JP2013104380A - Regenerating device of exhaust emission control device - Google Patents

Regenerating device of exhaust emission control device Download PDF

Info

Publication number
JP2013104380A
JP2013104380A JP2011249797A JP2011249797A JP2013104380A JP 2013104380 A JP2013104380 A JP 2013104380A JP 2011249797 A JP2011249797 A JP 2011249797A JP 2011249797 A JP2011249797 A JP 2011249797A JP 2013104380 A JP2013104380 A JP 2013104380A
Authority
JP
Japan
Prior art keywords
temperature
exhaust
exhaust gas
dpf
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011249797A
Other languages
Japanese (ja)
Other versions
JP5858224B2 (en
Inventor
Kazuhito Kawashima
川島  一仁
Keisuke Tashiro
圭介 田代
Kenji Hashimoto
賢治 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011249797A priority Critical patent/JP5858224B2/en
Publication of JP2013104380A publication Critical patent/JP2013104380A/en
Application granted granted Critical
Publication of JP5858224B2 publication Critical patent/JP5858224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To surely prevent an excessive temperature rise of an exhaust emission control means and allow regenerating time to be reduced by enabling an accurate temperature control of the exhaust emission control means.SOLUTION: A regenerating device of an exhaust emission control device which regenerates a DPF 21 by increasing temperature of exhaust flowing into the DPF 21 provided to an exhaust passage 20 of an engine 1 through post injection, consists of a first temperature drop function which stops the post injection at regeneration of the DPF 21 and reduces temperature of exhaust flowing into the DPF 21, a second temperature drop function which contains a heat exchange means 53 in a bypass passage 52 by connecting the bypass passage 52 in parallel to the exhaust passage 20 on the upstream side of the DPF 21, controls a flow rate of exhaust passing through the bypass passage 52 and reduces the temperature of exhaust flowing into the DPF 21. On the basis of a temperature state of the DPF 21, the first temperature drop function and second temperature drop function can be selected or both utilized to operate the device.

Description

本発明は、エンジンの排気通路に設けられた排気浄化装置の再生時における温度制御技術に関する。   The present invention relates to a temperature control technique during regeneration of an exhaust purification device provided in an exhaust passage of an engine.

ディーゼルエンジンの排気を浄化する排気浄化装置として、ディーゼルパティキュレートフィルタ(以下、DPFという)が知られている。DPFは、排気通路に設けられ、排気中の微粒子状物質(パティキュレートマター、以下、PMという)を捕集するものである。また、DPFを昇温させて、DPFに捕集されたPMを燃焼・除去し、DPFを再生させる技術が知られている。   A diesel particulate filter (hereinafter referred to as DPF) is known as an exhaust gas purification device that purifies exhaust gas from a diesel engine. The DPF is provided in the exhaust passage and collects particulate matter (particulate matter, hereinafter referred to as PM) in the exhaust. In addition, a technique is known in which the DPF is reheated by raising the temperature of the DPF to combust and remove PM trapped in the DPF.

DPFに堆積しているPMは、炭素を主成分とするすすが多く含まれており、再生時における燃焼によって発熱し、DPFが排気温度より上昇する場合がある。特に、PMが多量に堆積している場合には、PMが一度に燃焼するとDPFの温度が大幅に上昇し、DPFを焼損させる虞がある。
そこで、排気通路に排気冷却装置を備え、排気の温度が過度に高い場合に、排気冷却装置によって排気浄化手段に流入する排気を冷却し、排気浄化手段の過度な温度上昇を防止する技術が提案されている(特許文献1)。
The PM deposited on the DPF contains a large amount of soot containing carbon as a main component, generates heat due to combustion during regeneration, and the DPF may rise above the exhaust temperature. In particular, when a large amount of PM is accumulated, if the PM burns at a time, the temperature of the DPF increases significantly, and the DPF may be burned out.
Therefore, a technology has been proposed in which an exhaust cooling device is provided in the exhaust passage, and when the temperature of the exhaust gas is excessively high, the exhaust gas flowing into the exhaust purification unit is cooled by the exhaust cooling device to prevent an excessive temperature rise of the exhaust purification unit. (Patent Document 1).

特開平5−321640号公報JP-A-5-321640

しかしながら、上記特許文献1では、排気制御弁により排気通路を切換えることで、排気冷却装置を排気が通過するか否かを制御する構成となっている。ここで、燃費及び排気浄化性能を確保するために再生時間を短縮しようとすると、排気浄化手段の温度を極力高い温度に設定することが望ましいが、排気浄化手段が過昇温となるリスクが高まってしまう。そこで、特許文献1においては、大容量の排気冷却装置を採用することで過昇温となるリスクを低減させることが可能であるものの、コストや設置スペースの増加を招くとともに、大容量の排気冷却装置では細かい温度制御が困難となる虞がある。   However, in the said patent document 1, it has the structure which controls whether exhaust_gas | exhaustion passes an exhaust_gas | exhaustion cooling device by switching an exhaust passage with an exhaust control valve. Here, in order to shorten the regeneration time in order to ensure fuel economy and exhaust purification performance, it is desirable to set the temperature of the exhaust purification means as high as possible, but there is an increased risk that the exhaust purification means will overheat. End up. Therefore, in Patent Document 1, although it is possible to reduce the risk of excessive temperature rise by adopting a large-capacity exhaust cooling device, it causes an increase in cost and installation space, and a large-capacity exhaust cooling. There is a risk that fine temperature control becomes difficult in the apparatus.

本発明は、この様な問題を解決するためになされたもので、その目的とするところは、再生時において、排気浄化手段の過度な温度上昇を確実に防止するとともに、精度の良い排気浄化手段の温度制御を可能とし、再生時間を短縮可能な排気浄化装置の再生装置を提供する。   The present invention has been made in order to solve such a problem, and an object of the present invention is to reliably prevent an excessive temperature rise of the exhaust purification means during regeneration and to provide an accurate exhaust purification means. A regenerator for an exhaust gas purification apparatus that can control the temperature of the exhaust gas and that can shorten the regenerative time is provided.

上記の目的を達成するために、請求項1の排気浄化装置の再生装置は、内燃機関の排気通路に設けられた排気浄化手段に流入する排気の温度を上昇させ、排気浄化手段を再生する排気浄化装置の再生装置であって、該排気浄化手段に流入する排気への燃料添加量を制御して、排気への供給熱量を制御する第1の温度制御手段と、排気浄化手段の上流側の排気通路に熱交換手段を備え、熱交換手段を通過する排気の流量を制御して、排気浄化手段に流入する排気からの回収熱量を制御する第2の温度制御手段と、排気浄化手段の温度状態を検出する温度状態検出手段と、温度状態検出手段により検出された排気浄化手段の温度状態に基づいて、第1の温度制御手段及び第2の温度制御手段を選択または併用して作動させる制御手段と、を備えたことを特徴とする。   In order to achieve the above object, a regenerator for an exhaust gas purification device according to claim 1 increases the temperature of the exhaust gas flowing into the exhaust gas purification unit provided in the exhaust passage of the internal combustion engine to regenerate the exhaust gas purification unit. A regenerator for a purifying device, wherein the first temperature control means for controlling the amount of heat supplied to the exhaust by controlling the amount of fuel added to the exhaust flowing into the exhaust purifying means, and the upstream side of the exhaust purifying means A second temperature control unit that includes a heat exchange unit in the exhaust passage, controls a flow rate of exhaust gas passing through the heat exchange unit, and controls the amount of heat recovered from the exhaust gas flowing into the exhaust gas purification unit; and a temperature of the exhaust gas purification unit Control for selecting or using the first temperature control means and the second temperature control means based on the temperature state detection means for detecting the state and the temperature state of the exhaust purification means detected by the temperature state detection means Means and And wherein the door.

また、請求項2の排気浄化装置の再生装置は、請求項1において、第1の温度制御手段は、排気浄化手段の再生時において燃料添加量を減少させて、排気浄化手段に流入する排気の温度を低下させる第1の温度低下手段を含んでなり、第2の温度制御手段は、排気浄化手段の上流側の排気通路に並列にバイパス路を接続し、当該バイパス路に熱交換手段を備え、排気浄化手段の再生時においてバイパス路を通過する排気の流量を制御して、排気浄化手段に流入する排気の温度を低下させる第2の温度低下手段を含んでなることを特徴とする。   According to a second aspect of the present invention, there is provided a regeneration device for an exhaust gas purification device according to the first aspect, wherein the first temperature control means reduces the amount of fuel added during regeneration of the exhaust gas purification means, and reduces exhaust gas flowing into the exhaust gas purification means. The second temperature control means includes a bypass path connected in parallel to the exhaust passage on the upstream side of the exhaust purification means, and includes a heat exchange means in the bypass path. The exhaust gas purifying means includes a second temperature lowering means for controlling the flow rate of the exhaust gas passing through the bypass path and lowering the temperature of the exhaust gas flowing into the exhaust gas purifying means.

また、請求項3の排気浄化装置の再生装置は、請求項1または2において、制御手段は、温度検出手段により検出された排気浄化手段の温度状態に基づいて、前記排気浄化手段の過昇温の可能性を判定し、当該過昇温の可能性に基づいて前記第1の温度低下手段よりも前記第2の温度低下手段を優先して作動させることを特徴とする。
また、請求項4の排気浄化装置の再生装置は、請求項2または3において、制御手段は、排気浄化手段の温度と排気浄化手段の温度上昇率とに基づいて、排気浄化手段の温度状態を判定することを特徴とする。
According to a third aspect of the present invention, there is provided a regeneration device for an exhaust purification device according to the first or second aspect, wherein the control means is configured to overheat the exhaust purification means based on the temperature state of the exhaust purification means detected by the temperature detection means. The second temperature lowering means is operated in preference to the first temperature lowering means based on the possibility of excessive temperature rise.
According to a fourth aspect of the present invention, there is provided a regeneration device for an exhaust purification device according to the second or third aspect, wherein the control means controls the temperature state of the exhaust purification means based on the temperature of the exhaust purification means and the temperature increase rate of the exhaust purification means. It is characterized by determining.

請求項1の発明によれば、第1の温度制御手段は、燃料添加量を増減させて排気浄化手段に流入する排気の温度を制御するので、排気浄化手段の温度を大きく変化させることができる。
また、第2の温度制御手段は、熱交換手段に排気を通過させて排気の温度を制御するので、排気温度を迅速に変化させることが可能となり、排気浄化手段の温度をタイミング良く変化させて排気浄化手段の温度制御を精度良く行うことができる。
According to the first aspect of the present invention, the first temperature control means controls the temperature of the exhaust gas flowing into the exhaust purification means by increasing / decreasing the fuel addition amount, so that the temperature of the exhaust purification means can be greatly changed. .
Further, since the second temperature control means controls the temperature of the exhaust gas by passing the exhaust gas through the heat exchanging means, the exhaust temperature can be changed quickly, and the temperature of the exhaust gas purification means can be changed in a timely manner. The temperature control of the exhaust purification means can be performed with high accuracy.

そして、排気浄化手段の温度状態に基づいて、第1の温度制御手段及び第2の温度制御手段を選択または併用して作動させており、このように特性の異なる2つの温度制御手段を排気浄化手段の温度状態に基づいて適宜用いることで、排気浄化手段の温度を精度良く制御することが可能となる。
請求項2の発明によれば、第1の温度低下手段は、内燃機関における燃料噴射量を減少させて排気浄化手段に流入する排気の温度を低下させるので、再生時において排気浄化手段の温度を大きく低下させることができる。
Then, based on the temperature state of the exhaust purification means, the first temperature control means and the second temperature control means are selected or used in combination, and thus the two temperature control means having different characteristics are exhausted. By appropriately using the temperature based on the temperature state of the means, the temperature of the exhaust purification means can be accurately controlled.
According to the second aspect of the present invention, the first temperature reduction means reduces the temperature of the exhaust gas flowing into the exhaust gas purification means by reducing the fuel injection amount in the internal combustion engine. It can be greatly reduced.

また、第2の温度低下手段は、熱交換手段に排気を通過させて排気の温度を低下させるので、排気温度を迅速に低下させることが可能となり、再生時に排気浄化手段の温度をタイミング良く低下させて排気浄化手段の温度制御を精度良く行うことができる。
そして、排気浄化手段の再生時において、排気浄化手段の温度状態に基づいて、第1の温度低下手段及び第2の温度低下手段を選択または併用して作動させており、このように特性の異なる2つの温度低下手段を排気浄化手段の温度状態に基づいて適宜用いることで、排気浄化手段の過度な温度上昇を確実に防止できるとともに、排気浄化手段の温度を精度良く制御することが可能となる。よって、再生時における排気浄化手段の目標温度を高く設定することが可能となり、再生時間の短縮化を図ることができる。
Further, since the second temperature lowering means causes the exhaust gas to pass through the heat exchanging means and lowers the temperature of the exhaust gas, the exhaust temperature can be lowered quickly, and the temperature of the exhaust gas purifying means can be lowered at the time of regeneration. Thus, the temperature control of the exhaust purification means can be performed with high accuracy.
Then, at the time of regeneration of the exhaust purification means, the first temperature reduction means and the second temperature reduction means are selected or used together based on the temperature state of the exhaust purification means, and thus the characteristics are different. By appropriately using the two temperature lowering means based on the temperature state of the exhaust purification means, an excessive temperature rise of the exhaust purification means can be surely prevented and the temperature of the exhaust purification means can be accurately controlled. . Therefore, it becomes possible to set the target temperature of the exhaust gas purification means at the time of regeneration high, and the regeneration time can be shortened.

また、請求項3の発明によれば、排気浄化手段の温度状態に基づいて、排気浄化手段の過昇温の可能性を判定し、当該過昇温の可能性に基づいて第1の温度低下手段よりも第2の温度低下手段を優先して作動させるので、第1の温度低下手段よりも第2の温度低下手段の作動機会を増やして、排気浄化手段の温度制御をより精度良く行うことができる。
また、請求項4の発明によれば、排気浄化手段の温度だけでなく、排気浄化手段の温度上昇率も合わせて排気浄化手段の温度状態が判定されるので、排気浄化手段が過昇温になるリスクをより正確に判定することができる。よって、この排気浄化手段の温度状態に基づいて排気浄化手段に流入する排気の温度を低下させることで、排気浄化手段の過昇温をより確実に回避することが可能となる。
According to the invention of claim 3, the possibility of excessive temperature rise of the exhaust purification means is determined based on the temperature state of the exhaust purification means, and the first temperature drop is determined based on the possibility of excessive temperature rise. Since the second temperature lowering means is operated in preference to the first means, the operation opportunities of the second temperature lowering means are increased over the first temperature lowering means, and the temperature control of the exhaust purification means is performed with higher accuracy. Can do.
According to the invention of claim 4, since the temperature state of the exhaust purification means is determined not only by the temperature of the exhaust purification means but also by the temperature increase rate of the exhaust purification means, the exhaust purification means is overheated. Can be more accurately determined. Therefore, by reducing the temperature of the exhaust gas flowing into the exhaust gas purification unit based on the temperature state of the exhaust gas purification unit, it is possible to more reliably avoid the excessive temperature rise of the exhaust gas purification unit.

本発明の第1の実施形態の排気浄化装置の再生装置が適用されたディーゼルエンジンの吸排気系の構成図である。1 is a configuration diagram of an intake / exhaust system of a diesel engine to which a regeneration device for an exhaust gas purification apparatus according to a first embodiment of the present invention is applied. 本発明の第1の実施形態における排気熱回収装置の構造図である。1 is a structural diagram of an exhaust heat recovery apparatus according to a first embodiment of the present invention. 温度低下機能の選択用マップである。It is a map for selection of a temperature fall function.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明の第1の実施形態の排気浄化装置の再生装置が適用されたディーゼルエンジン(以下、エンジン1という)の吸排気系の構成を示している。
エンジン1は、例えば車両に搭載されたコモンレール式直列多気筒のディーゼルエンジンである。エンジン1のシリンダヘッド2には、燃焼室3内に燃料を噴射する電磁式の燃料噴射弁4が気筒毎に設けられている。各燃料噴射弁4は図示しないコモンレールに接続されており、コモンレールから、高圧の燃料が供給される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an intake / exhaust system of a diesel engine (hereinafter referred to as an engine 1) to which a regeneration device for an exhaust gas purification apparatus according to a first embodiment of the present invention is applied.
The engine 1 is, for example, a common rail type in-line multi-cylinder diesel engine mounted on a vehicle. The cylinder head 2 of the engine 1 is provided with an electromagnetic fuel injection valve 4 for injecting fuel into the combustion chamber 3 for each cylinder. Each fuel injection valve 4 is connected to a common rail (not shown), and high-pressure fuel is supplied from the common rail.

エンジン1の吸気通路10には、吸入空気量を調節する電磁式の吸気絞り弁11と、その上流側に吸気流量を検出するエアフローセンサ12が設けられている。
エンジン1の排気通路20には、排気中の微粒子状物質(PM)を捕集するディーゼルパティキュレートフィルタ(DPF21:排気浄化手段)が備えられている。DPF21は、例えば、ハニカム担体の通路の上流側及び下流側を交互にプラグで閉鎖し、通路を形成する多孔質の壁にプラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持して形成されている。
An intake passage 10 of the engine 1 is provided with an electromagnetic intake throttle valve 11 that adjusts the intake air amount, and an airflow sensor 12 that detects an intake air flow rate upstream thereof.
The exhaust passage 20 of the engine 1 is provided with a diesel particulate filter (DPF21: exhaust purification means) that collects particulate matter (PM) in the exhaust. For example, the DPF 21 is formed by alternately closing the upstream and downstream sides of the passage of the honeycomb carrier with plugs, and a catalytic noble metal such as platinum (Pt), palladium (Pd), and rhodium (Rh) on the porous wall forming the passage. Is formed.

また、DPF21の上流側の排気通路20には、酸化触媒(以下、DOC22という)が設けられている。DOC22は、例えば、通路を形成する多孔質の壁にプラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持して形成されており、排気中のCO及びHCを酸化させてCO2及びH2Oに変換させるとともに、排気中のNOを酸化させてNO2を生成する機能を有する。 The exhaust passage 20 upstream of the DPF 21 is provided with an oxidation catalyst (hereinafter referred to as DOC22). The DOC 22 is formed, for example, by supporting a catalyst noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) on a porous wall forming a passage, and oxidizes CO and HC in the exhaust. together is converted to CO 2 and H 2 O Te has a function of NO in the exhaust is oxidized to generate NO 2.

また、酸化触媒22の下流側には、酸化触媒22を通過した直後の排気温度を検出する排気温度センサ30が備えられている。DPF21の下流側には、DPF21通過直後の排気温度を検出する排気温度センサ31が設けられている。更に、DPF21の上流側と下流側との差圧を検出する差圧センサ32が設けられている。
電子コントロールユニット(以下、ECU40という)(制御手段)は、エンジン1の運転制御をはじめとして総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)等を含んで構成されている。
Further, an exhaust gas temperature sensor 30 that detects the exhaust gas temperature immediately after passing through the oxidation catalyst 22 is provided on the downstream side of the oxidation catalyst 22. An exhaust gas temperature sensor 31 that detects the exhaust gas temperature immediately after passing through the DPF 21 is provided on the downstream side of the DPF 21. Further, a differential pressure sensor 32 that detects a differential pressure between the upstream side and the downstream side of the DPF 21 is provided.
An electronic control unit (hereinafter referred to as ECU 40) (control means) is a control device for performing comprehensive control including operation control of the engine 1, and includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM). Etc.), a central processing unit (CPU) and the like.

ECU40の入力側には、上述したエアフローセンサ12、排気温度センサ30,31及び差圧センサ32の他に、クランク角を検出するクランク角センサ33、アクセルペダルの踏込量を検出するアクセルポジションセンサ34、及び車速を検出する車速センサ35等が接続されており、これらセンサ類からの検出情報が入力される。
一方、ECU40の出力側には、燃料噴射弁4、吸気絞り弁11等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づきECU40において演算された燃料噴射量、燃料噴射時期等がそれぞれ出力され、これにより、適正なタイミングで吸気絞り弁11及び燃料噴射弁4等の制御が実施される。
On the input side of the ECU 40, in addition to the air flow sensor 12, the exhaust temperature sensors 30, 31 and the differential pressure sensor 32 described above, a crank angle sensor 33 for detecting the crank angle, and an accelerator position sensor 34 for detecting the depression amount of the accelerator pedal. , And a vehicle speed sensor 35 for detecting the vehicle speed are connected, and detection information from these sensors is input.
On the other hand, various output devices such as the fuel injection valve 4 and the intake throttle valve 11 are connected to the output side of the ECU 40, and the fuel calculated by the ECU 40 based on detection information from various sensors is connected to these various output devices. The injection amount, the fuel injection timing, and the like are output, and thereby the intake throttle valve 11 and the fuel injection valve 4 are controlled at an appropriate timing.

上記のようにDPF21の上流にDOC22が配置されていると、通常のエンジン運転時には、DOC22において生成されたNO2がDPF21に流入し、DPF21に捕集され堆積しているPM中の炭素成分である煤と反応してこれを酸化させる。酸化した煤はCO2となり、DPF21から除去され、これによりDPF21が連続的に再生される連続再生が行われる。 When the DOC 22 is arranged upstream of the DPF 21 as described above, NO 2 generated in the DOC 22 flows into the DPF 21 during normal engine operation, and is a carbon component in PM collected and accumulated in the DPF 21. It reacts with a certain trap to oxidize it. Oxidized soot becomes CO 2 and is removed from the DPF 21, whereby continuous regeneration is performed in which the DPF 21 is continuously regenerated.

一方、エンジン1の運転状況によっては、上記連続再生だけではDPF21の再生が十分に行われない場合がある。そこで、ECU40は、エンジン1の運転を制御してDPF21を強制再生させる機能(再生装置)を有している。
詳しくは、ECU40は、差圧センサ32にて検出される差圧よりDPF21におけるPMの堆積量を算出する。算出された堆積量が予め実験にて設定された許容堆積量以上となると、排気温度センサ31により検出したDPF21通過後の排気温度、即ちDPF21の温度が、強制再生温度の目標値である目標再生温度となるように強制再生温度を昇温させる。
On the other hand, depending on the operating condition of the engine 1, the DPF 21 may not be sufficiently regenerated only by the continuous regeneration. Therefore, the ECU 40 has a function (regeneration device) for controlling the operation of the engine 1 to forcibly regenerate the DPF 21.
Specifically, the ECU 40 calculates the PM accumulation amount in the DPF 21 from the differential pressure detected by the differential pressure sensor 32. When the calculated accumulation amount is equal to or greater than the allowable accumulation amount set in advance in the experiment, the exhaust temperature after passing through the DPF 21 detected by the exhaust temperature sensor 31, that is, the temperature of the DPF 21, is a target regeneration whose target value is the forced regeneration temperature. The forced regeneration temperature is raised so as to reach the temperature.

当該強制再生は、エンジン1の運転時における燃料の主噴射の後の例えば膨張行程以降に強制再生温度となるように燃料のポスト噴射(副噴射)を行い、未燃燃料(HC、CO等)を含んだ排気を排気通路20に排出させることによって行われる。排気中に混入された未燃燃料は、DOC22に流入して酸化され、酸化の反応熱によって排気温度を上昇させる。これにより、高温の排気が排気下流側のDPF21に流入して当該DPF21に堆積したPMを加熱し燃焼させ、DPF21を強制的に再生させることが可能である。   In the forced regeneration, post-injection (sub-injection) of fuel is performed so that the forced regeneration temperature is reached after, for example, the expansion stroke after the main injection of fuel during operation of the engine 1, and unburned fuel (HC, CO, etc.) Exhaust gas containing the gas is discharged into the exhaust passage 20. The unburned fuel mixed in the exhaust flows into the DOC 22 and is oxidized, and the exhaust temperature is raised by the reaction heat of oxidation. As a result, the high-temperature exhaust gas flows into the DPF 21 on the downstream side of the exhaust gas, and the PM deposited on the DPF 21 can be heated and burned to forcibly regenerate the DPF 21.

更に、本実施形態では、排気熱を回収するための排気熱回収装置50を備えている。
排気熱回収装置50は、DOC22とDPF21との間の排気通路20の一部である主排気通路51に対して並列に設けられたバイパス路52と、バイパス路52に設けられた熱交換器53(熱交換手段)と、主排気通路51とバイパス路52との分岐部に設けられた開閉弁54とにより構成されている。
Further, in the present embodiment, an exhaust heat recovery device 50 for recovering exhaust heat is provided.
The exhaust heat recovery device 50 includes a bypass passage 52 provided in parallel to the main exhaust passage 51 that is a part of the exhaust passage 20 between the DOC 22 and the DPF 21, and a heat exchanger 53 provided in the bypass passage 52. (Heat exchange means) and an on-off valve 54 provided at a branch portion between the main exhaust passage 51 and the bypass passage 52.

熱交換器53は、エンジン1の冷却水が導入されており、バイパス路52を通過する排気と冷却水との間で熱交換を行う機能を有する。
開閉弁34は、ECU40により作動制御され、主排気通路51を開閉する機能を有し、主排気通路51を全開とする全開状態と主排気通路51を全閉とする全閉状態との間で切り換え可能である。バイパス通路52は主排気通路51より流路断面積が小さく、また熱交換器53が備えられているため、流路抵抗が大きいので、開閉弁54が全開状態では酸化触媒22から排出された排気の多くが主排気通路51を通過する。一方、開閉弁54が全閉状態では、酸化触媒22から排出された排気は全てバイパス通路52を通過する。したがって、開閉弁54は、酸化触媒22から排出された排気がバイパス路52、及び主排気通路51のいずれかを通過するように流路を切換える機能と同等の機能を有する。
The heat exchanger 53 is introduced with cooling water of the engine 1 and has a function of exchanging heat between the exhaust gas passing through the bypass passage 52 and the cooling water.
The on-off valve 34 is controlled by the ECU 40 and has a function of opening and closing the main exhaust passage 51, and is between a fully open state in which the main exhaust passage 51 is fully opened and a fully closed state in which the main exhaust passage 51 is fully closed. Switching is possible. The bypass passage 52 has a smaller flow passage cross-sectional area than the main exhaust passage 51 and is provided with a heat exchanger 53. Therefore, the bypass passage 52 has a larger flow passage resistance, so that the exhaust discharged from the oxidation catalyst 22 when the on-off valve 54 is fully opened. Most of them pass through the main exhaust passage 51. On the other hand, when the on-off valve 54 is fully closed, all the exhaust discharged from the oxidation catalyst 22 passes through the bypass passage 52. Therefore, the on-off valve 54 has a function equivalent to the function of switching the flow path so that the exhaust discharged from the oxidation catalyst 22 passes through either the bypass path 52 or the main exhaust path 51.

そして、ECU40がバイパス路52を排気が通過するように開閉弁54を作動制御することで、熱交換器53によって、バイパス路52を通過する排気と冷却水との間で熱交換が行われ、排気熱を回収することができる。
ECU40は、エンジン1の冷態始動時(例えば、冷却水温度が所定温度以下である場合)において、バイパス路52を排気が通過するように開閉弁34を閉作動制御する。これにより、エンジン1の冷却水が暖められるので、エンジン1の冷態始動時において、排気熱を利用して暖機を促し、暖機運転時間を短縮させることができる。
Then, the ECU 40 controls the opening / closing valve 54 so that the exhaust gas passes through the bypass passage 52, so that heat exchange is performed between the exhaust gas passing through the bypass passage 52 and the cooling water by the heat exchanger 53. Exhaust heat can be recovered.
The ECU 40 controls the closing of the on-off valve 34 so that the exhaust gas passes through the bypass 52 when the engine 1 is cold-started (for example, when the coolant temperature is equal to or lower than a predetermined temperature). Thereby, since the cooling water of the engine 1 is warmed, when the engine 1 is cold-started, warm-up can be promoted using exhaust heat, and the warm-up operation time can be shortened.

更に、本実施形態のエンジン1には、上記強制再生時において、DPF21の過剰な温度上昇を防止すべく、DPF21に流入する排気温度を低下させる温度低下機能が2つ備えられている。
2つの温度低下機能のうちの第1の温度低下機能(第1の温度低下手段、第1の温度制御手段)では、ECU40は、強制再生時におけるポスト噴射を停止するように燃料噴射弁4を作動制御する。これにより、DOC22への未燃燃料の供給が停止され、DOC22での酸化が抑えられて、DPF21に流入する排気の温度が低下する。
Further, the engine 1 of the present embodiment is provided with two temperature lowering functions for lowering the exhaust gas temperature flowing into the DPF 21 in order to prevent an excessive temperature rise of the DPF 21 during the forced regeneration.
In the first temperature reduction function (first temperature reduction means, first temperature control means) of the two temperature reduction functions, the ECU 40 causes the fuel injection valve 4 to stop post injection during forced regeneration. Control the operation. Thereby, the supply of unburned fuel to the DOC 22 is stopped, oxidation at the DOC 22 is suppressed, and the temperature of the exhaust gas flowing into the DPF 21 is lowered.

また、2つの温度低下機能のうちの第2の温度低下機能(第2の温度低下手段、第2の温度制御手段)では、ECU40は、バイパス路52を排気が通過するように開閉弁54を作動制御する。これにより、バイパス路52を通過する排気が熱交換器53において冷却水と熱交換して排気温度が低下する。
ECU40は、強制再生時において、DPF21の温度状態に基づいて、上記第1の温度低下機能及び第2の温度低下機能を選択、あるいは併用して実行させる。
In the second temperature reduction function (second temperature reduction means, second temperature control means) of the two temperature reduction functions, the ECU 40 opens the on-off valve 54 so that the exhaust gas passes through the bypass passage 52. Control the operation. As a result, the exhaust gas passing through the bypass passage 52 exchanges heat with the cooling water in the heat exchanger 53, and the exhaust gas temperature decreases.
The ECU 40 selects or executes the first temperature lowering function and the second temperature lowering function based on the temperature state of the DPF 21 during forced regeneration.

図3は、温度低下機能の選択用マップである。
詳しくは、ECU40は、強制再生時において、排気温度センサ31から排気温度をDPF温度として逐次入力し、当該DPF温度と単位時間あたりのDPF温度の上昇量であるDPF温度上昇率とに基づいて、図3を用いて、DPF21が過昇温となるリスクをゾーン1〜3の3段階に判定する。
FIG. 3 is a map for selecting the temperature lowering function.
Specifically, during forced regeneration, the ECU 40 sequentially inputs the exhaust temperature from the exhaust temperature sensor 31 as the DPF temperature, and based on the DPF temperature and the DPF temperature increase rate that is the amount of increase in the DPF temperature per unit time, Using FIG. 3, the risk that the DPF 21 is overheated is determined in three stages of zones 1 to 3.

図3に示すように、DPF温度が低温、及びDPF温度上昇率が低上昇率である場合には、過昇温のリスクが低いゾーン1に、高温及び高上昇率では過昇温のリスクが高いゾーン3に、更にゾーン1とゾーン2の間に過昇温のリスクが中程度であるゾーン2に判定するよう設定されている。
そして、ECU40は、ゾーン1では、上記第1の温度低下機能及び第2の温度低下機能のいずれも実行させず、強制再生をそのまま実施させる。
As shown in FIG. 3, when the DPF temperature is low and the DPF temperature increase rate is a low increase rate, the risk of overheating is high in the zone 1 where the risk of overheating is low, and at the high temperature and high increasing rate. The high zone 3 is set to be determined to be zone 2 in which the risk of overheating is moderate between zone 1 and zone 2.
Then, in the zone 1, the ECU 40 does not execute any of the first temperature lowering function and the second temperature lowering function, and performs forced regeneration as it is.

ゾーン2では、上記2つの温度低下機能のうち第2の温度低下機能のみ実行させる。
ゾーン3では、上記第1の温度低下機能及び第2の温度低下機能のいずれも実行させる。
以上のように制御することで、本実施形態では、強制再生時において、第1の温度低下機能及び第2の温度低下機能を選択または併用して、DPF21の温度上昇を規制するようにしている。詳しくは、DPF21の温度状態が、過昇温のリスクが低い場合には第1の温度低下機能及び第2の温度低下機能のいずれも作動させず、過昇温のリスクが中程度の場合には、第2の温度低下機能のみ実行させる。更に、過昇温のリスクが高い場合には、第1の温度低下機能及び第2の温度低下機能の両方を実行させる。
In zone 2, only the second temperature lowering function of the two temperature lowering functions is executed.
In zone 3, both the first temperature lowering function and the second temperature lowering function are executed.
By controlling as described above, in the present embodiment, at the time of forced regeneration, the temperature rise of the DPF 21 is regulated by selecting or using the first temperature lowering function and the second temperature lowering function. . Specifically, when the temperature state of the DPF 21 is low in the risk of overheating, neither the first temperature lowering function nor the second temperature lowering function is operated, and the risk of overheating is moderate. Causes only the second temperature lowering function to be executed. Furthermore, when the risk of overheating is high, both the first temperature lowering function and the second temperature lowering function are executed.

第1の温度低下機能は、ポスト噴射を停止するように燃料噴射弁4を作動制御するので、DPF温度を大幅に低下させることが可能である。また、ポスト噴射を停止させるので、無駄な燃料消費を抑えることができる。
第2の温度低下機能は、熱交換器53に排気を通過させることで瞬時に排気を冷却させることが可能である。よって、DPF21の温度を応答性良く適切なタイミングで低下させることが可能であり、DPF21の温度調整を精度良く行うことが可能である。
Since the first temperature lowering function controls the operation of the fuel injection valve 4 so as to stop the post-injection, the DPF temperature can be significantly reduced. Moreover, since post injection is stopped, wasteful fuel consumption can be suppressed.
The second temperature lowering function can cool the exhaust gas instantaneously by passing the exhaust gas through the heat exchanger 53. Therefore, the temperature of the DPF 21 can be lowered at an appropriate timing with good responsiveness, and the temperature of the DPF 21 can be adjusted with high accuracy.

このように、本実施形態では、2つの特性の異なる温度低下機能を備えており、過昇温のリスクの程度に応じてこれらの温度低下機能を選択及び併用するので、DPF21の過度な温度上昇を確実に防止することができるとともに、DPF21の温度を迅速にタイミング良く低下させることが可能となる。よって、再生時においてDPF21の温度を極力高く設定することが可能となり、再生時間の短縮化を図ることができる。   As described above, in this embodiment, two temperature lowering functions having different characteristics are provided, and these temperature lowering functions are selected and used in accordance with the degree of the risk of excessive temperature rise, so that an excessive temperature rise of the DPF 21 occurs. Can be reliably prevented, and the temperature of the DPF 21 can be quickly lowered with good timing. Therefore, the temperature of the DPF 21 can be set as high as possible during regeneration, and the regeneration time can be shortened.

更に、本実施形態では、過昇温のリスクが中程度のゾーン2では第2の温度低下機能を実施し、過昇温のリスクが高いゾーン3では第2の温度低下機能と第1の温度低下機能を実施するので、第1の温度低下機能よりも第2の温度低下機能を優先して実施されることとなる。したがって、第1の温度低下機能よりも第2の温度低下機能の実施機会が増加し、DPF21の温度を迅速にタイミング良く低下させることが可能となり、DPF21の温度制御をより精度良く行うことが可能となっている。   Further, in the present embodiment, the second temperature lowering function is performed in the zone 2 where the risk of overheating is moderate, and the second temperature lowering function and the first temperature are performed in the zone 3 where the risk of overheating is high. Since the lowering function is implemented, the second temperature lowering function is prioritized over the first temperature lowering function. Therefore, the opportunity for performing the second temperature lowering function is increased as compared with the first temperature lowering function, the temperature of the DPF 21 can be quickly lowered at a good timing, and the temperature control of the DPF 21 can be performed with higher accuracy. It has become.

また、ECU40は、DPF21の温度状態として、DPF21の温度だけでなくDPF21の温度上昇率も合わせて、過昇温のリスクを判定するので、DPF21が過昇温になる危険性をより正確に判定することができ、DPF21の過昇温をより確実に回避することが可能となる。
また、再生時以外においても、第1の温度低下機能及び第2の温度低下機能を適宜選択または併用して実施することで、DPFの温度制御を精度良く行うことが可能である。
Further, since the ECU 40 determines the risk of overheating as the temperature state of the DPF 21 together with the temperature rise rate of the DPF 21 as well as the temperature of the DPF 21, it more accurately determines the risk that the DPF 21 will overheat. It is possible to avoid the excessive temperature rise of the DPF 21 more reliably.
Further, even when the regeneration is not performed, it is possible to accurately control the temperature of the DPF by appropriately selecting or implementing the first temperature lowering function and the second temperature lowering function.

なお、本願発明は、以上の実施形態に限定されるものではない。
例えば、ゾーン2においてDPF21の温度状態を細分化し、この細分化した温度状態に基づく過昇温のリスクに応じて開閉弁54の開度を複数の段階あるいは連続的に変更可能としてもよい。このようにすれば、更にDPF21の温度制御を正確に行うことができる。
In addition, this invention is not limited to the above embodiment.
For example, the temperature state of the DPF 21 may be subdivided in the zone 2, and the opening degree of the on-off valve 54 may be changed in a plurality of steps or continuously according to the risk of excessive temperature rise based on this subdivided temperature state. In this way, the temperature control of the DPF 21 can be further accurately performed.

また、第1の温度低下機能において、ポスト噴射量を停止するのではなく、減少させるように制御してもよい。
また、本発明は、DPFの再生だけでなく、その他のフィルタや触媒等の各種排気浄化装置の温度制御に対して適用可能である。しかしながら、本発明は、DPFのように、堆積している堆積物が再生時に燃焼して過昇温となり易い排気浄化装置に対して特に有効である。
In the first temperature lowering function, the post injection amount may be controlled not to be stopped but to be decreased.
Further, the present invention can be applied not only to the regeneration of the DPF but also to temperature control of various exhaust purification apparatuses such as other filters and catalysts. However, the present invention is particularly effective for an exhaust emission control device such as a DPF, in which accumulated deposits are likely to burn during regeneration and become overheated.

1 エンジン
4 燃料噴射弁
20 排気通路
21 DPF
22 DOC
31 温度センサ
40 ECU
50 排気熱回収装置
52 バイパス路
53 熱交換器
1 Engine 4 Fuel Injection Valve 20 Exhaust Passage 21 DPF
22 DOC
31 Temperature sensor 40 ECU
50 Exhaust heat recovery device 52 Bypass path 53 Heat exchanger

Claims (4)

内燃機関の排気通路に設けられた排気浄化手段に流入する排気の温度を上昇させ、前記排気浄化手段を再生する排気浄化装置の再生装置であって、
該排気浄化手段に流入する排気への燃料添加量を制御して、前記排気への供給熱量を制御する第1の温度制御手段と、
前記排気浄化手段の上流側の排気通路に熱交換手段を備え、前記熱交換手段を通過する排気の流量を制御して、前記排気浄化手段に流入する排気からの回収熱量を制御する第2の温度制御手段と、
前記排気浄化手段の温度状態を検出する温度状態検出手段と、
前記温度状態検出手段により検出された前記排気浄化手段の温度状態に基づいて、前記第1の温度制御手段及び第2の温度制御手段を選択または併用して作動させる制御手段と、を備えたことを特徴とする排気浄化装置の再生装置。
A regeneration device for an exhaust purification device for increasing the temperature of exhaust gas flowing into exhaust purification means provided in an exhaust passage of an internal combustion engine and regenerating the exhaust purification means,
First temperature control means for controlling the amount of heat supplied to the exhaust by controlling the amount of fuel added to the exhaust flowing into the exhaust purification means;
A second heat exchanger for controlling the amount of heat recovered from the exhaust gas flowing into the exhaust gas purification device by controlling a flow rate of the exhaust gas passing through the heat exchange device; Temperature control means;
Temperature state detection means for detecting a temperature state of the exhaust purification means;
Control means for selecting or operating the first temperature control means and the second temperature control means based on the temperature state of the exhaust gas purification means detected by the temperature state detection means. A regenerator for an exhaust gas purification device.
前記第1の温度制御手段は、前記排気浄化手段の再生時において前記燃料添加量を減少させて、前記排気浄化手段に流入する排気の温度を低下させる第1の温度低下手段を含んでなり、
前記第2の温度制御手段は、前記排気浄化手段の上流側の排気通路に並列にバイパス路を接続し、当該バイパス路に前記熱交換手段を備え、前記排気浄化手段の再生時において前記バイパス路を通過する排気の流量を制御して、前記排気浄化手段に流入する排気の温度を低下させる第2の温度低下手段を含んでなることを特徴とする請求項1に記載の排気浄化装置の再生装置。
The first temperature control means includes first temperature lowering means for reducing the temperature of exhaust flowing into the exhaust purification means by reducing the amount of fuel added during regeneration of the exhaust purification means,
The second temperature control means includes a bypass path connected in parallel to an exhaust passage upstream of the exhaust purification means, the heat exchange means is provided in the bypass path, and the bypass path is provided during regeneration of the exhaust purification means. The regeneration of the exhaust gas purification apparatus according to claim 1, further comprising a second temperature reducing means for controlling the flow rate of the exhaust gas passing through the exhaust gas to lower the temperature of the exhaust gas flowing into the exhaust gas purification means. apparatus.
前記制御手段は、前記温度状態検出手段により検出された前記排気浄化手段の温度状態に基づいて、前記排気浄化手段の過昇温の可能性を判定し、当該過昇温の可能性に基づいて前記第1の温度低下手段よりも前記第2の温度低下手段を優先して作動させることを特徴とする請求項2に記載の排気浄化装置の再生装置。   The control means determines the possibility of overheating of the exhaust purification means based on the temperature state of the exhaust purification means detected by the temperature state detection means, and based on the possibility of overheating. The regeneration device for an exhaust gas purification apparatus according to claim 2, wherein the second temperature lowering means is operated with priority over the first temperature lowering means. 前記制御手段は、前記排気浄化手段の温度と前記排気浄化手段の温度上昇率とに基づいて、前記排気浄化手段の温度状態を判定することを特徴とする請求項2または3に記載の排気浄化装置の再生装置。   The exhaust gas purification unit according to claim 2 or 3, wherein the control unit determines a temperature state of the exhaust gas purification unit based on a temperature of the exhaust gas purification unit and a temperature increase rate of the exhaust gas purification unit. Device playback device.
JP2011249797A 2011-11-15 2011-11-15 Exhaust purification device regenerator Expired - Fee Related JP5858224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249797A JP5858224B2 (en) 2011-11-15 2011-11-15 Exhaust purification device regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249797A JP5858224B2 (en) 2011-11-15 2011-11-15 Exhaust purification device regenerator

Publications (2)

Publication Number Publication Date
JP2013104380A true JP2013104380A (en) 2013-05-30
JP5858224B2 JP5858224B2 (en) 2016-02-10

Family

ID=48624124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249797A Expired - Fee Related JP5858224B2 (en) 2011-11-15 2011-11-15 Exhaust purification device regenerator

Country Status (1)

Country Link
JP (1) JP5858224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234950A (en) * 2013-06-03 2014-12-15 株式会社豊田自動織機 Chemical heat accumulating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242086A (en) * 2005-03-02 2006-09-14 Mitsubishi Motors Corp Exhaust emission control device
JP2008115728A (en) * 2006-11-01 2008-05-22 Mazda Motor Corp Exhaust emission control device and exhaust emission control method
JP2008138564A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Engine exhaust system provided with dpf device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242086A (en) * 2005-03-02 2006-09-14 Mitsubishi Motors Corp Exhaust emission control device
JP2008115728A (en) * 2006-11-01 2008-05-22 Mazda Motor Corp Exhaust emission control device and exhaust emission control method
JP2008138564A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Engine exhaust system provided with dpf device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234950A (en) * 2013-06-03 2014-12-15 株式会社豊田自動織機 Chemical heat accumulating device

Also Published As

Publication number Publication date
JP5858224B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP3992057B2 (en) Exhaust gas purification system control method and exhaust gas purification system
US8549843B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
JP4673226B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4017010B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3988785B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2006274986A (en) Exhaust gas aftertreatment device
WO2007010701A1 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
JP5830832B2 (en) Filter regeneration device
JP2010031833A (en) Exhaust emission control device for diesel engine
WO2016125738A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP5761517B2 (en) Engine exhaust heat recovery device
JP2004150416A (en) Regeneration method for particulate filter
JP4012037B2 (en) Exhaust purification equipment
JP4895019B2 (en) Exhaust gas purification device for internal combustion engine
JP5516888B2 (en) Exhaust gas purification device for internal combustion engine
JP5858224B2 (en) Exhaust purification device regenerator
WO2007010699A1 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
JP5858225B2 (en) Exhaust purification device temperature control device
JP4998109B2 (en) Exhaust gas purification system and exhaust gas purification method
JP4349096B2 (en) Exhaust gas purification device for internal combustion engine
WO2011129051A1 (en) Combustion/temperature increase control method and device for after-treatment burner system
JP2016173037A (en) Exhaust emission control system
JP6197663B2 (en) EGR control device
JP2010270617A (en) Exhaust emission control system and method for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R151 Written notification of patent or utility model registration

Ref document number: 5858224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees