JP2013104749A - Water level and temperature measurement facility for nuclear reactor containment vessel - Google Patents

Water level and temperature measurement facility for nuclear reactor containment vessel Download PDF

Info

Publication number
JP2013104749A
JP2013104749A JP2011247958A JP2011247958A JP2013104749A JP 2013104749 A JP2013104749 A JP 2013104749A JP 2011247958 A JP2011247958 A JP 2011247958A JP 2011247958 A JP2011247958 A JP 2011247958A JP 2013104749 A JP2013104749 A JP 2013104749A
Authority
JP
Japan
Prior art keywords
reactor containment
temperature
containment vessel
pressure
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011247958A
Other languages
Japanese (ja)
Other versions
JP5762928B2 (en
Inventor
Fujio Shiraishi
藤雄 白石
Koichiro Isoda
浩一郎 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011247958A priority Critical patent/JP5762928B2/en
Publication of JP2013104749A publication Critical patent/JP2013104749A/en
Application granted granted Critical
Publication of JP5762928B2 publication Critical patent/JP5762928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water level and temperature measurement facility for a nuclear reactor containment vessel, capable of measuring presence or a fluid level (water level) of coolant and temperature in a reactor containment vessel even when the coolant such as water or sea water builds up in the reactor containment vessel due to a severe accident of a nuclear power plant.SOLUTION: A water level and temperature measurement facility for a nuclear reactor containment vessel includes a nuclear reactor containment vessel 3 which accommodates a reactor pressure vessel 2, and a plurality of temperature gauges 4 deployed inside the reactor containment vessel 3 along the height direction thereof to measure temperatures inside the reactor containment vessel 3. While temperature inside the reactor containment vessel 3 is being detected by each of the temperature gauges, a temperature value detected by each temperature gauge 4 is compared with a temperature value that should be detected when the temperature gauge is submerged in coolant such as water to check for presence of coolant inside the reactor containment vessel 3.

Description

本発明は、原子炉格納容器水位温度計測装置に関する。   The present invention relates to a reactor containment vessel water level temperature measuring device.

従来の原子炉格納容器は、その内部の雰囲気が通常空気であることから、原子炉格納容器の水位検出設備としては、フロート式の水位検出器のみが配設され、原子炉格納容器のパージラインとベントラインの2箇所にのみ設けられている。また、従来の原子炉格納容器では、その内部に、内部の雰囲気温度を計測する温度検出器を多数配置している。   Conventional reactor containment vessels have a normal atmosphere inside the reactor containment vessel. Therefore, only a float type water level detector is installed as a water level detection facility for the reactor containment vessel. And are provided only at two locations on the vent line. In the conventional reactor containment vessel, a number of temperature detectors for measuring the internal atmospheric temperature are arranged.

図8(A),(B),(C)に示すように、従来の温度検出器aは、温度を検出する温度検出ケーブルであるMIケーブルbに、端子台cを介して接続用ケーブルdを接続し、このMIケーブルbと端子台cを保護管e内に収容するように構成されている。MIケーブルbはステンレス製の内管b1内に、電気絶縁物b2を充填し、この充填物b1内に、一対または2対の熱電対b3,b3,…を相互に径方向に所要の間隔を置いて並設し、かつ軸方向に埋設している。   As shown in FIGS. 8A, 8B, and 8C, a conventional temperature detector a is connected to an MI cable b that is a temperature detection cable for detecting temperature via a terminal block c. And the MI cable b and the terminal block c are accommodated in the protective tube e. The MI cable b is filled with an electric insulator b2 in a stainless steel inner tube b1, and a pair or two pairs of thermocouples b3, b3,... They are placed side by side and embedded in the axial direction.

しかしながら、万一、原子力発電所の苛酷事故により原子炉圧力容器が損傷し、原子炉圧力容器内に注入された水ないし海水等の冷却材が原子炉格納容器内に溜まった場合には、従来の水位検出設備では、設置されている水位検出器の箇所でしか水ないし海水の水位を検出できない。   However, if a reactor pressure vessel is damaged by a severe accident at a nuclear power plant and coolant such as water or seawater injected into the reactor pressure vessel has accumulated in the reactor containment vessel, In this water level detection facility, the water level of water or seawater can be detected only at the location of the installed water level detector.

また、温度検出器aが水ないし海水等の冷却材に水没または冠水してしまった場合には、温度検出器aやケーブルdの途中の端子台cで短絡が発生し正確な温度を検出できない。しかも、この端子台cは、接続用ケーブルdをねじにより固定するので、防水構造に構成することが容易ではない。また、原子炉圧力容器内に注入された水や海水等の冷却材により原子炉圧力容器が冷却されているか否かを判断することもできなくなる。   Further, when the temperature detector a is submerged or submerged in a coolant such as water or seawater, a short circuit occurs at the terminal block c in the middle of the temperature detector a or the cable d, and an accurate temperature cannot be detected. . Moreover, since the terminal block c fixes the connection cable d with screws, it is not easy to configure the terminal block c in a waterproof structure. In addition, it is impossible to determine whether or not the reactor pressure vessel is cooled by a coolant such as water or seawater injected into the reactor pressure vessel.

このように、原子炉格納容器内に水ないし海水等冷却材が溜った場合でも、その水位を監視することはこれまで想定されていなかった。   Thus, even when coolant such as water or seawater has accumulated in the reactor containment vessel, it has not been assumed so far to monitor the water level.

本発明は、原子力発電所の苛酷事故時により、原子炉格納容器内に水ないし海水等の冷却材が溜った場合でも、その原子炉格納容器内の冷却材の有無、または液位(水位)と温度を計測できる原子炉格納容器水位温度計測装置を提供することを目的とする。   Even if coolant such as water or seawater accumulates in the reactor containment vessel due to a severe accident at a nuclear power plant, the present invention indicates the presence or absence of the coolant in the reactor containment vessel or the liquid level (water level). An object of the present invention is to provide a reactor containment vessel water level temperature measuring device capable of measuring temperature.

本発明に係る原子炉格納容器水位温度計測装置は、原子炉圧力容器を収容する原子炉格納容器と、この原子炉格納容器内にその高さ方向に複数配設されて原子炉格納容器の温度を検出する温度検出器と、を具備する。そして、前記温度検出器により原子炉格納容器内の温度を検出する一方、前記各温度検出器により検出された温度検出値を、これら温度検出器が水等冷却材により水没したときの温度検出値と比較参照することにより、原子炉格納容器内の冷却材の有無を検出することを特徴とする。   The reactor containment vessel water level temperature measuring apparatus according to the present invention includes a reactor containment vessel that houses a reactor pressure vessel, and a plurality of reactor containment vessels disposed in the height direction in the reactor containment vessel. And a temperature detector for detecting. And while the temperature detector detects the temperature in the reactor containment vessel, the temperature detection value detected by each temperature detector is the temperature detection value when these temperature detectors are submerged by a coolant such as water. The presence or absence of the coolant in the reactor containment vessel is detected by comparing and referring to.

本発明によれば、原子炉格納容器内に水や海水等の冷却材が溜った場合でも、原子炉格納容器内の温度を温度検出器により検出する精度の向上を図ることができると共に、原子炉格納容器内の冷却材の有無を検出できる。   According to the present invention, even when coolant such as water or seawater accumulates in the reactor containment vessel, it is possible to improve the accuracy of detecting the temperature in the reactor containment vessel with the temperature detector, and The presence or absence of coolant in the furnace containment vessel can be detected.

(A)は本発明の第1実施形態に係る原子炉格納容器の温度検出器の正面模式図、(B)は同,温度検出器の底部端面図、(C)は同(A),(B)で示すMIケーブルの拡大横断面図。(A) is a schematic front view of the temperature detector of the reactor containment vessel according to the first embodiment of the present invention, (B) is the bottom end view of the temperature detector, (C) is the same (A), ( The expanded cross-sectional view of MI cable shown by B). 本発明の第1の実施形態に係る原子炉格納施設の要部模式図。The principal part schematic diagram of the nuclear reactor containment facility which concerns on the 1st Embodiment of this invention. (A)は本発明の第2の実施形態に係る原子炉格納容器の温度検出器の正面模式図、(B)は同,温度検出器の底部端面図、(C)は同(A),(B)で示すMIケーブルの拡大横断面図。(A) is a schematic front view of a temperature detector for a nuclear reactor containment vessel according to a second embodiment of the present invention, (B) is a bottom end view of the temperature detector, and (C) is the same as (A), The expanded cross-sectional view of MI cable shown by (B). 本発明の第3の実施形態に係る原子炉格納施設の要部模式図。The principal part schematic diagram of the nuclear reactor containment facility which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る原子炉格納施設の要部模式図。The principal part schematic diagram of the nuclear reactor containment facility which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る原子炉格納施設の要部模式図。The principal part schematic diagram of the nuclear reactor containment facility which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る原子炉格納施設の要部模式図。The principal part schematic diagram of the nuclear reactor containment facility which concerns on the 6th Embodiment of this invention. (A)は従来の原子炉格納容器の温度検出器の正面模式図、(B)は同,温度検出器の底部端面図、(C)は同(A),(B)で示すMIケーブルの拡大横断面図。(A) is a schematic front view of a conventional temperature detector for a reactor containment vessel, (B) is a bottom end view of the temperature detector, and (C) is an MI cable shown in (A) and (B). FIG.

以下、本発明の実施形態を、図面を参照して説明する。なお、複数の図面中、同一または相当部分には同一符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in several drawing.

(第1の実施形態)
図2に示すように、第1の実施形態に係る原子炉格納施設1は、原子炉圧力容器2を収容する原子炉格納容器3と、この原子炉格納容器3内に配設された複数の温度検出器4,4,…と、パージライン5およびベントライン6に、原子炉格納容器3の水位検出器としてそれぞれ配設されたフロート式の水位検出器5a,6aと、を具備している。
(First embodiment)
As shown in FIG. 2, the reactor containment facility 1 according to the first embodiment includes a reactor containment vessel 3 that houses a reactor pressure vessel 2, and a plurality of reactor containment vessels 3 arranged in the reactor containment vessel 3. .., And float-type water level detectors 5a, 6a arranged as water level detectors for the reactor containment vessel 3 in the purge line 5 and the vent line 6, respectively. .

複数の温度検出器4,4,…は原子炉格納容器3内にて、その高さ方向に所要の間隔を置いて配設されている。   The plurality of temperature detectors 4, 4,... Are arranged in the reactor containment vessel 3 at a predetermined interval in the height direction.

さらに、原子炉格納施設1は、原子炉格納容器3内の雰囲気の冷却を行うと共に、放射性よう素を除去する格納容器スプレー冷却系、水−金属反応で発生した可燃性ガスの格納容器内での燃焼を防止する可燃性ガス濃度制御系、および原子炉格納容器から漏洩したFP(核分裂生成物)が直接外部に放出されないように機能する原子炉建屋(二次格納施設)とこのFPをフィルタで除去し、排気筒より高所放出する非常用ガス処理系(SGTS)を具備している。但し、図2中、これら系は図示省略している。   Furthermore, the containment facility 1 cools the atmosphere in the reactor containment vessel 3 and also removes radioactive iodine from the containment vessel spray cooling system, and the containment vessel for the combustible gas generated by the water-metal reaction. A flammable gas concentration control system that prevents combustion of the reactor, a reactor building (secondary containment facility) that functions to prevent FP (fission products) leaking from the reactor containment vessel from being discharged directly to the outside, and this FP And an emergency gas treatment system (SGTS) that discharges at a high location from the exhaust stack. However, these systems are not shown in FIG.

原子炉格納容器3は、原子炉圧力容器2や図示しない冷却系再循環ループなどを格納するドライウェルDおよび圧力抑制ケーブルを備えた圧力抑制室7を有し、ドライウェルDと圧力抑制室7は鋼製ベント管8により連結される。   The reactor containment vessel 3 includes a dry well D for storing the reactor pressure vessel 2 and a cooling system recirculation loop (not shown), and a pressure suppression chamber 7 including a pressure suppression cable. Are connected by a steel vent pipe 8.

このために、冷却材喪失事故時、原子炉格納容器3のドライウェルD内に放出された蒸気と水の混合物はベント管8を通して圧力抑制室7のプール水中に導かれ、ここで蒸気は冷却し凝縮される。これにより、原子炉格納容器3の内圧の上昇を効果的に抑制することができる。さらに、原子炉格納容器3の内外を貫通する配管の原子炉格納容器貫通部であるペネトレーション9には図示省略の隔離弁を設け、放出されたFPを原子炉格納容器3内に保留することができる。   For this reason, at the time of the loss of coolant accident, the steam and water mixture released into the dry well D of the containment vessel 3 is led into the pool water of the pressure suppression chamber 7 through the vent pipe 8, where the steam is cooled. And condensed. Thereby, the raise of the internal pressure of the reactor containment vessel 3 can be suppressed effectively. Further, an isolation valve (not shown) is provided in the penetration 9 which is a reactor containment vessel penetration portion of a pipe penetrating the inside and outside of the reactor containment vessel 3 to hold the released FP in the reactor containment vessel 3. it can.

図1(A)〜(C)に示すように、上記温度検出器4は、金属製保護管4a内にMIケーブル4bを収容している。保護管4aは、図1(A)中上部4a1と、この上部4a1にねじ結合される中空管状の下部4a2とを有し、下部4a2には複数の小孔4c,4c,…が成形されている。   As shown in FIGS. 1A to 1C, the temperature detector 4 houses an MI cable 4b in a metal protective tube 4a. The protective tube 4a has an upper portion 4a1 in FIG. 1A and a hollow tubular lower portion 4a2 screwed to the upper portion 4a1, and a plurality of small holes 4c, 4c,... Are formed in the lower portion 4a2. Yes.

MIケーブル4bが保護管4aに固定されている。また、保護管4aは、その上部4a上に、開閉蓋のドーム状頭部4a3を設け、この頭部4a3の側頭部外面に防水コネクタ4dを配設している。   The MI cable 4b is fixed to the protective tube 4a. The protective tube 4a is provided with a dome-shaped head portion 4a3 of an opening / closing lid on the upper portion 4a, and a waterproof connector 4d is disposed on the outer side surface of the head portion 4a3.

この防水コネクタ4dは防水機能を有し、温度検出用ケーブルの一例であるMIケーブル4bと接続用ケーブル4eとを着脱可能かつ防水可能に接続している。各接続用ケーブル4eは、図2に示す原子炉格納容器3のペネトレーション9を経て原子炉格納容器3の外部に延伸し、図示省略の中央操作盤等の図示しない温度水位検出装置に接続される。この温度水位検出装置は、温度検出器4により検出された温度検出値に基づいて原子炉格納容器3内の温度や温度分布、水や海水等の冷却材の有無、液位(水位)を検出する。   The waterproof connector 4d has a waterproof function, and an MI cable 4b, which is an example of a temperature detection cable, and a connection cable 4e are detachably and waterproofly connected. Each connection cable 4e extends to the outside of the reactor containment vessel 3 through the penetration 9 of the reactor containment vessel 3 shown in FIG. 2, and is connected to a temperature water level detection device (not shown) such as a central operation panel (not shown). . This temperature / water level detection device detects the temperature and temperature distribution in the reactor containment vessel 3, the presence or absence of coolant such as water and seawater, and the liquid level (water level) based on the temperature detection value detected by the temperature detector 4. To do.

図1(C)に示すように、MIケーブル4bは、例えばステンレス製等の内管4b1内に、例えば酸化マグネシウム等の電気絶縁物4bを充填し、この充填物4bのほぼ中央部内に、温度検出部材である1対または2対の熱電対4b3,4b3,…を、その径方向に互いに所要の間隔を置いて並設し、かつ軸方向に埋設し、これら熱電対4b3,4b3,…により、原子炉格納容器3内の温度を検出する。   As shown in FIG. 1C, the MI cable 4b is filled with an electrical insulator 4b such as magnesium oxide in an inner tube 4b1 made of, for example, stainless steel, and the temperature is approximately in the center of the filler 4b. One pair or two pairs of thermocouples 4b3, 4b3,... Which are detection members are juxtaposed in the radial direction at predetermined intervals and embedded in the axial direction, and these thermocouples 4b3, 4b3,. The temperature in the reactor containment vessel 3 is detected.

さらに、この温度検出器4,4,…の温度検出値は上記温度水位検出装置に与えられ、原子炉格納容器3内の温度と水の有無、水位が検出される。   Further, the temperature detection values of the temperature detectors 4, 4,.

したがって、この原子炉格納施設1によれば、万一、原子炉圧力容器2の損傷等により原子炉格納容器3内に水や海水等の冷却材が溜り、温度検出器4が冠水または水没した場合でも、MIケーブル4bと接続用ケーブル4eは防水コネクタ4dにより防水可能に接続されているので、MIケーブル4bと接続用ケーブル4eの接続部が水や海水等の冷却材によりショートすることを防止または低減できる。   Therefore, according to the reactor containment facility 1, coolant such as water or seawater is accumulated in the reactor containment vessel 3 due to damage of the reactor pressure vessel 2, and the temperature detector 4 is submerged or submerged. Even in such a case, the MI cable 4b and the connection cable 4e are connected to each other by a waterproof connector 4d so that the connection portion between the MI cable 4b and the connection cable 4e is prevented from being short-circuited by a coolant such as water or seawater. Or it can be reduced.

その結果、万一、原子炉格納容器3内に水や海水等の冷却材(以下、単に水ともいう)が溜った場合でも、温度検出器4と温度水位検出装置により原子炉格納容器3内の温度を検出する検出精度の向上を図ることができる。   As a result, even if coolant such as water or seawater (hereinafter, also simply referred to as water) accumulates in the reactor containment vessel 3, the temperature detector 4 and the temperature water level detection device can contain the inside of the reactor containment vessel 3. The detection accuracy for detecting the temperature can be improved.

また、温度水位検出装置により、原子炉格納容器3内の水の有無や水位も検出できる。   Further, the presence or level of water in the reactor containment vessel 3 can be detected by the temperature / water level detection device.

すなわち、各温度検出器4の温度検出値は、温度検出器4が水没している時と、水没していない時(気相時)とで相違するので、予めこれらの温度検出値データを採集し、参照データとして温度水位検出装置のメモリ等に記録しておく。また、温度水位検出装置のメモリには、複数の温度検出器4の原子炉格納容器3内の配置高さのデータを予め保存しておく。   That is, the temperature detection value of each temperature detector 4 is different between when the temperature detector 4 is submerged and when it is not submerged (during the gas phase). Then, it is recorded as reference data in a memory or the like of the temperature water level detection device. In addition, in the memory of the temperature water level detection device, data on the arrangement height of the plurality of temperature detectors 4 in the reactor containment vessel 3 is stored in advance.

このために、各温度検出器4によりそれぞれ検出された温度検出値について、上記参照データを比較参照することにより、各温度検出器4が水没しているか否か、すなわち水の有無を検出することができる。   For this purpose, by comparing and referring to the reference data for the temperature detection values detected by the respective temperature detectors 4, it is possible to detect whether or not each temperature detector 4 is submerged, that is, the presence or absence of water. Can do.

また水没が検出された温度検出器4のうち、最も高い位置にある温度検出器4の配置高さを原子炉格納容器3内の水位であると判断することができる。   Further, it is possible to determine that the arrangement height of the temperature detector 4 at the highest position among the temperature detectors 4 in which submersion is detected is the water level in the reactor containment vessel 3.

なお、上記複数の温度検出器4,4,…の接続用ケーブル4e,4e,…は、図2に示すように1つのペネトレーション9に集中的に挿通させてもよいが、複数のペネトレーション9,9,…までそれぞれ個別に延在させてもよい。   The connection cables 4e, 4e,... For the plurality of temperature detectors 4, 4,... May be intensively inserted into one penetration 9 as shown in FIG. You may extend individually up to 9,.

(第2の実施形態)
図3(A)は第2の実施形態に係る原子炉格納施設1Aの第2の温度検出器41の正面模式図、(B)は同,第2の温度検出器41の底部端面図、(C)は同(A),(B)で示す第2の温度検出器41のMIケーブル4bの拡大横断面図である。第2の実施形態に係る原子炉格納施設1Aは、上記原子炉格納施設1において、その温度検出器4を第2の温度検出器41に置換した点に特徴がある。
(Second Embodiment)
3A is a schematic front view of the second temperature detector 41 of the containment facility 1A according to the second embodiment, FIG. 3B is a bottom end view of the second temperature detector 41, and FIG. (C) is an enlarged cross-sectional view of the MI cable 4b of the second temperature detector 41 shown in (A) and (B). The reactor containment facility 1A according to the second embodiment is characterized in that the temperature detector 4 in the reactor containment facility 1 is replaced with a second temperature detector 41.

図3(A)〜(C)に示すように、第2の温度検出器41は、金属製円管状の保護管41aを有する。この保護管41aは上記図1で示す温度検出器4のドーム状頭部4a3を削除している。保護管41aの一端子(図3では上端)に、電気絶縁性を有する端栓41bと、止めねじのコンプレッションフィッティング41cを上下二段に設け、MIケーブル41dを、これら端栓41bとコンプレッションフィッティング41cに水密に貫通させた状態で保護管41aに電気的に絶縁させた状態で固定し、外部に延伸させている。   As shown in FIGS. 3A to 3C, the second temperature detector 41 has a metal circular tubular protective tube 41a. This protective tube 41a has the dome-shaped head 4a3 of the temperature detector 4 shown in FIG. One end (upper end in FIG. 3) of the protective tube 41a is provided with an electrically insulating end plug 41b and a compression screw compression fitting 41c in two stages, and the MI cable 41d is connected to the end plug 41b and the compression fitting 41c. It is fixed in a state of being electrically insulated from the protective tube 41a in a state where it is penetrated in a watertight manner, and is extended to the outside.

そして、図3(C)に示すようにMIケーブル41dは、内管4a内に収容された電気絶縁性を有する円柱状のシール部材4b2のほぼ中央部内に、複数、例えば2本一対の熱電対4b3,4b3と、一対のヒータ線10,10とを、その径方向にそれぞれ所要の間隔を置いて並設し、かつ軸方向に埋設している。   As shown in FIG. 3C, the MI cable 41d has a plurality of, for example, two pairs of thermocouples in the substantially central portion of the cylindrical seal member 4b2 having electrical insulation accommodated in the inner tube 4a. 4b3 and 4b3 and a pair of heater wires 10 and 10 are juxtaposed in the radial direction at predetermined intervals, and embedded in the axial direction.

そして、ヒータ線10,10を通電して、発熱させたときに、熱電対4b3,4b3により検出された温度検出値を、第2の温度検出器41が水没している時と、水没していない時(気相時)のデータを各温度検出器41毎に予め記録し、参照データとして、例えば温度水位検出位置のメモリ等に蓄積しておく。   When the heater wires 10 and 10 are energized to generate heat, the temperature detection values detected by the thermocouples 4b3 and 4b3 are subtracted when the second temperature detector 41 is submerged. Data at the time of no gas phase (gas phase) is recorded in advance for each temperature detector 41 and stored as reference data in, for example, a memory at a temperature water level detection position.

このために、ヒータ線10,10を通電して発熱させた時に検出された熱電対4b3,4b3の温度検出値を上記参照データと比較することにより、水や海水等冷却材の有無を検出することができる。   For this purpose, the presence or absence of coolant such as water or seawater is detected by comparing the temperature detection values of the thermocouples 4b3 and 4b3 detected when the heater wires 10 and 10 are energized to generate heat. be able to.

そして、複数の第2の温度検出器41,41,…は、原子炉格納容器3内にて、高さ方向に所要の間隔を置いて配設されているので、上記第1の実施形態と同様、水の有りを検出した温度検出器41の配置高さから原子炉格納容器3内の水位を検出できる。   The plurality of second temperature detectors 41, 41,... Are arranged at a predetermined interval in the height direction in the reactor containment vessel 3, so that the first embodiment is different from the first embodiment. Similarly, the water level in the reactor containment vessel 3 can be detected from the arrangement height of the temperature detector 41 that has detected the presence of water.

すなわち、本実施形態によれば、原子炉格納容器3内に水や海水等冷却材が溜った場合でも、複数の温度検出器41,41,…により、原子炉格納容器3内の温度と水位を共に検出できる。   That is, according to the present embodiment, even when coolant such as water or seawater accumulates in the reactor containment vessel 3, the temperature and water level in the reactor containment vessel 3 are detected by the plurality of temperature detectors 41, 41,. Can be detected together.

そして、MIケーブル41dを上記従来の端子台cや防水コネクタ4dを介さずに直接ペネトレーション9に延伸させてもよい。これによれば、水没してショートし易い端子台cを削除しているので、ショートすることを低減できる。このために、原子炉格納容器3内に水が溜った場合でも、原子炉格納容器3内の温度、水の有無、水位を検出できる。   Then, the MI cable 41d may be extended directly to the penetration 9 without using the conventional terminal block c or the waterproof connector 4d. According to this, since the terminal block c which is submerged and easily short-circuited is deleted, it is possible to reduce short-circuiting. For this reason, even when water accumulates in the reactor containment vessel 3, the temperature in the reactor containment vessel 3, the presence or absence of water, and the water level can be detected.

さらに、端子台cや防水コネクタ4dを削除するので、構成の簡単化とコスト低減を図ることができる。   Furthermore, since the terminal block c and the waterproof connector 4d are deleted, the configuration can be simplified and the cost can be reduced.

さらにまた、第2の温度検出器41はMIケーブル41dの温度検出部分を電気絶縁性を有する端栓41bにより保護管41aに固定しているので、第2の温度検出器41の水没の有無を検出できる。すなわち、第2の温度検出器41が水没していないとき(気相時)は、MIケーブル4bと保護管4aの電気絶縁が確保されるので、温度を高精度で検出することができる。一方、第2の温度検出器41が水没した場合には、MIケーブル4bと保護管4bが水により通電するので、MIケーブルbと保護管4bの通電状態が非水没(気相)時の温度検出値と相違する。すなわち、第2の温度検出器41における、MIケーブルbと保護管4bの通電状態が水没時と非水没時とでは相違するので、第2の温度検出器41の水没の有無を検出できる。   Furthermore, since the second temperature detector 41 fixes the temperature detection portion of the MI cable 41d to the protective tube 41a by means of an electrically insulating end plug 41b, the second temperature detector 41 can detect whether or not the second temperature detector 41 is submerged. It can be detected. That is, when the second temperature detector 41 is not submerged (during the gas phase), electrical insulation between the MI cable 4b and the protective tube 4a is ensured, so that the temperature can be detected with high accuracy. On the other hand, when the second temperature detector 41 is submerged, the MI cable 4b and the protective tube 4b are energized by water, so that the energized state of the MI cable b and the protective tube 4b is the temperature when not submerged (gas phase). It differs from the detected value. That is, since the energized state of the MI cable b and the protective tube 4b in the second temperature detector 41 is different between when submerged and when not submerged, it is possible to detect whether the second temperature detector 41 is submerged.

(第3の実施形態)
図4は本発明の第3の実施形態に係る原子炉格納施設1Aの要部模式図である。この原子炉格納施設1Aは、上記第2の実施形態に係る第2の温度検出器41のMIケーブル41dまたは図1で示す接続用ケーブル4eを、各第2の温度検出器41の近傍にそれぞれ配設されている複数のペネトレーション9,9,…にそれぞれ延在させ、または挿通させた点に特徴がある。
(Third embodiment)
FIG. 4 is a schematic diagram of a main part of a reactor containment facility 1A according to the third embodiment of the present invention. The reactor containment facility 1A includes the MI cable 41d of the second temperature detector 41 according to the second embodiment or the connection cable 4e shown in FIG. 1 in the vicinity of each second temperature detector 41. It is characterized in that each of the plurality of penetrations 9, 9,...

この原子炉格納施設1Aによれば、複数のペネトレーション9,9,…の幾つかにおいて、MIケーブル41dまたは接続用ケーブル4eが短絡を発生した場合でも、それ以外のペネトレーション9,9,…に配設されているMIケーブル41dまたは接続用ケーブル4eに接続されている温度検出器4,41を使用して原子炉格納容器3内の温度、水の有無、水位を検出できる。   According to the reactor containment facility 1A, even if the MI cable 41d or the connection cable 4e is short-circuited in some of the plurality of penetrations 9, 9,. The temperature, the presence / absence of water, and the water level in the reactor containment vessel 3 can be detected by using the temperature detectors 4 and 41 connected to the provided MI cable 41d or connection cable 4e.

(第4の実施形態)
図5は本発明の第4の実施形態に係る原子炉格納施設1Bの要部模式図である。この原子炉格納施設1Bは、圧力抑制室7内の圧力を検出する圧力抑制室圧力検出器11と、原子炉格納容器3内のドライウェルDの圧力を検出する原子炉格納容器圧力検出器12とを設け、この圧力抑制室圧力検出器11により検出された圧力抑制室内の圧力検出値と、原子炉格納容器圧力検出器12により検出された原子炉格納容器3内の圧力検出値との差から原子炉格納容器3内の水位を検出する点に特徴がある。
(Fourth embodiment)
FIG. 5 is a schematic diagram of a main part of a reactor containment facility 1B according to a fourth embodiment of the present invention. The reactor containment facility 1B includes a pressure containment chamber pressure detector 11 that detects the pressure in the pressure containment chamber 7, and a reactor containment vessel pressure detector 12 that detects the pressure of the dry well D in the reactor containment vessel 3. And the difference between the detected pressure value in the pressure suppression chamber detected by the pressure suppression chamber pressure detector 11 and the detected pressure value in the reactor containment vessel 3 detected by the reactor containment vessel pressure detector 12. From the above, the water level in the reactor containment vessel 3 is detected.

すなわち、圧力抑制室圧力検出器11により検出された圧力抑制室7の検出圧力と、原子炉格納容器圧力検出器12により検出された原子炉格納容器3内の検出圧力との差が水頭圧差となるので、これら両検出値の差を、原子炉格納容器3内の水位との相関関係を予め記録した参照データと比較参照することにより、原子炉格納容器3の水位を水頭圧差から算出することができる。   That is, the difference between the detected pressure in the pressure suppression chamber 7 detected by the pressure suppression chamber pressure detector 11 and the detected pressure in the reactor containment vessel 3 detected by the reactor containment vessel pressure detector 12 is the head pressure difference. Therefore, the water level of the reactor containment vessel 3 is calculated from the head pressure difference by comparing the difference between the two detection values with reference data in which the correlation with the water level in the reactor containment vessel 3 is recorded in advance. Can do.

(第5の実施形態)
図6は本発明の第5の実施形態に係る原子炉格納施設1Cの要部模式図である。この原子炉格納施設1Cは、原子炉格納容器圧力検出器12とECCS系(非常用炉心冷却系)ポンプ圧力検出器13とを設け、このECCS系ポンプ圧力検出器13により検出されたECCS系ポンプ15の吐出側の圧力検出値と、原子炉格納容器圧力検出器12により検出された圧力検出値との差から原子炉格納容器3内の水位を検出する点に特徴がある。
(Fifth embodiment)
FIG. 6 is a schematic diagram of a main part of a reactor containment facility 1C according to the fifth embodiment of the present invention. The reactor containment facility 1C is provided with a reactor containment vessel pressure detector 12 and an ECCS system (emergency core cooling system) pump pressure detector 13, and an ECCS system pump detected by the ECCS system pump pressure detector 13. 15 is characterized in that the water level in the reactor containment vessel 3 is detected from the difference between the detected pressure value on the discharge side of 15 and the detected pressure value detected by the reactor containment vessel pressure detector 12.

すなわち、ECCS系ポンプ圧力検出器13により検出されたECCS系14のECCS系ポンプ15の吐出側の検出圧力と、原子炉格納容器圧力検出器12により検出された原子炉格納容器3の検出圧力との差が水頭圧差となるので、これら両検出値の差と、原子炉格納容器3内の水位との相関関係を予め記録した参照データを参照することにより、原子炉格納容器3の水位を水頭圧差から算出することができる。   That is, the detected pressure on the discharge side of the ECCS system pump 15 of the ECCS system 14 detected by the ECCS system pump pressure detector 13, and the detected pressure of the reactor containment vessel 3 detected by the reactor containment vessel pressure detector 12 Therefore, the water level of the reactor containment vessel 3 is determined by referring to the reference data in which the correlation between the difference between these detected values and the water level in the reactor containment vessel 3 is recorded in advance. It can be calculated from the pressure difference.

(第6の実施形態)
図7は本発明の第6の実施形態に係る原子炉格納施設1Dの要部模式図である。この原子炉格納施設1Dは、原子炉格納容器3内の例えば底部に、温度センサ内蔵超音波センサ16を設けた点に特徴がある。
(Sixth embodiment)
FIG. 7 is a schematic diagram of a main part of a reactor containment facility 1D according to the sixth embodiment of the present invention. This reactor containment facility 1D is characterized in that an ultrasonic sensor 16 with a built-in temperature sensor is provided, for example, at the bottom of the reactor containment vessel 3.

温度センサ内蔵超音波センサ16は原子炉格納容器3内に溜った水の水面に超音波を送波し、水面で反射された反射波を受波することにより、原子炉格納容器3内の溜水の水位を検出する。温度センサ内蔵超音波センサ16はケーブル17に電気的に接続され、このケーブル17はペネトレーション9を挿通して原子炉格納容器3の外部に延在し、図示省略の温度水位検出装置に電気的に接続される。温度水位検出装置はケーブル17を介して温度センサ内蔵超音波センサ16に、その検出を制御する制御信号を与える一方、温度センサ内蔵超音波センサ16により検出された水位検出信号と温度検出信号とを受信し、原子炉格納容器3内の水位と温度を検出する。   The ultrasonic sensor 16 with a built-in temperature sensor transmits ultrasonic waves to the water surface of the water stored in the reactor containment vessel 3 and receives the reflected waves reflected by the water surface, so that the reservoir in the reactor containment vessel 3 is received. Detect the water level. The ultrasonic sensor 16 with a built-in temperature sensor is electrically connected to a cable 17. The cable 17 is inserted into the penetration 9 and extends to the outside of the containment vessel 3, and is electrically connected to a temperature water level detection device (not shown). Connected. The temperature / water level detection device gives a control signal for controlling the detection to the ultrasonic sensor 16 with built-in temperature sensor via the cable 17, while the water level detection signal and the temperature detection signal detected by the ultrasonic sensor 16 with built-in temperature sensor are used. Receiving and detecting the water level and temperature in the reactor containment vessel 3.

また、温度センサ内蔵超音波センサ16は内蔵の温度センサにより、原子炉格納容器3内の温度を検出できるので、この検出温度により、雰囲気温度により伝播時間が変化する超音波の温度による影響を補正することができる。   Moreover, since the temperature sensor built-in ultrasonic sensor 16 can detect the temperature in the reactor containment vessel 3 by the built-in temperature sensor, the detection temperature corrects the influence of the ultrasonic temperature whose propagation time changes depending on the ambient temperature. can do.

このために、温度センサ内蔵超音波センサ16による水位検出精度の向上を図ることができる。また直接水温が検出できる。   For this reason, the water level detection accuracy by the temperature sensor built-in ultrasonic sensor 16 can be improved. The water temperature can be detected directly.

以上説明したように、本発明の各実施形態によれば、原子炉格納容器3内の温度検出器4,41による温度検出精度の向上と、原子炉格納容器3内の水や海水等冷却材の有無ないし液位(水位)を検出することができる点で技術上の意義が共通し、または密接に関連している。   As described above, according to each embodiment of the present invention, the accuracy of temperature detection by the temperature detectors 4 and 41 in the reactor containment vessel 3 and the coolant such as water and seawater in the reactor containment vessel 3 are improved. The technical significance is common or closely related in that the presence or absence or the liquid level (water level) can be detected.

そして、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、本発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   And although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of this invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the present invention. These embodiments and modifications thereof are included in the scope and gist of the present invention, and are included in the invention described in the claims and the equivalents thereof.

1,1A,1B,1C,1D 原子炉格納施設
2 原子炉圧力容器
3 原子炉格納容器
4 温度検出器
4b,41d MIケーブル(温度検出ケーブル)
4e 接続用ケーブル
10 ヒータ線
11 圧力抑制室圧力検出器
12 原子炉格納容器圧力検出器
13 ECCS系ポンプ圧力検出器
14 ECCS系
15 ECCS系ポンプ
16 温度センサ内蔵超音波センサ
41 第2の温度検出器
41b 端栓(電気絶縁体)
1, 1A, 1B, 1C, 1D Reactor containment facility 2 Reactor pressure vessel 3 Reactor containment vessel 4 Temperature detector 4b, 41d MI cable (temperature detection cable)
4e Connecting cable 10 Heater wire 11 Pressure suppression chamber pressure detector 12 Reactor containment vessel pressure detector 13 ECCS system pump pressure detector 14 ECCS system 15 ECCS system pump 16 Temperature sensor built-in ultrasonic sensor 41 Second temperature detector 41b End plug (electrical insulator)

Claims (9)

原子炉圧力容器を収容する原子炉格納容器と、
この原子炉格納容器内にその高さ方向に複数配設されて原子炉格納容器の温度を検出する温度検出器と、
を具備し、
前記温度検出器により原子炉格納容器内の温度を検出する一方、前記各温度検出器により検出された温度検出値を、これら温度検出器が水等冷却材により水没したときの温度検出値と比較参照することにより、原子炉格納容器内の冷却材の有無を検出することを特徴とする原子炉格納容器水位温度計測装置。
A reactor containment that houses the reactor pressure vessel;
A plurality of temperature detectors arranged in the height direction in the reactor containment vessel to detect the temperature of the reactor containment vessel; and
Comprising
While the temperature detector detects the temperature in the reactor containment vessel, the temperature detection value detected by each temperature detector is compared with the temperature detection value when these temperature detectors are submerged by a coolant such as water. A reactor containment vessel water level temperature measuring device that detects presence or absence of coolant in a reactor containment by referring to the reactor containment vessel water level temperature measuring device.
前記冷却材有りを検出した温度検出器の中で、最も高い位置に配設された温度検出器の配設高さから冷却材の液位を検出することを特徴とする請求項1記載の原子炉格納容器水位温度計測装置。 2. The atom according to claim 1, wherein the liquid level of the coolant is detected from the height of the temperature detector disposed at the highest position among the temperature detectors that detected the presence of the coolant. Containment vessel water level temperature measurement device. 原子炉圧力容器を収容する原子炉格納容器と、
この原子炉格納容器内に配設され、この原子炉格納容器内の温度を検出する温度検出部材を有する温度検出用ケーブルを接続用ケーブルに接続する接続部を防水可能に構成した温度検出器と、
を具備していることを特徴とする原子炉格納容器水位温度計測装置。
A reactor containment that houses the reactor pressure vessel;
A temperature detector arranged in the reactor containment vessel and configured to be waterproof so that a connecting portion for connecting a temperature detection cable having a temperature detection member for detecting the temperature in the reactor containment vessel to the connection cable; ,
A reactor containment vessel water level temperature measuring device comprising:
前記接続部が防水コネクタであることを特徴とする請求項3記載の原子炉格納容器水位温度計測装置。 4. The reactor containment vessel water level temperature measuring device according to claim 3, wherein the connecting portion is a waterproof connector. 原子炉圧力容器を収容する原子炉格納容器と、
この原子炉格納容器内に配設され、原子炉格納容器内の温度を検出する温度検出部材を有する温度検出用ケーブルを収容し電気絶縁部材により固定させる保護管を有する温度検出器と、
を具備していることを特徴とする原子炉格納容器水位温度計測装置。
A reactor containment that houses the reactor pressure vessel;
A temperature detector having a protective tube disposed in the reactor containment vessel and containing a temperature detection cable having a temperature detection member for detecting the temperature in the reactor containment vessel and fixed by an electrically insulating member;
A reactor containment vessel water level temperature measuring device comprising:
原子炉圧力容器を収容する原子炉格納容器と、
この原子炉格納容器の配管貫通部の複数のペネトレーションと、
この原子炉格納容器内に配設され、原子炉格納容器内の温度を検出する温度検出部材を有する温度検出用ケーブルを備えた複数の温度検出器と、
を具備し、
前記複数の温度検出器の温度検出用ケーブルを前記複数のペネトレーションにそれぞれ延在させたことを特徴とする原子炉格納容器水位温度計測装置。
A reactor containment that houses the reactor pressure vessel;
A plurality of penetrations in the pipe penetration of this reactor containment vessel;
A plurality of temperature detectors provided in the reactor containment vessel and provided with a temperature detection cable having a temperature detection member for detecting the temperature in the reactor containment vessel;
Comprising
A reactor containment vessel water level temperature measuring apparatus, wherein temperature detection cables of the plurality of temperature detectors are extended to the plurality of penetrations, respectively.
原子炉圧力容器を収容し、圧力抑制室を有する原子炉格納容器と、
前記圧力抑制室の圧力を検出する圧力抑制室圧力検出器と、
前記原子炉格納容器内の圧力を検出する原子炉格納容器圧力検出器と、
を具備し、
前記圧力抑制室圧力検出器と原子炉格納容器圧力検出器によりそれぞれ検出された両検出圧力の差に基づいて前記原子炉格納容器内の水位を検出することを特徴とする原子炉格納容器水位温度計測装置。
A reactor containment vessel containing a reactor pressure vessel and having a pressure suppression chamber;
A pressure suppression chamber pressure detector for detecting the pressure of the pressure suppression chamber;
A reactor containment vessel pressure detector for detecting the pressure in the reactor containment vessel;
Comprising
Reactor containment vessel water level temperature, wherein the water level in the containment vessel is detected based on the difference between both detected pressures detected by the pressure suppression chamber pressure detector and the reactor containment vessel pressure detector, respectively. Measuring device.
原子炉圧力容器を収容する原子炉格納容器と、
前記原子炉圧力容器に冷却材を注入するECCS系ポンプを有する非常用炉心冷却系と、
前記ECCS系ポンプの吐出側の圧力を検出するECCS系ポンプ圧力検出器と、
前記原子炉格納容器内の圧力を検出する原子炉格納容器圧力検出器と、
を具備し、
前記原子炉格納容器圧力検出器とECCS系ポンプ圧力検出器とによりそれぞれ検出された両検出圧力の差に基づいて前記原子炉格納容器内の水位を検出することを特徴とする原子炉格納容器水位温度計測装置。
A reactor containment that houses the reactor pressure vessel;
An emergency core cooling system having an ECCS pump for injecting coolant into the reactor pressure vessel;
An ECCS pump pressure detector for detecting the pressure on the discharge side of the ECCS pump;
A reactor containment vessel pressure detector for detecting the pressure in the reactor containment vessel;
Comprising
A water level in the reactor containment vessel is detected based on a difference between both detected pressures detected by the reactor containment vessel pressure detector and the ECCS pump pressure detector, respectively. Temperature measuring device.
原子炉圧力容器を収容する原子炉格納容器と、
この原子炉格納容器内の温度を検出する温度センサを備え、原子炉格納容器内に超音波を送波して水位を検出する超音波センサと、
を具備し、
前記超音波センサにより前記原子炉格納容器の水位を検出すると共に、この水位検出値を、前記温度センサにより検出した温度により補正することを特徴とする原子炉格納容器水位温度計測装置。
A reactor containment that houses the reactor pressure vessel;
An ultrasonic sensor that detects the temperature in the reactor containment vessel, detects the water level by transmitting ultrasonic waves into the reactor containment vessel, and
Comprising
A reactor containment vessel water level temperature measuring apparatus, wherein the ultrasonic sensor detects the water level of the reactor containment vessel, and corrects the detected water level based on the temperature detected by the temperature sensor.
JP2011247958A 2011-11-11 2011-11-11 Containment vessel water level temperature measurement device Active JP5762928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247958A JP5762928B2 (en) 2011-11-11 2011-11-11 Containment vessel water level temperature measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247958A JP5762928B2 (en) 2011-11-11 2011-11-11 Containment vessel water level temperature measurement device

Publications (2)

Publication Number Publication Date
JP2013104749A true JP2013104749A (en) 2013-05-30
JP5762928B2 JP5762928B2 (en) 2015-08-12

Family

ID=48624397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247958A Active JP5762928B2 (en) 2011-11-11 2011-11-11 Containment vessel water level temperature measurement device

Country Status (1)

Country Link
JP (1) JP5762928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101624231B1 (en) 2014-11-24 2016-05-25 한국수력원자력 주식회사 System for measuring temperature of nuclear reactor and Method for estimating status of nuclear reactor using the same
KR101711523B1 (en) * 2015-12-09 2017-03-02 한국수력원자력 주식회사 System for monitoring the reactor bottom cavity and the method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158522A (en) * 1981-03-27 1982-09-30 Hitachi Ltd Detecting apparatus of water level of pressure vessel of nuclear reactor
JPS58202895A (en) * 1982-05-21 1983-11-26 日本原子力事業株式会社 Reactor container monitoring device
JPH05302992A (en) * 1992-04-28 1993-11-16 Hitachi Ltd Complex detector inside of reactor containment
JPH10153681A (en) * 1996-11-22 1998-06-09 Mitsubishi Heavy Ind Ltd Water level measuring device for pressure suppression pool
JPH11118976A (en) * 1997-10-09 1999-04-30 Toshiba Corp Water level detector of reactor containment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158522A (en) * 1981-03-27 1982-09-30 Hitachi Ltd Detecting apparatus of water level of pressure vessel of nuclear reactor
JPS58202895A (en) * 1982-05-21 1983-11-26 日本原子力事業株式会社 Reactor container monitoring device
JPH05302992A (en) * 1992-04-28 1993-11-16 Hitachi Ltd Complex detector inside of reactor containment
JPH10153681A (en) * 1996-11-22 1998-06-09 Mitsubishi Heavy Ind Ltd Water level measuring device for pressure suppression pool
JPH11118976A (en) * 1997-10-09 1999-04-30 Toshiba Corp Water level detector of reactor containment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101624231B1 (en) 2014-11-24 2016-05-25 한국수력원자력 주식회사 System for measuring temperature of nuclear reactor and Method for estimating status of nuclear reactor using the same
KR101711523B1 (en) * 2015-12-09 2017-03-02 한국수력원자력 주식회사 System for monitoring the reactor bottom cavity and the method therefor

Also Published As

Publication number Publication date
JP5762928B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
ES2643467T3 (en) System to monitor the oil level and detect leaks in power transformers, reactors, current and potential transformers, high voltage insulators and the like
JP5787729B2 (en) Water level temperature measuring device
ES2683671T3 (en) Pipe apparatus and method
US9666351B2 (en) Device comprising a high voltage apparatus including a fluid and equipment for detecting one or more physical properties of the fluid
JP5980500B2 (en) Reactor water level gauge
RU2654380C2 (en) Method for quantitative analysis of composition of gas mixture and associated measuring device
US11217352B2 (en) Method for housing nuclear reactor modules
JP5762928B2 (en) Containment vessel water level temperature measurement device
US10395785B2 (en) Transportable monitoring system
JP6591770B2 (en) Reactor temperature measurement device, molten state detection device, and water level measurement device in an emergency
US8806970B2 (en) Sealing device for a device for measuring the fill level in a fluid container
JP2010151764A (en) Heat retaining system
KR20080072387A (en) Temperature sensor system for cargo tank of mark iii lng carrier
CN105571675B (en) A kind of gas pipeline safety monitoring system and its monitoring method
JP6489904B2 (en) Reactor water level measurement method and apparatus during emergency
CN105547414B (en) A kind of gas pipeline monitoring system and its monitoring method
JP2010014448A (en) Damage monitoring sensor and damage monitoring method
JP2014211345A (en) Liquid level detection device
JP2013083591A (en) Water level measuring device
JP4701198B2 (en) Water level measuring device for suppression chamber
JP6049280B2 (en) Water storage pit monitoring system and spent fuel storage facility
KR101763042B1 (en) liquid identifying electrode sensor for CO2 temporary storage tank of carbon dioxide capture and storage
JP6896586B2 (en) Reactor water level gauge
JP2016194420A (en) Atomic reactor water level measuring method in emergency, apparatus for the same, and method of pouring water into atomic reactor
JP2018025503A (en) Liquid level measurement device, liquid level measurement evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R151 Written notification of patent or utility model registration

Ref document number: 5762928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151