JP2013100266A - Plant growth regulator - Google Patents

Plant growth regulator Download PDF

Info

Publication number
JP2013100266A
JP2013100266A JP2012223936A JP2012223936A JP2013100266A JP 2013100266 A JP2013100266 A JP 2013100266A JP 2012223936 A JP2012223936 A JP 2012223936A JP 2012223936 A JP2012223936 A JP 2012223936A JP 2013100266 A JP2013100266 A JP 2013100266A
Authority
JP
Japan
Prior art keywords
group
compound
chlorophenyl
plant growth
synthesis example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012223936A
Other languages
Japanese (ja)
Other versions
JP5958905B2 (en
Inventor
Keimei O
敬銘 王
Kazuhiro Yamada
和弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
Original Assignee
Akita Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefectural University filed Critical Akita Prefectural University
Priority to JP2012223936A priority Critical patent/JP5958905B2/en
Publication of JP2013100266A publication Critical patent/JP2013100266A/en
Application granted granted Critical
Publication of JP5958905B2 publication Critical patent/JP5958905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a specific inhibitor of brassinosteroid biosynthesis.SOLUTION: The plant growth regulator includes a compound represented by formula (I) (wherein, Rand Rdenote a hydrogen atom or the like; Rand Rdenote a phenyl group which may have a substituent or the like; Rdenotes a heteroaryl group including a nitrogen atom; X denotes a single bond or the like; and Y denotes an oxygen atom or the like) or its salt as an active constituent.

Description

本発明はブラシノステロイド生合成阻害作用を有する化合物を含む植物成長調節剤に関するものである。   The present invention relates to a plant growth regulator comprising a compound having a brassinosteroid biosynthesis inhibitory action.

ブラシノステロイドは、近年、分子遺伝学と生合成研究が結びつくことにより新しい分類の植物ホルモンとして認識されるようになった (Yokota, Trends in Plant Sci. 2, 137-143, 1997)。ブラシノステロイドの化学が確立されて以来、それら同族体の生物活性が広く研究されており、茎の伸長、花粉管の生長、葉の屈曲、葉の開放、根の抑制、プロトンポンプの活性化 (Mandava, Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, pp.23-52, 1988)、エチレン生産の促進 (Schlagnhaufer et al., Physiol. Plant, 61, pp.555-558, 1984)、導管要素の分化 (Iwasaki et al., Plant Cell Physiol. 32, pp.1007-1014, 1991; Yamamoto et al.,Plant Cell Physiol. 38, pp.980-983, 1997)、植物のバイオマス生産増加(Sakamoto et. al., Nature Bioch. 24, pp105-109, 2005)、細胞伸長 (Azpiroz et al., Plant Cell, 10, pp.219-230, 1998)、植物ストレス応答機能発現(Nakashita, H., et al, Plant J ., 33,pp.887-898, 2003)を含む注目すべき植物生長反応が示されている。   Brassinosteroids have recently been recognized as a new class of plant hormones by combining molecular genetics and biosynthetic studies (Yokota, Trends in Plant Sci. 2, 137-143, 1997). Since the establishment of brassinosteroid chemistry, the biological activity of these congeners has been extensively studied: stem elongation, pollen tube growth, leaf bending, leaf opening, root suppression, proton pump activation (Mandava, Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, pp. 23-52, 1988), promotion of ethylene production (Schlagnhaufer et al., Physiol. Plant, 61, pp. 555-558, 1984) , Differentiation of conduit elements (Iwasaki et al., Plant Cell Physiol. 32, pp. 1007-1014, 1991; Yamamoto et al., Plant Cell Physiol. 38, pp. 980-983, 1997), increased plant biomass production (Sakamoto et. Al., Nature Bioch. 24, pp105-109, 2005), cell elongation (Azpiroz et al., Plant Cell, 10, pp.219-230, 1998), expression of plant stress response function (Nakashita, H , et al, Plant J., 33, pp. 887-898, 2003), notable plant growth responses have been shown.

また、ブラシノステロイドの生合成に関する広範囲の研究から、その生理作用のメカニズム及び調節が解明され始めている (Clouse, Plant J. 10, pp.1-8, 1996; Fujioka et al., Physiol. Plant, 100, pp.710-715, 1997)。現在のところ、40個以上のブラシノステロイドが同定されているが、C28-ブラシノステロイドのほとんどはごく一般的な植物ステロールであり、側鎖の炭素骨格がブラシノライドと同じであるカンペステロールから生合成されると考えられている。   In addition, extensive research on brassinosteroid biosynthesis has begun to elucidate the mechanism and regulation of its physiological action (Clouse, Plant J. 10, pp.1-8, 1996; Fujioka et al., Physiol. Plant , 100, pp.710-715, 1997). At present, more than 40 brassinosteroids have been identified, but most of the C28-branosteroids are very common plant sterols, and campesterols whose side chain carbon skeleton is the same as brassinolide It is thought to be biosynthesized from

特有の矮小化を示すシロイヌナズナ変異体が幾つか単離されており、dwarf1 (dwf1: Feldman et al., Science, 243, pp.1351-1354, 1989; dim: Takahashi etal., Genes Dev., 9, pp.97-107, 1995; cbb1: Kauschmann et al., Plant J.,9, pp.701-703, 1996)、構造的な光形態形成及び矮小化 (cpd; Szekeres et al., Cell, 85, pp.171-182, 1997)、並びに脱黄化 (det2: Li et al., Science, 272, pp.398-401, 1996; Fujioka et al., Plant Cell, 9, pp.1951-1962, 1997)が知られている。これらはブラシノステロイド生合成経路に欠損を有している。また、エンドウマメのdwarf変異体が決定されており、ブラシノステロイド欠損体であることが報告された(Nomura et al., Plant Physiol., 113, pp.31-37, 1997)。これらの例では、ブラシノライドを使用すると変異体の重度の矮小化が打ち消されることが知られている。これらの知見はブラシノステロイドが植物の生長及び発達に必要不可欠な役割を持つことを示唆しているが、ブラシノライドの生理学的重要性を解明するには変異体解析よりも生合成阻害剤を含む別の有効な道具が求められている。   Several Arabidopsis mutants with specific dwarfing have been isolated and dwarf1 (dwf1: Feldman et al., Science, 243, pp.1351-1354, 1989; dim: Takahashi etal., Genes Dev., 9 pp. 97-107, 1995; cbb1: Kauschmann et al., Plant J., 9, pp. 701-703, 1996), structural photomorphogenesis and dwarfism (cpd; Szekeres et al., Cell, 85, pp.171-182, 1997), and deyellowing (det2: Li et al., Science, 272, pp.398-401, 1996; Fujioka et al., Plant Cell, 9, pp.1951-1962 , 1997). They are deficient in the brassinosteroid biosynthetic pathway. In addition, a pea dwarf mutant has been determined and reported to be brassinosteroid deficient (Nomura et al., Plant Physiol., 113, pp. 31-37, 1997). In these examples, it is known that the use of brassinolide counteracts the severe miniaturization of the mutant. These findings suggest that brassinosteroids have an essential role in plant growth and development, but biosynthetic inhibitors are more important than mutant analysis to elucidate the physiological importance of brassinolide. There is a need for other effective tools, including

一般に、内生生物活性物質の作用機構研究法で見られるようにその物質の生合成の特異的阻害剤は内因性物質の生理機能を知る上で非常に有効である。ブラシノステロイド生合成の特異的阻害剤は、ブラシノステロイドの機能を理解するための新たな手段を提供することが期待される。これまでにブラシノステロイド生合成を阻害する物質は幾つか知られている(特許文献1、特許文献2、特許文献3、特許文献4)。   In general, a specific inhibitor of biosynthesis of an endogenous biologically active substance is very effective in understanding the physiological function of the endogenous substance, as seen in a method for studying the mechanism of action of an endogenous biologically active substance. Specific inhibitors of brassinosteroid biosynthesis are expected to provide new tools for understanding the function of brassinosteroids. Some substances that inhibit brassinosteroid biosynthesis have been known so far (Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4).

一方、下記の式(I)に包含される化合物のうち、R1及びR2が水素原子であり、R3がフェニル基であり、R4が2,4-ジクロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である化合物は殺菌作用を示す物質として報告されていた(特許文献5)。しかしながら、この化合物の植物成長調節作用は従来知られていない。 On the other hand, among the compounds included in the following formula (I), R 1 and R 2 are hydrogen atoms, R 3 is a phenyl group, R 4 is a 2,4-dichlorophenyl group, and R 5 is A compound having a 1H-1,2,4-triazol-1-yl group, X being a single bond, and Y being an oxygen atom has been reported as a substance having a bactericidal action (Patent Document 5). However, the plant growth regulating action of this compound has not been known so far.

特許公開2000-53657号公報Japanese Patent Publication No. 2000-53657 特許公開2001-247412号公報Patent Publication 2001-247412 特許公開2001-247413号公報Japanese Patent Publication 2001-247413 特許公開2001-247553号公報Japanese Patent Publication 2001-247553 米国特許第4338327号明細書U.S. Pat.No. 4,338,327

本発明の課題は、ブラシノステロイド生合成の特異的阻害剤を提供することにある。   An object of the present invention is to provide a specific inhibitor of brassinosteroid biosynthesis.

生合成酵素遺伝子を欠損した変異体がシロイヌナズナでいくつか知られており、その形態的変化はブラシノステロイド生合成欠損に特有であるところから、本発明者らはブラシノステロイド生合成の特異的阻害剤を見出すべく、ブラシノステロイド生合成酵素欠損株に特有な形態変化を惹起する化合物を鋭意探索した。その結果、1−[4−(2−エトキシフェノキシメチル)-2-(4-クロロフェニル-[1,3]ジオキラン-2-イルメチル)-1H-[1,2,4]トリアゾール化合物などが所望の阻害作用を有していることを見出した。   Several mutants lacking the biosynthetic enzyme gene are known in Arabidopsis thaliana, and the morphological changes are specific to brassinosteroid biosynthesis deficiency. In order to find an inhibitor, the present inventors eagerly searched for a compound that causes a morphological change peculiar to a brassinosteroid biosynthesis enzyme deficient strain. As a result, a 1- [4- (2-ethoxyphenoxymethyl) -2- (4-chlorophenyl- [1,3] dioxyl-2-ylmethyl) -1H- [1,2,4] triazole compound is desired. It was found to have an inhibitory effect.

即ち、本発明は、以下の(1)〜(8)を提供する。
(1)下記の式(I):
That is, the present invention provides the following (1) to (8).
(1) The following formula (I):

(式中、R1及びR2はそれぞれ独立に水素原子又は低級アルキル基を示し、R3は置換基を有することもあるフェニル基又はナフチル基を示し、R4は置換基を有することもあるフェニル基又はナフチル基を示し、R5は窒素原子を含むヘテロアリール基を示し、Xは単結合又は-CH2-を示し、Yは酸素原子、硫黄原子、NH又は-CH2-を示す。)で表される化合物又はその塩を有効成分として含む植物成長調節剤。
(2)R1及びR2が水素原子であり、R3が2-クロロフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である(1)に記載の植物成長調節剤。
(3)R1及びR2が水素原子であり、R3が2,5-ジクロロフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である(1)に記載の植物成長調節剤。
(4)R1及びR2が水素原子であり、R3が2-エトキシフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である(1)に記載の植物成長調節剤。
(5)R1及びR2が水素原子であり、R3が2-プロピオキシフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である(1)に記載の植物成長調節剤。
(6)R1及びR2が水素原子であり、R3が2-アリルオキシフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である(1)に記載の植物成長調節剤。
(7)植物成長調節が、植物の矮化、開花時期の調節、直立葉の誘導、又は生殖制御による雑草防除である(1)乃至(6)のいずれかに記載の植物成長調節剤。
(8)(1)乃至(7)のいずれか一項に記載の植物成長調節剤を植物に作用させる植物の成長調節方法。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or a lower alkyl group, R 3 represents a phenyl group or naphthyl group which may have a substituent, and R 4 may have a substituent. A phenyl group or a naphthyl group, R 5 represents a heteroaryl group containing a nitrogen atom, X represents a single bond or —CH 2 —, and Y represents an oxygen atom, a sulfur atom, NH or —CH 2 —. The plant growth regulator containing the compound or its salt represented by this as an active ingredient.
(2) R 1 and R 2 are hydrogen atoms, R 3 is a 2-chlorophenyl group, R 4 is a 4-chlorophenyl group, and R 5 is 1H-1,2,4-triazol-1-yl The plant growth regulator according to (1), which is a group, X is a single bond, and Y is an oxygen atom.
(3) R 1 and R 2 are hydrogen atoms, R 3 is a 2,5-dichlorophenyl group, R 4 is a 4-chlorophenyl group, and R 5 is 1H-1,2,4-triazole-1 The plant growth regulator according to (1), which is an -yl group, X is a single bond, and Y is an oxygen atom.
(4) R 1 and R 2 are hydrogen atoms, R 3 is a 2-ethoxyphenyl group, R 4 is a 4-chlorophenyl group, and R 5 is 1H-1,2,4-triazole-1- The plant growth regulator according to (1), which is an yl group, X is a single bond, and Y is an oxygen atom.
(5) R 1 and R 2 are hydrogen atoms, R 3 is a 2-propoxyphenyl group, R 4 is a 4-chlorophenyl group, and R 5 is 1H-1,2,4-triazole-1 The plant growth regulator according to (1), which is an -yl group, X is a single bond, and Y is an oxygen atom.
(6) R 1 and R 2 are hydrogen atoms, R 3 is a 2-allyloxyphenyl group, R 4 is a 4-chlorophenyl group, and R 5 is 1H-1,2,4-triazole-1 The plant growth regulator according to (1), which is an -yl group, X is a single bond, and Y is an oxygen atom.
(7) The plant growth regulator according to any one of (1) to (6), wherein the plant growth regulation is plant hatching, regulation of flowering time, induction of upright leaves, or weed control by reproduction control.
(8) A method for regulating plant growth, wherein the plant growth regulator according to any one of (1) to (7) is allowed to act on a plant.

本発明の植物成長調節剤の有効成分である式(I)の化合物又はその塩は、ブラシノステロイド生合成の特異的阻害作用を有しており、例えば、植物の伸長抑制、植物バイオマス生産増加、花粉成長抑制、花の鮮度保持、植物の抗ストレス剤、雑草防除、植物の老化抑制、根の肥大化などの植物成長調節剤として用いることができる。   The compound of formula (I) or a salt thereof, which is an active ingredient of the plant growth regulator of the present invention, has a specific inhibitory action on brassinosteroid biosynthesis, for example, suppression of plant elongation, increase of plant biomass production It can be used as a plant growth regulator such as pollen growth inhibition, flower freshness preservation, plant anti-stress agent, weed control, plant aging inhibition, root hypertrophy.

化合物7bのブラシノステロイド生合成阻害作用をブラシナゾール(Brz)の作用と比較して示した図である。It is the figure which showed the brassinosteroid biosynthesis inhibitory action of the compound 7b compared with the action of brassinazole (Brz). 化合物7bの開花時期調節作用を示した図である。FIG. 5 is a diagram showing the effect of regulating the flowering time of compound 7b. 化合物7bの成長調節作用を示した図である。FIG. 5 shows the growth regulating action of compound 7b. 化合物7bのイネに対する成長調節作用(直立葉の誘導)を示した図である。It is the figure which showed the growth control effect | action (induction of an upright leaf) with respect to rice of the compound 7b. 化合物7bのイネに対する成長調節作用(茎の矮化)を示した図である。It is the figure which showed the growth control effect | action (stalk hatching) with respect to rice of the compound 7b. 化合物7qの芝草(ペンクロス)に対する成長調節作用を示した図である。It is the figure which showed the growth control effect | action with respect to turfgrass (pen cross) of the compound 7q. 化合物7qの芝草(ペンクロス)に対する成長調節作用(成長抑制)を示した図である。左から順に、コントロール、30g ai/haの化合物7q処理、100 g ai/haの化合物7q処理、プリオマックス処理を示す。It is the figure which showed the growth control effect | action (growth suppression) with respect to turfgrass (pen cloth) of the compound 7q. In order from the left, control, 30 g ai / ha compound 7q treatment, 100 g ai / ha compound 7q treatment, and priomax treatment are shown.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

上記式(I)において、R1、R2が示す低級アルキル基としては、炭素数1個〜6個程度の直鎖又は分枝鎖のアルキル基を用いることができる(低級アルキル部分を有するアルコキシ基などのアルキル部分についても同様である。)。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などを挙げることができる。 In the above formula (I), as the lower alkyl group represented by R 1 and R 2 , a linear or branched alkyl group having about 1 to 6 carbon atoms can be used (an alkoxy having a lower alkyl moiety). The same applies to alkyl moieties such as groups.) For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group and the like can be mentioned.

R1及びR2は、ともに水素原子である場合が好ましい。 R 1 and R 2 are preferably both hydrogen atoms.

R3が示すナフチル基としては、1-ナフチル基、2-ナフチル基を挙げることができる。 Examples of the naphthyl group represented by R 3 include a 1-naphthyl group and a 2-naphthyl group.

R3が示すフェニル基又はナフチル基が置換基を有する場合には、その置換基の種類、個数、又は結合位置は特に限定されない。例えば、1個ないし3個、好ましくは1個又は2個程度の置換基を有していることが好ましく、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。 When the phenyl group or naphthyl group represented by R 3 has a substituent, the type, number, or bonding position of the substituent is not particularly limited. For example, it preferably has 1 to 3, preferably 1 or 2 substituents, and when it has 2 or more substituents, they may be the same or different.

R3が示すフェニル基又はナフチル基上の置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれでもよい)、低級アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、2-メチルブチル基、3-メチルブチル基など)、低級アルケニル基(ビニル基、1-プロペニル基、アリル基(2-プロペニル基)、1-ブテニル基、2-ブテニル基、3-ブテニル基、3-メチル-2-ブテニル基など)、低級シクロアルキル基(シクロプロピル基、シクロブチル基、シクロペンチル基など)、ハロゲン化低級アルキル基(トリフルオロメチル基など)、低級アルコキシ基(メトキシ基、エトキシ基、n-プロピオキシ基、イソプロピオキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、2-メチルブトキシ基、3-メチルブトキシ基など)、低級アルケニルオキシ基(ビニルオキシ基、1-プロペニルオキシ基、アリルオキシ基、1-ブテニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、3-メチル-2-ブテニルオキシ基)、低級シクロアルキルオキシ基(シクロプロピオキシ基、シクロブトキシ基、シクロペンチルオキシ基などなど)、アミノ基、モノ若しくはジアルキルアミノ基、カルボキシル基、アルコキシカルボニル基(エトキシカルボニル基など)、アルカノイル基(アセチル基など)、アロイル基(ベンゾイル基など)、アラルキル基(ベンジル基など)、アリール基(フェニル基など)、ヘテロアリール基(ピリジル基など)、ヘテロ環基(ピロリジニル基など)、水酸基、ニトロ基、シアノ基などを挙げることができるが、これらに限定されることはない。フェニル基上の置換基として、低級アルキル基、ハロゲン原子、ハロゲン化低級アルキル基、低級アルコキシ基、低級アルケニルオキシ基、ハロゲン化低級アルコキシ基、水酸基が好ましく、塩素原子、プロピオキシ基、アリルオキシ基がより好ましい。 Examples of the substituent on the phenyl group or naphthyl group represented by R 3 include a halogen atom (any of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), a lower alkyl group (a methyl group, an ethyl group, n -Propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, 2-methylbutyl group, 3-methylbutyl group, etc.), lower alkenyl group (vinyl group, 1-propenyl group, allyl group (2 -Propenyl group), 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-methyl-2-butenyl group, etc.), lower cycloalkyl groups (cyclopropyl group, cyclobutyl group, cyclopentyl group, etc.), halogenated Lower alkyl group (such as trifluoromethyl group), lower alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropyloxy group, n-butoxy group, sec-butoxy group, tert- Toxyl group, 2-methylbutoxy group, 3-methylbutoxy group, etc.), lower alkenyloxy group (vinyloxy group, 1-propenyloxy group, allyloxy group, 1-butenyloxy group, 2-butenyloxy group, 3-butenyloxy group, 3 -Methyl-2-butenyloxy group), lower cycloalkyloxy group (cyclopropoxy group, cyclobutoxy group, cyclopentyloxy group, etc.), amino group, mono- or dialkylamino group, carboxyl group, alkoxycarbonyl group (ethoxycarbonyl group) ), Alkanoyl group (such as acetyl group), aroyl group (such as benzoyl group), aralkyl group (such as benzyl group), aryl group (such as phenyl group), heteroaryl group (such as pyridyl group), heterocyclic group (pyrrolidinyl group) Etc.), hydroxyl group, nitro group, cyano group, etc. However, it is not limited to these. The substituent on the phenyl group is preferably a lower alkyl group, a halogen atom, a halogenated lower alkyl group, a lower alkoxy group, a lower alkenyloxy group, a halogenated lower alkoxy group, or a hydroxyl group, and more preferably a chlorine atom, a propoxy group, or an allyloxy group. preferable.

R3が示す置換フェニル基としては、例えば、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、2,3-ジクロロフェニル基、2,4-ジクロロフェニル基、2,5-ジクロロフェニル基、2,6-ジクロロフェニル基、3,4-ジクロロフェニル基、3,5-ジクロロフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2-トリフルオロメトキシフェニル基、2-エトキシフェニル基、2-メトキシフェニル基、2-メチルフェニル基、2-プロピオキシフェニル基、2-アリルオキシフェニル基、2-ブトキシフェニル基、2-(3-ブテニルオキシ)フェニル基、2-イソブトキシフェニル基、2-tert-ブトキシフェニル基、2-シクロペンチルオキシフェニル基、2-(3-メチル-2-ブテニルオキシ)フェニル基、2-(3-メチルブトキシ)フェニル基、ビフェニル-2-イル基、ビフェニル-4-イル基、2-アリルフェニル基、2-ベンジルフェニル基などを挙げることができる。これらのうち、2-クロロフェニル基、3-クロロフェニル基、2,5-ジクロロフェニル基、2-フルオロフェニル基、2-エトキシフェニル基、2-メトキシフェニル基、2-プロピオキシフェニル基、2-アリルオキシフェニル基が好ましく、2-クロロフェニル基、2,5-ジクロロフェニル基、2-エトキシフェニル基、2-プロピオキシフェニル基、2-アリルオキシフェニル基がより好ましい。 Examples of the substituted phenyl group represented by R 3 include 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2,3-dichlorophenyl group, 2,4-dichlorophenyl group, 2,5-dichlorophenyl group, 2, 6-dichlorophenyl group, 3,4-dichlorophenyl group, 3,5-dichlorophenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,3-difluorophenyl group, 2,4-difluoro Phenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, 3,4-difluorophenyl group, 3,5-difluorophenyl group, 2-trifluoromethoxyphenyl group, 2-ethoxyphenyl group, 2 -Methoxyphenyl group, 2-methylphenyl group, 2-propoxyoxyphenyl group, 2-allyloxyphenyl group, 2-butoxyphenyl group, 2- (3-butenyloxy) phenyl group, 2-isobutoxypheny Group, 2-tert-butoxyphenyl group, 2-cyclopentyloxyphenyl group, 2- (3-methyl-2-butenyloxy) phenyl group, 2- (3-methylbutoxy) phenyl group, biphenyl-2-yl group, biphenyl A 4-yl group, a 2-allylphenyl group, a 2-benzylphenyl group, and the like can be given. Among these, 2-chlorophenyl group, 3-chlorophenyl group, 2,5-dichlorophenyl group, 2-fluorophenyl group, 2-ethoxyphenyl group, 2-methoxyphenyl group, 2-propoxyphenyl group, 2-allyloxy A phenyl group is preferable, and a 2-chlorophenyl group, a 2,5-dichlorophenyl group, a 2-ethoxyphenyl group, a 2-propoxyphenyl group, and a 2-allyloxyphenyl group are more preferable.

R4が示すフェニル基又はナフチル基が置換基を有する場合には、その置換基の種類、個数、又は結合位置は特に限定されない。例えば、1個ないし3個、好ましくは1個又は2個程度の置換基を有していることが好ましく、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。 When the phenyl group or naphthyl group represented by R 4 has a substituent, the type, number, or bonding position of the substituent is not particularly limited. For example, it preferably has 1 to 3, preferably 1 or 2 substituents, and when it has 2 or more substituents, they may be the same or different.

R4が示すフェニル基又はナフチル基上の置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれでもよい)、低級アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、2-メチルブチル基、3-メチルブチル基など)、低級アルケニル基(ビニル基、1-プロペニル基、アリル基(2-プロペニル基)、1-ブテニル基、2-ブテニル基、3-ブテニル基、3-メチル-2-ブテニル基など)、低級シクロアルキル基(シクロプロピル基、シクロブチル基、シクロペンチル基など)、ハロゲン化低級アルキル基(トリフルオロメチル基など)、低級アルコキシ基(メトキシ基、エトキシ基、n-プロピオキシ基、イソプロピオキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、2-メチルブトキシ基、3-メチルブトキシ基など)、低級アルケニルオキシ基(ビニルオキシ基、1-プロペニルオキシ基、アリルオキシ基、1-ブテニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、3-メチル-2-ブテニルオキシ基)、低級シクロアルキルオキシ基(シクロプロピオキシ基、シクロブトキシ基、シクロペンチルオキシ基などなど)、アミノ基、モノ若しくはジアルキルアミノ基、カルボキシル基、アルコキシカルボニル基(エトキシカルボニル基など)、アルカノイル基(アセチル基など)、アロイル基(ベンゾイル基など)、アラルキル基(ベンジル基など)、アリール基(フェニル基など)、ヘテロアリール基(ピリジル基など)、ヘテロ環基(ピロリジニル基など)、水酸基、ニトロ基、シアノ基などを挙げることができるが、これらに限定されることはない。フェニル基又はナフチル基上の置換基として、低級アルキル基、ハロゲン原子、ハロゲン化低級アルキル基、低級アルコキシ基、ハロゲン化低級アルコキシ基、水酸基が好ましく、ハロゲン原子又はハロゲン化低級アルキル基がより好ましい。 Examples of the substituent on the phenyl group or naphthyl group represented by R 4 include a halogen atom (any of fluorine atom, chlorine atom, bromine atom or iodine atom), a lower alkyl group (methyl group, ethyl group, n -Propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, 2-methylbutyl group, 3-methylbutyl group, etc.), lower alkenyl group (vinyl group, 1-propenyl group, allyl group (2 -Propenyl group), 1-butenyl group, 2-butenyl group, 3-butenyl group, 3-methyl-2-butenyl group, etc.), lower cycloalkyl groups (cyclopropyl group, cyclobutyl group, cyclopentyl group, etc.), halogenated Lower alkyl group (such as trifluoromethyl group), lower alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropyloxy group, n-butoxy group, sec-butoxy group, tert- Toxyl group, 2-methylbutoxy group, 3-methylbutoxy group, etc.), lower alkenyloxy group (vinyloxy group, 1-propenyloxy group, allyloxy group, 1-butenyloxy group, 2-butenyloxy group, 3-butenyloxy group, 3 -Methyl-2-butenyloxy group), lower cycloalkyloxy group (cyclopropoxy group, cyclobutoxy group, cyclopentyloxy group, etc.), amino group, mono- or dialkylamino group, carboxyl group, alkoxycarbonyl group (ethoxycarbonyl group) ), Alkanoyl group (such as acetyl group), aroyl group (such as benzoyl group), aralkyl group (such as benzyl group), aryl group (such as phenyl group), heteroaryl group (such as pyridyl group), heterocyclic group (pyrrolidinyl group) Etc.), hydroxyl group, nitro group, cyano group, etc. However, it is not limited to these. The substituent on the phenyl group or naphthyl group is preferably a lower alkyl group, a halogen atom, a halogenated lower alkyl group, a lower alkoxy group, a halogenated lower alkoxy group or a hydroxyl group, more preferably a halogen atom or a halogenated lower alkyl group.

R4が示すナフチル基としては、1-ナフチル基、2-ナフチル基を挙げることができる。 Examples of the naphthyl group represented by R 4 include a 1-naphthyl group and a 2-naphthyl group.

R4が示す置換フェニル基としては、例えば、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、3,4-ジクロロフェニル基、2,4-ジクロロフェニル基、3,4-ジフルオロフェニル基、2,4-ジフルオロフェニル基、4-ブロモフェニル基、4-トリフルオロメトキシフェニル基、4-メチルフェニル基、4-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-ヒドロキシフェニル基、4-メトキシフェニル基、2-クロロ−4-トリフルオロメチルフェニル基、3-クロロ-4-トリフルオロメチルフェニル基、4-ブロモ-2-クロロフェニル基、ビフェニル基などを挙げることができる。これらのうち、4-クロロフェニル基、4-トリフルオロメチルフェニル基、4-ブロモフェニル基、2-クロロ−4-トリフルオロメチルフェニル基が好ましい。 Examples of the substituted phenyl group represented by R 4 include a 2-chlorophenyl group, a 3-chlorophenyl group, a 4-chlorophenyl group, a 2-fluorophenyl group, a 3-fluorophenyl group, a 4-fluorophenyl group, and 3,4-dichlorophenyl. Group, 2,4-dichlorophenyl group, 3,4-difluorophenyl group, 2,4-difluorophenyl group, 4-bromophenyl group, 4-trifluoromethoxyphenyl group, 4-methylphenyl group, 4-trifluoromethyl Phenyl group, 3-trifluoromethylphenyl group, 4-hydroxyphenyl group, 4-methoxyphenyl group, 2-chloro-4-trifluoromethylphenyl group, 3-chloro-4-trifluoromethylphenyl group, 4-bromo -2-Chlorophenyl group, biphenyl group and the like can be mentioned. Of these, 4-chlorophenyl group, 4-trifluoromethylphenyl group, 4-bromophenyl group, and 2-chloro-4-trifluoromethylphenyl group are preferable.

R5が示す窒素原子を含むヘテロアリール基としては、1H-1,2,4-トリアゾール-1-イル基、1H-イミダゾール-1-イル基、4H-1,2,4-トリアゾール-4-イル基、1H-ピラゾール-1-イル基などを挙げることができる。これらのうち、1H-1,2,4-トリアゾール-1-イル基が好ましい。 Examples of the heteroaryl group containing a nitrogen atom represented by R 5 include 1H-1,2,4-triazol-1-yl group, 1H-imidazol-1-yl group, 4H-1,2,4-triazole-4- Yl group, 1H-pyrazol-1-yl group and the like. Of these, the 1H-1,2,4-triazol-1-yl group is preferred.

Xは単結合であることが好ましい。なお、「単結合」とは、式(I)においてXに隣接する酸素原子と炭素原子が直接結合していることをいう。   X is preferably a single bond. The “single bond” means that an oxygen atom adjacent to X and a carbon atom are directly bonded in the formula (I).

Yは酸素原子であることが好ましい。   Y is preferably an oxygen atom.

上記式(I)で表される化合物は1個又は2以上の不斉炭素を有する場合がある。不斉炭素に基づく純粋な形態の光学活性体又はジアステレオ異性体のほか、任意の異性体混合物(例えば、2以上のジアステレオ異性体の混合物)又はラセミ体などはいずれも本発明の植物成長調節剤の有効成分として利用できる。また、式(I)で表される化合物は酸付加塩を形成することができ、置換基の種類に応じて酸付加塩を形成することもある。塩の種類は特に限定されず、塩酸、硫酸などの鉱酸類との塩、p-トルエンスルホン酸、メタンスルホン酸、酒石酸などの有機酸類との塩、ナトリウム塩、カリウム塩、カルシウム塩などの金属塩、アンモニウム塩、トリエチルアミンなどの有機アミンとの塩、グリシンなどのアミノ酸との塩を挙げることができる。   The compound represented by the above formula (I) may have one or more asymmetric carbons. In addition to optically active forms or diastereoisomers in a pure form based on asymmetric carbon, any mixture of isomers (for example, a mixture of two or more diastereoisomers) or racemates, etc. are all used for the plant growth of the present invention. It can be used as an active ingredient of a regulator. In addition, the compound represented by the formula (I) can form an acid addition salt, and may form an acid addition salt depending on the type of the substituent. The type of salt is not particularly limited, and salts with mineral acids such as hydrochloric acid and sulfuric acid, salts with organic acids such as p-toluenesulfonic acid, methanesulfonic acid and tartaric acid, metals such as sodium salt, potassium salt and calcium salt Examples thereof include salts with organic amines such as salts, ammonium salts and triethylamine, and salts with amino acids such as glycine.

式(I)で表される化合物の具体例を以下の表に示すが、本発明の植物成長調節剤に利用可能な化合物はこれらに限定されることはない。   Specific examples of the compound represented by the formula (I) are shown in the following table, but the compounds usable for the plant growth regulator of the present invention are not limited thereto.

上記化合物のうちで、好ましい化合物としてI-1(化合物7a)、I-2(化合物7b)、I-3(化合物7c)、I-4(化合物7d)、I-5(化合物7e)、I-6(化合物7f)、I-7(化合物7g)、I-8(化合物7h)、I-9(化合物7i)、I-10(化合物7j)、I-11(化合物7k)、I-12(化合物7l)、I-13(化合物7m)、I-14(化合物7n)、I-15(化合物7o)、I-136(化合物7p)、I-137(化合物7q)を挙げることができ、より好ましい化合物としてI-2、I-7、I-13、I-136、I-137を挙げることができる。   Among the above compounds, preferred compounds are I-1 (Compound 7a), I-2 (Compound 7b), I-3 (Compound 7c), I-4 (Compound 7d), I-5 (Compound 7e), I -6 (compound 7f), I-7 (compound 7g), I-8 (compound 7h), I-9 (compound 7i), I-10 (compound 7j), I-11 (compound 7k), I-12 (Compound 7l), I-13 (Compound 7m), I-14 (Compound 7n), I-15 (Compound 7o), I-136 (Compound 7p), I-137 (Compound 7q) can be mentioned, More preferred compounds include I-2, I-7, I-13, I-136, and I-137.

上記式(I)で表される化合物は、公知の文献(例えば、Tetrahedron Asymmetry, 14, pp.3487-3493, 2003)に記載された方法に従って、あるいはその記述を参照しつつそれらの方法に適宜に改変や修飾を加えた方法に従って合成することができる。例えば、上記式(I)においてR1及びR2が水素原子であり、R3が置換基Rを有するフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である化合物は、以下のScheme 1に従って合成することができる。 The compounds represented by the above formula (I) can be suitably used according to the methods described in known literatures (for example, Tetrahedron Asymmetry, 14, pp. 3487-3493, 2003) or with reference to the descriptions thereof. Can be synthesized according to a method in which alterations or modifications are added. For example, in the above formula (I), R 1 and R 2 are hydrogen atoms, R 3 is a phenyl group having a substituent R, R 4 is a 4-chlorophenyl group, and R 5 is 1H-1,2 , 4-Triazol-1-yl group, X is a single bond, and Y is an oxygen atom can be synthesized according to Scheme 1 below.

本発明の植物成長調節剤の有効成分である上記式(I)の化合物又はその塩は、ブラシノステロイド生合成に対して特異的な阻害作用を有している。本明細書において用いられる「植物成長調節」という用語は、例えば、植物の矮化(伸長抑制)、開花時期の調節、直立葉の誘導(及びそれに伴う光合成効率の向上、バイオマス増加作用)、花粉成長抑制、花の鮮度保持、植物の抗ストレス剤(熱、乾燥、寒さなど)、生殖制御による雑草防除、植物の老化抑制、根の肥大化などを含めて、最も広義に解釈する必要がある。例えば、植物成長矮化剤、植物成長抑制剤、除草剤などは、本発明の植物成長調節剤の典型的な例であるが、本発明の植物成長調節剤はこれらに限定されることはない。   The compound of the above formula (I) or a salt thereof, which is an active ingredient of the plant growth regulator of the present invention, has a specific inhibitory action on brassinosteroid biosynthesis. As used herein, the term “plant growth regulation” refers to, for example, plant hatching (extension suppression), regulation of flowering time, induction of upright leaves (and accompanying photosynthesis efficiency improvement, biomass increasing action), pollen It needs to be interpreted in the broadest sense including growth suppression, flower freshness preservation, plant anti-stress agents (heat, dryness, cold, etc.), weed control by reproductive control, plant aging suppression, root enlargement, etc. . For example, plant growth stimulants, plant growth inhibitors, herbicides and the like are typical examples of the plant growth regulator of the present invention, but the plant growth regulator of the present invention is not limited thereto. .

本発明の植物成長調節剤は、例えば、当業界で周知の製剤用添加物を用いて、農薬用組成物として調製することができる。農薬用組成物の形態は特に限定されず、当業界で利用可能な形態であればいかなる形態を採用してもよい。例えば、乳剤、液剤、油剤、水溶剤、水和剤、フロアブル、粉剤、微粒剤、粒剤、エアゾール、くん蒸剤、又はペースト剤などの形態の組成物を用いることができる。農薬用組成物の製造方法も特に限定されず、当業者に利用可能な方法を適宜採用することができる。本発明の植物成長調節剤の有効成分としては、上記式(I)で表される化合物またはその塩の2種以上を組み合わせて用いてもよい。また、殺虫剤、殺菌剤、殺虫殺菌剤、除草剤などの他の農薬の有効成分を配合してもよい。本発明の植物成長調節剤の適用方法及び適用量は、適用目的、剤型、適用場所などの条件に応じて当業者が適宜選択可能である。好適な適用量は、1ha当り有効成分量で0.1〜1000g程度である。   The plant growth regulator of the present invention can be prepared as an agrochemical composition using, for example, pharmaceutical additives well known in the art. The form of the composition for agricultural chemicals is not particularly limited, and any form may be adopted as long as it is a form that can be used in the art. For example, a composition in the form of an emulsion, solution, oil, water solvent, wettable powder, flowable, powder, fine granule, granule, aerosol, fumigant, or paste can be used. A method for producing the composition for agricultural chemicals is not particularly limited, and any method available to those skilled in the art can be appropriately employed. As an active ingredient of the plant growth regulator of the present invention, two or more compounds represented by the above formula (I) or a salt thereof may be used in combination. Moreover, you may mix | blend the active ingredient of other agricultural chemicals, such as an insecticide, a fungicide, an insecticide fungicide, and a herbicide. The application method and application amount of the plant growth regulator of the present invention can be appropriately selected by those skilled in the art according to conditions such as application purpose, dosage form, and application location. A suitable application amount is about 0.1 to 1000 g as an active ingredient amount per 1 ha.

本発明の植物成長調節剤の適用対象となる植物は、ブラシノステロイドを生合成する植物であれば特に限定されない。適用対象となる植物の具体例としては、シロイヌナズナ、トマト、キュウリなどの双子葉植物、イネ、小麦、大麦、トウモロコシなどの単子葉植物などを挙げることができるが、これらに限定されない。   The plant to which the plant growth regulator of the present invention is applied is not particularly limited as long as it is a plant that biosynthesizes brassinosteroid. Specific examples of the plant to be applied include dicotyledonous plants such as Arabidopsis thaliana, tomato and cucumber, and monocotyledonous plants such as rice, wheat, barley and corn, but are not limited thereto.

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.

〔実施例1〕 シロイヌナズナの下胚軸の伸長阻害
下記の式(Ia)で表される化合物(7a-z、7aa-7ad)、式(Ib)で表される化合物(8a-h)、及び式(Ic)で表される化合物(9a-c)を用いて、暗黒下で生育させたシロイヌナズナの下胚軸の伸長阻害作用を検討した。
[Example 1] Inhibition of Arabidopsis hypocotyl elongation The compounds represented by the following formula (Ia) (7a-z, 7aa-7ad), the compound (8a-h) represented by the formula (Ib), and Using the compound (9a-c) represented by the formula (Ic), an inhibitory effect on the elongation of the hypocotyl of Arabidopsis thaliana grown in the dark was examined.

購入したシロイヌナズナ種子の表面を1% NaOCl溶液で20分間滅菌し、滅菌蒸留水で5回洗浄した。この種子を1% アガロース固形培地(アグリポット(Agripot、Kirin Brew Co., Tokyo)中に0.5×Murashige and Skoog塩、1.5%シュークロースを含む)に蒔いた。植物を22℃のグロースチャンバー中で、暗条件で成長させた。化合物7bを用いた場合のシロイヌナズナの下胚軸長を図1に示す。また、各化合物の構造と50%阻害濃度(IC50)を表6〜10に示す。なお、IC50は、無処理のシロイヌナズナの胚軸の長さを0%阻害とし、シロイヌナズナの胚軸の長さが0mmを100%阻害として算出した。また、データは15-20の幼植物から集め、実験は再現性を確立するため少なくとも二回行った。 The surface of the purchased Arabidopsis seeds was sterilized with 1% NaOCl solution for 20 minutes and washed 5 times with sterilized distilled water. The seeds were sown in 1% agarose solid medium (Agripot, Kirin Brew Co., Tokyo containing 0.5 × Murashige and Skoog salt, 1.5% sucrose). Plants were grown in dark conditions in a 22 ° C. growth chamber. The hypocotyl axis length of Arabidopsis thaliana when compound 7b is used is shown in FIG. In addition, Tables 6 to 10 show the structure and 50% inhibitory concentration (IC 50 ) of each compound. IC 50 was calculated assuming that the length of the hypocotyl of untreated Arabidopsis thaliana was 0% inhibition, and that the length of the hypocotyl of Arabidopsis thaliana was 0%. Data were collected from 15-20 seedlings and experiments were performed at least twice to establish reproducibility.

図1及び表6〜10に示すように、式(Ia)、式(Ib)、及び式(Ic)で表される化合物は、既知のブラシノステロイド生合成阻害物質であるブラシナゾール(Brz)よりも高い阻害効果を示した。特に化合物7m、7p、及び7qの阻害効果が高かった。   As shown in FIG. 1 and Tables 6 to 10, the compounds represented by formula (Ia), formula (Ib), and formula (Ic) are the known brassinosteroid biosynthesis inhibitors, brassanazole (Brz). Higher inhibitory effect. In particular, the inhibitory effects of compounds 7m, 7p, and 7q were high.

〔実施例2〕 ブラシノライドによる阻害剤処理に起因する植物下胚軸伸長阻害の抑制
試験化合物がブラシノステロイド生合成阻害剤であるか否かは、ブラシノステロイドの活性本体と考えられているブラシノライドの添加により、その阻害効果が抑制されるか否かで調べることができる。そこで、前記した式(Ia)、式(Ib)、及び式(Ic)で表される化合物の阻害効果に対するブラシノライドの抑制作用を調べた(表11〜15)。
[Example 2] Inhibition of plant hypocotyl elongation inhibition caused by treatment with an inhibitor with brassinolide Whether or not a test compound is a brassinosteroid biosynthesis inhibitor is considered to be an active substance of brassinosteroid. Whether the inhibitory effect is suppressed by the addition of brassinolide can be examined. Therefore, the inhibitory action of brassinolide on the inhibitory effect of the compounds represented by the above formulas (Ia), (Ib) and (Ic) was examined (Tables 11 to 15).

表11〜15に示すように、シロイヌナズナ下胚軸伸長阻害効果は、ブラシノライド(BL)の添加により抑制されたが、ジベレリン(GA)の添加によっては抑制されなかった。この結果により、式(Ia)、式(Ib)、及び式(Ic)で表される化合物がブラシノステロイド生合成を特異的に阻害していることが確認された。
As shown in Tables 11 to 15, the Arabidopsis hypocotyl elongation inhibitory effect was suppressed by the addition of brassinolide (BL), but not by the addition of gibberellin (GA). This result confirmed that the compounds represented by formula (Ia), formula (Ib), and formula (Ic) specifically inhibited brassinosteroid biosynthesis.

〔実施例3〕 シロイヌナズナの開花時期の調節
シロイヌナズナの種子を、10 cm平方のプラスティックポットに入れ、標準的な鉢植え用ミックス(1:1 v/v プロミックス:ベロー砂土)に播き、光照射条件(2000ルクス)16時間、暗条件8時間の周期で、22℃のグロースチャンバー中で生育させた。4葉期になるシロイヌナズナに4〜400 g ai/haの薬量で均一噴霧することにより薬剤処理を行った。その後、植物の生育を経時的に測定した。化合物7bで処理したシロイヌナズナの外観を図2に示す。また、化合物7bで処理したシロイヌナズナのロゼットの直径の経時的変化を図3に示す。
[Example 3] Control of Arabidopsis flowering time Arabidopsis seeds are placed in a 10 cm square plastic pot, sown in a standard potting mix (1: 1 v / v promix: bellow sand), and irradiated with light. The cells were grown in a growth chamber at 22 ° C. with a period of 16 hours under conditions (2000 lux) and 8 hours under dark conditions. The drug treatment was performed by spraying uniformly on Arabidopsis thaliana in the 4-leaf stage at a dose of 4 to 400 g ai / ha. Thereafter, the growth of the plants was measured over time. The appearance of Arabidopsis treated with Compound 7b is shown in FIG. In addition, FIG. 3 shows the change over time in the diameter of Arabidopsis rosettes treated with Compound 7b.

図2及び図3に示すように、化合物7bで処理されたシロイヌナズナは、生育が抑制されていた。また、未処理のシロイヌナズナ(Control)では、発芽から42日目には開花していたが、化合物7bで処理されたシロイヌナズナでは開花はみられなかった。   As shown in FIGS. 2 and 3, the growth of Arabidopsis treated with Compound 7b was suppressed. In addition, untreated Arabidopsis thaliana (Control) flowered on the 42nd day after germination, but Arabidopsis treated with compound 7b did not bloom.

〔実施例4〕 イネの直立葉化
あきたこまち種子を3葉期になるまで30度で光照射条件(5000ルクス)16時間、暗条件8時間の周期で、グロースチャンバー中で生育させた後、10 cm平方の湛水プラスティックポットに移植した。基肥はN 5g/平方メートル,P 8g/平方メートル,K 10g/平方メートルで施用した。薬剤処理は4〜1000 g ai/haの薬量で湛水土壌に加えることにより行った。引き続き同条件下で生育させた後、稲の葉角を測定した。化合物7bで処理したイネの外観を図4に示す。
[Example 4] Upright foliage of rice Akitakomachi seeds were grown in a growth chamber at a temperature of 30 ° C until reaching the third leaf stage at a light irradiation condition (5000 lux) for 16 hours and a dark condition of 8 hours. Transplanted into a cm square flooded plastic pot. The basic fertilizer was applied at N 5g / m2, P 8g / m2, and K 10g / m2. The chemical treatment was performed by adding to the flooded soil at a dose of 4 to 1000 g ai / ha. Subsequently, after growing under the same conditions, the leaf angle of rice was measured. The appearance of rice treated with compound 7b is shown in FIG.

図4に示すように、化合物7bで処理したイネの葉はほぼ直立していた。   As shown in FIG. 4, the rice leaves treated with compound 7b were almost upright.

〔実施例5〕 稲の矮化
比重1.13で塩水選したあきたこまち種子を湛水苗代で中苗になるまで育て、実施年の平成23年5月17日に移植した。栽植様式は、一株一本植えの正方形植えで、栽植密度は、平方メートル当たりの60株とした。基肥はN 5g/平方メートル,P 8g/平方メートル,K 10g/平方メートルで施用し、同年7月18日に追肥としてN 6g/平方メートル,K 5g/平方メートルを施用した。薬剤処理として、同年7月21日に4〜1000 g ai/haの薬量で稲に噴霧した。その後、植物の生育を経時的に測定し、8月20日の稲の外観を図5に示した。
[Example 5] Hatching of rice Akitakomachi seeds selected with salt water at a specific gravity of 1.13 were grown until they became medium seedlings at the submerged seedling price and transplanted on May 17, 2011. The planting style was a square plant with a single plant, and the planting density was 60 plants per square meter. The basic fertilizer was applied at N 5g / square meter, P 8g / square meter, K 10g / square meter, and N 6g / square meter and K 5g / square meter were applied as additional fertilizer on July 18 of the same year. As a chemical treatment, the rice plants were sprayed at a dose of 4 to 1000 g ai / ha on July 21 of the same year. Thereafter, the growth of the plant was measured over time, and the appearance of the rice plant on August 20 is shown in FIG.

図5に示すように、化合物7bで処理したイネの茎の成長は抑制された。   As shown in FIG. 5, the growth of the stems of rice treated with compound 7b was suppressed.

〔実施例6〕 ゴルフ場芝草成長の抑制
市販されたペンクロスの苗を3センチまで生育させた段階で、化合物7qを30〜100 g ai/haの薬量で芝草に噴霧した。その後、植物の生育を経時的に測定した。芝草の成長の経時変化を図6に示す。図に示されたように、無処理区では、時間経過に伴い芝草の成長が観測され、約2カ月経過した時点で芝草は約8.5 cmに伸長した。ジベレリン生合成阻害型薬剤であるプリモマックス処理区では、芝草の長さは約4.5 cmであった。一方、7q処理区では、約4.2 cmであることが明らかとなった。また、芝草の外観を図7に示した。図7に示されたように、芝草の成長は抑制された。
Example 6 Inhibition of Golf Course Turfgrass Growth When commercially available pencloth seedlings were grown to 3 cm, Compound 7q was sprayed onto turfgrass at a dose of 30-100 g ai / ha. Thereafter, the growth of the plants was measured over time. FIG. 6 shows changes with time in the growth of turfgrass. As shown in the figure, in the untreated area, turfgrass growth was observed over time, and after about 2 months, the turfgrass grew to about 8.5 cm. In the Primomax treatment group, which is a gibberellin biosynthesis-inhibiting drug, the length of turfgrass was about 4.5 cm. On the other hand, in the 7q treatment section, it was found to be about 4.2 cm. The appearance of turfgrass is shown in FIG. As shown in FIG. 7, turfgrass growth was inhibited.

〔合成例1〕 1-[[2-(4-クロロフェニル)-4-(フェノキシメチル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物7a)の合成 Synthesis Example 1 1-[[2- (4-Chlorophenyl) -4- (phenoxymethyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4-triazole (Compound 7a) Synthesis of

化合物7aはトルエン-4-スルホン酸 2-(4-クロロフェニル)-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステル(トシレート6)とフェノールを反応させることにより調製した(Scheme 1参照)。トシレート6は、以下の方法に従い、調製した。   Compound 7a is toluene-4-sulfonic acid 2- (4-chlorophenyl) -2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester (tosylate 6) Prepared by reacting phenol (see Scheme 1). Tosylate 6 was prepared according to the following method.

50 mlナスフラスコに0.88 gの1-(4-クロロフェニル)-2-1H-[1,2,4]トリアゾール-1-イルエタノン (2)を(4 mmol)入れ、トルエン(10 ml)を加えた。そこに1 gのトルエン-4-スルホン酸 2,3-ジヒドロキシプロピルエステル(5)(4 mmol)とTfOH(1.5 ml)を加え、窒素雰囲気下で71時間、室温で反応させた。反応終了後、反応混合物に5.8%炭酸水素ナトリウム水溶液(30 ml)を加えて中和した(pH=7)。得られた混合物を酢酸エチル(30 ml×3)で液々分配し、有機層を集めて飽和食塩水(30 ml)で洗浄し、硫酸ナトリウムで乾燥後、溶媒を減圧留去した。目的化合物のトルエンスルホン酸塩の結晶を得るために濃縮した残存物と750 mgのp-トルエンスルホン酸(3.9 mmol)をそれぞれ10 mlの酢酸エチルに溶かし、混合して30分撹拌した。結晶を形成した後、吸引濾過し、アセトニトリルを用いて再結晶を行なうことにより目的化合物トルエン-4-スルホン酸 2-(4-クロロフェニル)-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステル (6)が得られた(収率50.4%)。1H NMR(CD3OD)δ 2.48 (s, 3H), 3.58 (dd, J=5.9, 9.7 Hz, 1H), 3.72 (dd, J=5.9, 9.7 Hz, 1H), 3.78-3.84 (m, 2H), 4.21-4.27 (m, 2H), 7.35 (s, 4H), 7.39 (d, J=8.3 Hz, 2H), 7.79 (d, J= 8.3 Hz, 2H), 7.87 (s, 1H), 8.22(s, 1H) Into a 50 ml eggplant flask was placed 0.88 g of 1- (4-chlorophenyl) -2-1H- [1,2,4] triazol-1-ylethanone (2) (4 mmol) and toluene (10 ml) was added. . 1 g of toluene-4-sulfonic acid 2,3-dihydroxypropyl ester (5) (4 mmol) and TfOH (1.5 ml) were added thereto and reacted at room temperature for 71 hours in a nitrogen atmosphere. After completion of the reaction, the reaction mixture was neutralized by adding a 5.8% aqueous sodium hydrogen carbonate solution (30 ml) (pH = 7). The resulting mixture was partitioned between ethyl acetate (30 ml × 3), the organic layer was collected, washed with saturated brine (30 ml), dried over sodium sulfate, and the solvent was evaporated under reduced pressure. In order to obtain crystals of the target compound, toluenesulfonate, the concentrated residue and 750 mg of p-toluenesulfonic acid (3.9 mmol) were dissolved in 10 ml of ethyl acetate, mixed and stirred for 30 minutes. Crystals are formed, filtered with suction, and recrystallized with acetonitrile to give the target compound toluene-4-sulfonic acid 2- (4-chlorophenyl) -2-1H- [1,2,4] triazole-1 -Ilmethyl- [1,3] dioxolan-4-ylmethyl ester (6) was obtained (yield 50.4%). 1 H NMR (CD 3 OD) δ 2.48 (s, 3H), 3.58 (dd, J = 5.9, 9.7 Hz, 1H), 3.72 (dd, J = 5.9, 9.7 Hz, 1H), 3.78-3.84 (m, 2H), 4.21-4.27 (m, 2H), 7.35 (s, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H), 7.87 (s, 1H), 8.22 (s, 1H)

化合物7aは、以下の方法に従い、調製した。dry DMF (5 mL)中のトシレート6 (485 mg, 0.78 mmol)及びフェノール(70 mg, 0.72 mmol)に、水酸化カリウム(160 mg, 2.8 mmol)を加え、反応混合液を50 ℃で一晩加熱した。室温まで冷やした後、反応混合液を水(20 mL)とEtOAc(20 mL)で希釈し、有機相を分離した。水相をEtOAc (3 x 20 mL)で抽出した。すべての有機層を組み合わせ、鹹水(20 mL)で洗浄し、無水硫酸ナトリウム上で乾燥させ、濾過し、濃縮し、シリカゲルフラッシュクロマトグラフィー (EtOAc/hexanes = 1:1)で精製し、目的の化合物7aを得た(178.8 mg, 収率74.6%)。 mp 113.3-113.8 ℃. 1H NMR (400 MHz, CDCl3) δ 3.51 (dd, J = 5.9, 9.9 Hz, 1H), 3.73 (dd, J = 4.9, 9.7 Hz, 1H), 3.78 (dd, J = 5.1, 8.4 Hz, 1H), 3.83-3.86 (m, 1H), 4.28-4.33 (m, 1H), 4.48 (s, 2H), 6.77 (d, J = 7.7 Hz, 2H), 6.91 (t, J = 7.5 Hz, 1H), 7.21-7.25 (m, 2H), 7.31-7.33 (m, 2H), 7.39-7.41 (m, 2H), 7.89 (s, 1H), 8.30 (s, 1H). HRMS-ESI calcd for C19H18ClN3O3Na [M+Na]+ 394.0928, found 394.0891. Compound 7a was prepared according to the following method. Potassium hydroxide (160 mg, 2.8 mmol) was added to tosylate 6 (485 mg, 0.78 mmol) and phenol (70 mg, 0.72 mmol) in dry DMF (5 mL), and the reaction mixture was stirred at 50 ° C. overnight. Heated. After cooling to room temperature, the reaction mixture was diluted with water (20 mL) and EtOAc (20 mL) and the organic phase was separated. The aqueous phase was extracted with EtOAc (3 x 20 mL). Combine all organic layers, wash with brine (20 mL), dry over anhydrous sodium sulfate, filter, concentrate and purify by silica gel flash chromatography (EtOAc / hexanes = 1: 1) 7a was obtained (178.8 mg, yield 74.6%). mp 113.3-113.8 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.51 (dd, J = 5.9, 9.9 Hz, 1H), 3.73 (dd, J = 4.9, 9.7 Hz, 1H), 3.78 (dd, J = 5.1, 8.4 Hz, 1H), 3.83-3.86 (m, 1H), 4.28-4.33 (m, 1H), 4.48 (s, 2H), 6.77 (d, J = 7.7 Hz, 2H), 6.91 (t, J = 7.5 Hz, 1H), 7.21-7.25 (m, 2H), 7.31-7.33 (m, 2H), 7.39-7.41 (m, 2H), 7.89 (s, 1H), 8.30 (s, 1H) .HRMS -ESI calcd for C 19 H 18 ClN 3 O 3 Na [M + Na] + 394.0928, found 394.0891.

〔合成例2〕 1-[[4-[(2-クロロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7b)の合成 Synthesis Example 2 1-[[4-[(2-Chlorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4- Synthesis of triazole (compound 7b)

フェノールの代わりに2-クロロフェノールを用い、合成例1と同様の方法で目的の化合物7bを得た(収率 24.3%)。mp 117.6-119.3 ℃. 1H NMR (400 MHz, CDCl3) δ 3.87-3.92 (m, 1H), 3.94-9.98 (m, 2H), 4.41-4.47 (m, 1H), 4.50-4.58 (m, 2H), 6.82-6.84 (m, 1H), 6.91-6.95 (m, 1H), 7.20-7.24 (m, 1H), 7.33-7.38 (m, 3H), 7.42-7.45 (m, 2H), 7.90 (s, 1H), 8.17 (s, 1H). HRMS-ESI calcd for C19H17Cl2N3O3Na [M+Na]+ 428.0539, found 428.0496. The target compound 7b was obtained in the same manner as in Synthesis Example 1 using 2-chlorophenol instead of phenol (yield 24.3%). mp 117.6-119.3 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.87-3.92 (m, 1H), 3.94-9.98 (m, 2H), 4.41-4.47 (m, 1H), 4.50-4.58 (m, 2H), 6.82-6.84 (m, 1H), 6.91-6.95 (m, 1H), 7.20-7.24 (m, 1H), 7.33-7.38 (m, 3H), 7.42-7.45 (m, 2H), 7.90 ( s, 1H), 8.17 (s, 1H). HRMS-ESI calcd for C 19 H 17 Cl 2 N 3 O 3 Na [M + Na] + 428.0539, found 428.0496.

〔合成例3〕 1-[[4-[(3-クロロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(7c)の合成 Synthesis Example 3 1-[[4-[(3-Chlorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4- Synthesis of triazole (7c)

フェノールの代わりに3-クロロフェノールを用い、合成例1と同様の方法で目的の化合物7cを得た(収率 72.4%)。mp 120.4-121.2 ℃. 1H NMR (400 MHz, CDCl3) δ 3.65 (dd, J = 5.3, 10 Hz, 1H), 3.77 (dd, J = 4.8, 9.9 Hz, 1H), 3.84 (dd, J = 5.5, 8.4 Hz, 1H), 3.90-3.95 (m, 1H), 4.33-4.39 (m, 1H), 4.58 (s, 2H), 6.74-6.76 (m, 1H), 6.82-6.84 (m, 1H), 6.95-6.97 (m, 1H), 7.21-7.23 (m, 1H), 7.37-7.40 (m, 2H), 7.44-7.48 (m, 2H), 8.03 (s, 1H), 8.61 (s, 1H). HRMS-ESI calcd for C19H17Cl2N3O3Na [M+Na]+ 428.0539, found 428.0496. The target compound 7c was obtained in the same manner as in Synthesis Example 1 using 3-chlorophenol instead of phenol (yield 72.4%). mp 120.4-121.2 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.65 (dd, J = 5.3, 10 Hz, 1H), 3.77 (dd, J = 4.8, 9.9 Hz, 1H), 3.84 (dd, J = 5.5, 8.4 Hz, 1H), 3.90-3.95 (m, 1H), 4.33-4.39 (m, 1H), 4.58 (s, 2H), 6.74-6.76 (m, 1H), 6.82-6.84 (m, 1H ), 6.95-6.97 (m, 1H), 7.21-7.23 (m, 1H), 7.37-7.40 (m, 2H), 7.44-7.48 (m, 2H), 8.03 (s, 1H), 8.61 (s, 1H HRMS-ESI calcd for C 19 H 17 Cl 2 N 3 O 3 Na [M + Na] + 428.0539, found 428.0496.

〔合成例4〕 1-[[4-[(4-クロロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(7d)の合成 Synthesis Example 4 1-[[4-[(4-Chlorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4- Synthesis of triazole (7d)

フェノールの代わりに4-クロロフェノールを用い、合成例1と同様の方法で目的の化合物7dを得た(収率 69.0%)。mp 92.4-94.2 ℃. 1H NMR (400 MHz, CDCl3) δ 3.54 (dd, J = 5.5, 9.9 Hz, 1H), 3.72 (dd, J = 4.8, 9.5 Hz, 1H), 3.83 (dd, J = 4.9, 8.2 Hz, 1H), 3.89-3.92 (m, 1H), 4.33-4.39 (m, 1H), 4.55 (s, 2H), 6.77 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.97 (s, 1H), 8.40 (s, 1H). HRMS-ESI calcd for C19H17Cl2N3O3Na [M+Na]+ 428.0539, found 428.0499. The target compound 7d was obtained in the same manner as in Synthesis Example 1 using 4-chlorophenol instead of phenol (yield 69.0%). mp 92.4-94.2 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.54 (dd, J = 5.5, 9.9 Hz, 1H), 3.72 (dd, J = 4.8, 9.5 Hz, 1H), 3.83 (dd, J = 4.9, 8.2 Hz, 1H), 3.89-3.92 (m, 1H), 4.33-4.39 (m, 1H), 4.55 (s, 2H), 6.77 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.97 (s, 1H), 8.40 (s, 1H). HRMS-ESI calcd for C 19 H 17 Cl 2 N 3 O 3 Na [M + Na] + 428.0539, found 428.0499.

〔合成例5〕 1-[[4-[(2,3-ジクロロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7e)の合成 Synthesis Example 5 1-[[4-[(2,3-Dichlorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, Synthesis of 4-triazole (compound 7e)

フェノールの代わりに2,3-ジクロロフェノールを用い、合成例1と同様の方法で目的の化合物7eを得た(収率 15.1%)。mp 129.8-13.2 ℃. 1H NMR (400 MHz, CDCl3) δ 3.42-3.46 (m, 1H), 3.83-3.87 (m, 1H), 3.93-3.95 (m, 2H), 4.42-4.47 (m, 1H), 4.50-4.58 (m, 2H), 6.72-6.74 (m, 1H), 7.11-7.16 (m, 2H), 7.18-7.39 (m, 2H), 7.43-7.46 (m, 2H), 7.91 (s, 1H), 8.17 (s, 1H). HRMS-ESI calcd for C19H16Cl3N3O3Na [M+Na]+ 462.0149, found 462.0105. The target compound 7e was obtained in the same manner as in Synthesis Example 1 using 2,3-dichlorophenol instead of phenol (yield 15.1%). mp 129.8-13.2 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.42-3.46 (m, 1H), 3.83-3.87 (m, 1H), 3.93-3.95 (m, 2H), 4.42-4.47 (m, 1H), 4.50-4.58 (m, 2H), 6.72-6.74 (m, 1H), 7.11-7.16 (m, 2H), 7.18-7.39 (m, 2H), 7.43-7.46 (m, 2H), 7.91 ( s, 1H), 8.17 (s, 1H). HRMS-ESI calcd for C 19 H 16 Cl 3 N 3 O 3 Na [M + Na] + 462.0149, found 462.0105.

〔合成例6〕 1-[[4-[(2,4-ジクロロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]- 1H-1,2,4-トリアゾール(化合物7f)の合成 Synthesis Example 6 1-[[4-[(2,4-Dichlorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, Synthesis of 4-triazole (compound 7f)

フェノールの代わりに2,4-ジクロロフェノールを用い、合成例1と同様の方法で目的の化合物7fを得た(収率 32.2%)。mp 122.1-124.8 ℃. 1H NMR (400 MHz, CDCl3) δ 3.44 (dd, J = 6.6, 9.5 Hz, 1H), 3.82 (dd, J = 4.6, 9.7 Hz, 1H), 3.92-3.94 (m, 2H), 4.41-4.44 (m, 1H), 4.53-4.54 (m, 2H), 6.75 (d, J = 8.8 Hz, 1H), 7.18-7.22 (m, 1H), 7.35-7.38 (m, 3H), 7.43-7.45 (m, 2H), 7.90 (s, 1H), 8.16 (s, 1H). HRMS-ESI calcd for C19H16Cl3N3O3Na [M+Na]+ 462.0149, found 462.0106. Using 2,4-dichlorophenol instead of phenol, the target compound 7f was obtained in the same manner as in Synthesis Example 1 (yield 32.2%). mp 122.1-124.8 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.44 (dd, J = 6.6, 9.5 Hz, 1H), 3.82 (dd, J = 4.6, 9.7 Hz, 1H), 3.92-3.94 (m , 2H), 4.41-4.44 (m, 1H), 4.53-4.54 (m, 2H), 6.75 (d, J = 8.8 Hz, 1H), 7.18-7.22 (m, 1H), 7.35-7.38 (m, 3H ), 7.43-7.45 (m, 2H), 7.90 (s, 1H), 8.16 (s, 1H). HRMS-ESI calcd for C 19 H 16 Cl 3 N 3 O 3 Na [M + Na] + 462.0149, found 462.0106.

〔合成例7〕 1-[[4-[(2,5-ジクロロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]- 1H-1,2,4-トリアゾール (化合物7g) Synthesis Example 7 1-[[4-[(2,5-dichlorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, 4-triazole (compound 7g)

フェノールの代わりに2,5-ジクロロフェノールを用い、合成例1と同様の方法で目的の化合物7gを得た(収率 33.4%)。mp 167.0-168.3 ℃. 1H NMR (400 MHz, CDCl3) δ 3.76-3.88 (m, 4H), 4.36-4.39 (m, 1H), 4.52 (s, 2H), 6.86 (dd, J = 2.2, 8.4 Hz, 1H), 6.98 (d, J = 2.2 Hz, 1H), 7.24-7.27 (m, 3H), 7.31-7.33 (m, 2H), 7.58 (s, 1H), 8.13 (s, 1H). HRMS-ESI calcd for C19H16Cl3N3O3Na [M+Na]+ 462.0149, found 462.0106. Using 2,5-dichlorophenol instead of phenol, 7 g of the target compound was obtained in the same manner as in Synthesis Example 1 (yield 33.4%). mp 167.0-168.3 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.76-3.88 (m, 4H), 4.36-4.39 (m, 1H), 4.52 (s, 2H), 6.86 (dd, J = 2.2, 8.4 Hz, 1H), 6.98 (d, J = 2.2 Hz, 1H), 7.24-7.27 (m, 3H), 7.31-7.33 (m, 2H), 7.58 (s, 1H), 8.13 (s, 1H). HRMS-ESI calcd for C 19 H 16 Cl 3 N 3 O 3 Na [M + Na] + 462.0149, found 462.0106.

〔合成例8〕 1-[[4-[(2,6-ジクロロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]- 1H-1,2,4-トリアゾール (化合物7h) Synthesis Example 8 1-[[4-[(2,6-dichlorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, 4-Triazole (Compound 7h)

フェノールの代わりに2,6-ジクロロフェノールを用い、合成例1と同様の方法で目的の化合物7hを得た(収率 33.1%)。mp 102.7-104.8 ℃. 1H NMR (400 MHz, CD3OD) δ 3.65 (dd, J = 5.9, 9.9 Hz, 1H), 3.84-3.89 (m, 2H), 4.38 (s, 1H), 4.52 (s, 2H), 7.05-7.09 (m, 1H), 7.29-7.34 (m, 4H), 7.37-7.39 (m, 2H), 7.61 (s, 1H), 8.17 (s, 1H). HRMS-ESI calcd for C19H16Cl3N3O3Na [M+Na]+ 462.0149, found 462.0106. The target compound 7h was obtained in the same manner as in Synthesis Example 1 using 2,6-dichlorophenol instead of phenol (yield 33.1%). mp 102.7-104.8 ° C. 1 H NMR (400 MHz, CD 3 OD) δ 3.65 (dd, J = 5.9, 9.9 Hz, 1H), 3.84-3.89 (m, 2H), 4.38 (s, 1H), 4.52 ( s, 2H), 7.05-7.09 (m, 1H), 7.29-7.34 (m, 4H), 7.37-7.39 (m, 2H), 7.61 (s, 1H), 8.17 (s, 1H) .HRMS-ESI calcd for C 19 H 16 Cl 3 N 3 O 3 Na [M + Na] + 462.0149, found 462.0106.

〔合成例9〕 1-[[4-[(3,4-ジクロロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]- 1H-1,2,4-トリアゾール (化合物7i) Synthesis Example 9 1-[[4-[(3,4-dichlorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, 4-Triazole (Compound 7i)

フェノールの代わりに3,4-ジクロロフェノールを用い、合成例1と同様の方法で目的の化合物7iを得た(収率 23.8%)。mp 112.2-113.6 ℃. 1H NMR (400 MHz, CDCl3) δ 3.47 (dd, J = 5.9, 9.5 Hz, 1H), 3.69 (dd, J = 5.1, 9.5 Hz, 1H), 3.79 (dd, J = 4.8, 8.4 Hz, 1H), 3.89 (dd, J = 6.6, 8.4 Hz, 1H), 4.32-4.37 (m, 1H), 4.52 (s, 2H), 6.69 (dd, J = 2.9, 8.8 Hz, 1H), 6.93 (d, J = 2.9 Hz, 1H), 7.33 (d, J = 8.8 Hz, 1H), 7.38-7.40 (m, 2H), 7.45-7.49 (m, 2H), 7.92 (s, 1H), 8.18 (s, 1H). HRMS-ESI calcd for C19H16Cl3N3O3Na [M+Na]+ 462.0149, found 462.0104. The target compound 7i was obtained in the same manner as in Synthesis Example 1 using 3,4-dichlorophenol instead of phenol (yield 23.8%). mp 112.2-113.6 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.47 (dd, J = 5.9, 9.5 Hz, 1H), 3.69 (dd, J = 5.1, 9.5 Hz, 1H), 3.79 (dd, J = 4.8, 8.4 Hz, 1H), 3.89 (dd, J = 6.6, 8.4 Hz, 1H), 4.32-4.37 (m, 1H), 4.52 (s, 2H), 6.69 (dd, J = 2.9, 8.8 Hz, 1H), 6.93 (d, J = 2.9 Hz, 1H), 7.33 (d, J = 8.8 Hz, 1H), 7.38-7.40 (m, 2H), 7.45-7.49 (m, 2H), 7.92 (s, 1H ), 8.18 (s, 1H). HRMS-ESI calcd for C 19 H 16 Cl 3 N 3 O 3 Na [M + Na] + 462.0149, found 462.0104.

〔合成例10〕 1-[[4-[(3,5-ジクロロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物7j) Synthesis Example 10 1-[[4-[(3,5-Dichlorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, 4-Triazole (Compound 7j)

フェノールの代わりに3,5-ジクロロフェノールを用い、合成例1と同様の方法で目的の化合物7jを得た(収率 28.9%)。mp 109.4-112.1 ℃. 1H NMR (400 MHz, CDCl3) δ 3.49 (dd, J = 5.9, 8.8 Hz, 1H), 3.71 (dd, J = 5.3, 9.3 Hz, 1H), 3.78 (dd, J = 4.9, 8.6 Hz, 1H), 3.88-3.92 (m, 1H), 4.32-4.36 (m, 1H), 4.52 (s, 2H), 6.74-6.75 (m, 2H), 6.98-7.00 (m, 1H), 7.39 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 7.93 (s, 1H), 8.18 (s, 1H). HRMS-ESI calcd for C19H16Cl3N3O3Na [M+Na]+ 462.0149, found 462.0104. The target compound 7j was obtained in the same manner as in Synthesis Example 1 using 3,5-dichlorophenol instead of phenol (yield 28.9%). mp 109.4-112.1 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.49 (dd, J = 5.9, 8.8 Hz, 1H), 3.71 (dd, J = 5.3, 9.3 Hz, 1H), 3.78 (dd, J = 4.9, 8.6 Hz, 1H), 3.88-3.92 (m, 1H), 4.32-4.36 (m, 1H), 4.52 (s, 2H), 6.74-6.75 (m, 2H), 6.98-7.00 (m, 1H ), 7.39 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 7.93 (s, 1H), 8.18 (s, 1H) .HRMS-ESI calcd for C 19 H 16 Cl 3 N 3 O 3 Na [M + Na] + 462.0149, found 462.0104.

〔合成例11〕 1-[[4-[(2-フルオロフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物7k) Synthesis Example 11 1-[[4-[(2-Fluorophenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4- Triazole (Compound 7k)

フェノールの代わりに2-フルオロフェノールを用い、合成例1と同様の方法で目的の化合物7kを得た(収率 48.5%)。mp 97.8-99.7 ℃. 1H NMR (400 MHz, CDCl3) δ 3.51-3.55 (m, 1H), 3.83-3.94 (m, 3H), 4.40-4.44 (m, 1H), 4.53 (s, 2H), 6.86-6.96 (m, 2H), 7.05-7.10 (m, 2H), 7.36-7.39 (m, 2H), 7.43-7.47 (m, 2H), 7.91 (s, 1H), 8.18 (s, 1H). HRMS-ESI calcd for C19H17ClFN3O3Na [M+Na]+ 412.0834, found 412.0795. The target compound 7k was obtained in the same manner as in Synthesis Example 1 using 2-fluorophenol instead of phenol (yield 48.5%). mp 97.8-99.7 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.51-3.55 (m, 1H), 3.83-3.94 (m, 3H), 4.40-4.44 (m, 1H), 4.53 (s, 2H) , 6.86-6.96 (m, 2H), 7.05-7.10 (m, 2H), 7.36-7.39 (m, 2H), 7.43-7.47 (m, 2H), 7.91 (s, 1H), 8.18 (s, 1H) HRMS-ESI calcd for C 19 H 17 ClFN 3 O 3 Na [M + Na] + 412.0834, found 412.0795.

〔合成例12〕 1-[[4-[(2-トリフルオロメトキシフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物7l) Synthesis Example 12 1-[[4-[(2-trifluoromethoxyphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, 4-triazole (compound 7l)

フェノールの代わりに2-トリフルオロメトキシフェノールを用い、合成例1と同様の方法で目的の化合物7lを得た(収率 58.2%)。mp 79.5-81.6 ℃. 1H NMR (400 MHz, CDCl3) δ 3.40-3.44 (m, 1H), 3.86-3.94 (m, 3H), 4.38-4.44 (m, 1H), 4.48-4.57 (m, 2H), 6.87-6.89 (m, 1H), 6.96-7.00 (m, 1H), 7.21-7.28 (m, 2H), 7.36-7.39 (m, 2H), 7.43-7.46 (m, 2H), 7.92 (s, 1H), 8.17 (s, 1H). HRMS-ESI calcd for C20H17ClF3N3O4Na [M+Na]+ 478.0751, found 478.0705. Using 2-trifluoromethoxyphenol instead of phenol, the target compound 7l was obtained in the same manner as in Synthesis Example 1 (yield 58.2%). mp 79.5-81.6 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.40-3.44 (m, 1H), 3.86-3.94 (m, 3H), 4.38-4.44 (m, 1H), 4.48-4.57 (m, 2H), 6.87-6.89 (m, 1H), 6.96-7.00 (m, 1H), 7.21-7.28 (m, 2H), 7.36-7.39 (m, 2H), 7.43-7.46 (m, 2H), 7.92 ( s, 1H), 8.17 (s, 1H). HRMS-ESI calcd for C 20 H 17 ClF 3 N 3 O 4 Na [M + Na] + 478.0751, found 478.0705.

〔合成例13〕 1-[[4-[(2-エトキシフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物7m) Synthesis Example 13 1-[[4-[(2-Ethoxyphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4- Triazole (compound 7m)

フェノールの代わりに2-エトキシフェノールを用い、合成例1と同様の方法で目的の化合物7mを得た(収率 51.8%)。mp 104.6-105.9 ℃. 1H NMR (400 MHz, CDCl3) δ 1.37 (t, J = 7.0 Hz, 3H), 3.60-3.64 (m, 1H), 3.90-4.06 (m, 5H), 4.43-4.45 (m, 1H), 4.52-4.62 (m, 2H), 6.85-6.96 (m, 4H), 7.34-7.49 (m, 2H), 7.40-7.43 (m, 2H), 7.87 (s, 1H), 8.18 (s, 1H). HRMS-ESI calcd for C21H22ClN3O4Na [M+Na]+ 438.1191, found 438.1149. The target compound 7m was obtained in the same manner as in Synthesis Example 1 using 2-ethoxyphenol instead of phenol (yield 51.8%). mp 104.6-105.9 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 1.37 (t, J = 7.0 Hz, 3H), 3.60-3.64 (m, 1H), 3.90-4.06 (m, 5H), 4.43-4.45 (m, 1H), 4.52-4.62 (m, 2H), 6.85-6.96 (m, 4H), 7.34-7.49 (m, 2H), 7.40-7.43 (m, 2H), 7.87 (s, 1H), 8.18 (s, 1H). HRMS-ESI calcd for C 21 H 22 ClN 3 O 4 Na [M + Na] + 438.1191, found 438.1149.

〔合成例14〕 1-[[4-[(2-メトキシフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物7n) Synthesis Example 14 1-[[4-[(2-methoxyphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4- Triazole (Compound 7n)

フェノールの代わりに2-メトキシフェノールを用い、合成例1と同様の方法で目的の化合物7nを得た(収率 52.9%)。mp 121.9-124.1 ℃. 1H NMR (400 MHz, CDCl3) δ 3.54-3.58 (m, 1H), 3.82 (s, 3H), 3.86-3.95 (m, 3H), 4.43-4.46 (m, 1H), 4.54 (s, 2H), 6.82-6.98 (m, 4H), 7.35-7.37 (m, 2H), 7.41-7.45 (m, 2H), 7.89 (s, 1 H), 8.19 (s, 1H). HRMS-ESI calcd for C20H20ClN3O4Na [M+Na]+ 424.1034, found 424.0992. The target compound 7n was obtained in the same manner as in Synthesis Example 1 using 2-methoxyphenol instead of phenol (yield 52.9%). mp 121.9-124.1 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.54-3.58 (m, 1H), 3.82 (s, 3H), 3.86-3.95 (m, 3H), 4.43-4.46 (m, 1H) , 4.54 (s, 2H), 6.82-6.98 (m, 4H), 7.35-7.37 (m, 2H), 7.41-7.45 (m, 2H), 7.89 (s, 1 H), 8.19 (s, 1H). HRMS-ESI calcd for C 20 H 20 ClN 3 O 4 Na [M + Na] + 424.1034, found 424.0992.

〔合成例15〕 1-[[4-[(2-メチルフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物7o) Synthesis Example 15 1-[[4-[(2-methylphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4- Triazole (Compound 7o)

フェノールの代わりに2-メチルフェノールを用い、合成例1と同様の方法で目的の化合物7oを得た(収率 69.3%)。mp 112.6-114.5 ℃. 1H NMR (400 MHz, CDCl3) δ 3.46 (m, 1H), 3.85-3.94 (m, 3H), 4.37-4.41 (m, 1H), 4.52 (s, 2H), 6.70-6.72 (m, 1H), 6.86-6.90 (m, 1H), 7.11-7.17 (m, 2H), 7.36-7.39 (m, 2H), 7.43-7.46 (m, 2H), 7.91 (s, 1H), 8.16 (s, 1H). HRMS-ESI calcd for C20H20ClN3O3Na [M+Na]+ 408.1085, found 408.1051. Using 2-methylphenol instead of phenol, the target compound 7o was obtained in the same manner as in Synthesis Example 1 (yield 69.3%). mp 112.6-114.5 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ 3.46 (m, 1H), 3.85-3.94 (m, 3H), 4.37-4.41 (m, 1H), 4.52 (s, 2H), 6.70 -6.72 (m, 1H), 6.86-6.90 (m, 1H), 7.11-7.17 (m, 2H), 7.36-7.39 (m, 2H), 7.43-7.46 (m, 2H), 7.91 (s, 1H) , 8.16 (s, 1H). HRMS-ESI calcd for C 20 H 20 ClN 3 O 3 Na [M + Na] + 408.1085, found 408.1051.

〔合成例16〕 1-[[4-[(2-プロピオキシフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7p) Synthesis Example 16 1-[[4-[(2-propioxyphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4 -Triazole (compound 7p)

フェノールの代わりに2-プロピオキシフェノールを用い、合成例1と同様の方法で目的の化合物7pを得た(収率 20.0%)。1H NMR (400 MHz, CDCl3) δ: 1.00 (t, J=7.3 Hz, 3H), 1.74-1.80 (m, 2H), 3.61(dd, J=6.6, 9.9 Hz, 1H), 3.90-3.96 (m, 5H), 4.41-4.44 (m, 1H), 4.51-4.60 (m, 2H), 6.84-6.98 (m, 4H), 7.34-7.42 (m, 4H9, 7.87 (s, 1H), 8.17 (s, 1H)). The HRMS-ESI calculated for C22H24ClN3O4Na [M+Na]+ was 452.1348, with 452.1352 found experimentally. Using 2-propoxyphenol instead of phenol, the target compound 7p was obtained in the same manner as in Synthesis Example 1 (yield 20.0%). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.00 (t, J = 7.3 Hz, 3H), 1.74-1.80 (m, 2H), 3.61 (dd, J = 6.6, 9.9 Hz, 1H), 3.90-3.96 (m, 5H), 4.41-4.44 (m, 1H), 4.51-4.60 (m, 2H), 6.84-6.98 (m, 4H), 7.34-7.42 (m, 4H9, 7.87 (s, 1H), 8.17 ( The HRMS-ESI calculated for C 22 H 24 ClN 3 O 4 Na [M + Na] + was 452.1348, with 452.1352 found experimentally.

〔合成例17〕 1-[[4-[(2-アリルオキシフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7q) Synthesis Example 17 1-[[4-[(2-Allyloxyphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4 -Triazole (Compound 7q)

フェノールの代わりに2-アリルオキシフェノールを用い、合成例1と同様の方法で目的の化合物7qを得た(収率 13.4%)。1H NMR (400 MHz, CDCl3) δ: 3.69 (dd, 1H, J=6.2, 9.9 Hz, 1H), 3.90-3.99 (m, 3H), 3.97-3.99 (m, 2H), 4.42-4.48 (m, 1H), 4.53-4.64 (m, 4H), 5.22-5.24 (m, 1H), 5.34-5.38 (m, 1H), 5.95-6.05 (m,1H), 6.84-6.98 (m, 4H), 7.34-7.41 (m, 4H), 7.93 (s, 1H), 8.29 (s, 1H). The HRMS-ESI calculated for C22H22ClN3O4Na [M+Na]+ was 450.1191, with 450.1195 found experimentally. Using 2-allyloxyphenol instead of phenol, the target compound 7q was obtained in the same manner as in Synthesis Example 1 (yield 13.4%). 1 H NMR (400 MHz, CDCl 3 ) δ: 3.69 (dd, 1H, J = 6.2, 9.9 Hz, 1H), 3.90-3.99 (m, 3H), 3.97-3.99 (m, 2H), 4.42-4.48 ( m, 1H), 4.53-4.64 (m, 4H), 5.22-5.24 (m, 1H), 5.34-5.38 (m, 1H), 5.95-6.05 (m, 1H), 6.84-6.98 (m, 4H), 7.34-7.41 (m, 4H), 7.93 (s, 1H), 8.29 (s, 1H). The HRMS-ESI calculated for C 22 H 22 ClN 3 O 4 Na [M + Na] + was 450.1191, with 450.1195 found experimentally.

〔合成例18〕 1-[[4-[(2-ブトキシフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7r) [Synthesis Example 18] 1-[[4-[(2-butoxyphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4- Triazole (Compound 7r)

フェノールの代わりに2-ブトキシフェノールを用い、合成例1と同様の方法で目的の化合物7rを得た(収率 40.4%)。1H NMR (400 MHz, CDCl3) δ: 0.93 (t, J=7.5 Hz, 3H), 1.39-1.48 (m, 2H), 1.65-1.73 (m, 2H), 3.75 (dd, J=5.7, 10.1 Hz, 1H), 3.90-4.04 (m, 5H), 4.42-4.47 (m, 1H), 4.54-4.70 (m, 2H), 6.84-6.98 (m, 4H), 7.33-7.40 (m, 4H), 7.95 (s, 1H), 8.42 (s, 1H). The HRMS-ESI calculated for C23H26ClN3O4Na [M+Na]+ was 466.1504, with 466.1509 found experimentally. Using 2-butoxyphenol in place of phenol, the target compound 7r was obtained in the same manner as in Synthesis Example 1 (yield 40.4%). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.93 (t, J = 7.5 Hz, 3H), 1.39-1.48 (m, 2H), 1.65-1.73 (m, 2H), 3.75 (dd, J = 5.7, 10.1 Hz, 1H), 3.90-4.04 (m, 5H), 4.42-4.47 (m, 1H), 4.54-4.70 (m, 2H), 6.84-6.98 (m, 4H), 7.33-7.40 (m, 4H) , 7.95 (s, 1H), 8.42 (s, 1H). The HRMS-ESI calculated for C 23 H 26 ClN 3 O 4 Na [M + Na] + was 466.1504, with 466.1509 found experimentally.

〔合成例19〕 1-[[4-[(2-(3-ブテニルオキシ)フェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7s) [Synthesis Example 19] 1-[[4-[(2- (3-butenyloxy) phenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1, 2,4-triazole (compound 7s)

フェノールの代わりに2-(3-ブテニルオキシ)フェノールを用い、合成例1と同様の方法で目的の化合物7sを得た(収率 45.3%)。1H NMR (400 MHz, CDCl3) δ: 2.49(q, J=6.5 Hz, 2H), 3.90 (d, J=4.0 Hz, 2H), 4.00-4.13 (m, 4H), 4.45-4.48 (m, 1H), 4.58-4.76 (m, 2H), 5.05-5.16 (m, 2H), 5.81-5.91 (m, 1H), 6.87-7.01 (m, 4H), 7.35-7.41 (m, 4H), 8.04 (s, 1H), 8.71 (s, 1H). The HRMS-ESI calculated for C23H24ClN3O4Na [M+Na]+ was 464.1348, with 464.1351 found experimentally. Using 2- (3-butenyloxy) phenol instead of phenol, the target compound 7s was obtained in the same manner as in Synthesis Example 1 (yield 45.3%). 1 H NMR (400 MHz, CDCl 3 ) δ: 2.49 (q, J = 6.5 Hz, 2H), 3.90 (d, J = 4.0 Hz, 2H), 4.00-4.13 (m, 4H), 4.45-4.48 (m , 1H), 4.58-4.76 (m, 2H), 5.05-5.16 (m, 2H), 5.81-5.91 (m, 1H), 6.87-7.01 (m, 4H), 7.35-7.41 (m, 4H), 8.04 (s, 1H), 8.71 (s, 1H). The HRMS-ESI calculated for C 23 H 24 ClN 3 O 4 Na [M + Na] + was 464.1348, with 464.1351 found experimentally.

〔合成例20〕 1-[[4-[(2-イソブトキシフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7t) Synthesis Example 20 1-[[4-[(2-Isobutoxyphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4 -Triazole (compound 7t)

フェノールの代わりに2-イソブトキシフェノールを用い、合成例1と同様の方法で目的の化合物7tを得た(収率 37.2%)。1H NMR (400 MHz, CDCl3) δ: 1.00 (dd, J=4.6, 6.6 Hz, 6H), 2.00-2.10 (m, 1H), 3.66 (dd, J=6.3, 10.0 Hz, 1H), 3.72 (d, J=6.6Hz, 2H), 3.92-3.97 (m, 3H), 4.39-4.44 (m, 1H), 4.51-4.60 (m, 2H), 6.84-7.00 (m, 4H), 7.33-7.36 (m, 2H), 7.39-7.42 (m, 2H), 7.89 (s, 1H), 8.23 (s, 1H). The HRMS-ESI calculated for C23H26ClN3O4Na [M+Na]+ was 466.1504, with 466.1509 found experimentally. Using 2-isobutoxyphenol instead of phenol, the target compound 7t was obtained in the same manner as in Synthesis Example 1 (yield 37.2%). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.00 (dd, J = 4.6, 6.6 Hz, 6H), 2.00-2.10 (m, 1H), 3.66 (dd, J = 6.3, 10.0 Hz, 1H), 3.72 (d, J = 6.6Hz, 2H), 3.92-3.97 (m, 3H), 4.39-4.44 (m, 1H), 4.51-4.60 (m, 2H), 6.84-7.00 (m, 4H), 7.33-7.36 (m, 2H), 7.39-7.42 (m, 2H), 7.89 (s, 1H), 8.23 (s, 1H). The HRMS-ESI calculated for C 23 H 26 ClN 3 O 4 Na [M + Na] + was 466.1504, with 466.1509 found experimentally.

〔合成例21〕 1-[[4-[(2-ターシャルーブトキシフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7u) Synthesis Example 21 1-[[4-[(2-tert-butoxyphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, 4-triazole (compound 7u)

フェノールの代わりに2-ターシャルーブトキシフェノールを用い、合成例1と同様の方法で目的の化合物7uを得た(収率 14.5%)。1H NMR (400 MHz, CDCl3) δ: 1.32 (s, 9H), 3.60 (dd, J=6.4, 9.7 Hz, 1H), 3.86-3.97 (m, 3H), 4.39-4.41 (m, 1H), 4.51-4.61 (m, 2H), 6.82-7.06 (m, 4H), 7.35-7.43 (m, 4H), 7.97 (s, 1H), 8.32 (s, 1H). The HRMS-ESI calculated for C23H26ClN3O4Na [M+Na]+ was 466.1504, with 466.1509 found experimentally. Using 2-tert-butoxyphenol instead of phenol, the target compound 7u was obtained in the same manner as in Synthesis Example 1 (yield 14.5%). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.32 (s, 9H), 3.60 (dd, J = 6.4, 9.7 Hz, 1H), 3.86-3.97 (m, 3H), 4.39-4.41 (m, 1H) The HRMS-ESI calculated for C 23 , 4.51-4.61 (m, 2H), 6.82-7.06 (m, 4H), 7.35-7.43 (m, 4H), 7.97 (s, 1H), 8.32 (s, 1H). H 26 ClN 3 O 4 Na [M + Na] + was 466.1504, with 466.1509 found experimentally.

〔合成例22〕 1-[[4-[(2-シクロペンチルオキシフェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7v) Synthesis Example 22 1-[[4-[(2-Cyclopentyloxyphenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2,4 -Triazole (Compound 7v)

フェノールの代わりに2-シクロペンチルオキシフェノールを用い、合成例1と同様の方法で目的の化合物7vを得た(収率 57.5%)。1H NMR (400 MHz, CDCl3) δ: 1.56-1.89 (m, 8H), 3.78 (dd, J=5.7, 10.1 Hz, 1H), 3.90-3.93 (m, 1H), 3.99-4.07 (m, 2H), 4.42-4.47 (m, 1H), 4.55-4.77 (m, 3H), 6.88-6.98 (m, 4H), 7.34-7.40 (m, 4H), 7.97 (s, 1H), 8.45 (s, 1H). The HRMS-ESI calculated for C24H26ClN3O4Na [M+Na]+ was 478.1504, with 478.1510 found experimentally. Using 2-cyclopentyloxyphenol instead of phenol, the target compound 7v was obtained in the same manner as in Synthesis Example 1 (yield 57.5%). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.56-1.89 (m, 8H), 3.78 (dd, J = 5.7, 10.1 Hz, 1H), 3.90-3.93 (m, 1H), 3.99-4.07 (m, 2H), 4.42-4.47 (m, 1H), 4.55-4.77 (m, 3H), 6.88-6.98 (m, 4H), 7.34-7.40 (m, 4H), 7.97 (s, 1H), 8.45 (s, 1H). The HRMS-ESI calculated for C 24 H 26 ClN 3 O 4 Na [M + Na] + was 478.1504, with 478.1510 found experimentally.

〔合成例23〕 1-[[4-[(2-(3-メチル-2-ブテニルオキシ)フェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7w) Synthesis Example 23 1-[[4-[(2- (3-Methyl-2-butenyloxy) phenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl]- 1H-1,2,4-triazole (Compound 7w)

フェノールの代わりに2-(3-メチル-2-ブテニルオキシ)フェノールを用い、合成例1と同様の方法で目的の化合物7wを得た(収率 47.9%)。1H NMR (400 MHz, CDCl3) δ: 1.67 (s, 3H), 1.71 (s, 3H), 3.68-3.73 (m, 1H), 3.92-4.00 (m, 3H), 4.42-4.65 (m, 5H), 5.38-5.41 (m, 1H), 6.85-6.95 (m, 4H), 7.32-7.39 (m, 4H), 7.88 (s, 1H), 8.25 (s, 1H). The HRMS-ESI calculated for C24H26ClN3O4Na [M+Na]+ was 478.1504, with 478.1510 found experimentally. Using 2- (3-methyl-2-butenyloxy) phenol instead of phenol, the target compound 7w was obtained in the same manner as in Synthesis Example 1 (yield 47.9%). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.67 (s, 3H), 1.71 (s, 3H), 3.68-3.73 (m, 1H), 3.92-4.00 (m, 3H), 4.42-4.65 (m, 5H), 5.38-5.41 (m, 1H), 6.85-6.95 (m, 4H), 7.32-7.39 (m, 4H), 7.88 (s, 1H), 8.25 (s, 1H). The HRMS-ESI calculated for C 24 H 26 ClN 3 O 4 Na [M + Na] + was 478.1504, with 478.1510 found experimentally.

〔合成例24〕 1-[[4-[(2-(3-メチルブトキシ)フェノキシ)メチル]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7x) Synthesis Example 24 1-[[4-[(2- (3-Methylbutoxy) phenoxy) methyl] -2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1 , 2,4-Triazole (Compound 7x)

フェノールの代わりに2-(3-メチルシブトキシ)フェノールを用い、合成例1と同様の方法で目的の化合物7xを得た(収率 37.2%)。1H NMR (400 MHz, CDCl3) δ: 0.92 (d, J=3.3 Hz, 3H), 0.94 (d, J=3.3 Hz, 3H), 1.54-1.65 (m, 2H), 1.73-1.80 (m, 1H), 3.84 (dd, J= 3.8, 10.1 Hz, 1H), 3.91-3.95 (m, 1H), 3.98-4.09 (m, 4H), 4.44-4.50 (m, 1H), 4.57-4.76 (m, 2H), 6.86-7.00 (m, 4H), 7.35-7.40 (m, 4H), 8.01 (s, 1H), 8.60 (s, 1H). The HRMS-ESI calculated for C24H28ClN3O4Na [M+Na]+ was 480.1661, with 480.1665 found experimentally. Using 2- (3-methylsibutoxy) phenol instead of phenol, the target compound 7x was obtained in the same manner as in Synthesis Example 1 (yield 37.2%). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.92 (d, J = 3.3 Hz, 3H), 0.94 (d, J = 3.3 Hz, 3H), 1.54-1.65 (m, 2H), 1.73-1.80 (m , 1H), 3.84 (dd, J = 3.8, 10.1 Hz, 1H), 3.91-3.95 (m, 1H), 3.98-4.09 (m, 4H), 4.44-4.50 (m, 1H), 4.57-4.76 (m , 2H), 6.86-7.00 (m, 4H), 7.35-7.40 (m, 4H), 8.01 (s, 1H), 8.60 (s, 1H). The HRMS-ESI calculated for C 24 H 28 ClN 3 O 4 Na [M + Na] + was 480.1661, with 480.1665 found experimentally.

〔合成例25〕 1-[[4-[(ビフェニル‐2‐イルオキシメチル)]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7y) Synthesis Example 25 1-[[4-[(biphenyl-2-yloxymethyl)]-2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, 4-triazole (compound 7y)

フェノールの代わりに2-フェニルフェノールを用い、合成例1と同様の方法で目的の化合物7yを得た(収率 7.3%)。1H NMR (400 MHz, CDCl3) δ: 3.57-3.61 (m, 1H), 3.72-3.75 (m, 1H), 3.80-3.83 (m, 1H), 3.88-3.92 (m, 1H), 4.25-4.28 (m, 1H), 4.34 (s, 2H), 6.91 (d, J=8.3 Hz, 1H), 7.06-7.10 (m, 1H), 7.23-7.38 (m, 9H), 7.44-7.47 (m, 2H), 7.86 (s, 1H), 8.08 (s, 1H). The HRMS-ESI calculated for C25H22ClN3O3Na [M+Na]+ was 470.1242, with 470.1250 found experimentally. The target compound 7y was obtained in the same manner as in Synthesis Example 1 using 2-phenylphenol instead of phenol (yield 7.3%). 1 H NMR (400 MHz, CDCl 3 ) δ: 3.57-3.61 (m, 1H), 3.72-3.75 (m, 1H), 3.80-3.83 (m, 1H), 3.88-3.92 (m, 1H), 4.25- 4.28 (m, 1H), 4.34 (s, 2H), 6.91 (d, J = 8.3 Hz, 1H), 7.06-7.10 (m, 1H), 7.23-7.38 (m, 9H), 7.44-7.47 (m, 2H), 7.86 (s, 1H), 8.08 (s, 1H). The HRMS-ESI calculated for C 25 H 22 ClN 3 O 3 Na [M + Na] + was 470.1242, with 470.1250 found experimentally.

〔合成例26〕 1-[[4-[(ビフェニル-4-イルオキシメチル)]-2-(4-クロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール(化合物7z) Synthesis Example 26 1-[[4-[(biphenyl-4-yloxymethyl)]-2- (4-chlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2, 4-triazole (compound 7z)

フェノールの代わりに4-フェニルフェノールを用い、合成例1と同様の方法で目的の化合物7zを得た(収率 20.8%)。1H NMR (400 MHz, CDCl3) δ: 3.56 (dd, J=6.2, 9.8Hz, 1H), 3.82-3.86 (m, 2H), 3.90-3.94 (m, 1H), 4.36-4.41 (m, 1H), 4.53 (s, 2H), 6.89-6.92 (m, 2H), 7.29-7.33(m, 1H), 7.37-7.44 (m, 4H), 7.46-7.56 (m, 6H), 7.92 (s, 1H), 8.21 (s, 1H). The HRMS-ESI calculated for C25H22ClN3O3Na [M+Na]+ was 470.1242, with 470.1249 found experimentally. The target compound 7z was obtained in the same manner as in Synthesis Example 1 using 4-phenylphenol instead of phenol (yield 20.8%). 1 H NMR (400 MHz, CDCl 3 ) δ: 3.56 (dd, J = 6.2, 9.8Hz, 1H), 3.82-3.86 (m, 2H), 3.90-3.94 (m, 1H), 4.36-4.41 (m, 1H), 4.53 (s, 2H), 6.89-6.92 (m, 2H), 7.29-7.33 (m, 1H), 7.37-7.44 (m, 4H), 7.46-7.56 (m, 6H), 7.92 (s, 1H), 8.21 (s, 1H). The HRMS-ESI calculated for C 25 H 22 ClN 3 O 3 Na [M + Na] + was 470.1242, with 470.1249 found experimentally.

〔合成例27〕 1-[2-(4-クロロフェニル)-4-(ナフタレン-1-イルオキシメチル)-[1,3]-ジオキソラン-2-イルメチル]-1H-[1,2,4]-トリアゾール(化合物7aa) Synthesis Example 27 1- [2- (4-Chlorophenyl) -4- (naphthalen-1-yloxymethyl)-[1,3] -dioxolan-2-ylmethyl] -1H- [1,2,4] -Triazole (Compound 7aa)

フェノールの代わりに1-ナフタノールを用い、合成例1と同様の方法で目的の化合物7aaを得た(収率 13.9%)。1H NMR (400 MHz, CDCl3) δ: 3.76 (dd, J=6.2, 9.6 Hz, 1H), 3.98-4.06 (m, 3H), 4.51-4.57 (m, 3H), 6.73-6.75 (m, 1H), 7.36-7.42 (m, 3H), 7.45-7.52 (m, 5H), 7.78-7.82 (m, 1H), 7.94 (s, 1H), 8.11-8.13 (m, 1H), 8.31 (s, 1H). The HRMS-ESI calculated for C23H20ClN3O3Na [M+Na]+ was 444.1085, with 444.1091 found experimentally. The target compound 7aa was obtained in the same manner as in Synthesis Example 1 using 1-naphthanol instead of phenol (yield 13.9%). 1 H NMR (400 MHz, CDCl 3 ) δ: 3.76 (dd, J = 6.2, 9.6 Hz, 1H), 3.98-4.06 (m, 3H), 4.51-4.57 (m, 3H), 6.73-6.75 (m, 1H), 7.36-7.42 (m, 3H), 7.45-7.52 (m, 5H), 7.78-7.82 (m, 1H), 7.94 (s, 1H), 8.11-8.13 (m, 1H), 8.31 (s, 1H). The HRMS-ESI calculated for C 23 H 20 ClN 3 O 3 Na [M + Na] + was 444.1085, with 444.1091 found experimentally.

〔合成例28〕 1-[2-(4-クロロフェニル)-4-(ナフタレン-2-イルオキシメチル)-[1,3]-ジオキソラン-2-イルメチル]-1H-[1,2,4]-トリアゾール(化合物7ab) Synthesis Example 28 1- [2- (4-Chlorophenyl) -4- (naphthalen-2-yloxymethyl)-[1,3] -dioxolan-2-ylmethyl] -1H- [1,2,4] -Triazole (compound 7ab)

フェノールの代わりに2-ナフタノールを用い、合成例1と同様の方法で目的の化合物7abを得た(収率 42.5%)。1H NMR (400 MHz, CDCl3) δ: 3.72 (dd, J=5.8, 10.0 Hz, 1H), 3.85-3.97 (m, 3H), 4.42-4.45 (m, 1H), 4.56 (s, 2H), 7.05 (d, J=2.5 Hz, 1H), 7.12 (dd, J=2.5, 9.0 Hz, 1H), 7.33-7.41 (m, 3H), 7.43-7.50 (m, 3H), 7.74-7.78 (m,3H), 7.95 (s, 1H), 8.31 (s, 1H). The HRMS-ESI calculated for C23H20ClN3O3Na [M+Na]+ was 444.1085, with 444.1092 found experimentally. The target compound 7ab was obtained in the same manner as in Synthesis Example 1 except that 2-naphthanol was used in place of phenol (yield 42.5%). 1 H NMR (400 MHz, CDCl 3 ) δ: 3.72 (dd, J = 5.8, 10.0 Hz, 1H), 3.85-3.97 (m, 3H), 4.42-4.45 (m, 1H), 4.56 (s, 2H) , 7.05 (d, J = 2.5 Hz, 1H), 7.12 (dd, J = 2.5, 9.0 Hz, 1H), 7.33-7.41 (m, 3H), 7.43-7.50 (m, 3H), 7.74-7.78 (m , 3H), 7.95 (s, 1H), 8.31 (s, 1H). The HRMS-ESI calculated for C 23 H 20 ClN 3 O 3 Na [M + Na] + was 444.1085, with 444.1092 found experimentally.

〔合成例29〕 1-[4-(2-アリルフェノキシメチル)-2-(4-クロロフェニル)-[1,3]-ジオキソラン-2-イルメチル]-1H-[1,2,4]-トリアゾール(化合物7ac) Synthesis Example 29 1- [4- (2-Allylphenoxymethyl) -2- (4-chlorophenyl)-[1,3] -dioxolan-2-ylmethyl] -1H- [1,2,4] -triazole (Compound 7ac)

フェノールの代わりに2-アリルフェノールを用い、合成例1と同様の方法で目的の化合物7acを得た(収率 45.7%)。1H NMR (400 MHz, CDCl3) δ: 3.31 (d, J=6.7 Hz, 2H), 3.50 (dd, J=6.7, 9.8 Hz, 1H), 3.85-3.96 (m, 3H), 4.37-4.40 (m, 1H), 4.53 (s, 2H), 4.96-5.02 (m, 2H), 5.87-5.97 (m, 1H), 6.74 (d, J=6.7 Hz, 1H), 6.91-6.95 (m, 1H), 7.12-7.22 (m, 1H), 7.36-7.39 (m, 2H), 7.42-7.45 (m, 2H), 7.93 (s, 1H), 8.24 (s, 1H). The HRMS-ESI calculated for C22H22ClN3O3Na [M+Na]+ was 434.1242, with 434.1248 found experimentally. Using 2-allylphenol instead of phenol, the target compound 7ac was obtained in the same manner as in Synthesis Example 1 (yield 45.7%). 1 H NMR (400 MHz, CDCl 3 ) δ: 3.31 (d, J = 6.7 Hz, 2H), 3.50 (dd, J = 6.7, 9.8 Hz, 1H), 3.85-3.96 (m, 3H), 4.37-4.40 (m, 1H), 4.53 (s, 2H), 4.96-5.02 (m, 2H), 5.87-5.97 (m, 1H), 6.74 (d, J = 6.7 Hz, 1H), 6.91-6.95 (m, 1H ), 7.12-7.22 (m, 1H), 7.36-7.39 (m, 2H), 7.42-7.45 (m, 2H), 7.93 (s, 1H), 8.24 (s, 1H). The HRMS-ESI calculated for C 22 H 22 ClN 3 O 3 Na [M + Na] + was 434.1242, with 434.1248 found experimentally.

〔合成例30〕 1-[4-(2-ベンジルフェノキシメチル)-2-(4-クロロフェニル)-[1,3]-ジオキソラン-2-イルメチル]-1H-[1,2,4]-トリアゾール(化合物7ad) Synthesis Example 30 1- [4- (2-Benzylphenoxymethyl) -2- (4-chlorophenyl)-[1,3] -dioxolan-2-ylmethyl] -1H- [1,2,4] -triazole (Compound 7ad)

フェノールの代わりに2-ベンジルフェノールを用い、合成例1と同様の方法で目的の化合物7adを得た(収率 42.4%)。1H NMR (400 MHz, CDCl3) δ: 3.40 (dd, J=6.9, 9.4 Hz, 1H), 3.56-3.59 (m, 1H), 3.71-3.81 (m, 2H), 3.87-3.96 (m, 2H), 4.23-4.29 (m, 1H), 4.45 (d, J=3.7 Hz, 2H), 6.73 (d, J=8.0 Hz, 1H), 6.91-6.95 (m, 1H), 7.10-7.15 (m, 4H), 7.19-7.23 (m, 3H), 7.35-7.42 (m, 4H), 7.91 (s, 1H), 8.10 (s, 1H). The HRMS-ESI calculated for C26H24ClN3O3Na [M+Na]+ was 484.1398, with 484.1404 found experimentally. Using 2-benzylphenol instead of phenol, the target compound 7ad was obtained in the same manner as in Synthesis Example 1 (yield 42.4%). 1 H NMR (400 MHz, CDCl 3 ) δ: 3.40 (dd, J = 6.9, 9.4 Hz, 1H), 3.56-3.59 (m, 1H), 3.71-3.81 (m, 2H), 3.87-3.96 (m, 2H), 4.23-4.29 (m, 1H), 4.45 (d, J = 3.7 Hz, 2H), 6.73 (d, J = 8.0 Hz, 1H), 6.91-6.95 (m, 1H), 7.10-7.15 (m , 4H), 7.19-7.23 (m, 3H), 7.35-7.42 (m, 4H), 7.91 (s, 1H), 8.10 (s, 1H). The HRMS-ESI calculated for C 26 H 24 ClN 3 O 3 Na [M + Na] + was 484.1398, with 484.1404 found experimentally.

〔合成例31〕 1-[[4-[(2-トリフルオロメトキシフェノキシ)メチル]-2-フェニル-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物8a) [Synthesis Example 31] 1-[[4-[(2-trifluoromethoxyphenoxy) methyl] -2-phenyl-1,3-dioxolan-2-yl] methyl] -1H-1,2,4-triazole ( Compound 8a)

化合物8aは、2−トリフルロフェノールとトルエン-4-スルホン酸 2-フェニル-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステル(トシレート6a)とを反応させることにより調製した。トシレート6aは、以下の方法に従い、調製した。   Compound 8a consists of 2-trifluorophenol and toluene-4-sulfonic acid 2-phenyl-2-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester (tosylate) Prepared by reacting with 6a). Tosylate 6a was prepared according to the following method.

500 ml容の三口フラスコにDMF(12 ml)を加え、氷冷しながら8.14 gのトリアゾール(0.12 mol)を溶かした。そこに5.9 gのトリエチルアミン(0.06 mol)一滴ずつ加えて30分撹拌した後に12 gの2-ブルモ-アセトフェノン(0.06 mol)を薬さじで少しずつ撹拌しながら加えて17時間反応させた。反応終了後、反応混合物に酢酸エチル500 mlを加えて30分氷冷した。析出した結晶を吸引濾過により除き、ろ液を蒸留水(200 ml×3)で液々分配後、その水層を酢酸エチル(200 ml×3)で液々分配した。有機層を集めて飽和食塩水(30 ml)で洗浄し、無水硫酸ナトリウムで乾燥させた後、溶媒を減圧留去した。濃縮した残存物を酢酸エチル:メタノール(1:1)の溶液20 mlに溶かし、カラムベッド体積200 ml(高さ10 cm)のシリカゲルカラムを用いて酢酸エチル:メタノール(1:1)により目的化合物を溶出した。溶媒を減圧留去し、酢酸エチルとヘキサンを用いて再結晶した。目的化合物1-フェニル-2-1H-[1,2,4]トリアゾール-1-イル-エタノン(2a)が得られた。次いで、2aとトルエン-4-スルホン酸 2,3-ジヒドロキシプロピル エステルとの反応により、合成例1のトシレート6の合成法に準じて、トシレート6aを調製した。得られたトシレート6aと2−トリフルロフェノールから、合成例1の方法に従い、化合物8aを調製した(収率:58.9%)。δ 3.34-3.38(m, 1H), 3.86-3.95(m, 3H), 4.40-4.44(m, 1H), 4.51-4.60(m, 2H), 6.87-6.89(m, 1H), 6.95-7.00(m, 1H), 7.21-7.28(m, 2H), 7.40-7.44(m, 3H), 7.51-7.54(m, 2H), 7.93(s, 1H), 8.17(s, 1H)   DMF (12 ml) was added to a 500 ml three-necked flask, and 8.14 g of triazole (0.12 mol) was dissolved while cooling with ice. 5.9 g of triethylamine (0.06 mol) was added dropwise thereto and stirred for 30 minutes, and then 12 g of 2-bromo-acetophenone (0.06 mol) was added while stirring little by little with a spoonful and allowed to react for 17 hours. After completion of the reaction, 500 ml of ethyl acetate was added to the reaction mixture and cooled on ice for 30 minutes. The precipitated crystals were removed by suction filtration, and the filtrate was partitioned with distilled water (200 ml × 3), and the aqueous layer was partitioned with ethyl acetate (200 ml × 3). The organic layer was collected, washed with saturated brine (30 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. Dissolve the concentrated residue in 20 ml of a solution of ethyl acetate: methanol (1: 1) and use a silica gel column with a column bed volume of 200 ml (height 10 cm) to obtain the target compound with ethyl acetate: methanol (1: 1). Was eluted. The solvent was distilled off under reduced pressure and recrystallized using ethyl acetate and hexane. The target compound 1-phenyl-2-1H- [1,2,4] triazol-1-yl-ethanone (2a) was obtained. Next, tosylate 6a was prepared by reacting 2a with toluene-4-sulfonic acid 2,3-dihydroxypropyl ester according to the synthesis method of tosylate 6 of Synthesis Example 1. Compound 8a was prepared from the obtained tosylate 6a and 2-trifluorophenol according to the method of Synthesis Example 1 (yield: 58.9%). δ 3.34-3.38 (m, 1H), 3.86-3.95 (m, 3H), 4.40-4.44 (m, 1H), 4.51-4.60 (m, 2H), 6.87-6.89 (m, 1H), 6.95-7.00 ( m, 1H), 7.21-7.28 (m, 2H), 7.40-7.44 (m, 3H), 7.51-7.54 (m, 2H), 7.93 (s, 1H), 8.17 (s, 1H)

〔合成例32〕 1-[[4-[(2-トリフルオロメトキシフェノキシ)メチル]-2-(4-メチルフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物8b) Synthesis Example 32 1-[[4-[(2-trifluoromethoxyphenoxy) methyl] -2- (4-methylphenyl) -1,3-dioxolan-2-yl] methyl] -1H-1,2 , 4-Triazole (Compound 8b)

トルエン-4-スルホン酸 2-フェニル-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルの代わりにトルエン-4-スルホン酸 2-(4-メチルフェニル)-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルを用い、合成例31と同様の方法で目的の化合物8bを得た(収率:69.6%)。δ 2.37(s, 3H), 3.33-3.37(m, 1H), 3.84-3.94(m, 3H), 4.37-4.43(m, 1H), 4,49-4.57(m, 2H), 6.86-6.89(m, 1H), 6.95-6.99(m, 1H), 7.20-7.28(m, 4H), 7.38-7.41(m, 2H), 7.93(s, 1H), 8.16(s, 1H)   Toluene-4-sulfonic acid 2-phenyl-2-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester instead of toluene-4-sulfonic acid 2- ( 4-methylphenyl) -2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester was used to produce the desired compound 8b in the same manner as in Synthesis Example 31. Obtained (yield: 69.6%). δ 2.37 (s, 3H), 3.33-3.37 (m, 1H), 3.84-3.94 (m, 3H), 4.37-4.43 (m, 1H), 4,49-4.57 (m, 2H), 6.86-6.89 ( m, 1H), 6.95-6.99 (m, 1H), 7.20-7.28 (m, 4H), 7.38-7.41 (m, 2H), 7.93 (s, 1H), 8.16 (s, 1H)

〔合成例33〕 1-[2-ビフェニル-4-イル-4-(2-トリフルオロメトキシフェノキシメチル)-[1,3]ジオキソラン-2-イルメチル]-1H-[1,2,4]トリアゾール (化合物8c) Synthesis Example 33 1- [2-Biphenyl-4-yl-4- (2-trifluoromethoxyphenoxymethyl)-[1,3] dioxolan-2-ylmethyl] -1H- [1,2,4] triazole (Compound 8c)

トルエン-4-スルホン酸 2-フェニル-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルの代わりにトルエン-4-スルホン酸 2-ビフェニル-4-イル-2-1H-[1,2,4]トリアゾール- 1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルを用い、合成例31と同様の方法で目的の化合物8cを得た(収率:30.6%)。δ 3.35-3.40(m, 1H), 3.87-3.91(m, 2H), 3.96-4.00(m, 1H), 4.44-4.48(m, 1H), 4.55-4.64(m, 2H), 6.88-6.91(m, 1H), 6.96-7.00(m, 1H), 7.21-7.29(m, 2H), 7.36-7.40(m, 1H), 7.45-7.48(m, 2H), 7.58-7.64(m, 6H), 7.95(s, 1H), 8.21(s, 1H)   Toluene-4-sulfonic acid 2-phenyl-2-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester instead of toluene-4-sulfonic acid 2-biphenyl Using 4--4-yl-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester, the target compound 8c was obtained in the same manner as in Synthesis Example 31. (Yield: 30.6%). δ 3.35-3.40 (m, 1H), 3.87-3.91 (m, 2H), 3.96-4.00 (m, 1H), 4.44-4.48 (m, 1H), 4.55-4.64 (m, 2H), 6.88-6.91 ( m, 1H), 6.96-7.00 (m, 1H), 7.21-7.29 (m, 2H), 7.36-7.40 (m, 1H), 7.45-7.48 (m, 2H), 7.58-7.64 (m, 6H), 7.95 (s, 1H), 8.21 (s, 1H)

〔合成例34〕 1-[[4-[(2-トリフルオロメトキシフェノキシ)メチル]-2-(4-トリフルオロメチルフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物8d) Synthesis Example 34 1-[[4-[(2-trifluoromethoxyphenoxy) methyl] -2- (4-trifluoromethylphenyl) -1,3-dioxolan-2-yl] methyl] -1H-1 , 2,4-Triazole (Compound 8d)

トルエン-4-スルホン酸 2-フェニル-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルの代わりにトルエン-4-スルホン酸 2-(4-トリフルオロメチルフェニル)-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルを用い、合成例16と同様の方法で目的の化合物8dを得た(収率:28.2%)。δ 3.43-3.48(m, 1H), 3.83-3.93(m, 3H), 4.41-4.45(m, 1H), 4.51-4.60(m, 2H), 6.88-6.90(m, 1H), 6.97-7.02(m, 1H), 7.22-7.29(m, 2H), 7.63-7.68(m, 4H), 7.92(s, 1H), 8.19(s, 1H)   Toluene-4-sulfonic acid 2-phenyl-2-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester instead of toluene-4-sulfonic acid 2- ( 4-trifluoromethylphenyl) -2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester and the target compound in the same manner as in Synthesis Example 16. 8d was obtained (yield: 28.2%). δ 3.43-3.48 (m, 1H), 3.83-3.93 (m, 3H), 4.41-4.45 (m, 1H), 4.51-4.60 (m, 2H), 6.88-6.90 (m, 1H), 6.97-7.02 ( m, 1H), 7.22-7.29 (m, 2H), 7.63-7.68 (m, 4H), 7.92 (s, 1H), 8.19 (s, 1H)

〔合成例35〕 1-[[4-[(2-トリフルオロメトキシフェノキシ)メチル]-2-(2,4-ジクロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物8e) Synthesis Example 35 1-[[4-[(2-trifluoromethoxyphenoxy) methyl] -2- (2,4-dichlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1, 2,4-Triazole (Compound 8e)

トルエン-4-スルホン酸 2-フェニル-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルの代わりにトルエン-4-スルホン酸 2-(2,4-ジクロロフェニル)-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルを用い、合成例31と同様の方法で目的の化合物8eを得た(収率:43.6%)。δ 3.42-3.46(m, 1H), 3.82-3.98(m, 3H), 4.40-4.46(m, 1H), 4.75-4.88(m, 2H), 6.88-6.90(m, 1H), 6.96-7.02(m, 1H), 7.22-7.29(m, 3H), 7.47-7.55(m, 2H), 7.90(s, 1H), 8.19(s, 1H)   Toluene-4-sulfonic acid 2-phenyl-2-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester instead of toluene-4-sulfonic acid 2- ( 2,4-Dichlorophenyl) -2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester and the target compound 8e in the same manner as in Synthesis Example 31 (Yield: 43.6%) was obtained. δ 3.42-3.46 (m, 1H), 3.82-3.98 (m, 3H), 4.40-4.46 (m, 1H), 4.75-4.88 (m, 2H), 6.88-6.90 (m, 1H), 6.96-7.02 ( m, 1H), 7.22-7.29 (m, 3H), 7.47-7.55 (m, 2H), 7.90 (s, 1H), 8.19 (s, 1H)

〔合成例36〕 1-[[4-[(2-トリフルオロメトキシフェノキシ)メチル]-2-(3,4-ジクロロフェニル)-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール (化合物8f) Synthesis Example 36 1-[[4-[(2-trifluoromethoxyphenoxy) methyl] -2- (3,4-dichlorophenyl) -1,3-dioxolan-2-yl] methyl] -1H-1, 2,4-Triazole (Compound 8f)

トルエン-4-スルホン酸 2-フェニル-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルの代わりにトルエン-4-スルホン酸 2-(3,4-ジクロロフェニル)-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルを用い、合成例31と同様の方法で目的の化合物8fを得た(収率:42.7%)δ 3.43-3.47(m, 1H), 3.86-3.96(m, 3H), 4.40-4.46(m, 1H), 4.48-4.57(m, 2H), 6.87-6.90(m, 1H), 6.97-7.01(m, 1H), 7.22-7.33(m, 3H), 7.46-7.48(m, 1H), 7.60-7.61(m, 1H), 7.92(s, 1H), 8.18(s, 1H)   Toluene-4-sulfonic acid 2-phenyl-2-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester instead of toluene-4-sulfonic acid 2- ( 3,4-Dichlorophenyl) -2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester and the target compound 8f in the same manner as in Synthesis Example 31 (Yield: 42.7%) δ 3.43-3.47 (m, 1H), 3.86-3.96 (m, 3H), 4.40-4.46 (m, 1H), 4.48-4.57 (m, 2H), 6.87 -6.90 (m, 1H), 6.97-7.01 (m, 1H), 7.22-7.33 (m, 3H), 7.46-7.48 (m, 1H), 7.60-7.61 (m, 1H), 7.92 (s, 1H) , 8.18 (s, 1H)

〔合成例37〕 1-[2-ナフタレン-2-イル-4-(2-トリフルオロメトキシフェノキシメチル)-[1,3]ジオキソラン-2-イルメチル]-1H-[1,2,4]トリアゾール(化合物8g) Synthesis Example 37 1- [2-Naphthalen-2-yl-4- (2-trifluoromethoxyphenoxymethyl)-[1,3] dioxolan-2-ylmethyl] -1H- [1,2,4] triazole (Compound 8g)

トルエン-4-スルホン酸 2-フェニル-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルの代わりにトルエン-4-スルホン酸 2-ナフタレン-2-イル-2-1H-[1,2,4] トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルを用い、合成例31と同様の方法で目的の化合物8gを得た(収率:42.6%)。δ 3.39-3.43(m, 1H), 3.88-3.99(m, 3H), 4.47-4.48(m, 1H), 4.59-4.68(m, 2H), 6.89-7.02(m, 2H), 7.21-7.28(m, 2H), 7.51-7.61(m, 3H), 7.85-8.02(m, 5H),8.21(s, 1H)
Toluene-4-sulfonic acid 2-phenyl-2-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester instead of toluene-4-sulfonic acid 2-naphthalene -2-yl-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester was used in the same manner as in Synthesis Example 31 to obtain 8 g of the desired compound. (Yield: 42.6%). δ 3.39-3.43 (m, 1H), 3.88-3.99 (m, 3H), 4.47-4.48 (m, 1H), 4.59-4.68 (m, 2H), 6.89-7.02 (m, 2H), 7.21-7.28 ( m, 2H), 7.51-7.61 (m, 3H), 7.85-8.02 (m, 5H), 8.21 (s, 1H)

〔合成例38〕 1-[2-(4-フルオロフェニル)-4-(2-トリフルオロメトキシフェノキシメチル)-[1,3]-ジオキソラン-2-イルメチル]-1H-[1,2,4]-トリアゾール(化合物8h) Synthesis Example 38 1- [2- (4-Fluorophenyl) -4- (2-trifluoromethoxyphenoxymethyl)-[1,3] -dioxolan-2-ylmethyl] -1H- [1,2,4 ] -Triazole (Compound 8h)

トルエン-4-スルホン酸 2-フェニル-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルの代わりにトルエン-4-スルホン酸 2-(4-フルオロフェニル)-2-1H-[1,2,4]トリアゾール-1-イルメチル-[1,3]ジオキソラン-4-イルメチル エステルを用い、合成例31と同様の方法で目的の化合物8hを得た(収率:31.6%)。mp. =60.8-62.5 ℃。1H NMR (400 MHz, CDCl3) δ: 3.40(dd, J=7.1, 9.3 Hz, 1H), 3.86-3.94(m, 3H), 4.39-4.43(m, 1H), 4.53(d, J=5.1 Hz, 2H), 6.87-6.89(m, 1H), 6.96-7.05(m, 1H), 7.06-7.10(m, 2H), 7.21-7.28(m, 2H), 7.46-7.50(m, 2H), 7.91(s, 1H), 8.16(s, 1H). The HRMS-ESI calculated for C20H17F4N3O4Na [M+Na]+ was 462.1047, with 462.0999 found experimentally. Toluene-4-sulfonic acid 2-phenyl-2-2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester instead of toluene-4-sulfonic acid 2- ( 4-Fluorophenyl) -2-1H- [1,2,4] triazol-1-ylmethyl- [1,3] dioxolan-4-ylmethyl ester was used to produce the target compound 8h in the same manner as in Synthesis Example 31. Obtained (yield: 31.6%). mp. = 60.8-62.5 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ: 3.40 (dd, J = 7.1, 9.3 Hz, 1H), 3.86-3.94 (m, 3H), 4.39-4.43 (m, 1H), 4.53 (d, J = 5.1 Hz, 2H), 6.87-6.89 (m, 1H), 6.96-7.05 (m, 1H), 7.06-7.10 (m, 2H), 7.21-7.28 (m, 2H), 7.46-7.50 (m, 2H) , 7.91 (s, 1H), 8.16 (s, 1H). The HRMS-ESI calculated for C 20 H 17 F 4 N 3 O 4 Na [M + Na] + was 462.1047, with 462.0999 found experimentally.

〔合成例39〕 1-[2-(4-クロロフェニル)-4-(2-エトキシフェノキシメチル)-[1,3]-ジオキソラン-2-イルメチル]-1H-イミダゾール(化合物9a) Synthesis Example 39 1- [2- (4-Chlorophenyl) -4- (2-ethoxyphenoxymethyl)-[1,3] -dioxolan-2-ylmethyl] -1H-imidazole (Compound 9a)

1-(4-クロロフェニル)-2-1H-[1,2,4]トリアゾール-1-イルエタノンの代わりに、1-(4-クロロフェニル)-2-イミダゾール-1-イルエタノンを用い、また、フェノールの代わりに2-エトキシフェノールを用い、合成例1と同様の方法で目的の化合物9aを得た(収率:16.6%)。1H NMR (400 MHz, CDCl3) δ: 1.38 (t, J=7.0 Hz, 3H), 3.52 (dd, J=6.5, 10.0 Hz, 1H), 3.84-3.93 (m, 3H), 4.00-4.06 (m, 2H), 4.14-4.25 (m, 2H), 4.38-4.44 (m, 1H), 6.83-6.97 (m, 6H), 7.29-7.42 (m, 5H). The HRMS-ESI calculated for C22H23ClN2O4Na [M+Na]+ was 437.1239, with 437.1238 found experimentally. Instead of 1- (4-chlorophenyl) -2-1H- [1,2,4] triazol-1-ylethanone, 1- (4-chlorophenyl) -2-imidazol-1-ylethanone was used. Instead, using 2-ethoxyphenol, the target compound 9a was obtained in the same manner as in Synthesis Example 1 (yield: 16.6%). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.38 (t, J = 7.0 Hz, 3H), 3.52 (dd, J = 6.5, 10.0 Hz, 1H), 3.84-3.93 (m, 3H), 4.00-4.06 (m, 2H), 4.14-4.25 (m, 2H), 4.38-4.44 (m, 1H), 6.83-6.97 (m, 6H), 7.29-7.42 (m, 5H). The HRMS-ESI calculated for C 22 H 23 ClN 2 O 4 Na [M + Na] + was 437.1239, with 437.1238 found experimentally.

〔合成例40〕 1-[2-(4-クロロフェニル)-4-(2-エトキシフェノキシメチル)-[1,3]-ジオキソラン-2-イルメチル]-4H-[1,2,4]-トリアゾール(化合物9b) Synthesis Example 40 1- [2- (4-Chlorophenyl) -4- (2-ethoxyphenoxymethyl)-[1,3] -dioxolan-2-ylmethyl] -4H- [1,2,4] -triazole (Compound 9b)

1-(4-クロロフェニル)-2-1H-[1,2,4]トリアゾール-1-イルエタノンの代わりに、1-(4-クロロフェニル)-2-4H-[1,2,4]トリアゾール-1-イルエタノンを用い、また、フェノールの代わりに2-エトキシフェノールを用い、合成例1と同様の方法で目的の化合物9bを得た (収率:16.9%)。1H NMR (400 MHz, CDCl3) δ: 1.37 (t, J=8.5 Hz, 3H), 3.66 (dd, J=6.0, 10.1 Hz, 1H), 3.87-3.92 (m, 2H), 3.96-4.06 (m, 3H), 4.23-4.38 (m, 2H), 4.41-4.47 (m, 1H), 6.85-6.98 (m, 4H), 7.35-7.40 (m, 4H), 8.10 (s, 2H). Instead of 1- (4-chlorophenyl) -2-1H- [1,2,4] triazol-1-ylethanone, 1- (4-chlorophenyl) -2-4H- [1,2,4] triazole-1 -The target compound 9b was obtained in the same manner as in Synthesis Example 1 using yl ethanone and 2-ethoxyphenol instead of phenol (yield: 16.9%). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.37 (t, J = 8.5 Hz, 3H), 3.66 (dd, J = 6.0, 10.1 Hz, 1H), 3.87-3.92 (m, 2H), 3.96-4.06 (m, 3H), 4.23-4.38 (m, 2H), 4.41-4.47 (m, 1H), 6.85-6.98 (m, 4H), 7.35-7.40 (m, 4H), 8.10 (s, 2H).

〔合成例41〕 1-[2-(4-クロロフェニル)-4-(2-エトキシフェノキシメチル)-[1,3]-ジオキソラン-2-イルメチル]-1H-ピラゾール(化合物9c) Synthesis Example 41 1- [2- (4-Chlorophenyl) -4- (2-ethoxyphenoxymethyl)-[1,3] -dioxolan-2-ylmethyl] -1H-pyrazole (Compound 9c)

1-(4-クロロフェニル)-2-1H-[1,2,4]トリアゾール-1-イルエタノンの代わりに、1-(4-クロロフェニル)-2-ピラゾール-1-イルエタノンを用い、また、フェノールの代わりに2-エトキシフェノールを用い、合成例1と同様の方法で目的の化合物9cを得た(収率:69.9%)。1H NMR (400 MHz, CDCl3) δ: 1.34 (t, J=7.0 Hz, 3H), 3.71-3.79 (m, 2H), 3.88-4.02 (m, 4H), 4.23-4.29 (m, 1H), 4.41 (s, 2H), 6.25 (t, J=2.1 Hz, 1H), 6.76-6.93 (m, 4H), 7.27-7.30 (m, 2H), 7.39-7.42 (m, 2H), 7.46-7.50 (m, 2H). Instead of 1- (4-chlorophenyl) -2-1H- [1,2,4] triazol-1-ylethanone, 1- (4-chlorophenyl) -2-pyrazol-1-ylethanone was used, Instead, using 2-ethoxyphenol, the target compound 9c was obtained in the same manner as in Synthesis Example 1 (yield: 69.9%). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.34 (t, J = 7.0 Hz, 3H), 3.71-3.79 (m, 2H), 3.88-4.02 (m, 4H), 4.23-4.29 (m, 1H) , 4.41 (s, 2H), 6.25 (t, J = 2.1 Hz, 1H), 6.76-6.93 (m, 4H), 7.27-7.30 (m, 2H), 7.39-7.42 (m, 2H), 7.46-7.50 (m, 2H).

本発明の植物成長調節剤は、植物の伸長抑制、植物バイオマス生産増加、花粉成長抑制、花の鮮度保持、植物の抗ストレス剤、雑草防除、植物の老化抑制、根の肥大化などに有用なので、農業分野において利用可能である。   The plant growth regulator of the present invention is useful for suppressing plant elongation, increasing plant biomass production, suppressing pollen growth, maintaining flower freshness, plant antistress agents, weed control, plant aging suppression, root enlargement, etc. It can be used in the agricultural field.

Claims (8)

下記の式(I):
(式中、R1及びR2はそれぞれ独立に水素原子又は低級アルキル基を示し、R3は置換基を有することもあるフェニル基又はナフチル基を示し、R4は置換基を有することもあるフェニル基又はナフチル基を示し、R5は窒素原子を含むヘテロアリール基を示し、Xは単結合又は-CH2-を示し、Yは酸素原子、硫黄原子、NH又は-CH2-を示す。)で表される化合物又はその塩を有効成分として含む植物成長調節剤。
Formula (I) below:
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or a lower alkyl group, R 3 represents a phenyl group or naphthyl group which may have a substituent, and R 4 may have a substituent. A phenyl group or a naphthyl group, R 5 represents a heteroaryl group containing a nitrogen atom, X represents a single bond or —CH 2 —, and Y represents an oxygen atom, a sulfur atom, NH or —CH 2 —. The plant growth regulator containing the compound or its salt represented by this as an active ingredient.
R1及びR2が水素原子であり、R3が2-クロロフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である請求項1に記載の植物成長調節剤。 R 1 and R 2 are hydrogen atoms, R 3 is a 2-chlorophenyl group, R 4 is a 4-chlorophenyl group, and R 5 is a 1H-1,2,4-triazol-1-yl group The plant growth regulator according to claim 1, wherein X is a single bond and Y is an oxygen atom. R1及びR2が水素原子であり、R3が2,5-ジクロロフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である請求項1に記載の植物成長調節剤。 R 1 and R 2 are hydrogen atoms, R 3 is a 2,5-dichlorophenyl group, R 4 is a 4-chlorophenyl group, and R 5 is a 1H-1,2,4-triazol-1-yl group The plant growth regulator according to claim 1, wherein X is a single bond, and Y is an oxygen atom. R1及びR2が水素原子であり、R3が2-エトキシフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である請求項1に記載の植物成長調節剤。 R 1 and R 2 are hydrogen atoms, R 3 is a 2-ethoxyphenyl group, R 4 is a 4-chlorophenyl group, R 5 is a 1H-1,2,4-triazol-1-yl group The plant growth regulator according to claim 1, wherein X is a single bond and Y is an oxygen atom. R1及びR2が水素原子であり、R3が2-プロピオキシフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である請求項1に記載の植物成長調節剤。 R 1 and R 2 are hydrogen atoms, R 3 is a 2-propoxyphenyl group, R 4 is a 4-chlorophenyl group, and R 5 is a 1H-1,2,4-triazol-1-yl group The plant growth regulator according to claim 1, wherein X is a single bond, and Y is an oxygen atom. R1及びR2が水素原子であり、R3が2-アリルオキシフェニル基であり、R4が4-クロロフェニル基であり、R5が1H-1,2,4-トリアゾール-1-イル基であり、Xが単結合であり、Yが酸素原子である請求項1に記載の植物成長調節剤。 R 1 and R 2 are hydrogen atoms, R 3 is a 2-allyloxyphenyl group, R 4 is a 4-chlorophenyl group, and R 5 is a 1H-1,2,4-triazol-1-yl group The plant growth regulator according to claim 1, wherein X is a single bond, and Y is an oxygen atom. 植物成長調節が、植物の矮化、開花時期の調節、直立葉の誘導、又は生殖制御による雑草防除である請求項1乃至6のいずれか一項に記載の植物成長調節剤。   The plant growth regulator according to any one of claims 1 to 6, wherein the plant growth regulation is plant hatching, regulation of flowering time, induction of upright leaves, or weed control by reproduction control. 請求項1乃至7のいずれか一項に記載の植物成長調節剤を植物に作用させる植物の成長調節方法。   A method for controlling plant growth, wherein the plant growth regulator according to any one of claims 1 to 7 is allowed to act on a plant.
JP2012223936A 2011-10-20 2012-10-09 Plant growth regulator Expired - Fee Related JP5958905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223936A JP5958905B2 (en) 2011-10-20 2012-10-09 Plant growth regulator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011230776 2011-10-20
JP2011230776 2011-10-20
JP2012223936A JP5958905B2 (en) 2011-10-20 2012-10-09 Plant growth regulator

Publications (2)

Publication Number Publication Date
JP2013100266A true JP2013100266A (en) 2013-05-23
JP5958905B2 JP5958905B2 (en) 2016-08-02

Family

ID=48621308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223936A Expired - Fee Related JP5958905B2 (en) 2011-10-20 2012-10-09 Plant growth regulator

Country Status (1)

Country Link
JP (1) JP5958905B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175073A (en) * 1974-11-18 1976-06-29 Janssen Pharmaceutica Nv 11* beeta ariiru * echiru 1hh1 2 4to toriazooruketaaru oyobi sonosanfukaen no seizoho
JPS5246075A (en) * 1975-10-09 1977-04-12 Janssen Pharmaceutica Nv 11*betaaaryl* ethyll1hh 1*2*44triazolketal and pharmaceutically acceptable acid adduct salt thereof
JPS5569579A (en) * 1978-10-06 1980-05-26 Janssen Pharmaceutica Nv Novel antibiotic triazole derivative
JPS57122083A (en) * 1980-12-10 1982-07-29 Ciba Geigy Ag Ketal, manufacture and microbicide containing same
JPS5823687A (en) * 1981-05-12 1983-02-12 チバ−ガイギ−・アクチエンゲゼルシヤフト Novel arylphenyl ether derivative, manufacture, noxious microbe repellent and medicinal remedy
JPS58128383A (en) * 1982-01-26 1983-07-30 Sumitomo Chem Co Ltd Triazole-based compound, its preparation, agricultural and gardening fungicide, plant growth regulator, or herbicide containing it as active ingredient
JPS58206584A (en) * 1982-05-12 1983-12-01 エフ・ビ−・シ−・リミテツド Azolyl compound
JPS62135466A (en) * 1985-11-22 1987-06-18 チバ−ガイギ− アクチエンゲゼルシヤフト Haloalkoxy substituted 2-(1h-1,2,4-triazolyl)-1-phenylethane-1-one ketal, manufacture and microbicide containing same
JPS62289576A (en) * 1986-06-06 1987-12-16 Sumitomo Chem Co Ltd Triazole derivative, production thereof and fungicide containing said derivative as active component
JPS6393780A (en) * 1986-07-21 1988-04-25 イステイトウ−ト・グイド・ドネガニ・ソチエタ・ペル・アツイオニ Azolyl derivative having bactericidal activity
JPS6447783A (en) * 1987-07-20 1989-02-22 Ciba Geigy Ag Diastereo isomer, manufacture and fungicidal composition
JP2001247413A (en) * 2000-03-02 2001-09-11 Inst Of Physical & Chemical Res Inhibitor against biosynthesis of brassinosteroid
JP2004529942A (en) * 2001-05-04 2004-09-30 アベンティス・ファーマ・ソシエテ・アノニム Novel azole or triazole derivatives, their preparation and their use as fungicides
WO2011136285A1 (en) * 2010-04-27 2011-11-03 日本製紙株式会社 Cell differentiation promoter and use of same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175073A (en) * 1974-11-18 1976-06-29 Janssen Pharmaceutica Nv 11* beeta ariiru * echiru 1hh1 2 4to toriazooruketaaru oyobi sonosanfukaen no seizoho
JPS5246075A (en) * 1975-10-09 1977-04-12 Janssen Pharmaceutica Nv 11*betaaaryl* ethyll1hh 1*2*44triazolketal and pharmaceutically acceptable acid adduct salt thereof
JPS5569579A (en) * 1978-10-06 1980-05-26 Janssen Pharmaceutica Nv Novel antibiotic triazole derivative
JPS57122083A (en) * 1980-12-10 1982-07-29 Ciba Geigy Ag Ketal, manufacture and microbicide containing same
JPS5823687A (en) * 1981-05-12 1983-02-12 チバ−ガイギ−・アクチエンゲゼルシヤフト Novel arylphenyl ether derivative, manufacture, noxious microbe repellent and medicinal remedy
JPS58128383A (en) * 1982-01-26 1983-07-30 Sumitomo Chem Co Ltd Triazole-based compound, its preparation, agricultural and gardening fungicide, plant growth regulator, or herbicide containing it as active ingredient
JPS58206584A (en) * 1982-05-12 1983-12-01 エフ・ビ−・シ−・リミテツド Azolyl compound
JPS62135466A (en) * 1985-11-22 1987-06-18 チバ−ガイギ− アクチエンゲゼルシヤフト Haloalkoxy substituted 2-(1h-1,2,4-triazolyl)-1-phenylethane-1-one ketal, manufacture and microbicide containing same
JPS62289576A (en) * 1986-06-06 1987-12-16 Sumitomo Chem Co Ltd Triazole derivative, production thereof and fungicide containing said derivative as active component
JPS6393780A (en) * 1986-07-21 1988-04-25 イステイトウ−ト・グイド・ドネガニ・ソチエタ・ペル・アツイオニ Azolyl derivative having bactericidal activity
JPS6447783A (en) * 1987-07-20 1989-02-22 Ciba Geigy Ag Diastereo isomer, manufacture and fungicidal composition
JP2001247413A (en) * 2000-03-02 2001-09-11 Inst Of Physical & Chemical Res Inhibitor against biosynthesis of brassinosteroid
JP2004529942A (en) * 2001-05-04 2004-09-30 アベンティス・ファーマ・ソシエテ・アノニム Novel azole or triazole derivatives, their preparation and their use as fungicides
WO2011136285A1 (en) * 2010-04-27 2011-11-03 日本製紙株式会社 Cell differentiation promoter and use of same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016020654; Lin, Shi-qing et al.: 'Synthesis and antifungal activities of 1-[2-(2,4-dichlorophenyl)-4-alkoxymethyl-1,3-dioxolan-2-yl]me' Jingxi Huagong vol.22 no.11, 2005, pp.862-865, 870 *

Also Published As

Publication number Publication date
JP5958905B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JPS61126049A (en) Substituted azolylmethylcyclopropylcarbinol derivative
HU186884B (en) Fungicide compositions with activity of controlling growth of plants containing azole compounds as active agents, and process for producing the active agents
JPS59175488A (en) Triazole or imidazole compound, manufacture and fungicidal or plant growth regulant composition
HU189225B (en) Fungicide compositions with regulating activity for growth of plants and process for producing tetrahydrofurfuryl-azole derivatives as active agents
CS215063B2 (en) Fungicide means and means for suppressing the non-desirable plant growth
US4394380A (en) 2-(2-Alkoxyalkyl)-1,2,4-triazole compounds and their use as fungicides
JPH01246267A (en) Hydroxyalkyl-azolyl derivative
HUT61987A (en) Process for producing antifungal triazole derivatives
JP5958905B2 (en) Plant growth regulator
US4278800A (en) γ-Azolyl compounds, agents containing them for regulating plant growth, and the manufacture thereof
HU176915B (en) Fungicide composiotions containing substituted phenoxy-triasolyl-buthyl-esters and process for producing the active agents
CN108863935B (en) Application of amide compound containing pyrazole ring in preparation of herbicide
WO2002007518A1 (en) Metabolic inhibitors against brassinosteroids
US4447625A (en) 1,3-Dioxolan-5-one derivatives
JPH0325433B2 (en)
EP0958289B1 (en) Amino acid ester containing azole antifungals
HU186778B (en) Plant growth regulating agent containing 1,3-dioxin-5-y1-alkenyl-triazola and process for the preparation of the active ingredients
CS208456B2 (en) Fungicide means and method of making the active substances
US6388089B1 (en) Brassinosteroid biosynthesis inhibitors
EP0212841B1 (en) Substituted hydroxybutynyl azoles as plant growth regulators
JPWO2004022546A1 (en) Substances that inhibit the biosynthesis of jasmonic acid
JP3762949B2 (en) Brassinosteroid biosynthesis inhibitor
HU193875B (en) Process for producing pyridazinone derivatives of antifungal activity
US6649568B2 (en) Brassinosteroid biosynthesis inhibitor
BR112016005763B1 (en) AGRICULTURAL CHEMICAL COMPOUNDS, THEIR HERBICIDAL COMPOSITIONS, AND METHOD FOR WEED CONTROL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5958905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees