電圧と電流が扱いやすい範囲になるため都合が良い。   The set temperature when controlling the temperature of the CCD camera is preferably set to 0 ° C., which is the lower limit of the guaranteed range of the CCD camera operation. When the set temperature is increased, the heater requires a larger amount of heat generation, so the life of the heater is shortened and the temperature difference between the CCD camera and the surroundings is increased, leading to damage to the CCD camera due to thermal strain. In addition, the heat easily passes through the heat insulating material and escapes to the surroundings, which causes adverse effects such as raising the environmental temperature of the place to be observed. Temperature control is facilitated by using a constantan wire or a manganin wire, which has a small resistance change in temperature. Use a wire with a diameter of 0.1 to 1.0 mm as the heater wire, and adjust the length so that the resistance value of the heater is 10 to 50Ω. Since it cannot be increased by more than 3 mm, it can be miniaturized, and it is convenient for the temperature control device because the output voltage and current are in an easy-to-handle range.

CCDカメラを温度調整するためのヒータより発生する熱を温度センサ(熱電対もしくは抵抗温度計)とカメラに均一に伝えるために熱伝導率の高い金属(銀、金、銅、アルミあるいはこれらの金属からなる合金)箔又は薄板をヒータと温度計の間に配置することにより、熱を効率的に均一に伝達することができる。更に、CCDカメラ素子の光信号変換部に温度センサをポリイミドテープで固定し、温度センサの外側に温度センサを含め、CCDカメラ素子の外周全域にわたって熱伝導を良くするための金属箔又は金属薄板を、金属箔又は金属薄板の外側にヒータを全周にわたって巻きつけ、ヒータの外側に断熱材を全周にわたって巻きつける順番に配置する。これはヒータと温度計の順番が逆であると温度計が外部から冷やされるためCCDカメラの実際の温度より、温度計が示す温度が低くなり、CCDカメラを加熱しすぎることになりCCDカメラの破損につながるためである。またCCDカメラ素子、温度センサ、金属箔又は金属薄板、ヒータのそれぞれの間は熱伝導を良くするため全周にわたって密着させる。またヒータの熱が外部に逃げないように断熱材もヒータの外周に全周にわたって密着させる。   Metal with high thermal conductivity (silver, gold, copper, aluminum or these metals) to uniformly transmit the heat generated by the heater for adjusting the temperature of the CCD camera to the temperature sensor (thermocouple or resistance thermometer) and the camera By arranging the foil or thin plate between the heater and the thermometer, heat can be efficiently and uniformly transferred. Furthermore, a temperature sensor is fixed to the optical signal conversion part of the CCD camera element with polyimide tape, a temperature sensor is included outside the temperature sensor, and a metal foil or a metal thin plate for improving heat conduction over the entire outer periphery of the CCD camera element is provided. The heater is wound around the entire circumference of the metal foil or the thin metal plate, and the heat insulating material is wound around the entire circumference of the heater. This is because the thermometer is cooled from the outside if the order of the heater and thermometer is reversed, the temperature indicated by the thermometer is lower than the actual temperature of the CCD camera, and the CCD camera is heated too much. This leads to damage. Further, the CCD camera element, the temperature sensor, the metal foil or metal thin plate, and the heater are in close contact with each other to improve heat conduction. Further, the heat insulating material is also closely attached to the outer periphery of the heater so that the heat of the heater does not escape to the outside.

本発明による温度制御機能を有するCCDカメラは、従来の断熱容器を用いたCCDカメラより小型化できるため狭い経路を経て極低温に置かれた物体の観察が可能になった。更に、光ファイバによる内視鏡では、観察するための経路をあらかじめ固定することが不可欠であるが、本発明のCCDカメラでは、電気配線のため経路の随時変更による観察が可能となる。   Since the CCD camera having a temperature control function according to the present invention can be made smaller than a CCD camera using a conventional heat insulating container, an object placed at a very low temperature can be observed through a narrow path. Furthermore, in an endoscope using an optical fiber, it is indispensable to fix a path for observation in advance, but in the CCD camera of the present invention, observation can be performed by changing the path as needed due to electrical wiring.

温度制御機能を付与した極低温環境下で動作するCCDカメラの断面模式図。The cross-sectional schematic diagram of the CCD camera which operate | moves in the cryogenic environment which provided the temperature control function. 温度制御機能を付与した極低温環境下で動作するCCDカメラの写真。A picture of a CCD camera operating in a cryogenic environment with a temperature control function. 温度制御機能を付与した極低温環境下で動作するCCDカメラの使用形態の例。The example of the usage form of the CCD camera which operate | moves in the cryogenic environment which provided the temperature control function. 20K以下に冷却された容器に設置してある電気配線の写真。A photograph of electrical wiring installed in a container cooled to 20K or less. 20K以下に冷却された容器に設置してある電気コネクタの写真。A photograph of an electrical connector installed in a container cooled to 20K or less. 20K以下に冷却された容器に設置してある電気コネクタの写真。A photograph of an electrical connector installed in a container cooled to 20K or less. 温度制御機能を動作させないときに極低温環境下で得られた映像。Video obtained in a cryogenic environment when the temperature control function is not activated.

<実施例1>
図1に温度制御機能を備えた極低温環境下で動作するCCDカメラの断面の模式図を示す。直径5mm、長さ3mの映像用ケーブルの先端に設置されたCCDカメラ(30万画素、動作温度範囲:0〜40℃)(1)に隣接してCernox抵抗温度計(Lake Shore社)(2)を設置し、CCDカメラ(1)と抵抗温度計(2)を厚さ0.1mmの銅板(幅40mm)(3)で1重に包む。その銅板の上に直径0.1mmのエナメル被覆コンスタンタン線をヒータ(4)としてCCDカメラの軸に螺旋状に巻きつけた。このときコンスタンタン線はその抵抗値が20Ωとなるように長さを調整する。そして、ヒータ(4)の外側全周にわたって断熱材(5)としてフッ素樹脂テープを2重に巻きつける。
<Example 1>
FIG. 1 shows a schematic diagram of a cross section of a CCD camera operating in a cryogenic environment having a temperature control function. A Cernox resistance thermometer (Lake Shore) (2) adjacent to a CCD camera (300,000 pixels, operating temperature range: 0 to 40 ° C.) (1) installed at the end of a video cable with a diameter of 5 mm and a length of 3 m ) And wrap the CCD camera (1) and resistance thermometer (2) in a single layer with a 0.1 mm thick copper plate (width 40 mm) (3). An enamel-coated constantan wire having a diameter of 0.1 mm was spirally wound around the axis of the CCD camera as a heater (4) on the copper plate. At this time, the length of the constantan wire is adjusted so that the resistance value becomes 20Ω. And a fluororesin tape is wound twice as a heat insulating material (5) over the outer periphery of a heater (4).

図2は図1で示した温度制御機能を備えた極低温環境下で動作するCCDカメラのうち、断熱材(5)を取り付けなかったときの写真である。温度センサ、銅板、ヒータはポリイミドテープでCCDカメラとCCDカメラからの信号伝送ケーブルに固定してある。この温度制御機能を備えた極低温環境下で動作するCCDカメラの最外層にあるフッ素樹脂テープを巻きつけたときの外径は9mmである。 FIG. 2 is a photograph when the heat insulating material (5) is not attached in the CCD camera operating in the cryogenic environment having the temperature control function shown in FIG. The temperature sensor, copper plate, and heater are fixed to the CCD camera and a signal transmission cable from the CCD camera with polyimide tape. When the fluororesin tape in the outermost layer of the CCD camera operating in a cryogenic environment equipped with this temperature control function is wound, the outer diameter is 9 mm.

図3は温度制御機能を付与した極低温環境下で動作するCCDカメラの使用形態の例である。温度制御機能を付与したCCDカメラ(11)の映像用ケーブル(13)と温度調整用ケーブル(15)をポリイミドテープで1つの平行多芯線(12)としてまとめ、温度制御機能付与CCDカメラ(11)から室温環境まで配線し、それぞれCCD映像モニタ(14)および温度制御用機器(16)につながっている。温度制御用機器によりCCDカメラ(11)の温度は周囲の温度に関係なく273KとなるようにPID制御により設定した。観測対象である極低温に冷やされた物体(10)は真空断熱容器(17)の中に設置されており、温度調整機能付与CCDカメラ(11)は真空断熱容器(17)に設けられていた直径12mmの穴(18)を通して観測対象である極低温に冷やされた物体(10)から約10mmの位置に到達した。 FIG. 3 shows an example of usage of a CCD camera that operates in a cryogenic environment with a temperature control function. The image cable (13) and the temperature adjustment cable (15) of the CCD camera (11) to which the temperature control function is provided are combined into one parallel multi-core wire (12) with polyimide tape, and the temperature control function-added CCD camera (11) To the room temperature environment and connected to the CCD video monitor (14) and the temperature control device (16), respectively. The temperature of the CCD camera (11) was set by PID control so that the temperature of the CCD camera (11) was 273K regardless of the ambient temperature. The object (10) cooled to the cryogenic temperature to be observed was installed in the vacuum heat insulating container (17), and the temperature control function-provided CCD camera (11) was provided in the vacuum heat insulating container (17). The position reached about 10 mm from the object (10) cooled to the cryogenic temperature to be observed through the hole (18) having a diameter of 12 mm.

図4は20K以下に冷却された容器に設置された電気配線の束の写真であり、図3で示した使用形態における温度調整機能を備えた極低温環境で動作するCCDカメラで撮影した。本来、束のまま配線されているはずの電線のうち2本以上が束からはずれて途中で切断されてしまっていることが分かる。このことは、温度調整機能付与CCDカメラによって極低温環境のおかれた物体の観察ができることを示している。 FIG. 4 is a photograph of a bundle of electrical wires installed in a container cooled to 20K or less, and was taken with a CCD camera operating in a cryogenic environment equipped with a temperature adjustment function in the usage mode shown in FIG. It can be seen that two or more of the wires that should originally be wired in a bundle are disconnected from the bundle and cut off in the middle. This indicates that an object placed in a cryogenic environment can be observed with a temperature adjustment function-added CCD camera.

<実施例2>
実施例1の電気配線の束の観察に引き続き連続して、観察対象を同じ容器に設置され20K以下に冷却された電気コネクタに変更した。図5は20K以下に冷却された電気コネクタの写真である。容器内に微量に含まれていた空気が冷却されることによって針状の固体などになって電気コネクタのうえに降り積もっていることがわかる。また、このことは、温度制御機能付与CCDカメラが観察対象を随時変更することが出来ることを示している。
<Example 2>
Subsequent to the observation of the bundle of electric wires in Example 1, the observation target was changed to an electric connector that was installed in the same container and cooled to 20K or less. FIG. 5 is a photograph of the electrical connector cooled to 20K or less. It can be seen that the air contained in a minute amount in the container is cooled to become a needle-like solid or the like and is piled on the electrical connector. This also indicates that the temperature control function-added CCD camera can change the observation target at any time.

<実施例3>
実施例2での観測に連続して、CCDカメラと同時にステンレス鋼パイプを低温容器内に挿入し、前記パイプを通じてヘリウムガスを吹き付けることによって電気コネクタに積もった固体空気を除去した。
図6は図5に示した20K以下に冷却された容器に設置された電気コネクタにヘリウムガスを吹き付けた後の写真である。ステンレス鋼パイプが図6の写真左側に見えている。また針状の固体空気はなくなり電気コネクタのピン穴が明瞭に観察できている。この温度制御機能付与CCDカメラによってヘリウムガスを吹き付ける作業をリアルタイムで観察することができ、作業の効率向上に大きく寄与した。
<Example 3>
Continuing from the observation in Example 2, a stainless steel pipe was inserted into the cryogenic container simultaneously with the CCD camera, and helium gas was blown through the pipe to remove the solid air accumulated in the electrical connector.
FIG. 6 is a photograph after helium gas is blown to the electrical connector installed in the container cooled to 20K or less shown in FIG. A stainless steel pipe is visible on the left side of the picture in FIG. Also, the needle-like solid air disappears and the pin holes of the electrical connector can be clearly observed. With this temperature control function-equipped CCD camera, the work of blowing helium gas could be observed in real time, which greatly contributed to the improvement of work efficiency.

<比較例1>
実施例2と同じ条件で、温度調整機能を作動させなかった場合、CCDカメラの温度が250K以下になると図7に示された映像がCCD映像モニタに現れるだけで、図5のように電気コネクタを観察することは出来なかった。これはCCDカメラの光を電子に置き換える素子そのものは極低温でも動作しているが、光から得られた電子を増幅し、映像モニタに情報を転送するための電子回路が極低温環境下では正常に作動しないためと考えられる。
<Comparative Example 1>
If the temperature adjustment function is not activated under the same conditions as in the second embodiment, the image shown in FIG. 7 only appears on the CCD image monitor when the temperature of the CCD camera falls below 250K, and the electrical connector as shown in FIG. Could not be observed. This is because the element that replaces the light of the CCD camera with electrons works even at extremely low temperatures, but the electronic circuit for amplifying the electrons obtained from the light and transferring information to the video monitor is normal in a cryogenic environment. It is thought that it does not work.

本発明の温度調整機能付与CCDカメラを使用すれば極低温下で磁場を発生している超伝導磁石の不具合や冷媒を含む真空断熱容器の給排気経路の閉塞などの診断に応用でき、事故の未然発生や速やかな復旧が可能となる。また撮像素子としてCCDではなくCMOSを用いた内視ビデオカメラにおいても、光を電子に置き換える電子回路は極低温でも動作するが、光から得られた電子を増幅し、映像モニタに情報を転送するための電子回路は極低温環境では動作しないと考えられるが、本発明技術を利用すると極低温環境でCMOSカメラを動作するようにできる。   If the CCD camera with temperature adjustment function of the present invention is used, it can be applied to diagnoses such as defects in superconducting magnets that generate magnetic fields at extremely low temperatures and blockages in the supply and exhaust paths of vacuum insulation containers containing refrigerant. Occurrence and quick recovery are possible. In an endoscopic video camera using a CMOS instead of a CCD as an image sensor, an electronic circuit that replaces light with electrons operates even at an extremely low temperature, but amplifies the electrons obtained from the light and transfers information to a video monitor. The electronic circuit for this is considered not to operate in a cryogenic environment, but the present invention can be used to operate a CMOS camera in a cryogenic environment.

1:CCDカメラ
2:温度計
3:銅板
4:ヒータ
5:断熱材
6:映像用および温度制御用ケーブル
10:極低温環境におかれた観察対象物
11:温度制御機能を備えたCCDカメラ
12:映像用および温度制御用ケーブル
13:映像用ケーブル
14:CCD映像モニタ
15:温度制御用ケーブル
16:温度制御用機器
17:真空断熱容器
18:真空断熱容器に設けられている穴
1: CCD camera 2: Thermometer 3: Copper plate 4: Heater 5: Insulating material 6: Cable for video and temperature control 10: Observation object placed in a cryogenic environment 11: CCD camera with temperature control function 12 : Cable for video and temperature control 13: Cable for video 14: CCD video monitor 15: Cable for temperature control 16: Equipment for temperature control 17: Vacuum insulation container 18: Hole provided in the vacuum insulation container

Claims (4)

極低温におかれた物体の状態観察用のCCDカメラであって、CCDカメラの光信号変換部に密着して温度センサとヒータを設置し、更に、前記ヒータの外側に断熱材を装着することによって、前記CCDカメラの温度を前記温度センサーで検出し、前記CCDカメラ温度を作動温度域に保持するようにヒータに電力を印加・制御し、前記CCDカメラの周囲の温度が極低温であっても、前記CCDカメラの作動温度域に保持する機能を有することを特徴とする極低温環境で動作するCCDカメラ。
A CCD camera for observing the state of an object placed at an extremely low temperature, in which a temperature sensor and a heater are installed in close contact with the optical signal conversion part of the CCD camera, and a heat insulating material is mounted outside the heater. The temperature of the CCD camera is detected by the temperature sensor, and power is applied to and controlled by the heater so as to keep the temperature of the CCD camera in the operating temperature range, and the ambient temperature of the CCD camera is extremely low. A CCD camera operating in a cryogenic environment characterized by having a function of maintaining the operating temperature range of the CCD camera.
請求項1に記載の極低温環境で動作するCCDカメラであって、前記CCDカメラとヒータ間に高熱伝導率の金属の箔又は薄板が配置されていることを特徴とする極低温環境で動作するCCDカメラ。
2. The CCD camera operating in a cryogenic environment according to claim 1, wherein a metal foil or thin plate having high thermal conductivity is disposed between the CCD camera and the heater. CCD camera.
請求項1又は2に記載の極低温環境で動作するCCDカメラであって、前記ヒータがコンスタンタン線あるいはマンガニン線であることを特徴とする極低温環境で動作するCCDカメラ。
3. The CCD camera operating in a cryogenic environment according to claim 1, wherein the heater is a constantan wire or a manganin wire.
請求項1ないし3に記載の極低温環境で動作するCCDカメラであって、前記断熱材の材質がフッ素樹脂テープで、CCDカメラの視野欠けを起こさないように装着されていることを特徴とする極低温環境で動作するCCDカメラ。
4. A CCD camera operating in a cryogenic environment according to claim 1, wherein the heat insulating material is made of fluororesin tape so as not to cause a visual field defect of the CCD camera. A CCD camera that operates in a cryogenic environment.
JP2011248829A 2011-11-14 2011-11-14 CCD camera operating in a cryogenic environment Expired - Fee Related JP5896453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011248829A JP5896453B2 (en) 2011-11-14 2011-11-14 CCD camera operating in a cryogenic environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248829A JP5896453B2 (en) 2011-11-14 2011-11-14 CCD camera operating in a cryogenic environment

Publications (2)

Publication Number Publication Date
JP2013105034A true JP2013105034A (en) 2013-05-30
JP5896453B2 JP5896453B2 (en) 2016-03-30

Family

ID=48624597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248829A Expired - Fee Related JP5896453B2 (en) 2011-11-14 2011-11-14 CCD camera operating in a cryogenic environment

Country Status (1)

Country Link
JP (1) JP5896453B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109801785A (en) * 2018-12-25 2019-05-24 中国科学院合肥物质科学研究院 A kind of visual identifying system wrapped automatically for large scale superconducting magnet turn-to-turn insulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976813B1 (en) * 2017-05-19 2019-08-28 한국산업기술시험원 Apparatus of Cryogenic camera using on Zone 0 explosive area

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133047A (en) * 1986-11-25 1988-06-04 Mitsubishi Heavy Ind Ltd Tv camera for internal inspection of low temperature liquefied gas tank
JPH03223600A (en) * 1990-01-26 1991-10-02 Tokyo Electric Power Co Inc:The Inner portion observing device for storage tank of combustible liquefied gas
JPH08172558A (en) * 1994-12-20 1996-07-02 Tokyo Gas Co Ltd Television camera for low temperature liquid
JP2002062486A (en) * 2000-08-21 2002-02-28 Ishikawajima Harima Heavy Ind Co Ltd Low-temperature in-liquid observation device
JP2007156191A (en) * 2005-12-06 2007-06-21 Karl Storz Endoscopy Japan Kk Endoscopic device for industry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133047A (en) * 1986-11-25 1988-06-04 Mitsubishi Heavy Ind Ltd Tv camera for internal inspection of low temperature liquefied gas tank
JPH03223600A (en) * 1990-01-26 1991-10-02 Tokyo Electric Power Co Inc:The Inner portion observing device for storage tank of combustible liquefied gas
JPH08172558A (en) * 1994-12-20 1996-07-02 Tokyo Gas Co Ltd Television camera for low temperature liquid
JP2002062486A (en) * 2000-08-21 2002-02-28 Ishikawajima Harima Heavy Ind Co Ltd Low-temperature in-liquid observation device
JP2007156191A (en) * 2005-12-06 2007-06-21 Karl Storz Endoscopy Japan Kk Endoscopic device for industry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109801785A (en) * 2018-12-25 2019-05-24 中国科学院合肥物质科学研究院 A kind of visual identifying system wrapped automatically for large scale superconducting magnet turn-to-turn insulation

Also Published As

Publication number Publication date
JP5896453B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
US7422559B2 (en) Borescope comprising fluid supply system
JP4873962B2 (en) In-furnace observation device and extrusion ram provided with the same
CN105611865B (en) Endoscopic system
RU2580839C2 (en) Superconducting power transmission system
JP5896453B2 (en) CCD camera operating in a cryogenic environment
BR9912092A (en) Monitoring system for an oven and process for inspecting an oven
JP5781888B2 (en) High-temperature atmosphere furnace observation device
JP2013251516A (en) Superconducting magnet device
JP2008270307A (en) Superconductive coil and superconductor used for the same
TW200936974A (en) Multi-chamber type heat treatment apparatus and temperature control method
JP2009270736A (en) Cryogenic device
JP7138967B2 (en) Endoscope camera device
JP6084490B2 (en) Superconducting device
JP2002252380A (en) Superconducting magnet device and monitoring method therefor
JP5217057B2 (en) NMR probe for high temperature measurement
JP5204548B2 (en) Superconducting magnet device
Canavan et al. The Astro-H high temperature superconductor lead assemblies
JP5091289B2 (en) Systems used as spacecraft for space applications
JPH04258103A (en) Cooling device of superconducting coil
JP2009297385A (en) Endoscope system and endoscope cooling device
JP4610058B2 (en) Cryogenic liquid observation equipment
JP2016178112A (en) Flange unit for fixing current lead and flange unit with current lead
JP2016178111A (en) Current lead
JP5814220B2 (en) Current lead and superconducting magnet device
JP2007142137A (en) High-temperature superconducting current lead basic property test equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160225

R150 Certificate of patent or registration of utility model

Ref document number: 5896453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees