JP2013103979A - Latent heat storage body and latent heat storage unit, and first time melting method of latent heat storage body - Google Patents

Latent heat storage body and latent heat storage unit, and first time melting method of latent heat storage body Download PDF

Info

Publication number
JP2013103979A
JP2013103979A JP2011248136A JP2011248136A JP2013103979A JP 2013103979 A JP2013103979 A JP 2013103979A JP 2011248136 A JP2011248136 A JP 2011248136A JP 2011248136 A JP2011248136 A JP 2011248136A JP 2013103979 A JP2013103979 A JP 2013103979A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
storage body
container
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011248136A
Other languages
Japanese (ja)
Other versions
JP5912437B2 (en
Inventor
Tomoyuki Kishinami
智之 岸浪
Tomoaki Tadama
智明 田玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel and Sumitomo Metal Corp
Nisshin Steel Co Ltd
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel and Sumitomo Metal Corp, Nisshin Steel Co Ltd, Nippon Steel and Sumikin Engineering Co Ltd filed Critical JFE Steel Corp
Priority to JP2011248136A priority Critical patent/JP5912437B2/en
Publication of JP2013103979A publication Critical patent/JP2013103979A/en
Application granted granted Critical
Publication of JP5912437B2 publication Critical patent/JP5912437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a latent heat storage body and a latent heat storage unit in which an expensive heater or the like is not needed, the outflow of the latent heat storage body is not caused, and that enable the shortening of the required time of the first melting of the latent heat storage body, and to provide a first time melting method of the latent heat storage body.SOLUTION: The latent heat storage body 2 is composed of a fibrous material, is characterized in that the density after melting is larger than that of a heating medium 3, and by not being dissolved in the heating medium 3, and directly contacts with the heating medium 3 and exchanges heat. It is desirable that the bulk density/true density of the fibrous material is at least 0.001 and at most 0.7, and the fibrous material is a sugar alcohol. The first time melting method of the latent heat storage body 2 is characterized in that the latent heat storage body 2 is charged in a container 4 from an opening 7, then the heating medium 3 in which the temperature is made higher than the melting point of the latent heat storage body 2 is supplied into the container 4 from a heating medium inlet 5.

Description

本発明は、潜熱蓄熱体及び潜熱蓄熱装置並びに潜熱蓄熱体の初回融解方法に関し、詳しくは、熱媒体と接触して熱交換することにより蓄熱する潜熱蓄熱体であって、融解後の比重は熱媒体より大きくて熱媒体には溶解しない潜熱蓄熱体、それを用いた潜熱蓄熱装置およびそれを用いた潜熱蓄熱体の初回融解方法に関するものである。   The present invention relates to a latent heat storage body, a latent heat storage apparatus, and an initial melting method of a latent heat storage body, and more specifically, a latent heat storage body that stores heat by exchanging heat in contact with a heat medium, and the specific gravity after melting is heat. The present invention relates to a latent heat storage body that is larger than the medium and does not dissolve in the heat medium, a latent heat storage apparatus using the latent heat storage body, and an initial melting method of the latent heat storage body using the latent heat storage body.

近年、省エネルギーおよび温室効果ガス、とりわけエネルギー起因の炭酸ガスの排出削減が求められる中で、工場などの廃熱の活用が有効な手段となっている。
廃熱の活用においては、熱の需要と供給の時間的あるいは空間的ミスマッチが問題となる。これを解消するための技術として、廃熱源からの熱を蓄熱体に熱エネルギーとして貯蔵し(貯熱)、需要に応じて熱エネルギーを取り出す(放熱)、蓄熱が挙げられる。
In recent years, the use of waste heat from factories and the like has become an effective means, while energy saving and reduction of greenhouse gas emissions, especially energy-derived carbon dioxide gas, are required.
In utilizing waste heat, a temporal or spatial mismatch between the demand and supply of heat becomes a problem. As a technique for solving this, heat from a waste heat source is stored as heat energy in a heat storage body (heat storage), heat energy is taken out according to demand (heat dissipation), and heat storage is mentioned.

蓄熱には、蓄熱体の一次相転移に伴う転移熱(通常は、加熱/冷却による、融解/凝固あるいは蒸発/凝縮の潜熱)を利用する潜熱蓄熱と、転移熱を利用せずに蓄熱体の温度変化により貯熱/放熱する顕熱蓄熱とがあるが、潜熱蓄熱は、一般に顕熱蓄熱に比べ蓄熱密度が大きく、放熱温度が一定であるという特長がある。
潜熱蓄熱装置では、貯熱および放熱の際には熱媒体により熱を移動させているが、潜熱蓄熱体と熱媒体とを直接接触させることが、簡易な構造で高い貯熱/放熱速度が得られるため広く行われている。このような潜熱蓄熱装置は種々提案されているが、例えば、特許文献1を挙げることができる。
There are two types of heat storage: latent heat storage that uses transition heat (usually latent heat of melting / solidification or evaporation / condensation by heating / cooling) that accompanies the primary phase transition of the heat storage body, and heat storage without using the transition heat. There is sensible heat storage that stores / dissipates heat according to temperature changes, but latent heat storage generally has a feature that the heat storage density is larger than that of sensible heat storage and the heat dissipation temperature is constant.
In a latent heat storage device, heat is transferred by a heat medium during heat storage and heat dissipation, but direct contact between the latent heat storage body and the heat medium provides a high heat storage / heat dissipation speed with a simple structure. Is widely done. Various such latent heat storage devices have been proposed. For example, Patent Document 1 can be cited.

特許文献1では、潜熱蓄熱体として酢酸ナトリウム三水和塩を例示し、また、潜熱蓄熱体をエリスリトールとすることにより短時間で効率よく貯熱することができるとしている。
この他にも、公知の潜熱蓄熱装置に利用可能な潜熱蓄熱体は種々提案されている。
その中でも、糖アルコールは、潜熱が大きく無毒であることから潜熱蓄熱体に適している。(例えば特許文献2。)
潜熱蓄熱体の融解は、高温の熱媒体による方法(例えば特許文献1)の他に、遠赤外線/中赤外線ヒーターによる方法(特許文献3)、シーズヒーター等のヒーターによる方法(特許文献4)が提案されている。
In patent document 1, sodium acetate trihydrate is illustrated as a latent heat storage body, and it can be efficiently stored in a short time by using erythritol as a latent heat storage body.
In addition, various latent heat storage bodies that can be used in known latent heat storage devices have been proposed.
Among them, sugar alcohol is suitable for a latent heat storage because it has a large latent heat and is non-toxic. (For example, Patent Document 2)
In addition to a method using a high-temperature heat medium (for example, Patent Document 1), the latent heat storage body is melted by a method using a far infrared / middle infrared heater (Patent Document 3) or a method using a heater such as a sheathed heater (Patent Document 4). Proposed.

特開2005−188916JP 2005-188916 特表昭63−500946Special Table Sho 63-500946 特開2000−63813JP 2000-63813 A 特開2000−274975JP2000-274975

しかしながら、公知の潜熱蓄熱体では、蓄熱体素材の形状が一般に粉、粒であるため、比表面積が小さく、高温の熱媒体による初回融解(蓄熱体を素材から融解する操作)に長時間を要するという問題があった。
特に、潜熱蓄熱体の成分が糖アルコールの場合には、蓄熱体素材の形状が微細な粉であるために、高温の熱媒体による初回融解において熱媒体の流れに随伴して潜熱蓄熱体が潜熱蓄熱容器外へ流出する不具合を起こしやすく、高温の熱媒体の供給量を多くすることができず、初回融解に長時間を要したり、高温の熱媒体による初回融解が不可能となったりするという問題もあった。
However, in the known latent heat storage body, since the shape of the heat storage material is generally powder or grain, the specific surface area is small, and the first melting with the high-temperature heat medium (operation for melting the heat storage body from the material) takes a long time. There was a problem.
In particular, when the component of the latent heat storage body is sugar alcohol, the shape of the heat storage body material is a fine powder, and therefore the latent heat storage body becomes latent heat accompanying the flow of the heat medium in the initial melting with a high temperature heat medium. It is easy to cause problems that flow out of the heat storage container, the supply amount of the high-temperature heat medium cannot be increased, the initial melting takes a long time, or the first melting with the high-temperature heat medium becomes impossible. There was also a problem.

また、初回融解をヒーター加熱により行う場合には、初回融解に要する時間を短縮可能であるものの、融解のために高価なヒーターおよび電源設備が必要となり、不経済であるという問題があった。
即ち従来技術では、高価なヒーター加熱なしでは潜熱蓄熱体の初回融解に長時間を要し或いは潜熱蓄熱体流出を起こすという課題があった。
In addition, when the initial melting is performed by heater heating, although the time required for the initial melting can be shortened, there is a problem that an expensive heater and power supply equipment are required for melting, which is uneconomical.
That is, in the prior art, there is a problem that the initial melting of the latent heat storage body takes a long time or the latent heat storage body flows out without expensive heater heating.

本発明は、前記課題を解決し、高価なヒーター等を必要とせず、潜熱蓄熱体流出を起こさず、潜熱蓄熱体の初回融解に要する時間の短縮を可能とする潜熱蓄熱体及び潜熱蓄熱装置並びに潜熱蓄熱体の初回融解方法を提供することを目的として成されたものであり、その要旨は以下の通りである。
(1) 繊維状物で構成され、熱媒体より融解後の密度が大きくて、且つ、熱媒体に溶解しないことを特徴とする、熱媒体と直接接触して熱交換する潜熱蓄熱体。
(2) 前記繊維状物のかさ密度/真密度が0.001以上0.7以下であることを特徴とする(1)に記載の潜熱蓄熱体。
(3) 前記繊維状物が糖アルコールであることを特徴とする(1)又は(2)に記載の潜熱蓄熱体。
The present invention solves the above-described problems, does not require an expensive heater or the like, does not cause the latent heat storage body to flow out, and enables a reduction in the time required for the initial melting of the latent heat storage body and the latent heat storage body and latent heat storage device, and This was made for the purpose of providing an initial melting method of a latent heat storage body, and the gist thereof is as follows.
(1) A latent heat storage body that is composed of a fibrous material, has a higher density after melting than the heat medium, and does not dissolve in the heat medium, and exchanges heat by directly contacting the heat medium.
(2) Bulk density / true density of said fibrous material is 0.001 or more and 0.7 or less, The latent heat storage body as described in (1) characterized by the above-mentioned.
(3) The latent heat accumulator according to (1) or (2), wherein the fibrous material is a sugar alcohol.

(1)の発明によると、潜熱蓄熱体の比表面積が大きくなり、高温の熱媒体による加熱が高速となるため、また、潜熱蓄熱体が相互に絡み合い熱媒体の流れに随伴しにくくなり、高温の熱媒体の供給量を多くすることができるため、潜熱蓄熱体の初回融解に要する時間の短縮が可能となる。また、高価なヒーター等が不要となる。
(2)の発明によると、前記した比表面積の増大と相互の絡み合いとの相乗効果により、潜熱蓄熱体の初回融解に要する時間の一層の短縮が可能となる。
According to the invention of (1), since the specific surface area of the latent heat storage body is increased and the heating by the high-temperature heat medium is accelerated, the latent heat storage body is entangled with each other and is not easily accompanied by the flow of the heat medium. Since the supply amount of the heat medium can be increased, the time required for the initial melting of the latent heat storage body can be shortened. Further, an expensive heater or the like is not necessary.
According to the invention of (2), the time required for the initial melting of the latent heat storage body can be further shortened by the synergistic effect of the increase in the specific surface area and the mutual entanglement.

(3)の発明によると、特に従来の糖アルコールで問題となっていた、製品形状が微細な粉であることに起因して潜熱蓄熱体が熱媒体の流れに随伴するという、不具合をなくし、高温の熱媒体の供給量を多くすることができるため、潜熱蓄熱体の初回融解に要する時間の短縮が可能となる。
(4) 潜熱蓄熱容器である容器内で熱媒体を(1)〜(3)の何れかに記載の潜熱蓄熱体に接触させて熱交換させる潜熱蓄熱装置であって、前記容器は、前記潜熱蓄熱体の装入口である少なくとも1つの開口部と、前記熱媒体の流入口である少なくとも1つの熱媒体入口と、前記熱媒体の流出口である少なくとも1つの熱媒体出口とを有することを特徴とする潜熱蓄熱装置。
According to the invention of (3), the problem that the latent heat storage body accompanies the flow of the heat medium due to the fine powder shape of the product, which has been a problem particularly with conventional sugar alcohols, is eliminated, Since the supply amount of the high-temperature heat medium can be increased, the time required for the initial melting of the latent heat storage body can be shortened.
(4) A latent heat storage device that exchanges heat by bringing a heat medium into contact with the latent heat storage body according to any one of (1) to (3) in a container that is a latent heat storage container, wherein the container includes the latent heat It has at least one opening that is an inlet of the heat storage body, at least one heat medium inlet that is an inlet of the heat medium, and at least one heat medium outlet that is an outlet of the heat medium. Latent heat storage device.

(4)の発明によると、潜熱蓄熱体の比表面積が大きくなり高温の熱媒体による加熱が高速となるため、また、潜熱蓄熱体が相互に絡み合うことにより熱媒体の流れに随伴して潜熱蓄熱容器外へ流出する不具合を起こしにくくなり、高温の熱媒体の供給量を多くすることができるため、潜熱蓄熱体の初回融解に要する時間の短縮が可能となる。また、高価なヒーター等が不要となる。
(5) (4)に記載の潜熱蓄熱装置を用いて行う潜熱蓄熱体の初回融解方法であって、(1)〜(3)の何れかに記載の潜熱蓄熱体を前記開口部から前記容器内へ装入後、前記潜熱蓄熱体の融点以上の温度とした熱媒体を前記熱媒体入口から前記容器内へ供給することを特徴とする潜熱蓄熱体の初回融解方法。
(6) (4)に記載の潜熱蓄熱装置を用いて行う潜熱蓄熱体の初回融解方法であって、(1)〜(3)の何れかに記載の潜熱蓄熱体の融点以上の温度とした熱媒体を前記熱媒体入口から前記容器内へ供給した後、前記潜熱蓄熱体を前記開口部から前記容器内へ装入することを特徴とする潜熱蓄熱体の初回融解方法。
(7) (5)又は(6)において、前記初回融解させる(1)〜(3)の何れかに記載の潜熱蓄熱体の装入を回分し、該回分した装入は、前記熱媒体の供給下で断続的に行うことを特徴とする潜熱蓄熱体の初回融解方法。
According to the invention of (4), since the specific surface area of the latent heat storage body is increased and the heating by the high temperature heat medium is accelerated, the latent heat storage body is intertwined with each other, so that the latent heat storage is accompanied by the flow of the heat medium. Since it becomes difficult to cause the trouble of flowing out of the container and the supply amount of the high-temperature heat medium can be increased, the time required for the initial melting of the latent heat storage body can be shortened. Further, an expensive heater or the like is not necessary.
(5) An initial melting method of a latent heat storage body performed using the latent heat storage apparatus according to (4), wherein the latent heat storage body according to any one of (1) to (3) is connected to the container from the opening. A first heat melting method for a latent heat storage body, wherein a heat medium having a temperature equal to or higher than the melting point of the latent heat storage body is supplied into the container from the heat medium inlet after charging into the container.
(6) An initial melting method of a latent heat storage body performed using the latent heat storage apparatus according to (4), wherein the temperature is equal to or higher than the melting point of the latent heat storage body according to any one of (1) to (3). An initial melting method for a latent heat storage body, comprising: supplying a heat medium from the inlet of the heat medium into the container and then charging the latent heat storage body into the container through the opening.
(7) In (5) or (6), the charging of the latent heat storage body according to any one of (1) to (3) to be melted for the first time is batched. An initial melting method of a latent heat accumulator characterized by being intermittently performed under supply.

ここで、装入を回分するとは、装入を複数回に分けて行うことを意味する。
(5)又は(6)の発明によると、潜熱蓄熱体の比表面積が大きくなり、潜熱蓄熱体の融点以上の温度の熱媒体による加熱が高速となるため、また、潜熱蓄熱体が相互に絡み合うことにより熱媒体の流れに随伴して潜熱蓄熱容器外へ流出する不具合を起こしにくくなり、潜熱蓄熱体の融点以上の温度の熱媒体の供給量を多くすることができるため、潜熱蓄熱体の初回融解に要する時間の短縮が可能となる。また、高価なヒーター等が不要となる。
Here, batching the charging means that the charging is performed in a plurality of times.
According to the invention of (5) or (6), the specific surface area of the latent heat storage body is increased, heating with a heat medium having a temperature equal to or higher than the melting point of the latent heat storage body is accelerated, and the latent heat storage bodies are intertwined with each other. As a result, it becomes difficult to cause a trouble that flows out of the latent heat storage container along with the flow of the heat medium, and the supply amount of the heat medium having a temperature equal to or higher than the melting point of the latent heat storage body can be increased. The time required for melting can be shortened. Further, an expensive heater or the like is not necessary.

(7)の発明によると、既装入の潜熱蓄熱体の融解状態を観測し、その結果を基に熱媒体の供給量と潜熱蓄熱体の追加装入量とを調整できるため、潜熱蓄熱体の初回溶融に要する時間を更に短縮することが可能となる。       According to the invention of (7), since the melting state of the existing latent heat storage body can be observed and the supply amount of the heat medium and the additional charge amount of the latent heat storage body can be adjusted based on the result, the latent heat storage body It is possible to further reduce the time required for the initial melting of the.

本発明によれば、繊維状物で構成され、熱媒体より融解後の密度が大きくて、且つ、熱媒体に溶解しない潜熱蓄熱体、それを用いた潜熱蓄熱装置およびそれを用いた潜熱蓄熱体の初回融解方法を採用した事により、高価なヒーター等を必要とせず、潜熱蓄熱体流出の不具合を起こさず、潜熱蓄熱体の初回融解に要する時間の短縮が可能となる。   According to the present invention, a latent heat storage body that is composed of a fibrous material and has a higher density after melting than a heat medium and does not dissolve in the heat medium, a latent heat storage apparatus using the same, and a latent heat storage body using the same By adopting the initial melting method, it is possible to reduce the time required for the initial melting of the latent heat storage body without requiring an expensive heater or the like and without causing a problem of the outflow of the latent heat storage body.

本発明に係る潜熱蓄熱装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the latent heat storage apparatus which concerns on this invention. 図1の装置における潜熱蓄熱体容器を示す概略断面図である。It is a schematic sectional drawing which shows the latent heat storage body container in the apparatus of FIG. 図1の装置における熱媒体供給段階を示す概略断面図である。It is a schematic sectional drawing which shows the heat medium supply step in the apparatus of FIG. 図1の装置における熱媒体供給下での潜熱蓄熱体装入段階を示す概略断面図である。It is a schematic sectional drawing which shows the latent heat storage body charging step in the apparatus of FIG.

本発明を実施するための形態(略して実施形態)を図1〜図3を参照しつつ説明する。図1は本発明に係る潜熱蓄熱装置の一例を示す概略断面図、図2は図1の装置における潜熱蓄熱体容器を示す概略断面図、図3は図1の装置における熱媒体供給段階を示す概略断面図である。図1〜図3において、1は潜熱蓄熱装置、2は潜熱蓄熱体、3は熱媒体、4は容器(詳しくは潜熱蓄熱体容器)、5は熱媒体入口、6は熱媒体出口、7は開口部である。   An embodiment (abbreviated embodiment) for carrying out the present invention will be described with reference to FIGS. 1 is a schematic sectional view showing an example of a latent heat storage device according to the present invention, FIG. 2 is a schematic sectional view showing a latent heat storage body container in the device of FIG. 1, and FIG. 3 shows a heat medium supply stage in the device of FIG. It is a schematic sectional drawing. 1 to 3, 1 is a latent heat storage device, 2 is a latent heat storage body, 3 is a heat medium, 4 is a container (specifically a latent heat storage body container), 5 is a heat medium inlet, 6 is a heat medium outlet, and 7 is a heat medium outlet. It is an opening.

潜熱蓄熱体2は、熱媒体より融解後の密度が大きくて、且つ、熱媒体に溶解しない繊維状物で構成され、個々の繊維が緩やかに絡み合って集合体(繊維集合体)をなしている。潜熱蓄熱体2をなす繊維集合体は、かさ密度/真密度が0.001以上0.7以下であることが好ましい。前記繊維状物のかさ密度/真密度が0.7超では、比表面積が過小となって熱媒体3との熱交換速度が不十分となり、一方、0.001未満では、熱媒体3の流れに随伴して容器4外へ流出し易くなるからである。前記かさ密度/真密度は、より好ましくは0.001以上0.5以下である。   The latent heat storage body 2 is composed of a fibrous material that has a higher density after melting than the heat medium and does not dissolve in the heat medium, and each fiber is gently entangled to form an aggregate (fiber aggregate). . The fiber assembly constituting the latent heat storage body 2 preferably has a bulk density / true density of 0.001 or more and 0.7 or less. If the bulk density / true density of the fibrous material is more than 0.7, the specific surface area becomes too small and the heat exchange rate with the heat medium 3 becomes insufficient, while if less than 0.001, the flow of the heat medium 3 This is because it easily flows out of the container 4. The bulk density / true density is more preferably 0.001 or more and 0.5 or less.

潜熱蓄熱体2の成分は、公知の潜熱蓄熱体用の成分が使用できるが、中でも潜熱が大きく無毒であるという点で糖アルコールが好ましい。
図1に示すように、本発明に係る潜熱蓄熱装置1は、潜熱蓄熱体容器である容器4内で熱媒体3を潜熱蓄熱体2に直接接触させて熱交換させる潜熱蓄熱装置1であって、容器4は、潜熱蓄熱体2の装入口である少なくとも1つの開口部7と、熱媒体3の流入口である少なくとも1つの熱媒体入口5と、熱媒体3の流出口である少なくとも1つの熱媒体出口6とを有する。
As the component of the latent heat storage body 2, a known component for a latent heat storage body can be used. Among them, sugar alcohol is preferable in that the latent heat is large and nontoxic.
As shown in FIG. 1, a latent heat storage device 1 according to the present invention is a latent heat storage device 1 in which a heat medium 3 is directly brought into contact with a latent heat storage body 2 to exchange heat in a container 4 that is a latent heat storage body container. The container 4 has at least one opening 7 that is an inlet of the latent heat storage body 2, at least one heat medium inlet 5 that is an inlet of the heat medium 3, and at least one that is an outlet of the heat medium 3. And a heat medium outlet 6.

開口部7は開閉自在に構成し、潜熱蓄熱体2の装入時以外は閉止して熱放散や熱媒体3の放散を防止するのが好ましい。
図1には、容器4へ潜熱蓄熱体2を装入し、熱媒体3を熱媒体入口5から容器4内に流入させ、同時に熱媒体出口6から容器4外へ流出させている段階を示した。この段階に達するまでに、図1の潜熱蓄熱装置1を用いて行う潜熱蓄熱体2の初回融解方法を以下に述べる。
The opening 7 is preferably configured to be openable and closable, and is preferably closed except when the latent heat storage body 2 is inserted to prevent heat dissipation or heat medium 3 dissipation.
FIG. 1 shows a stage in which the latent heat storage body 2 is inserted into the container 4, and the heat medium 3 is caused to flow into the container 4 from the heat medium inlet 5, and at the same time, flows out of the container 4 from the heat medium outlet 6. It was. Before reaching this stage, an initial melting method of the latent heat storage body 2 performed using the latent heat storage device 1 of FIG. 1 will be described below.

一方は、図2に示すように、潜熱蓄熱体2(常温では固体である)を開口部7から容器4内に装入し、その後熱媒体3を潜熱蓄熱体容器に入れる方法である。
他方は、図3に示すように、熱媒体3を熱媒体入口5から容器4内へ供給した後、潜熱蓄熱体2を投入する方法である。このとき、容器4内へ供給する熱媒体3の温度が潜熱蓄熱体2の融点以上となった場合、潜熱蓄熱体2の初回融解が行われる。
On the other hand, as shown in FIG. 2, the latent heat storage body 2 (which is solid at room temperature) is charged into the container 4 from the opening 7 and then the heat medium 3 is put into the latent heat storage body container.
On the other hand, as shown in FIG. 3, after supplying the heat medium 3 from the heat medium inlet 5 into the container 4, the latent heat storage body 2 is charged. At this time, when the temperature of the heat medium 3 supplied into the container 4 becomes equal to or higher than the melting point of the latent heat storage body 2, the latent heat storage body 2 is first melted.

潜熱蓄熱体2の融点以上の温度の熱媒体3により、潜熱蓄熱体2が加熱され、最終的に潜熱蓄熱体2が融解して潜熱蓄熱体2の初回融解が完了する。初回融解前の潜熱蓄熱体2は繊維集合体であるから、比表面積が大きくて高温の熱媒体3による加熱が高速となる為、又、潜熱蓄熱体2の繊維同士が相互に絡み合い熱媒体3の流れに随伴し難くなり、高温の熱媒体3の供給量を多くする事ができる為、この初回融解に要する時間は従来よりも短縮し、且つ、高価なヒータ加熱は必要としない。   The latent heat storage body 2 is heated by the heat medium 3 having a temperature equal to or higher than the melting point of the latent heat storage body 2, and finally the latent heat storage body 2 is melted to complete the initial melting of the latent heat storage body 2. Since the latent heat storage body 2 before the first melting is a fiber assembly, the specific surface area is large and the heating with the high-temperature heat medium 3 becomes fast, and the fibers of the latent heat storage body 2 are entangled with each other. Since the amount of supply of the high-temperature heat medium 3 can be increased, the time required for this initial melting is shorter than before and expensive heater heating is not required.

この初回融解過程で潜熱蓄熱体2は熱媒体3から熱を奪って潜熱蓄熱体2内に貯えるから、この初回融解過程は最初の貯熱過程でもある。一方、熱媒体3は潜熱蓄熱体2に熱を奪われ、低温の熱媒体3と化してやがては図1のように熱媒体出口6から容器4外へ流出する。
又、上述の初回溶融方法の例では、潜熱蓄熱体2を全量装入後に熱媒体3を供給するか、又は熱媒体3を充分に供給後に潜熱蓄熱体2を装入する事としているが、これに代えて、初回融解させる潜熱蓄熱体3の装入を回分し、例えば図4に示すように、熱媒体3を充分に供給後、1回目の装入分量の大部分を熱媒体3で初回融解させた後、熱媒体3の供給下で潜熱蓄熱体2の装入を断続的に行う事としてもよい。この例は後述の実施例における実施形態である。これによれば、既装入の潜熱蓄熱体2の融解状態を観測し、その結果を基に熱媒体3の供給量と潜熱蓄熱体2の追加装入量とを調整できるため、潜熱蓄熱体2の初回融解に要する時間を更に短縮できて好ましい。
In this initial melting process, the latent heat storage body 2 takes heat from the heat medium 3 and stores it in the latent heat storage body 2, so this initial melting process is also the first heat storage process. On the other hand, the heat medium 3 is deprived of heat by the latent heat storage body 2 and becomes a low-temperature heat medium 3 and eventually flows out of the container 4 from the heat medium outlet 6 as shown in FIG.
In the example of the first melting method described above, the heat medium 3 is supplied after the entire amount of the latent heat storage body 2 is charged, or the latent heat storage body 2 is charged after the heat medium 3 is sufficiently supplied. Instead, the charging of the latent heat storage body 3 to be melted for the first time is batched, and for example, as shown in FIG. After the initial melting, the latent heat storage body 2 may be charged intermittently under the supply of the heat medium 3. This example is an embodiment in an example described later. According to this, since the melting state of the existing latent heat storage body 2 is observed and the supply amount of the heat medium 3 and the additional charge amount of the latent heat storage body 2 can be adjusted based on the result, the latent heat storage body The time required for the first melting of 2 can be further shortened, which is preferable.

次に、上記初回溶融完了後の潜熱蓄熱装置1の放熱/貯熱運転について図1を参照しつつ説明する。
放熱運転では、低温の熱媒体3を熱媒体入口5から容器4内へ流入させ、高温の熱媒体3を熱媒体出口6から容器4外へ流出させる。容器4内に流入した低温の熱媒体3は、容器4内部で流動しつつ潜熱蓄熱体2と接触し、潜熱蓄熱体2により加熱され、高温の熱媒体3と化して熱媒体出口6から容器4外へ流出する。
Next, the heat radiation / heat storage operation of the latent heat storage device 1 after the completion of the first melting will be described with reference to FIG.
In the heat radiation operation, the low-temperature heat medium 3 is caused to flow into the container 4 from the heat medium inlet 5, and the high-temperature heat medium 3 is caused to flow out of the container 4 from the heat medium outlet 6. The low-temperature heat medium 3 flowing into the container 4 contacts the latent heat storage body 2 while flowing inside the container 4, is heated by the latent heat storage body 2, becomes a high-temperature heat medium 3, and is discharged from the heat medium outlet 6. 4 flows out.

放熱運転開始時点では、潜熱蓄熱体2は部分的な場合も含めて液相であり、放熱運転を継続することにより、潜熱蓄熱体2および容器4内の熱媒体3の温度が下降し、潜熱蓄熱体2の温度が凝固点に達すると、潜熱蓄熱体2が漸次凝固し、潜熱を放熱する。
貯熱運転では、廃熱源などからの熱により加熱された高温の熱媒体3を熱媒体入口5から容器4内部に流入させ、低温の熱媒体3を熱媒体出口6から容器4外へ流出させる。潜熱蓄熱容器4内部に流入した熱媒体3は、潜熱蓄熱容器4内部で流動しつつ潜熱蓄熱体2と接触し、潜熱蓄熱体2を加熱し、熱媒体出口6から潜熱蓄熱容器4外部に流出する。
At the time of starting the heat radiation operation, the latent heat storage body 2 is in a liquid phase including a partial case. By continuing the heat radiation operation, the temperature of the latent heat storage body 2 and the heat medium 3 in the container 4 is lowered, and the latent heat is stored. When the temperature of the heat storage body 2 reaches the freezing point, the latent heat storage body 2 gradually solidifies and radiates the latent heat.
In the heat storage operation, the high-temperature heat medium 3 heated by heat from a waste heat source or the like flows into the container 4 from the heat medium inlet 5, and the low-temperature heat medium 3 flows out of the container 4 from the heat medium outlet 6. . The heat medium 3 flowing into the latent heat storage container 4 contacts the latent heat storage body 2 while flowing inside the latent heat storage container 4, heats the latent heat storage body 2, and flows out of the latent heat storage container 4 from the heat medium outlet 6. To do.

貯熱運転開始時点では、潜熱蓄熱体2は固相であり、貯熱運転を継続することにより、潜熱蓄熱体2および容器4内の熱媒体3の温度が上昇し、潜熱蓄熱体2の温度が融点に達すると、潜熱蓄熱体2が漸次融解し、潜熱を貯熱する。
以上のように貯熱/放熱運転を繰り返して、廃熱源などからの熱を潜熱蓄熱体2に熱エネルギーとして貯蔵し、需要に応じて熱エネルギーを取り出して利用する。
At the start of the heat storage operation, the latent heat storage body 2 is in a solid phase, and by continuing the heat storage operation, the temperature of the latent heat storage body 2 and the heat medium 3 in the container 4 rises, and the temperature of the latent heat storage body 2 is increased. When the temperature reaches the melting point, the latent heat storage body 2 gradually melts and stores latent heat.
As described above, the heat storage / heat radiation operation is repeated, heat from a waste heat source or the like is stored as heat energy in the latent heat storage body 2, and the heat energy is extracted and used according to demand.

糖アルコールの1種であるエリスリトール(カーギル社製)4kgを、乾燥窒素ガス中で、加熱融解して細孔より押し出し、繊維状に成形した。これを集めて、平均かさ密度600kg/m(かさ密度/真密度=0.4)の繊維集合体に調整し潜熱蓄熱体2とした。
図1に示した装置形態の潜熱蓄熱装置1を用い、内容積5Lの容器4に潜熱蓄熱体2を2.5kg装入し、130℃(=潜熱蓄熱体2の融点+12℃)の熱媒体3を容器4内断面平均速度0.5cm/sで容器4内に供給したところ、熱媒体3の流れに随伴して潜熱蓄熱体2が容器4外へ流出することはなく、20分で潜熱蓄熱体2の大部分が融解した。尚、前記容器4内断面平均速度とは、容器4に供給される熱媒体3の流量/容器4の水平断面積(内寸法)で定義される。又、熱媒体3としては、NeoSK−OIL1400(綜研テクニックス社製)を用いた。
4 kg of erythritol (manufactured by Cargill), which is one type of sugar alcohol, was heated and melted in dry nitrogen gas and extruded from the pores to form a fiber. These were collected and adjusted to a fiber assembly having an average bulk density of 600 kg / m 3 (bulk density / true density = 0.4) to obtain a latent heat storage body 2.
Using the latent heat storage device 1 of the apparatus form shown in FIG. 1, 2.5 kg of the latent heat storage body 2 is charged into a container 4 having an internal volume of 5 L, and a heat medium of 130 ° C. (= melting point of the latent heat storage body 2 + 12 ° C.) 3 is supplied into the container 4 at a cross-sectional average speed of 0.5 cm / s in the container 4, the latent heat storage body 2 does not flow out of the container 4 along with the flow of the heat medium 3, and latent heat is generated in 20 minutes. Most of the heat storage body 2 melted. The average cross-sectional velocity in the container 4 is defined by the flow rate of the heat medium 3 supplied to the container 4 / the horizontal sectional area (internal dimensions) of the container 4. As the heat medium 3, NeoSK-OIL1400 (manufactured by Soken Techniques) was used.

次に、前記2.5kgの潜熱蓄熱体2が融解した状態の潜熱蓄熱装置1(図4参照)において、130℃の熱媒体3を容器4内断面平均速度0.2cm/sで容器4内に供給しつつ、未融解の潜熱蓄熱体2の量がおおよそ一定となるように断続的に潜熱蓄熱体2を容器4上部の開口部7より投入(装入)したところ、40分で潜熱蓄熱体2の装入および融解(初回融解)が完了した。   Next, in the latent heat storage device 1 (see FIG. 4) in which the 2.5 kg latent heat storage body 2 is melted, the 130 ° C. heat medium 3 is placed in the container 4 at an average cross-sectional speed of 0.2 cm / s in the container 4. When the latent heat storage body 2 is intermittently introduced (charged) from the opening 7 at the top of the container 4 so that the amount of the unmelted latent heat storage body 2 is approximately constant, the latent heat storage is performed in 40 minutes. The charging and melting (initial melting) of body 2 was completed.

1 潜熱蓄熱装置
2 潜熱蓄熱体
3 熱媒体
4 容器(潜熱蓄熱体容器)
5 熱媒体入口
6 熱媒体出口
7 開口部
DESCRIPTION OF SYMBOLS 1 Latent heat storage apparatus 2 Latent heat storage body 3 Heat medium 4 Container (latent heat storage body container)
5 Heat medium inlet 6 Heat medium outlet 7 Opening

Claims (7)

繊維状物で構成され、熱媒体より融解後の密度が大きくて、且つ、熱媒体に溶解しないことを特徴とする、熱媒体と直接接触して熱交換する潜熱蓄熱体。   A latent heat storage body that is made of a fibrous material, has a higher density after melting than a heat medium, and does not dissolve in the heat medium, and exchanges heat in direct contact with the heat medium. 前記繊維状物のかさ密度/真密度が0.001以上0.7以下であることを特徴とする請求項1に記載の潜熱蓄熱体。   The latent heat storage body according to claim 1, wherein a bulk density / true density of the fibrous material is 0.001 or more and 0.7 or less. 前記繊維状物が糖アルコールであることを特徴とする請求項1又は2に記載の潜熱蓄熱体。   The latent heat storage body according to claim 1, wherein the fibrous material is a sugar alcohol. 潜熱蓄熱容器である容器内で熱媒体を請求項1〜3の何れかに記載の潜熱蓄熱体に接触させて熱交換させる潜熱蓄熱装置であって、前記容器は、前記潜熱蓄熱体の装入口である少なくとも1つの開口部と、前記熱媒体の流入口である少なくとも1つの熱媒体入口と、前記熱媒体の流出口である少なくとも1つの熱媒体出口とを有することを特徴とする潜熱蓄熱装置。   A latent heat storage device that exchanges heat by bringing a heat medium into contact with the latent heat storage body according to any one of claims 1 to 3 in a container that is a latent heat storage container, wherein the container is an inlet of the latent heat storage body A latent heat storage device, comprising: at least one opening that is, at least one heat medium inlet that is an inlet of the heat medium, and at least one heat medium outlet that is an outlet of the heat medium. . 請求項4に記載の潜熱蓄熱装置を用いて行う潜熱蓄熱体の初回融解方法であって、請求項1〜3の何れかに記載の潜熱蓄熱体を前記開口部から前記容器内へ装入後、前記潜熱蓄熱体の融点以上の温度とした熱媒体を前記熱媒体入口から前記容器内へ供給することを特徴とする潜熱蓄熱体の初回融解方法。   It is the initial melting method of the latent heat storage body performed using the latent heat storage apparatus of Claim 4, Comprising: After charging the latent heat storage body in any one of Claims 1-3 into the said container from the said opening part An initial melting method of a latent heat storage body, wherein a heat medium having a temperature equal to or higher than the melting point of the latent heat storage body is supplied from the inlet of the heat medium into the container. 請求項4に記載の潜熱蓄熱装置を用いて行う潜熱蓄熱体の初回融解方法であって、請求項1〜3の何れかに記載の潜熱蓄熱体の融点以上の温度とした熱媒体を前記熱媒体入口から前記容器内へ供給した後、前記潜熱蓄熱体を前記開口部から前記容器内へ装入することを特徴とする潜熱蓄熱体の初回融解方法。   It is the initial melting method of the latent heat storage body performed using the latent heat storage apparatus of Claim 4, Comprising: The heat medium made into temperature more than melting | fusing point of the latent heat storage body in any one of Claims 1-3 is said heat | fever An initial melting method of a latent heat storage body, wherein the latent heat storage body is charged into the container through the opening after being supplied into the container from a medium inlet. 請求項5又は6において、前記初回融解させる請求項1〜3の何れかに記載の潜熱蓄熱体の装入を回分し、該回分した装入は、前記熱媒体の供給下で断続的に行うことを特徴とする潜熱蓄熱体の初回融解方法。   In Claim 5 or 6, the charging of the latent heat storage body according to any one of claims 1 to 3 to be melted for the first time is batched, and the batched charging is intermittently performed under the supply of the heat medium. The first melting method of the latent heat storage body characterized by the above.
JP2011248136A 2011-11-14 2011-11-14 Initial melting method of latent heat storage Active JP5912437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011248136A JP5912437B2 (en) 2011-11-14 2011-11-14 Initial melting method of latent heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248136A JP5912437B2 (en) 2011-11-14 2011-11-14 Initial melting method of latent heat storage

Publications (2)

Publication Number Publication Date
JP2013103979A true JP2013103979A (en) 2013-05-30
JP5912437B2 JP5912437B2 (en) 2016-04-27

Family

ID=48623785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248136A Active JP5912437B2 (en) 2011-11-14 2011-11-14 Initial melting method of latent heat storage

Country Status (1)

Country Link
JP (1) JP5912437B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157578A (en) * 2006-12-26 2008-07-10 Kobe Steel Ltd Heat storage system and heat storage device
JP2008190747A (en) * 2007-02-02 2008-08-21 Kobe Steel Ltd Heat storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157578A (en) * 2006-12-26 2008-07-10 Kobe Steel Ltd Heat storage system and heat storage device
JP2008190747A (en) * 2007-02-02 2008-08-21 Kobe Steel Ltd Heat storage device

Also Published As

Publication number Publication date
JP5912437B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
Sanusi et al. Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers
Nomura et al. Heat release performance of direct-contact heat exchanger with erythritol as phase change material
EP2554804A3 (en) Energy storage system with an intermediate storage tank and method for storing thermoelectric energy
Nomura et al. Performance analysis of heat storage of direct-contact heat exchanger with phase-change material
JPWO2012144344A1 (en) Molten salt battery device
CA2356728A1 (en) Heat storage type heater and method of controlling input and output of heat of the same
Paria et al. Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application
JP2016011787A (en) Heat storage system
JP4714923B2 (en) Heat storage device
JP5912437B2 (en) Initial melting method of latent heat storage
Shank et al. Experimental study of a latent heat thermal energy storage system assisted by variable-length radial fins
CN106590537A (en) Solar energy drying phase change heat storage material and preparation method thereof
CN206442621U (en) A kind of paster processes residual heat using device
CN202297622U (en) High-temperature steel slag buffering and cooling device available for intermittent feeding
JP2006308256A (en) Heat storage device and method of operating heat storage device
CN207350298U (en) A kind of fused salt steam generator
CN105655666A (en) Energy storage type new energy battery protection system used for intelligent energy net and method of energy storage type new energy battery protection system
CN110360865A (en) A kind of finned multiple phase change materials heat-storing sphere
CN207168632U (en) A kind of phase-change thermal storage hand warmer
CN101368748A (en) Phase-change heat-storage electrical heater
JP5594752B2 (en) Heat storage device
CN103968666B (en) A kind of smelting furnace of aluminum or aluminum alloy production
CN203683736U (en) Fusing and melting system capable of continuously conducting feeding
Rathod et al. Experimental study on phase change material based thermal energy storage system
CA1096727A (en) Heat storage

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130906

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250