JP2013102657A - Secondary battery monitoring device - Google Patents

Secondary battery monitoring device Download PDF

Info

Publication number
JP2013102657A
JP2013102657A JP2011246077A JP2011246077A JP2013102657A JP 2013102657 A JP2013102657 A JP 2013102657A JP 2011246077 A JP2011246077 A JP 2011246077A JP 2011246077 A JP2011246077 A JP 2011246077A JP 2013102657 A JP2013102657 A JP 2013102657A
Authority
JP
Japan
Prior art keywords
communication
monitoring device
battery
circuit
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011246077A
Other languages
Japanese (ja)
Other versions
JP5694902B2 (en
Inventor
Yutaka Arita
有田  裕
Eiichi Toyoda
豊田  瑛一
Masahiro Nagasu
正浩 長洲
Akihiko Emori
昭彦 江守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011246077A priority Critical patent/JP5694902B2/en
Publication of JP2013102657A publication Critical patent/JP2013102657A/en
Application granted granted Critical
Publication of JP5694902B2 publication Critical patent/JP5694902B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system for detecting states of respective secondary batteries by receiving power supply from the secondary batteries formed from serially connected secondary battery cells, the system capable of achieving effective utilization of electric power stored in the secondary batteries, optimum battery capacities and miniaturized batteries by maintaining discharge amount of each battery pack unit so that the discharge amount is always equal.SOLUTION: A secondary battery monitoring device is constructed by serially connecting battery units formed from one or more chargeable and dischargeable battery cells and monitoring devices that detect states of the battery cells. In each of the battery units, there are provided a first power supply circuit that supplies electric power to the monitoring devices and a second power supply circuit that supplies electric power evenly from all the battery units.

Description

本発明は二次電池を監視する監視装置を備えた二次電池システムに関する。   The present invention relates to a secondary battery system including a monitoring device for monitoring a secondary battery.

自動車や鉄道などの駆動システムやバックアップ用のUPSシステムなどに搭載される鉛電池、ニッケル水素電池、リチウム電池などの二次電池は、システムに必要な電圧及び電流を得るために直列及び並列に接続して使用することが多い。
二次電池は、その化学的な性質から充放電可能な電流や電荷量が決まっており、これを超えて充放電すると、性能の急激な低下や故障を引き起こす恐れがある。したがって、これらを防ぐためには、電圧等、二次電池の状態を監視しながら充放電を適切に管理する必要がある。
Secondary batteries such as lead batteries, nickel metal hydride batteries, and lithium batteries installed in driving systems such as automobiles and railways and backup UPS systems are connected in series and in parallel to obtain the voltage and current required for the system. Often used.
The secondary battery has a chargeable / dischargeable current and charge amount determined by its chemical properties, and charging / discharging beyond this level may cause a sudden drop in performance or failure. Therefore, in order to prevent these, it is necessary to appropriately manage charging and discharging while monitoring the state of the secondary battery such as voltage.

このことから、二次電池を利用するシステムでは、二次電池の電圧等の状態を検知する監視装置が備えられ、検知した二次電池の状態情報を充放電部に伝え、それをもとに充放電を制御するようにしている。
自動車のような出力規模の大きなシステムで二次電池を用いる際、大電力や大容量を確保するため、電池セルを多直列して組電池ユニットとし、この組電池ユニットをさら多直列して、数百V以上の出力電圧を有する二次電池システムを構成する場合がある。
For this reason, in a system using a secondary battery, a monitoring device that detects the state of the secondary battery voltage and the like is provided, and the state information of the detected secondary battery is transmitted to the charging / discharging unit. Charging / discharging is controlled.
When using a secondary battery in a system with a large output scale such as an automobile, in order to secure large power and large capacity, battery cells are connected in series to form an assembled battery unit, and this assembled battery unit is further connected in series. There are cases where a secondary battery system having an output voltage of several hundred volts or more is configured.

こうした二次電池システムにおいて、例えば、組電池ユニットの内の1つでも、過放電状態に陥ると、その組電池ユニットの二次電池性能を急激に劣化させ、寿命を急速に縮めてしまうため、組電池ユニット毎に監視装置を搭載し、上位制御装置がその各々と連携できるようして、各組電池の充電量をその電圧で把握して、すべての組電池が過放電とならないように管理すれば、監視装置のサイズや配線の上で都合がよい。   In such a secondary battery system, for example, even if one of the assembled battery units falls into an overdischarge state, the secondary battery performance of the assembled battery unit is rapidly deteriorated, and the life is rapidly shortened. A monitoring device is installed in each assembled battery unit so that the host control device can cooperate with each of them, and the charge amount of each assembled battery is grasped by its voltage and managed so that all assembled batteries do not become overdischarged. This is convenient in terms of the size and wiring of the monitoring device.

しかしながら、自動車等の動力源の用途では、前述のように二次電池システム全体では数百ボルトの高電圧となり、しかも、各監視装置は、組電池ユニットに設けられたセンサと結線されることから、組電池と至近する位置に配置せざるを得ず、高電圧による破壊を防止するため、フォトカプラをはじめとする絶縁素子を使用して、適切な絶縁を施す必要があり、コストアップにつながる。   However, in a power source application such as an automobile, the secondary battery system as a whole has a high voltage of several hundred volts as described above, and each monitoring device is connected to a sensor provided in the assembled battery unit. In order to prevent breakdown due to high voltage, it is necessary to use an insulating element such as a photocoupler to provide appropriate insulation, leading to increased costs. .

こうしたことから、下記特許文献1に開示された方法によれば、電池セルが多直列に接続された組電池ユニットのそれぞれに搭載された監視装置を一列に接続し、隣接する組電池ユニットを経由して、二次電池モジュールの外部に設置された上位制御装置からの指令、あるいは上位制御装置から要求された状態情報などを順次伝達するようにしている。こうすることにより、最高電位、最低電位に接続された組電池ユニットを除いて、組電池ユニットと監視装置間をフォトカプラで絶縁する必要がなくなり、別途設ける上位制御装置との通信路は、これらの最高電位、最低電位に接続された組電池ユニット監視装置に限り、各組電池ユニット分の耐圧を考慮して絶縁することで、蓄電装置を安価に構成できる。   For this reason, according to the method disclosed in Patent Document 1 below, the monitoring devices mounted on each of the assembled battery units in which the battery cells are connected in series are connected in a row and passed through the adjacent assembled battery units. Thus, the command from the host control device installed outside the secondary battery module or the status information requested from the host control device is sequentially transmitted. This eliminates the need to insulate the assembled battery unit from the monitoring device with a photocoupler, except for the assembled battery unit connected to the highest potential and the lowest potential. Only the assembled battery unit monitoring device connected to the highest potential and the lowest potential can be configured at low cost by performing insulation in consideration of the breakdown voltage of each assembled battery unit.

特開2003−70179号公報JP 2003-70179 A

しかし、このような構成では、一列に接続された監視装置のうち、最高電位と最低電位に位置する監視装置は、絶縁手段を介して上位制御装置に接続されており、絶縁手段を駆動する分、それ以外の監視装置に比べ、消費電力が大きくなる。一方、各監視装置は、それぞれの組電池ユニットの二次電池から電源の供給を受けているため、監視装置間で消費電力に差が発生し、二次電池間で蓄電量にばらつきが発生する。二次電池には使用できる充放電量に限界が存在するため、このように二次電池間で蓄電量のばらつきがあると、その分使用できる放電量が狭められてしまうという問題があった。   However, in such a configuration, among the monitoring devices connected in a row, the monitoring devices located at the highest potential and the lowest potential are connected to the host control device via the insulating means, and the amount of driving the insulating means is the same. Compared with other monitoring devices, the power consumption increases. On the other hand, since each monitoring device is supplied with power from the secondary battery of each assembled battery unit, there is a difference in power consumption between the monitoring devices, and there is a variation in power storage amount between the secondary batteries. . Since there is a limit to the amount of charge / discharge that can be used in the secondary battery, there is a problem in that the amount of discharge that can be used is narrowed accordingly if there is a variation in the amount of charge between the secondary batteries.

すなわち、最高電位と最低電位に位置する組電池ユニットのみ、各自の監視装置に加え、絶縁手段を駆動するための電力を消費するため、所定の期間が経過すると、これらの組電池ユニットのみ、残存する蓄電量がいち早く限界に達し、他の組電池ユニットには、未だ蓄電量に余裕があるにもかかわらず、上位制御装置は、すべての組電池ユニットに対し、放電を中止する指令を出さざるを得ず、結果として、二次電池システム全体の放電量を狭めてしまうことになる。   That is, only the assembled battery units located at the highest potential and the lowest potential consume power for driving the insulating means in addition to their own monitoring devices, and only these assembled battery units remain after a predetermined period of time. The amount of stored electricity reaches the limit quickly, and the host controller does not issue a command to stop discharging to all the assembled battery units, even though other assembled battery units still have a sufficient amount of stored electricity. As a result, the discharge amount of the entire secondary battery system is narrowed.

また、上位制御装置と各監視装置との通信、及び、隣接する監視装置間の通信は、いずれも各組電池ユニット内の二次電池をその電源として使用しているため、両通信方式を共通するものとせざるを得ず、通信による消費電力を抑えるために、それぞれに最適な通信方式を選択することができないという問題もあった。
そこで、本発明は、各組電池ユニットの放電量が均等となるよう維持するとともに、上位制御装置と各監視装置との通信、隣接する監視装置間の通信にそれぞれ最適な通信方式を選択することをも可能にする二次電池監視装置を提供することを目的とする。
In addition, the communication between the host controller and each monitoring device and the communication between adjacent monitoring devices both use the secondary battery in each assembled battery unit as its power source, so both communication methods are common. In other words, there is a problem in that it is not possible to select an optimal communication method for each of them in order to reduce power consumption due to communication.
Therefore, the present invention maintains the discharge amount of each assembled battery unit to be equal, and selects an optimal communication method for communication between the host control device and each monitoring device and between adjacent monitoring devices. An object of the present invention is to provide a secondary battery monitoring device that can also be used.

上記の課題を解決するため、本発明の二次電池監視装置においては、次のような技術的手段を講じた。すなわち、
(1)充放電可能な1つ以上の電池セルと、該電池セルの状態の検知を行う監視装置とからなる電池ユニットを、直列に接続して構成される二次電池監視装置において、前記電池ユニットのそれぞれに各自の監視装置に電力供給を行う第1の電源回路を配備するとともに、すべての電池ユニットから均等に電力供給を行う第2の電源回路を具備するようにした。
In order to solve the above-mentioned problems, the following technical means were taken in the secondary battery monitoring device of the present invention. That is,
(1) In the secondary battery monitoring device configured by connecting in series a battery unit including one or more battery cells that can be charged / discharged and a monitoring device that detects the state of the battery cell, the battery Each unit is provided with a first power supply circuit that supplies power to each monitoring device, and a second power supply circuit that supplies power equally from all the battery units.

(2)上記の二次電池監視装置において、外部との通信を行う外部通信装置を有し、前記第二の電源回路は、前記外部通信装置に電力を供給するようにした。 (2) The secondary battery monitoring device described above includes an external communication device that communicates with the outside, and the second power supply circuit supplies power to the external communication device.

(3)上記の二次電池監視装置において、前記監視装置は、隣接する他の電池ユニットの監視装置との間で通信を行う通信回路を有し、前記外部通信装置は、各通信回路を経由して、前記監視装置のそれぞれと通信を行うようにした。 (3) In the above secondary battery monitoring device, the monitoring device includes a communication circuit that performs communication with a monitoring device of another adjacent battery unit, and the external communication device passes through each communication circuit. Then, communication is performed with each of the monitoring devices.

(4)上記の二次電池監視装置において、前記外部通信装置は、各監視装置を経由して、各電池ユニットの電池セルの状態を取得し、外部と通信するようにした。 (4) In the above secondary battery monitoring device, the external communication device acquires the state of the battery cell of each battery unit via each monitoring device and communicates with the outside.

(5)上記の二次電池監視装置において、前記組電池ユニットの監視装置間で行われる通信と、前記外部通信装置と外部間で行われる通信が、互いに異なる通信方式を採用した。 (5) In the secondary battery monitoring device described above, a communication method in which communication performed between the monitoring devices of the assembled battery unit and communication performed between the external communication device and the outside are different from each other is adopted.

(6)上記の二次電池監視装置において、前記監視装置は、前記電池セルの状態として、電圧、温度を測定する手段を有するようにした。 (6) In the above secondary battery monitoring device, the monitoring device has means for measuring voltage and temperature as the state of the battery cell.

本発明によれば、電池ユニットのそれぞれに各自の監視装置に電力供給を行う第1の電源回路と、すべての電池ユニットから均等に電力供給を行う第2の電源回路とを具備するようにしたので、第1の電源回路を、各電池ユニットの監視装置駆動用とし、第2の電源回路を、上位制御装置との通信用等に使用することで、各組電池の消費電力のばらつきを抑え、本来の充放電に使用する電力量を増やし、二次電池に蓄えられた電力の有効利用を図ることで、電池の容量を最適化し、電池の小型化を実現できる。
また、特に第2の電源回路を、上位制御装置との通信用に使用した場合、各電池ユニットの監視装置間の通信と、外部との通信を個別の電源で行うことで、組電池間の通信方式をより低消費電力のものにすることができ、二次電池の監視に必要な電力を抑え、二次電池に蓄えられた電力の有効利用を図ることで、電池の小型化を実現できる。
According to the present invention, each battery unit is provided with a first power supply circuit that supplies power to its own monitoring device, and a second power supply circuit that supplies power equally from all the battery units. Therefore, by using the first power supply circuit for driving the monitoring device of each battery unit and using the second power supply circuit for communication with the host control device, etc., the variation in power consumption of each assembled battery is suppressed. By increasing the amount of power used for the original charge / discharge and effectively using the power stored in the secondary battery, the capacity of the battery can be optimized and the battery can be downsized.
In particular, when the second power supply circuit is used for communication with the host control device, communication between the monitoring devices of each battery unit and communication with the outside are performed by separate power sources, so It is possible to reduce the battery size by reducing the power required for monitoring the secondary battery and effectively using the power stored in the secondary battery. .

本発明に係る二次電池モジュール1000のブロック図である。1 is a block diagram of a secondary battery module 1000 according to the present invention. 本発明に係る二次電池モジュールの通信の様子を示す図である。It is a figure which shows the mode of communication of the secondary battery module which concerns on this invention. 組電池ユニットに搭載される監視装置の構成を示す図である。It is a figure which shows the structure of the monitoring apparatus mounted in an assembled battery unit. 外部通信装置の構成を示す図である。It is a figure which shows the structure of an external communication apparatus. 本発明に係る二次電池モジュールの別の通信の様子を示す図である。It is a figure which shows the mode of another communication of the secondary battery module which concerns on this invention.

以下、本発明の実施例を、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施例1]
本実施例は、電池セルの状態検知で消費する電力を供給する第一の電源回路と、外部の上位制御回路との通信で消費する電力を供給する第二の電源回路を持ち、第二の電源回路は直列に接続された電池セル全体から電力供給を受けることで、各電池セルの状態検知に必要な消費電力量の均一化を電池セル間で図るものである。
図1に本実施例の二次電池モジュール1000を示す。二次電池モジュール1000は、複数の電池セル12が直列に接続された組電池11をそれぞれ備えた組電池ユニット100(100−1〜100−n)と、外部通信装置200から構成される。また、これらの組電池ユニット100がさらに直列に接続されて、高い出力電圧を備えた、全二次電池10を構成している。
[Example 1]
This embodiment has a first power supply circuit that supplies power consumed by detecting the state of the battery cell, and a second power supply circuit that supplies power consumed by communication with an external host control circuit. The power supply circuit receives power supply from the entire battery cells connected in series, thereby achieving uniform power consumption required for detecting the state of each battery cell.
FIG. 1 shows a secondary battery module 1000 of this example. The secondary battery module 1000 includes an assembled battery unit 100 (100-1 to 100-n) each including an assembled battery 11 in which a plurality of battery cells 12 are connected in series, and an external communication device 200. Moreover, these assembled battery units 100 are further connected in series, and the all secondary battery 10 provided with the high output voltage is comprised.

各組電池ユニット100は、それぞれ監視装置20(20−1〜20−n)を有し、この監視装置20は、電源回路40、制御回路50及び通信回路60からなる。電源回路40は、それぞれ、電池ユニット100内の組電池11より電力の供給を受け、内蔵する基準電源回路により電圧を変換して、制御回路50及び通信回路60の駆動に必要な、例えば直流5Vに変換して電力を供給する。すなわち、各組電池ユニット100の監視装置20は、各自の組電池11を電源とした電源回路40を第一の電源回路として具備し、この第一の電源回路から電力の供給を受ける。   Each assembled battery unit 100 includes a monitoring device 20 (20-1 to 20-n), and the monitoring device 20 includes a power supply circuit 40, a control circuit 50, and a communication circuit 60. Each of the power supply circuits 40 is supplied with electric power from the assembled battery 11 in the battery unit 100, converts the voltage by a built-in reference power supply circuit, and is necessary for driving the control circuit 50 and the communication circuit 60, for example, DC 5V. To convert it into power. That is, the monitoring device 20 of each assembled battery unit 100 includes a power circuit 40 that uses the assembled battery 11 as a power source as a first power circuit, and receives power from the first power circuit.

制御回路50は、組電池11の電圧や温度などの状態を検知するとともに、通信装置60が送受信した信号を処理する。
通信回路60は、隣接する組電池ユニット(例えば100−1と100−2)間で1対1通信を行う。
The control circuit 50 detects a state of the assembled battery 11 such as a voltage and a temperature, and processes a signal transmitted and received by the communication device 60.
The communication circuit 60 performs one-to-one communication between adjacent assembled battery units (for example, 100-1 and 100-2).

外部通信装置200は、二次電池モジュール1000と、その外部に配備される上位制御装置2000との間で通信を行うもので、電源回路210、制御回路220、内部通信回路230及び外部通信回路240から構成されている。電源回路210は、複数の組電池11が直列に接続された二次電池10全体から電力の供給を受け、内蔵する基準電源回路により、制御回路220、内部通信回路230、外部通信回路240の駆動に必要な、例えば直流5Vに変換して電力を供給する。すなわち、外部通信装置200は、組電池11を直列に接続した全二次電池10を電源とした電源回路210を第二の電源回路として具備し、この第二の電源回路から電力の供給を受ける。   The external communication device 200 performs communication between the secondary battery module 1000 and the host control device 2000 provided outside the power supply circuit 210, the control circuit 220, the internal communication circuit 230, and the external communication circuit 240. It is composed of The power supply circuit 210 receives power from the entire secondary battery 10 in which a plurality of assembled batteries 11 are connected in series, and drives the control circuit 220, the internal communication circuit 230, and the external communication circuit 240 by a built-in reference power supply circuit. For example, it is converted into a direct current of 5V and power is supplied. That is, the external communication device 200 includes a power supply circuit 210 that uses all the secondary batteries 10 in which the assembled batteries 11 are connected in series as a power supply, as a second power supply circuit, and receives power supply from the second power supply circuit. .

内部通信回路230は、組電池ユニット100−nと通信を、外部通信回路240は、上位の制御装置2000と通信を、それぞれ個別に行い、これらの通信制御は制御回路220により行われる。
また、監視装置20は組電池11から、二次電池及び外部通信装置200は、全二次電池10に蓄えられた電力で動作するため、待機時など二次電池10の監視が不要な時には、監視装置20をスリープさせ、二次電池10の充電量の低下を防止する。
The internal communication circuit 230 performs communication with the assembled battery unit 100-n, and the external communication circuit 240 performs communication with the host control device 2000 individually, and the communication control is performed by the control circuit 220.
In addition, since the monitoring device 20 operates from the assembled battery 11, the secondary battery and the external communication device 200 operate with the power stored in all the secondary batteries 10, when monitoring of the secondary battery 10 is not necessary, such as during standby, The monitoring device 20 is put to sleep, and a reduction in the charge amount of the secondary battery 10 is prevented.

図2は、図1における組電池ユニット100−1〜100−nと外部通信装置200とのデータの通信を示したものであり、左側のCOM310、COM311は、外部通信装置200から、組電池ユニット100−nから100−1に順次送信されるデータを、右側のCOM321−1〜COM321−n、COM322は、終端の組電池ユニット100−1から外部通信装置200に向けて順次送信されるデータを示している。
組電池ユニット100−1〜100−nの通信回路60及び外部通信装置200の内部通信装置230、外部通信回路240はデータの送受信が行われていない場合には、受信状態として待機している。
2 shows data communication between the assembled battery units 100-1 to 100-n and the external communication device 200 in FIG. 1, and the left side COM 310 and COM 311 are connected from the external communication device 200 to the assembled battery unit. The data COM321-1 to COM321-n and COM322 on the right side are sequentially transmitted from 100-n to 100-1, and the data sequentially transmitted from the assembled battery unit 100-1 to the external communication device 200 are transmitted to the right side. Show.
The communication circuit 60 of the assembled battery units 100-1 to 100-n, the internal communication device 230 of the external communication device 200, and the external communication circuit 240 are on standby as receiving states when data is not transmitted or received.

上位の制御装置2000は、二次電池10の状態を得るため、状態情報要求を含むデータ310を外部通信装置200に対して送信する。データ310を受信した外部通信装置200の外部通信回路240は、受信したデータ310を外部通信装置200の制御装置220で処理し、内部通信回路230で送信できる各組電池ユニット100−1〜100−nのそれぞれに対するコマンドを含むデータフォーマットであるデータ311に変換する。このコマンドには、内部状態の設定、状態の検出指令、検出結果の送信指令などがある。制御回路220で変換されたデータ311は、内部通信回路230を介して、組電池ユニット100−nに送信される。組電池ユニット100−nは、データ311に含まれるコマンドに対応する処理を行うとともに、通信回路60を介して、組電池ユニット100−n−1にデータ311を送信する。   The host control device 2000 transmits data 310 including a status information request to the external communication device 200 in order to obtain the status of the secondary battery 10. The external communication circuit 240 of the external communication device 200 that has received the data 310 processes each of the received data 310 by the control device 220 of the external communication device 200 and can be transmitted by the internal communication circuit 230. The data is converted into data 311 which is a data format including a command for each of n. This command includes an internal state setting, a state detection command, and a detection result transmission command. The data 311 converted by the control circuit 220 is transmitted to the assembled battery unit 100-n via the internal communication circuit 230. The assembled battery unit 100-n performs processing corresponding to the command included in the data 311 and transmits the data 311 to the assembled battery unit 100-n-1 via the communication circuit 60.

データ311が終端の組電池ユニット100−1に到着すると、組電池ユニット100−1の制御回路50は、n個の組電池11の状態情報分のデータサイズを付加したデータを作る。組電池ユニット100−1が該当する部分に状態情報(data1)を書き込み付加したデータ321−1を生成する。なお、このとき、組電池ユニット100−2〜100−nのデータを書き込むところにはダミーのデータとして例えば0がセットされている。
なお、何個の状態情報を追加するかは、起動時に外部通信装置200より、外部通信装置200から近い順にIDを割り付けることで、また、データ311の中に何個の組電池ユニット100を経由してきたかの情報を入れることで決定できる。
When the data 311 arrives at the terminal assembled battery unit 100-1, the control circuit 50 of the assembled battery unit 100-1 creates data to which the data size corresponding to the state information of the n assembled batteries 11 is added. The assembled battery unit 100-1 generates data 321-1 by writing state information (data1) in the corresponding part. At this time, for example, 0 is set as dummy data where data of the assembled battery units 100-2 to 100-n is written.
Note that how many pieces of status information are added is determined by assigning IDs from the external communication device 200 in the order closer to the external communication device 200 at the time of startup, and through the number of assembled battery units 100 in the data 311. It can be decided by putting information on whether or not it has been done.

組電池ユニット100−1で生成されたデータ321−1は、通信回路60を介して、組電池ユニット100−2に送信される。
組電池ユニット100−2では、続く部分に状態情報(data2)を書き込む(データ321−2)。
このようにすることで、組電池ユニット100−nの通信回路60から送信されたデータ321に、組電池ユニット100−1〜100−nの組電池11の状態情報が順次書き込まれていき、外部通信装置200の内部通信回路230は、組電池ユニット100−1〜100−nの全ての二次電池情報が追加されたデータ321−nを受信することができ、外部通信装置200の制御回路220は、データ321−nを上位制御装置2000への送信データのフォーマットに変換したデータ322を生成し、外部通信回路240を介して、上位制御装置2000に送信することができる。
Data 321-1 generated by the assembled battery unit 100-1 is transmitted to the assembled battery unit 100-2 via the communication circuit 60.
In the assembled battery unit 100-2, the state information (data2) is written in the subsequent part (data 321-2).
By doing in this way, the status information of the assembled battery 11 of the assembled battery units 100-1 to 100-n is sequentially written in the data 321 transmitted from the communication circuit 60 of the assembled battery unit 100-n. The internal communication circuit 230 of the communication device 200 can receive the data 321 -n to which all the secondary battery information of the assembled battery units 100-1 to 100 -n is added, and the control circuit 220 of the external communication device 200. Can generate data 322 obtained by converting the data 321-n into a format of data to be transmitted to the host controller 2000 and transmit the data 322 to the host controller 2000 via the external communication circuit 240.

これにより、組電池ユニット100−1〜100−nが送受信するデータサイズが同じとし、通信に伴う消費電力を組電池ユニット100−1〜n間で均一化を図ることができる。また、外部通信装置200での処理及び、上位制御装置2000との送受信に必要な電力は、全二次電池10から供給され、各電池セル12が供給する電力は等しくできる。
このように、本実施例によれば、二次電池モジュール1000における状態検知処理による電池セル12の充電量のばらつきの発生を抑えることができ、電池セルの容量を最適化し小型化することできる。
As a result, the data sizes transmitted and received by the assembled battery units 100-1 to 100-n are the same, and the power consumption associated with communication can be made uniform among the assembled battery units 100-1 to 100-n. Moreover, the power required for processing in the external communication device 200 and transmission / reception with the host control device 2000 is supplied from all the secondary batteries 10, and the power supplied by each battery cell 12 can be equal.
Thus, according to the present embodiment, it is possible to suppress the variation in the charge amount of the battery cell 12 due to the state detection process in the secondary battery module 1000, and it is possible to optimize the battery cell capacity and reduce the size.

また、外部通信装置200は、二次電池モジュール1000の外部に配備された上位制御装置2000との通信を行う外部通信回路240と、組電池ユニット100−1〜100−nとの通信を内部通信回路230とを個別に具備することで、それぞれ異なる通信方式にすることができる。
例えば、上位制御装置2000との通信として、RS485やCANまたはEthernet(登録商標)等の通信方式とし、組電池ユニット100間の通信は、低消費電力化が可能となるカレントループ方式などを選択することができ、電池セル12の状態検知に伴う消費電力を削減することができる。
In addition, the external communication device 200 performs internal communication between the external communication circuit 240 that performs communication with the host control device 2000 provided outside the secondary battery module 1000 and the assembled battery units 100-1 to 100-n. By separately providing the circuit 230, different communication methods can be used.
For example, a communication method such as RS485, CAN, or Ethernet (registered trademark) is used for communication with the host controller 2000, and a current loop method that enables low power consumption is selected for communication between the assembled battery units 100. It is possible to reduce the power consumption accompanying the state detection of the battery cell 12.

図3に組電池ユニット100−2に搭載される監視装置20の構成を示す。
監視装置20は、電源回路40と制御回路50、通信回路60からなる。電源回路40はリレー41と電源生成回路42から構成される。制御回路50及び通信回路60は電源回路40より電力供給を受けて動作し、制御回路50はセンサ51、電池状態監視装置52、通信制御装置53から、通信回路60は、送受信回路61、62から構成される。
図2におけるフォーマット変換及び通信パケット生成は通信制御装置53で行われ、送受信回路61、62は通信パケットの送受信を行う。センサ51は、組電池11を構成する電池セル12の各電圧の検出及び、1つ以上の電池セル12の温度を検出する機能を有する。
The structure of the monitoring apparatus 20 mounted in the assembled battery unit 100-2 is shown in FIG.
The monitoring device 20 includes a power supply circuit 40, a control circuit 50, and a communication circuit 60. The power supply circuit 40 includes a relay 41 and a power supply generation circuit 42. The control circuit 50 and the communication circuit 60 operate with power supplied from the power supply circuit 40. The control circuit 50 is operated from the sensor 51, the battery state monitoring device 52, and the communication control device 53. The communication circuit 60 is transmitted from the transmission / reception circuits 61 and 62. Composed.
The format conversion and communication packet generation in FIG. 2 are performed by the communication control device 53, and the transmission / reception circuits 61 and 62 transmit and receive communication packets. The sensor 51 has a function of detecting each voltage of the battery cells 12 constituting the assembled battery 11 and detecting the temperature of one or more battery cells 12.

電源回路40は、下位の組電池ユニット100−3からの通信線70−2に含まれる起動要求73−2を受けるとリレー41がONされ、電源生成回路42が起動し、組電池11からの電力供給により、制御回路50、通信回路60を起動する電力を生成するとともに、リレー41のON信号43、及び上位の組電池ユニット100−1の起動要求73−1を出力する。この方式により、外部からの起動要求73−3が一度ONになれば、ON継続信号43によりリレー41はON状態を継続できる。また、ノイズによる誤動作を防ぐために、一定期間、起動要求信号73−2のON状態が継続されないと、リレー41がONされないように、起動要求信号73−2にコンデンサ44を追加している。また、制御回路50よりOFF要求を受けると、リレー41をOFFとし、電源生成回路42の動作が終了することで、監視装置20の動作を終了させることができる。   When the power supply circuit 40 receives the activation request 73-2 included in the communication line 70-2 from the lower assembled battery unit 100-3, the relay 41 is turned on, the power generation circuit 42 is activated, The power supply generates power for starting the control circuit 50 and the communication circuit 60, and outputs an ON signal 43 for the relay 41 and a start request 73-1 for the upper assembled battery unit 100-1. With this method, once the external activation request 73-3 is turned ON, the relay 41 can be kept ON by the ON continuation signal 43. Further, in order to prevent malfunction due to noise, a capacitor 44 is added to the activation request signal 73-2 so that the relay 41 is not turned on unless the activation request signal 73-2 is kept on for a certain period. Further, when an OFF request is received from the control circuit 50, the relay 41 is turned OFF, and the operation of the power generation circuit 42 is ended, whereby the operation of the monitoring device 20 can be ended.

送受信回路61、62はそれぞれ隣接する組電池ユニット10の送受信回路と通信線70−1及び70−2を介して接続され、送信用71、受信用72、及び起動信号が73である。また、監視装置20をスリープとさせる条件として、通信回路60が一定期間、データを受信しなかった場合とする。   The transmission / reception circuits 61 and 62 are respectively connected to the transmission / reception circuits of adjacent battery pack units 10 through communication lines 70-1 and 70-2, and the transmission signal 71, the reception signal 72, and the activation signal are 73. Further, as a condition for setting the monitoring device 20 to sleep, it is assumed that the communication circuit 60 has not received data for a certain period.

続いて、図4に外部通信回路200の構成を示す。
外部通信回路200は、電源回路210と制御回路220、内部通信回路230、外部通信回路240からなる。電源回路210は、電源回路40と同じく、リレー211と電源回路生成212、リレー211のON信号213、誤動作防止用のコンデンサ214から構成されている。なお、電源回路210の電力の供給は全二次電池10から供給されており、その点が電源回路40と異なっている。この電源回路210からの電圧出力により、制御回路220、内部通信回路230、外部通信回路240が動作する。
Subsequently, FIG. 4 shows a configuration of the external communication circuit 200.
The external communication circuit 200 includes a power supply circuit 210, a control circuit 220, an internal communication circuit 230, and an external communication circuit 240. Similar to the power supply circuit 40, the power supply circuit 210 includes a relay 211, a power supply circuit generation 212, an ON signal 213 for the relay 211, and a capacitor 214 for preventing malfunction. The power supply of the power supply circuit 210 is supplied from all the secondary batteries 10 and is different from the power supply circuit 40 in that respect. The control circuit 220, the internal communication circuit 230, and the external communication circuit 240 are operated by the voltage output from the power supply circuit 210.

制御回路220は、モジュール状態監視装置221、通信制御装置222、通信制御装置223から構成され、通信制御装置222は、内部通信回路230内の送受信回路231、通信路70−nを介して、組電池ユニット100−nに接続される。また、通信制御装置223は、外部通信回路240内の送受信回路241、通信路250を介して、外部の上位制御装置2000に接続される。   The control circuit 220 includes a module state monitoring device 221, a communication control device 222, and a communication control device 223. The communication control device 222 is assembled via the transmission / reception circuit 231 and the communication path 70-n in the internal communication circuit 230. Connected to battery unit 100-n. In addition, the communication control device 223 is connected to the external host control device 2000 via the transmission / reception circuit 241 and the communication path 250 in the external communication circuit 240.

図2における外部通信装置200での上位制御装置2000からのデータ310からデータ311への変換、組電池ユニット100−nからのデータ321−nからデータ330への変換は、モジュール状態監視装置にて行う。
また、送受信回路231及び241は通信パケットの送受信を行い、通信制御装置222は、送受信回路231が受信した通信パケットの処理及び、送受信回路231が送信する通信パケットの生成を行う。同様に、通信制御装置223は、送受信回路241が受信した通信パケットの処理及び、送受信回路241が送信する通信パケットの生成を行う。送受信回路231は組電池ユニット100−nとの通信方式に、送受信回路241は外部の上位制御装置2000との通信方式に、それぞれ対応させる。
The conversion from the data 310 from the host controller 2000 to the data 311 and the conversion from the data 321-n to the data 330 from the assembled battery unit 100-n in the external communication device 200 in FIG. Do.
The transmission / reception circuits 231 and 241 transmit and receive communication packets, and the communication control device 222 processes the communication packets received by the transmission / reception circuit 231 and generates communication packets transmitted by the transmission / reception circuit 231. Similarly, the communication control device 223 processes a communication packet received by the transmission / reception circuit 241 and generates a communication packet transmitted by the transmission / reception circuit 241. The transmission / reception circuit 231 corresponds to the communication system with the assembled battery unit 100-n, and the transmission / reception circuit 241 corresponds to the communication system with the external host controller 2000.

これにより、外部通信装置200は、上位制御装置2000と、二次電池モジュール1000内の組電池ユニット100間との通信を異なる通信方式にすることが可能となる。
また、モジュール状態監視装置221での処理に、例えば二次電池10の電圧や電流が必要な場合には、電池セル12間で消費電力のばらつきを発生させず、センサを追加することが可能となる。
なお、通信機能を内蔵したマイコンがあることから、制御回路220、内部通信回路230、外部通信回路240を1つマイコンに割り当て、マイコン上のソフトウエアを変更のみで、通信方式を変更することができる。
As a result, the external communication device 200 can use different communication methods for communication between the host control device 2000 and the assembled battery units 100 in the secondary battery module 1000.
Further, for example, when the voltage and current of the secondary battery 10 are necessary for the processing in the module state monitoring device 221, it is possible to add a sensor without causing variations in power consumption between the battery cells 12. Become.
Since there are microcomputers with built-in communication functions, the control system 220, internal communication circuit 230, and external communication circuit 240 can be assigned to one microcomputer, and the communication method can be changed only by changing the software on the microcomputer. it can.

[実施例2]
上位制御装置2000が特定の組電池ユニット100の電池セル12の状態情報を入手する通信方式を示す。図5では上位制御装置2000が、全組電池ユニットのうち、特定の組電池ユニット100−2における組電池11のデータを入手する例である。
これは、上位制御装置2000が一回で送信する通信量を、特定の組電池ユニット100−2のように、ひとつの組電池ユニットに対するものに限定することで、その電池セル12の状態情報等、最小の通信量で済み、通信に伴う電池セル12への負荷を最小にすることができる。
[Example 2]
A communication system in which the host controller 2000 obtains state information of the battery cells 12 of a specific assembled battery unit 100 is shown. FIG. 5 shows an example in which the host control device 2000 obtains data of the assembled battery 11 in a specific assembled battery unit 100-2 among all assembled battery units.
This is because the amount of communication transmitted by the host control device 2000 at one time is limited to that for one assembled battery unit, such as the specific assembled battery unit 100-2, so that the state information of the battery cell 12, etc. The minimum communication amount is sufficient, and the load on the battery cell 12 associated with the communication can be minimized.

これを実現するため、各組電池ユニット100に予めIDを振ることで、上位制御装置2000が欲しい組電池ユニット100の状態情報を入手することができる。
このIDは、例えば、起動時に外部通信装置200より、外部通信装置200から近い順にIDを割り付けることで設定することができる。
組電池ユニット100−1〜100−nの通信回路60は及び外部通信装置200の内部通信装置230、外部通信回路240は受信状態として待機している。
In order to realize this, by assigning an ID to each assembled battery unit 100 in advance, it is possible to obtain state information of the assembled battery unit 100 that the host control device 2000 wants.
This ID can be set, for example, by assigning IDs in the order closer to the external communication device 200 than the external communication device 200 at the time of activation.
The communication circuits 60 of the assembled battery units 100-1 to 100-n, the internal communication device 230 of the external communication device 200, and the external communication circuit 240 are on standby as receiving states.

この状態で、上位の制御装置は当該組電池11のデータ入手するため、IDを含むデータ330を送信する。送信されたデータ310は外部通信装置200の外部通信回路240で受信される。受信されたデータ330は外部通信装置200の制御装置220で処理され、IDから、該当する組電池ユニット100に対するコマンドに変換される。図5は組電池ユニット100−2に対するコマンドの例を示している。制御回路220で変換されたデータ331は、内部通信回路230を介して、組電池ユニット100−nに送信される。組電池ユニット100−nは、データ331に含まれるIDが自分のIDと異なるためにそのまま、通信回路60を介して、組電池ユニット100−1〜100n−1にデータ331を送信する。このようにデータ331が組電池ユニット間を次々と伝わり、組電池ユニット100−2に到着すると、組電池ユニット100−2はデータ331に含まれるIDが自分のIDが一致することから、組電池ユニット100−2は、データ331に含まれるコマンドに対応する処理を行うとともに、通信回路60を介して、組電池ユニット100−1にデータ331を送信する。   In this state, the host control device transmits data 330 including the ID in order to obtain data of the assembled battery 11. The transmitted data 310 is received by the external communication circuit 240 of the external communication device 200. The received data 330 is processed by the control device 220 of the external communication device 200, and is converted from an ID into a command for the corresponding assembled battery unit 100. FIG. 5 shows an example of a command for the assembled battery unit 100-2. Data 331 converted by the control circuit 220 is transmitted to the assembled battery unit 100-n via the internal communication circuit 230. The assembled battery unit 100-n transmits the data 331 to the assembled battery units 100-1 to 100n-1 as they are because the ID included in the data 331 is different from its own ID. In this way, when the data 331 is transmitted one after another between the assembled battery units and arrives at the assembled battery unit 100-2, the ID included in the data 331 matches the ID of the assembled battery unit 100-2. The unit 100-2 performs processing corresponding to the command included in the data 331, and transmits the data 331 to the assembled battery unit 100-1 via the communication circuit 60.

データ331が終端の組電池ユニット100−1に到着すると、組電池ユニット100−1の制御回路は、データ331に含まれるIDが自分のIDと異なるため、何もせず、状態情報のデータサイズ分のダミーデータを追加したデータ341−1を生成し、信回路60を介して、組電池ユニット100−2に送信される。組電池ユニット100−2は、データ331に含まれるIDが自分のIDと一致するため、組電池11の状態情報(data2)を付加したデータ341−2を生成する。生成されたデータ341−2は、通信回路60を介して、組電池ユニット100−3に送信される。組電池ユニット100−3〜100−nは、それぞれのデータ341に含まれるIDが自分のIDと異なるために、そのまま送信される。   When the data 331 arrives at the terminal assembled battery unit 100-1, the control circuit of the assembled battery unit 100-1 does not do anything because the ID included in the data 331 is different from its own ID. Is added to the assembled battery unit 100-2 via the communication circuit 60. The assembled battery unit 100-2 generates data 341-2 to which the state information (data2) of the assembled battery 11 is added because the ID included in the data 331 matches the own ID. The generated data 341-2 is transmitted to the assembled battery unit 100-3 via the communication circuit 60. The assembled battery units 100-3 to 100-n are transmitted as they are because the IDs included in the respective data 341 are different from their own IDs.

このようにすることで、組電池ユニット100−nの通信回路60から送信されたデータ341−nを外部通信装置200の内部通信回路230で受信できる。
また、外部通信装置200の制御回路220は、データ341を上位制御装置2000への送信データのフォーマットに変換したデータ342を作成し、外部通信回路240を介して、上位制御装置2000に送信することができる。
By doing in this way, the data 341-n transmitted from the communication circuit 60 of the assembled battery unit 100-n can be received by the internal communication circuit 230 of the external communication device 200.
In addition, the control circuit 220 of the external communication device 200 creates data 342 obtained by converting the data 341 into a format of transmission data to the host control device 2000 and transmits the data 342 to the host control device 2000 via the external communication circuit 240. Can do.

また、上位制御装置2000は、IDを用いることで特定の組電池ユニット100の組電池11のデータを最小の通信量で入手することができ、さらに、各組電池ユニット100で消費される電力を等しくすることで、電池セル12間で蓄電量のばらつきの発生も抑えることができる。   Further, the host controller 2000 can obtain the data of the assembled battery 11 of the specific assembled battery unit 100 with the minimum communication amount by using the ID, and further, the power consumed by each assembled battery unit 100 can be obtained. By making it equal, it is possible to suppress the occurrence of variation in the amount of stored electricity between the battery cells 12.

なお、本実施例の通信方式は、組電池ユニット100−1〜100−nと個別に順次通信を行うため、ある程度の時間が要求されるが、上位制御装置2000からの指令には、短時間にすべての組電池ユニット100−1〜100−nに伝達しなければならないものと、数時間、あるいは数日毎に行えばよいものとがあるため、実施例1で採用した通信方式と本実施例の通信方式を、その緊急度に合わせて併用するようにしてもよい。
また、以上の実施例では、複数の電池セルを直列に接続して組電池ユニットとしたが、1つの電池セルで電池ユニットを構成してもよい。
Note that the communication method of the present embodiment sequentially communicates with the assembled battery units 100-1 to 100-n individually, so that a certain amount of time is required. However, the command from the host control device 2000 requires a short time. The communication system employed in the first embodiment and the present embodiment are required to be transmitted to all the assembled battery units 100-1 to 100-n and in other cases may be performed every several hours or several days. These communication methods may be used in combination according to the degree of urgency.
Moreover, in the above Example, although the some battery cell was connected in series and it was set as the assembled battery unit, you may comprise a battery unit by one battery cell.

さらに、外部通信装置200用の第二の電源回路の電源として、組電池11を直列に接続して、その全二次電池10の出力電圧を採用したが、例えば、組電池ユニット100−1〜100−nが偶数個であれば、同数の2グループに分け、各グループの組電池ユニットを直列に接続した上で、両グループを並列接続したもの等を採用してもよく、要は、すべての電池ユニットから均等に電力供給を行うようにすればよい。
このように構成された第二の電源回路は、外部通信装置200の電力供給のみならず、上位制御装置2000等、二次電池システムを構成する様々な機器の電力供給に利用することが可能である。
Furthermore, as the power source of the second power supply circuit for the external communication device 200, the assembled battery 11 is connected in series and the output voltage of all the secondary batteries 10 is adopted. For example, the assembled battery units 100-1 to 100-1 If 100-n is an even number, it is possible to divide into the same number of two groups, connect the assembled battery units of each group in series and then connect both groups in parallel, etc. What is necessary is just to make it supply electric power equally from the battery unit.
The second power supply circuit configured in this way can be used not only for power supply of the external communication device 200 but also for power supply of various devices constituting the secondary battery system such as the host control device 2000. is there.

以上説明したように、本発明によれば、電池ユニットのそれぞれに各自の監視装置に電力供給を行う第1の電源回路と、すべての電池ユニットから均等に電力供給を行う第2の電源回路とを具備するようにしたので、第1の電源回路を、各電池ユニットの監視装置駆動用とし、第2の電源回路を、上位制御装置との通信用等に使用することで、各組電池の消費電力のばらつきを抑えるとともに、いずれの電池ユニットにおいても、最低限の蓄電量を確保することで、充放電量を最大限に高め、二次電池に蓄えられた電力の有効利用を図ることで、電池の容量を最適化し、電池の小型化を実現できるので、特に自動車等の二次電池システムに広く採用されることが期待できる。   As described above, according to the present invention, the first power supply circuit that supplies power to the respective monitoring devices to each battery unit, and the second power supply circuit that supplies power equally from all the battery units, The first power supply circuit is used for driving the monitoring device of each battery unit, and the second power supply circuit is used for communication with the host control device, etc. By suppressing the variation in power consumption and ensuring the minimum amount of electricity stored in any battery unit, the amount of charge / discharge can be maximized and the power stored in the secondary battery can be used effectively. Since the battery capacity can be optimized and the battery can be miniaturized, it can be expected to be widely adopted in secondary battery systems such as automobiles.

10・・・二次電池、20・・・監視装置、40・・・電源回路、50・・・制御回路、60・・・通信回路、41・・・リレー、42・・・電源生成回路、51・・・センサ、52・・・監視装置、53・・・通信制御装置、61、62・・・送受信回路、100・・・組電池ユニット、200・・・外部通信装置、210・・・電源回路、220・・・制御回路、230・・・内部通信回路、240・・・外部通信回路、211・・・リレー、212・・・電源生成回路、221・・・モジュール状態監視装置、222、223・・・通信制御装置、231、232・・・送受信回路 DESCRIPTION OF SYMBOLS 10 ... Secondary battery, 20 ... Monitoring apparatus, 40 ... Power supply circuit, 50 ... Control circuit, 60 ... Communication circuit, 41 ... Relay, 42 ... Power supply generation circuit, DESCRIPTION OF SYMBOLS 51 ... Sensor, 52 ... Monitoring apparatus, 53 ... Communication control apparatus, 61, 62 ... Transmission / reception circuit, 100 ... Assembly battery unit, 200 ... External communication apparatus, 210 ... Power circuit 220 ... Control circuit 230 ... Internal communication circuit 240 ... External communication circuit 211 ... Relay 212 ... Power source generation circuit 221 ... Module state monitoring device 222 223 ... Communication control device, 231, 232 ... Transmission / reception circuit

Claims (6)

充放電可能な1つ以上の電池セルと、該電池セルの状態の検知を行う監視装置とからなる電池ユニットを、直列に接続して構成される二次電池監視装置において、
前記電池ユニットのそれぞれに各自の監視装置に電力供給を行う第1の電源回路と、すべての電池ユニットから均等に電力供給を行う第2の電源回路とを具備することを特徴とする二次電池監視装置。
In a secondary battery monitoring device configured by connecting in series a battery unit composed of one or more battery cells that can be charged and discharged and a monitoring device that detects the state of the battery cell,
Each of the battery units includes a first power supply circuit that supplies power to its own monitoring device, and a second power supply circuit that supplies power equally from all the battery units. Monitoring device.
請求項1の二次電池監視装置において、
外部との通信を行う外部通信装置を有し、前記第2の電源回路は、前記外部通信装置に電力を供給することを特徴とする二次電池監視装置。
The secondary battery monitoring device according to claim 1,
A secondary battery monitoring device, comprising: an external communication device that communicates with the outside, wherein the second power supply circuit supplies power to the external communication device.
請求項2の二次電池監視装置において、
前記監視装置は、隣接する他の電池ユニットの監視装置との間で通信を行う通信回路を有し、前記外部通信装置は、各通信回路を経由して、前記監視装置のそれぞれと通信を行うことを特徴とする二次電池監視装置。
The secondary battery monitoring device according to claim 2,
The monitoring device includes a communication circuit that performs communication with a monitoring device of another adjacent battery unit, and the external communication device communicates with each of the monitoring devices via each communication circuit. A secondary battery monitoring device.
請求項3の二次電池監視装置において、
前記外部通信装置は、各監視装置を経由して、各電池ユニットの電池セルの状態を取得し、外部と通信することを特徴とする二次電池監視装置。
The secondary battery monitoring device according to claim 3,
The external communication device acquires a state of a battery cell of each battery unit via each monitoring device, and communicates with the outside.
請求項3または4の二次電池監視装置において、
前記組電池ユニットの監視装置間で行われる通信と、前記外部通信装置と外部間で行われる通信が、互いに異なる通信方式を採用したことを特徴とする二次電池監視装置。
The secondary battery monitoring device according to claim 3 or 4,
A secondary battery monitoring device, wherein communication performed between the monitoring devices of the assembled battery unit and communication performed between the external communication device and the outside adopt different communication methods.
請求項1の二次電池監視装置において、
前記監視装置は、前記電池セルの状態として、電圧、温度を測定する手段を有することを特徴とする二次電池監視装置。
The secondary battery monitoring device according to claim 1,
The monitoring apparatus includes a means for measuring voltage and temperature as the state of the battery cell.
JP2011246077A 2011-11-10 2011-11-10 Secondary battery monitoring device Expired - Fee Related JP5694902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011246077A JP5694902B2 (en) 2011-11-10 2011-11-10 Secondary battery monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246077A JP5694902B2 (en) 2011-11-10 2011-11-10 Secondary battery monitoring device

Publications (2)

Publication Number Publication Date
JP2013102657A true JP2013102657A (en) 2013-05-23
JP5694902B2 JP5694902B2 (en) 2015-04-01

Family

ID=48622726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246077A Expired - Fee Related JP5694902B2 (en) 2011-11-10 2011-11-10 Secondary battery monitoring device

Country Status (1)

Country Link
JP (1) JP5694902B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014209246A1 (en) 2013-05-15 2014-11-20 Honda Motor Co . , Ltd. VEHICLE CONTROL / REGULATING DEVICE AND METHOD OF CONTROLLING THE SAME
WO2015021167A1 (en) * 2013-08-06 2015-02-12 Analog Devices, Inc. Battery cell and battery stack control systems
WO2016157740A1 (en) * 2015-03-27 2016-10-06 パナソニックIpマネジメント株式会社 Storage battery unit and electricity storage system
CN106165239A (en) * 2014-04-08 2016-11-23 株式会社丰田自动织机 Battery monitoring apparatus
JP2017055631A (en) * 2015-09-11 2017-03-16 株式会社デンソー Battery pack control device
JP2017112697A (en) * 2015-12-15 2017-06-22 株式会社デンソー Battery pack control device
US10177560B2 (en) 2014-04-08 2019-01-08 Kabushiki Kaisha Toyota Jidoshokki Battery monitoring device
JP7349401B2 (en) 2020-04-07 2023-09-22 公益財団法人鉄道総合技術研究所 Method and device for determining energy storage unit parameters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245481A (en) * 2007-03-28 2008-10-09 Toshiba Corp Protection device of assembled battery and battery pack device
JP2010117235A (en) * 2008-11-13 2010-05-27 Denso Corp Battery abnormality determination apparatus
JP2011078200A (en) * 2009-09-30 2011-04-14 Toshiba Corp Battery pack system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245481A (en) * 2007-03-28 2008-10-09 Toshiba Corp Protection device of assembled battery and battery pack device
JP2010117235A (en) * 2008-11-13 2010-05-27 Denso Corp Battery abnormality determination apparatus
JP2011078200A (en) * 2009-09-30 2011-04-14 Toshiba Corp Battery pack system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014209246A1 (en) 2013-05-15 2014-11-20 Honda Motor Co . , Ltd. VEHICLE CONTROL / REGULATING DEVICE AND METHOD OF CONTROLLING THE SAME
US9748786B2 (en) 2013-08-06 2017-08-29 Analog Devices, Inc. Battery stack with leapfrogging protocol
WO2015021167A1 (en) * 2013-08-06 2015-02-12 Analog Devices, Inc. Battery cell and battery stack control systems
US10833522B2 (en) 2013-08-06 2020-11-10 Analog Devices, Inc. Battery pack with locally controlled disconnect safeguards
US10033212B2 (en) 2013-08-06 2018-07-24 Analog Devices, Inc. Battery cell with discretion to drive loads within battery stack
US9923399B2 (en) 2013-08-06 2018-03-20 Analog Devices, Inc. Battery stack with distributed control of cells driving events
US9601940B2 (en) 2013-08-06 2017-03-21 Analog Devices, Inc. Battery pack with locally controlled disconnect safeguards
DE112015001745B4 (en) * 2014-04-08 2018-01-11 Kabushiki Kaisha Toyota Jidoshokki Battery monitoring device
US9966639B2 (en) 2014-04-08 2018-05-08 Kabushiki Kaisha Toyota Jidoshokki Battery monitoring device
CN106165239A (en) * 2014-04-08 2016-11-23 株式会社丰田自动织机 Battery monitoring apparatus
US10177560B2 (en) 2014-04-08 2019-01-08 Kabushiki Kaisha Toyota Jidoshokki Battery monitoring device
JPWO2016157740A1 (en) * 2015-03-27 2018-05-31 パナソニックIpマネジメント株式会社 Storage battery unit and power storage system
AU2016241607B2 (en) * 2015-03-27 2018-11-29 Panasonic Intellectual Property Management Co., Ltd. Storage battery unit and electricity storage system
WO2016157740A1 (en) * 2015-03-27 2016-10-06 パナソニックIpマネジメント株式会社 Storage battery unit and electricity storage system
JP2017055631A (en) * 2015-09-11 2017-03-16 株式会社デンソー Battery pack control device
JP2017112697A (en) * 2015-12-15 2017-06-22 株式会社デンソー Battery pack control device
JP7349401B2 (en) 2020-04-07 2023-09-22 公益財団法人鉄道総合技術研究所 Method and device for determining energy storage unit parameters

Also Published As

Publication number Publication date
JP5694902B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5694902B2 (en) Secondary battery monitoring device
KR102173777B1 (en) Master battery management unit and a battery pack including the same
US9088052B2 (en) Battery multi-series system and communication method thereof
JP6996065B2 (en) Battery management unit and battery pack containing it
US9231440B2 (en) Power supply apparatus and controlling method of the same
US20140091770A1 (en) System and method for allocating identifier to multi-bms
JP5481146B2 (en) Battery management device, secondary battery device and vehicle
JP5208714B2 (en) Assembled battery system
US8736229B2 (en) Battery control circuit for reducing power consumption
KR101540086B1 (en) System and method for waking up multi-bms
US8810067B2 (en) Power supply apparatus
JP5032169B2 (en) COMMUNICATION BATTERY COMMUNICATION CONTROL SYSTEM, BATTERY PACK, AND ITS COMMUNICATION CONTROL METHOD
MX2011002134A (en) Device and method for the generation, storage, and transmission of electric energy.
US10101398B2 (en) Cell monitoring device, method, and computer program product
JP2011097820A (en) Secondary battery device and vehicle
WO2013057821A1 (en) Electricity storage device control system
EP3920365A1 (en) Battery management system, battery management method, battery pack, and electric car
JP2021516945A (en) Battery management device and method
JP5275209B2 (en) Assembled battery system
JP7408016B2 (en) Battery chemical equipment, control method and control system for battery chemical equipment
KR20160132633A (en) Battery system and control method for connection of the same
EP3996237A1 (en) Battery control system, battery pack, electrical vehicle, and id setting method for battery control system
JP2014023362A (en) Control device, controlled device, control method, and control program
JP2011010448A (en) Control unit
CN114976319A (en) Control method for multiple battery modules connected in parallel and power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5694902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees