JP2013096889A - Infrared gas analyzer - Google Patents

Infrared gas analyzer Download PDF

Info

Publication number
JP2013096889A
JP2013096889A JP2011240991A JP2011240991A JP2013096889A JP 2013096889 A JP2013096889 A JP 2013096889A JP 2011240991 A JP2011240991 A JP 2011240991A JP 2011240991 A JP2011240991 A JP 2011240991A JP 2013096889 A JP2013096889 A JP 2013096889A
Authority
JP
Japan
Prior art keywords
light receiving
infrared
receiving chamber
gas
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011240991A
Other languages
Japanese (ja)
Inventor
Mitsuru Oishi
満 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011240991A priority Critical patent/JP2013096889A/en
Publication of JP2013096889A publication Critical patent/JP2013096889A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared gas analyzer capable of providing highly accurate measurement even when measuring a low concentration gas sample.SOLUTION: An infrared gas analyzer of the present invention includes a sample cell 3, through which gas sample flows, located on a path of infrared light from an infrared light source 1, and an infrared detector 4 located on a path of infrared light that has passed through the sample cell 3. The infrared detector 4 includes light receiving chambers 41, 42, a pressure sensor 43, and optical filters 44, 45. Gas having infrared absorption wavelengths which are common with at least some of infrared absorption wavelengths of detection target component gas is encapsulated in each of the light receiving chambers 41, 42. The pressure sensor 43 detects difference in the amount of infrared absorption between the light receiving chamber 41 and the light receiving chamber 42. Each of the optical filters 44, 45 reflects a predetermined different portion of infrared light in an infrared absorption band of the gas encapsulated in the corresponding light receiving chamber 41, 42. The optical filters 44, 45 are located on the rear side of the light receiving chamber 41.

Description

本発明は、化学工場や製鉄所のガス濃度に関するプロセスモニター、ボイラーや燃焼炉の燃焼ガス分析、大気汚染の監視、自動車排気ガスの測定などに使用され、ガス分子固有の赤外線吸収効果を利用して試料ガス中の特定成分の濃度を測定する赤外線ガス分析計に関する。   The present invention is used for process monitors related to gas concentrations in chemical factories and steelworks, analysis of combustion gases in boilers and combustion furnaces, air pollution monitoring, measurement of automobile exhaust gases, etc., and utilizes the infrared absorption effect inherent to gas molecules. The present invention relates to an infrared gas analyzer that measures the concentration of a specific component in a sample gas.

従来、この種の赤外線ガス分析計としては、光路に沿って直列に配置された前後の受光室間での赤外光吸収量の差を検出するニューマチック型の検出器を備えたものが知られている。
この赤外線ガス分析計は、例えば図6に示すように、赤外線光源1、光チョッパ2、試料セル3、および赤外線検出器8を備えている。赤外線検出器8は、前後2つの受光室81、82と、圧力センサ83とを備えている。
Conventionally, this type of infrared gas analyzer is known to have a pneumatic detector that detects the difference in the amount of infrared light absorption between the front and rear light receiving chambers arranged in series along the optical path. It has been.
For example, as shown in FIG. 6, the infrared gas analyzer includes an infrared light source 1, an optical chopper 2, a sample cell 3, and an infrared detector 8. The infrared detector 8 includes two front and rear light receiving chambers 81 and 82 and a pressure sensor 83.

光源1から発せられた赤外光は、光チョッパ2により断続光となり試料ガスが流通する試料セル3内に入射する。試料セル3内に入射した赤外光は測定対象である試料ガスを透過し、赤外線検出器8に入射する。赤外線検出器8での赤外光の吸収量は、試料セル3内に存在する試料ガス(測定対象)成分の濃度に応じて変化するので、赤外線検出器8はその変化を検出して濃度信号S1として出力する。   Infrared light emitted from the light source 1 becomes intermittent light by the light chopper 2 and enters the sample cell 3 in which the sample gas flows. The infrared light that has entered the sample cell 3 passes through the sample gas to be measured and enters the infrared detector 8. Since the amount of infrared light absorbed by the infrared detector 8 changes according to the concentration of the sample gas (measuring object) component present in the sample cell 3, the infrared detector 8 detects the change and detects the concentration signal. Output as S1.

従来の赤外線検出器8では、試料ガス中の被検出成分による赤外線吸収を利用するので、試料ガス中に被検出成分と同一の赤外線吸収領域または一部が重なった赤外線吸収領域を持つ成分(干渉成分)が共存する場合には、干渉成分の濃度が被検出成分の測定誤差になる。
その干渉成分の影響を低減するために、例えば特許文献1では、前後の受光室での干渉成分による吸収の光路内に配置した遮光板により比率調整を行い、その影響を低減する方法が提案されている。また、この提案の他に、ガスフィルタによる干渉成分の波長帯の吸収、光学フィルタなどによる透過波長帯の限定、検出器の前後の光路長比の最適化による低減などの各種の方法が提案されている。
Since the conventional infrared detector 8 uses infrared absorption by the component to be detected in the sample gas, the sample gas has the same infrared absorption region as the component to be detected or a component having an infrared absorption region that partially overlaps (interference). When the component) coexists, the concentration of the interference component becomes a measurement error of the detected component.
In order to reduce the influence of the interference component, for example, Patent Document 1 proposes a method of reducing the influence by adjusting the ratio with a light shielding plate arranged in the optical path of absorption by the interference component in the front and rear light receiving chambers. ing. In addition to this proposal, various methods have been proposed such as absorption of the interference component wavelength band by the gas filter, limitation of the transmission wavelength band by an optical filter, etc., and reduction by optimizing the optical path length ratio before and after the detector. ing.

さらに、1つの光学系で試料ガスに含まれる2以上の成分を測定する赤外線ガス分析計が知られている(特許文献2参照)。
この赤外線ガス分析計は、図7に示すように、赤外線光源1、光チョッパ2、試料セル3、赤外線検出器D1〜D3、および光学フィルタF1〜F3を備えている。
検出器D1〜D3は、それぞれ赤外光の光路に沿った2つの受光室91、92を備え、両受光室91、92での赤外光吸収量の差を、両受光室91、92間に設けらた圧力センサ93により検出する。
Furthermore, an infrared gas analyzer that measures two or more components contained in a sample gas with one optical system is known (see Patent Document 2).
As shown in FIG. 7, the infrared gas analyzer includes an infrared light source 1, an optical chopper 2, a sample cell 3, infrared detectors D1 to D3, and optical filters F1 to F3.
The detectors D1 to D3 are each provided with two light receiving chambers 91 and 92 along the optical path of the infrared light, and the difference in the amount of infrared light absorbed in both the light receiving chambers 91 and 92 is determined between the light receiving chambers 91 and 92. Detected by a pressure sensor 93 provided in

検出器D1〜D3は、試料セル3に流通する試料ガス中の3成分(NO、CO、SO)を測定できるように、検出器D1にはNOが、検出器D2にはCOが、検出器D3にはSOがそれぞれ適当な濃度で充填されている。そして、検出器D1〜D3のそれぞれは、封入ガスの赤外線吸収波長に感度を有する赤外線センサとなっている。
試料セル3に流通する試料ガスに含まれるそれぞれのガス成分の濃度に応じて、検出器D1〜D3に封入されているガスに吸収されるエネルギーが変化し、圧力センサ93を通して取り出された信号から試料ガス中の濃度に換算する。
The detectors D1 to D3 detect NO in the detector D1 and CO in the detector D2 so that the three components (NO, CO, SO 2 ) in the sample gas flowing through the sample cell 3 can be measured. The vessel D3 is filled with SO 2 at an appropriate concentration. Each of the detectors D1 to D3 is an infrared sensor having sensitivity to the infrared absorption wavelength of the sealed gas.
Depending on the concentration of each gas component contained in the sample gas flowing through the sample cell 3, the energy absorbed by the gas sealed in the detectors D1 to D3 changes, and the signal extracted through the pressure sensor 93 is changed. Convert to the concentration in the sample gas.

光学フィルタF1〜F3は、干渉成分による妨害を除去するものであり、検出器D1〜D3の後段にそれぞれ配置されている。
また、特許文献2には、図7に示す赤外線ガス分析計の構成を基本にし、図7の検出器D1〜D3の構成を、図8(A)または図8(B)に示す検出器に置き換えたものが記載されている。
The optical filters F1 to F3 remove interference caused by interference components, and are respectively disposed at the subsequent stage of the detectors D1 to D3.
Further, in Patent Document 2, based on the configuration of the infrared gas analyzer shown in FIG. 7, the configuration of the detectors D1 to D3 in FIG. 7 is changed to the detector shown in FIG. 8 (A) or FIG. 8 (B). The replacement is listed.

図8(A)に示す検出器は、受光室91と受光室92との間に、光学フィルタFを配置したものである。図8(B)に示す検出器は、図7に示す受光室92をガスが流通するように接続される受光室92aと受光室92bとに分割し、この受光室92aと受光室92bとの間に、光学フィルタFを配置したものである。
このように、特許文献2に係る検出器では、試料ガス中に含まれる干渉成分の影響を低減するために、ガスフィルタによる干渉成分の波長帯を吸収し、光学フィルタなどにより透過波長帯を限定する方法を採用する。
In the detector shown in FIG. 8A, an optical filter F is disposed between the light receiving chamber 91 and the light receiving chamber 92. The detector shown in FIG. 8B divides the light receiving chamber 92 shown in FIG. 7 into a light receiving chamber 92a and a light receiving chamber 92b connected so that gas flows, and the light receiving chamber 92a and the light receiving chamber 92b are separated. An optical filter F is disposed between them.
Thus, in the detector according to Patent Document 2, in order to reduce the influence of the interference component contained in the sample gas, the wavelength band of the interference component by the gas filter is absorbed and the transmission wavelength band is limited by an optical filter or the like. Adopt the method to do.

しかし、試料ガス中に2以上の干渉ガス成分が存在する場合、または試料ガスが低濃度の場合には、上記の従来の手法では、試料ガス中に含まれる干渉成分の影響を低減しきれない場合が多く、測定誤差を生じることになる。
この影響を低減する方法として、特許文献3に記載の方法が知られている。この方法は、検出器に封入されるガス中に干渉成分を添加し、2つの前後の受光室にそれぞれの干渉の影響が相殺される比率で封入することにより、その影響を除去するようにしている。
However, when two or more interference gas components are present in the sample gas, or when the sample gas has a low concentration, the above-described conventional method cannot completely reduce the influence of the interference components contained in the sample gas. In many cases, measurement errors will occur.
As a method of reducing this influence, a method described in Patent Document 3 is known. In this method, an interference component is added to the gas sealed in the detector, and the influences of the interference are offset in the two front and rear light receiving chambers so as to cancel the influence. Yes.

特開昭63−225148号公報JP-A-63-225148 特開2004−61207号公報JP 2004-61207 A 特開平7−218434号公報JP 7-218434 A

特許文献3に記載の方法は、試料ガス中に2成分以上の干渉ガスがある場合に、その干渉成分の影響を低減する方法としては有効である。しかし、前後の受光室において異なる濃度のガスを封入するので、前後の受光室のガスの膨張差によるマスフローを検出する方式の検出器には適用できない。
そこで、本発明は、上記の課題に着目してなされたものであり、フローセンサ方式の検出器に適用できる上に、試料ガスが低濃度の場合にも高精度の測定が可能な赤外線ガス分析計を提供することを目的とする。
The method described in Patent Document 3 is effective as a method of reducing the influence of interference components when there are two or more interference gases in the sample gas. However, since different concentrations of gas are sealed in the front and rear light receiving chambers, it cannot be applied to a detector that detects a mass flow due to a difference in gas expansion between the front and rear light receiving chambers.
Therefore, the present invention has been made paying attention to the above-described problems, and can be applied to a flow sensor type detector, and can also perform infrared gas analysis capable of high-precision measurement even when the sample gas has a low concentration. The purpose is to provide a total.

上記の目的を達成するために、本発明は、以下のような構成からなる。
本発明は、光源からの赤外光の光路上に配置され試料ガスが流通される試料セルと、前記試料セルを透過した前記赤外光の光路上に配置される赤外線検出器と、を備え、前記赤外線検出器は、被検出成分ガスの赤外線吸収波長と少なくとも一部が重なる赤外線吸収波長を有するガスが封入され、光路に沿って前記試料セル側から順に配置される第1の受光室および第2の受光室と、前記第1の受光室と前記第2の受光室とにおける赤外光の吸収量の差を検出するセンサと、前記第1の受光室および前記第2の受光室に封入されているガスの赤外線吸収帯の全部をそれぞれ反射し、または前記赤外線吸収帯のうち予め定めた異なる一部をそれぞれ反射する第1の光学フィルタおよび第2の光学フィルタと、を備え、前記第1の光学フィルタおよび第2の光学フィルタのそれぞれは、前記第1の受光室よりも後段側の位置に配置されている。
In order to achieve the above object, the present invention has the following configuration.
The present invention includes a sample cell that is disposed on an optical path of infrared light from a light source and through which a sample gas flows, and an infrared detector that is disposed on the optical path of the infrared light transmitted through the sample cell. The infrared detector includes a first light receiving chamber in which a gas having an infrared absorption wavelength at least partially overlapping with the infrared absorption wavelength of the component gas to be detected is enclosed, and arranged in order from the sample cell side along the optical path; A second light receiving chamber, a sensor for detecting a difference in the amount of absorption of infrared light between the first light receiving chamber and the second light receiving chamber, and the first light receiving chamber and the second light receiving chamber. A first optical filter and a second optical filter that respectively reflect all of the infrared absorption band of the sealed gas, or respectively reflect different predetermined portions of the infrared absorption band, and A first optical filter and Each of the second optical filter is disposed at the position of the rear stage side of the first light receiving chamber.

本発明では、前記第1の受光室と前記第2の受光室のそれぞれは単一の空間からなり、前記第1の光学フィルタおよび前記第2の光学フィルタは、前記第2の受光室の後段、または前記第1の受光室と前記第2の受光室との間に配置されている   In the present invention, each of the first light receiving chamber and the second light receiving chamber is formed of a single space, and the first optical filter and the second optical filter are arranged in a subsequent stage of the second light receiving chamber. Or disposed between the first light receiving chamber and the second light receiving chamber.

また、本発明では、前記第1の光学フィルタは単一の空間からなり、前記第2の受光室は、ガスが流通できるように接続され、かつ、前記光路上に順に配置される第3の受光室と第4の受光室とからなり、前記第1の光学フィルタおよび前記第2の光学フィルタは、前記第1の受光室と前記第3の受光室との間および前記第3の受光室と前記第4の受光室との間に配置され、前記第3の受光室と前記第4の受光室との間にそれぞれ配置され、または前記第3の受光室と前記第4の受光室との間、および前記第4受光室の後段に配置されている。
そして、本発明では、前記第1の光学フィルタおよび前記第2の光学フィルタは、前記光路と交差する方向に移動するように構成し、挿入量を調整するようになっている。
Further, in the present invention, the first optical filter includes a single space, and the second light receiving chamber is connected so that gas can flow, and is arranged in order on the optical path. The light receiving chamber includes a light receiving chamber and a fourth light receiving chamber, and the first optical filter and the second optical filter are provided between the first light receiving chamber and the third light receiving chamber and the third light receiving chamber. And the fourth light receiving chamber, respectively, between the third light receiving chamber and the fourth light receiving chamber, or the third light receiving chamber and the fourth light receiving chamber. And the rear stage of the fourth light receiving chamber.
In the present invention, the first optical filter and the second optical filter are configured to move in a direction crossing the optical path, and the insertion amount is adjusted.

このような構成の本発明では、第1の受光室と第2の受光室において、封入されているガス中の干渉ガス成分の赤外線の吸収量を等しくすることが可能となる。
このため、本発明によれば、第1の受光室と第2の受光室内における干渉ガス成分による赤外線の吸収に基づくガスの膨張量差をなくすことができ、干渉ガス成分による測定誤差の影響を低減することが可能となる。
In the present invention having such a configuration, it is possible to equalize the infrared absorption amount of the interference gas component in the sealed gas in the first light receiving chamber and the second light receiving chamber.
For this reason, according to the present invention, it is possible to eliminate the difference in the expansion amount of the gas based on the absorption of infrared rays by the interference gas component in the first light receiving chamber and the second light receiving chamber, and to influence the measurement error due to the interference gas component. It becomes possible to reduce.

本発明の赤外線ガス分析計の第1実施形態の正面の概略断面図である。It is a schematic sectional drawing of the front of 1st Embodiment of the infrared gas analyzer of this invention. ガスの赤外線の波長に対する吸光度を示すとともに、第1実施形態に適用される光学フィルタの特性(透過率)を示す図である。It is a figure which shows the characteristic (transmittance) of the optical filter applied to 1st Embodiment while showing the light absorbency with respect to the wavelength of the infrared rays of gas. 第1実施形態の変形例の要部の正面の概略断面図である。It is a schematic sectional drawing of the front of the principal part of the modification of 1st Embodiment. 本発明の赤外線ガス分析計の第2実施形態の正面の概略断面図である。It is a schematic sectional drawing of the front of 2nd Embodiment of the infrared gas analyzer of this invention. 第2実施形態の第1および第2変形例のそれぞれの要部の正面の概略断面図である。It is a schematic sectional drawing of the front of each principal part of the 1st and 2nd modification of 2nd Embodiment. 従来の赤外線ガス分析計の正面の概略断面図である。It is a schematic sectional drawing of the front of the conventional infrared gas analyzer. 従来の他の赤外線ガス分析計の正面の概略断面図である。It is a schematic sectional drawing of the front of the other conventional infrared gas analyzer. 図7の赤外線ガス分析計の第1および第2変形例のそれぞれの要部の正面の概略断面図である。It is a schematic sectional drawing of the front of each principal part of the 1st and 2nd modification of the infrared gas analyzer of FIG.

以下、本発明の実施の形態を図面に基づいて説明する。
(第1実施形態)
図1は、本発明の赤外線ガス分析計の第1実施形態の正面の概略断面図である。
この第1実施形態に係る赤外線ガス分析計は、図1に示すように、赤外線光源1と、光チョッパ2と、試料セル3と、赤外線検出器4とを備え、試料ガスが試料セル3内を流通するようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic sectional view of the front of a first embodiment of an infrared gas analyzer of the present invention.
As shown in FIG. 1, the infrared gas analyzer according to the first embodiment includes an infrared light source 1, an optical chopper 2, a sample cell 3, and an infrared detector 4, and the sample gas is in the sample cell 3. Has been distributed.

赤外線光源1は、赤外線を放射する。光チョッパ2は、赤外線光源1と試料セル3との間に配置されている。また、光チョッパ2は、モータ5により回転し、赤外線光源1からの赤外光を断続して試料セル3に導くようになっている。
試料セル3は、赤外線光源1からの赤外光の光路6上に配置され、その内部を試料ガスが流通するようになっている。赤外線検出器4は、試料セル3を透過した赤外光の光路6上に配置されている。
The infrared light source 1 emits infrared light. The optical chopper 2 is disposed between the infrared light source 1 and the sample cell 3. The light chopper 2 is rotated by a motor 5 so that infrared light from the infrared light source 1 is intermittently guided to the sample cell 3.
The sample cell 3 is disposed on the optical path 6 of the infrared light from the infrared light source 1, and the sample gas is circulated therein. The infrared detector 4 is disposed on an optical path 6 of infrared light that has passed through the sample cell 3.

赤外線検出器4は、図1に示すように、受光室41と、受光室42と、圧力センサ43と、光学フィルタ44と、光学フィルタ45と、を備えている。
受光室41と受光室42とは、光路6に沿って試料セル3側から順に配置されている。そして、受光室41、42のそれぞれは、単一の空間を形成している。
また、受光室41、42のそれぞれには、被検出成分ガスの他に、試料セル3内に存在する試料ガス中の被検出成分ガスの干渉成分の影響を排除するために、その被検出成分の赤外線吸収波長と少なくとも一部が重なる赤外線吸収波長を有するガスが封入(充填)されている。
As shown in FIG. 1, the infrared detector 4 includes a light receiving chamber 41, a light receiving chamber 42, a pressure sensor 43, an optical filter 44, and an optical filter 45.
The light receiving chamber 41 and the light receiving chamber 42 are sequentially disposed along the optical path 6 from the sample cell 3 side. Each of the light receiving chambers 41 and 42 forms a single space.
In addition to the detected component gas, each of the light receiving chambers 41 and 42 has a detected component in order to eliminate the influence of the interference component of the detected component gas in the sample gas existing in the sample cell 3. A gas having an infrared absorption wavelength at least partially overlapping with the infrared absorption wavelength is filled (filled).

ここで、例えば、赤外線検出器4がNOを測定する場合には、受光室41、42のそれぞれには、NOと、そのNOの赤外線吸収波長と一部が重なる赤外線吸収波長を有するガスが封入されている。
圧力センサ43は、受光室41と受光室42との間に配置され、受光室41と受光室42とにおける赤外光の吸収量の差に応じた圧力差を検出し、その検出信号S2を出力するようになっている。圧力センサ43は、コンデンサマイクやフローセンサなどである。
Here, for example, when the infrared detector 4 measures NO, each of the light receiving chambers 41 and 42 is filled with NO and a gas having an infrared absorption wavelength that partially overlaps the infrared absorption wavelength of the NO. Has been.
The pressure sensor 43 is disposed between the light receiving chamber 41 and the light receiving chamber 42, detects a pressure difference corresponding to the difference in the amount of absorption of infrared light between the light receiving chamber 41 and the light receiving chamber 42, and outputs a detection signal S2 thereof. It is designed to output. The pressure sensor 43 is a condenser microphone or a flow sensor.

光学フィルタ44、45は、赤外線に対して異なる透過特性を有し、受光室41、42に封入されているガスの赤外線吸収帯のうち、予め定めた異なる一部の吸収帯をそれぞれ反射するようになっている。また、光学フィルタ44、45のそれぞれは、光路6と交差する方向に移動できるように構成し、受光室41、42間における挿入量を調整できるようになっている。   The optical filters 44 and 45 have different transmission characteristics with respect to infrared rays, and reflect different predetermined absorption bands among the infrared absorption bands of the gas sealed in the light receiving chambers 41 and 42, respectively. It has become. Each of the optical filters 44 and 45 is configured to be movable in a direction intersecting the optical path 6 so that the amount of insertion between the light receiving chambers 41 and 42 can be adjusted.

次に、図1の光学フィルタ44、45の具体的な特性について、図2を参照して説明する。
図2は、赤外線の波長が4〜7〔μm〕の範囲におけるガスの赤外線の吸光度の一例を示す。
このような赤外線の吸光度の下で、赤外線検出器4が試料ガス中のNOを測定する場合には、CO、HOが干渉ガス(干渉成分)となり、その測定の誤差となる。
Next, specific characteristics of the optical filters 44 and 45 in FIG. 1 will be described with reference to FIG.
FIG. 2 shows an example of the absorbance of gas infrared rays in the infrared wavelength range of 4 to 7 [μm].
When the infrared detector 4 measures NO in the sample gas under such infrared absorbance, CO 2 and H 2 O become interference gases (interference components), resulting in measurement errors.

すなわち、赤外線検出器4でNOを測定する場合には、NOの吸収波長帯がCOやHOの吸収波長帯と重なる部分があるので、試料ガス中のCOやHOに対して若干の感度を有し、NOの濃度測定の誤差となる。
そこで、光学フィルタ44は、図2に示すように、NOの測定波長帯(検出波長帯)である5〔μm〕付近の赤外線(赤外光)を透過し、HOの吸収波長帯である5.5〜7〔μm〕付近の赤外線を透過しないフィルタとする。
That is, when NO is measured by the infrared detector 4, there is a portion where the absorption wavelength band of NO overlaps with the absorption wavelength band of CO 2 or H 2 O, so that it corresponds to CO 2 or H 2 O in the sample gas. Therefore, it becomes an error in measuring the concentration of NO.
Therefore, as shown in FIG. 2, the optical filter 44 transmits infrared light (infrared light) in the vicinity of 5 μm, which is the NO measurement wavelength band (detection wavelength band), and in the H 2 O absorption wavelength band. A filter that does not transmit infrared light in the vicinity of 5.5 to 7 μm is used.

また、光学フィルタ45は、図2に示すように、NOの測定波長帯(検出波長帯)である5〔μm〕付近の赤外線を透過し、COの吸収波長帯である4.3〔μm〕付近の赤外線を透過しないフィルタとする。
なお、赤外線検出器4でNOを測定する場合には、HOの吸収波長帯をカットするフィルタ44の代わりに、製作費用が廉価なサファイヤフィルタを使用しても良い。
Further, as shown in FIG. 2, the optical filter 45 transmits infrared rays in the vicinity of 5 [μm] which is a NO measurement wavelength band (detection wavelength band) and 4.3 [μm] which is an absorption wavelength band of CO 2. ] Use a filter that does not transmit nearby infrared light.
When NO is measured by the infrared detector 4, a sapphire filter that is inexpensive to manufacture may be used instead of the filter 44 that cuts the absorption wavelength band of H 2 O.

次に、第1実施形態の動作例について、図1および図2を参照して説明する。
赤外線光源1から放射される赤外光は、光チョッパ2により断続光となり試料ガスが流通する試料セル3内に入射する。試料セル3内に入射した赤外光は測定対象である試料ガスを透過し、赤外線検出器4に入射する。
赤外線検出器4は、NOを測定する場合には、例えば、図2に示すような特性を有する光学フィルタ44、45を備えている。
Next, an operation example of the first embodiment will be described with reference to FIGS. 1 and 2.
The infrared light emitted from the infrared light source 1 becomes intermittent light by the light chopper 2 and enters the sample cell 3 through which the sample gas flows. The infrared light that has entered the sample cell 3 passes through the sample gas to be measured and enters the infrared detector 4.
The infrared detector 4 includes, for example, optical filters 44 and 45 having characteristics as shown in FIG. 2 when measuring NO.

図2によれば、光学フィルタ44は、NOの測定波長帯付近の赤外線を透過し、HOの吸収波長帯付近の赤外線を透過しない。一方、光学フィルタ45は、NOの測定波長帯付近の赤外線を透過し、COの吸収波長帯付近の赤外線を透過しない。そして、光学フィルタ44、45は、光路6と交差する方向に移動でき、かつ、受光室41、42間における挿入量を調整できるようになっている。 According to FIG. 2, the optical filter 44 transmits infrared light near the NO measurement wavelength band and does not transmit infrared light near the H 2 O absorption wavelength band. On the other hand, the optical filter 45 transmits infrared light near the NO measurement wavelength band and does not transmit infrared light near the CO 2 absorption wavelength band. The optical filters 44 and 45 can move in the direction intersecting the optical path 6 and can adjust the amount of insertion between the light receiving chambers 41 and 42.

また、受光室41、42のそれぞれには、被検出成分ガス(NO)の他に、被検出成分ガスの干渉成分の影響を排除するために、その被検出成分ガスの赤外線吸収波長と少なくとも一部が重なる赤外線吸収波長を有するガスが封入されている。
このため、光学フィルタ44、45の各挿入量を調整すれば、受光室41、42に封入される各ガスが吸収する、HOの吸収波長帯付近の赤外線とCOの吸収波長帯付近の赤外線との各吸収量を調整することができる。したがって、受光室41と受光室42とは、光学フィルタ44、45の挿入量を調整することにより、干渉ガス成分の赤外線の吸収量を等しくすることができる。
Each of the light receiving chambers 41 and 42 has at least one infrared absorption wavelength of the detected component gas in order to eliminate the influence of the interference component of the detected component gas in addition to the detected component gas (NO). A gas having an infrared absorption wavelength where the portions overlap is enclosed.
For this reason, if each insertion amount of the optical filters 44 and 45 is adjusted, each of the gases enclosed in the light receiving chambers 41 and 42 absorbs infrared light near the absorption wavelength band of H 2 O and near the absorption wavelength band of CO 2. Each amount of absorption with infrared rays can be adjusted. Accordingly, the light receiving chamber 41 and the light receiving chamber 42 can equalize the amount of infrared rays absorbed by the interference gas component by adjusting the amount of insertion of the optical filters 44 and 45.

以上のように、第1実施形態の赤外線検出器4では、上記のように、受光室41、42と、光学フィルタ44、45と、を備えるようにした。このため、受光室41、42のそれぞれは、光学フィルタ44、45の各挿入量を調整することで、干渉ガス成分の赤外線の吸収量を等しくすることができる。
したがって、第1実施形態によれば、受光室41、42内における干渉ガス成分による赤外線の吸収に基づくガスの膨張量差をなくすことができ、干渉ガス成分による測定誤差の影響を低減することができる。
As described above, the infrared detector 4 of the first embodiment includes the light receiving chambers 41 and 42 and the optical filters 44 and 45 as described above. For this reason, each of the light receiving chambers 41 and 42 can equalize the amount of infrared rays absorbed by the interference gas component by adjusting the amount of insertion of the optical filters 44 and 45.
Therefore, according to the first embodiment, it is possible to eliminate the difference in gas expansion amount based on the absorption of infrared rays by the interference gas components in the light receiving chambers 41 and 42, and to reduce the influence of measurement errors due to the interference gas components. it can.

(第1実施形態の変形例)
この変形例は、図1に示す第1実施形態の構成を基本にし、図1の赤外線検出器4を図3の赤外線検出器4aに置き換えたものである。
赤外線検出器4aは、赤外線検出器4と同様に、受光室41、42と、圧力センサ43と、光学フィルタ44、45と、を備えるが、光学フィルタ44、45を受光室42の後段側に配置した点が異なる。光学フィルタ44、45のそれぞれは、受光室42の後段側において光路6と交差する方向に移動でき、かつ、受光室42の後段における挿入量を個別に調整できるようになっている。
(Modification of the first embodiment)
This modification is based on the configuration of the first embodiment shown in FIG. 1, and the infrared detector 4 in FIG. 1 is replaced with the infrared detector 4a in FIG.
Similarly to the infrared detector 4, the infrared detector 4 a includes light receiving chambers 41 and 42, a pressure sensor 43, and optical filters 44 and 45, but the optical filters 44 and 45 are arranged on the rear side of the light receiving chamber 42. The arrangement point is different. Each of the optical filters 44 and 45 can move in the direction intersecting the optical path 6 on the rear side of the light receiving chamber 42 and can individually adjust the amount of insertion in the rear side of the light receiving chamber 42.

この変形例によれば、第1実施形態の場合と同様に、光学フィルタ44、45の各挿入量を調整すれば、受光室41、42に封入される各ガスが吸収する、HOの吸収波長帯付近の赤外線とCOの吸収波長帯付近の赤外線との各吸収量を調整することができる。したがって、受光室41と受光室42とは、光学フィルタ44、45の挿入量を調整することにより、干渉ガス成分の赤外線の吸収量を等しくすることができる。
なお、この変形例の場合には、図3の光学フィルタ44、45に代えて、光沢研磨されたアルミ板などの光反射板を使用するようにしても良い。このように光反射板に代えた場合には、全ての赤外線波長を反射することになり、検出波長帯の赤外線、および干渉成分の赤外線を反射することになる。
According to this modification, as in the case of the first embodiment, if each insertion amount of the optical filters 44 and 45 is adjusted, each gas enclosed in the light receiving chambers 41 and 42 absorbs H 2 O. Each absorption amount of the infrared rays near the absorption wavelength band and the infrared rays near the CO 2 absorption wavelength band can be adjusted. Accordingly, the light receiving chamber 41 and the light receiving chamber 42 can equalize the amount of infrared rays absorbed by the interference gas component by adjusting the amount of insertion of the optical filters 44 and 45.
In the case of this modification, instead of the optical filters 44 and 45 in FIG. 3, a light reflecting plate such as a polished aluminum plate may be used. Thus, when it replaces with a light reflection board, all the infrared wavelengths will be reflected, and the infrared rays of a detection wavelength band and the infrared rays of an interference component will be reflected.

(第2実施形態)
図4は、本発明の赤外線ガス分析計の第2実施形態の正面の概略断面図である。
この第2実施形態に係る赤外線ガス分析計は、図4に示すように、赤外線光源1と、光チョッパ2と、試料セル3と、赤外線検出器4bとを備え、試料ガスが試料セル3内を流通するようになっている。
すなわち、この第2実施形態は、図1に示す第1実施形態の構成を基本にし、図1の赤外線検出器4を図4の赤外線検出器4bに置き換えたものである。このため、以下の説明では、同一の構成要素には同一符号を付し、その構成が異なる点について説明する。
(Second Embodiment)
FIG. 4 is a schematic sectional view of the front of a second embodiment of the infrared gas analyzer of the present invention.
As shown in FIG. 4, the infrared gas analyzer according to the second embodiment includes an infrared light source 1, an optical chopper 2, a sample cell 3, and an infrared detector 4 b, and the sample gas is in the sample cell 3. Has been distributed.
That is, the second embodiment is based on the configuration of the first embodiment shown in FIG. 1, and the infrared detector 4 in FIG. 1 is replaced with the infrared detector 4b in FIG. For this reason, in the following description, the same code | symbol is attached | subjected to the same component and the point from which the structure differs is demonstrated.

赤外線検出器4bは、図4に示すように、受光室41と、ガスが流通できるように接続された受光室42aおよび受光室42bと、圧力センサ43と、2つの光学フィルタ44、45と、を備える。
圧力センサ43は、受光室41と受光室42a、42bとの間に配置され、受光室41と受光室42a、42bとにおける赤外光の吸収量の差に応じた圧力差を検出し、その検出信号S2を出力するようになっている。
As shown in FIG. 4, the infrared detector 4 b includes a light receiving chamber 41, a light receiving chamber 42 a and a light receiving chamber 42 b connected so that gas can flow, a pressure sensor 43, two optical filters 44 and 45, Is provided.
The pressure sensor 43 is disposed between the light receiving chamber 41 and the light receiving chambers 42a and 42b, and detects a pressure difference corresponding to the difference in the amount of absorption of infrared light between the light receiving chamber 41 and the light receiving chambers 42a and 42b. The detection signal S2 is output.

光学フィルタ44は、受光室41と受光室42aとの間に配置されている。また、光学フィルタ44は、光路6と交差する方向に移動できるように構成し、受光室41、42a間における挿入量を調整できるようになっている。
光学フィルタ45は、受光室42aと受光室42bとの間に配置されている。また、光学フィルタ45は、光路6と交差する方向に移動できるように構成し、受光室42a、42b間における挿入量を調整できるようになっている。
The optical filter 44 is disposed between the light receiving chamber 41 and the light receiving chamber 42a. The optical filter 44 is configured to be movable in a direction intersecting the optical path 6 so that the amount of insertion between the light receiving chambers 41 and 42a can be adjusted.
The optical filter 45 is disposed between the light receiving chamber 42a and the light receiving chamber 42b. The optical filter 45 is configured to be movable in a direction intersecting the optical path 6 so that the amount of insertion between the light receiving chambers 42a and 42b can be adjusted.

次に、第2実施形態の動作例について、図4を参照して説明する。
赤外線光源1から放射される赤外光は、光チョッパ2により断続光となり試料ガスが流通する試料セル3内に入射する。試料セル3内に入射した赤外光は測定対象である試料ガスを透過し、赤外線検出器4bに入射する。
赤外線検出器4bは、NOを測定する場合には、例えば、図2に示すような特性を有する光学フィルタ44、45を備えている。
Next, an operation example of the second embodiment will be described with reference to FIG.
The infrared light emitted from the infrared light source 1 becomes intermittent light by the light chopper 2 and enters the sample cell 3 through which the sample gas flows. The infrared light that has entered the sample cell 3 passes through the sample gas to be measured and enters the infrared detector 4b.
The infrared detector 4b includes, for example, optical filters 44 and 45 having characteristics as shown in FIG. 2 when measuring NO.

図2によれば、光学フィルタ44は、NOの測定波長帯付近の赤外線を透過し、HOの吸収波長帯付近の赤外線を透過しない。一方、光学フィルタ45は、NOの測定波長帯付近の赤外線を透過し、COの吸収波長帯付近の赤外線を透過しない。
光学フィルタ44は、光路6と交差する方向に移動でき、かつ、受光室41、42a間における挿入量を調整できるようになっている。また、光学フィルタ45は、光路6と交差する方向に移動でき、かつ、受光室42a、42b間における挿入量を調整できるようになっている。
According to FIG. 2, the optical filter 44 transmits infrared light near the NO measurement wavelength band and does not transmit infrared light near the H 2 O absorption wavelength band. On the other hand, the optical filter 45 transmits infrared light near the NO measurement wavelength band and does not transmit infrared light near the CO 2 absorption wavelength band.
The optical filter 44 can move in a direction intersecting the optical path 6 and can adjust the amount of insertion between the light receiving chambers 41 and 42a. The optical filter 45 can move in a direction intersecting the optical path 6 and can adjust the amount of insertion between the light receiving chambers 42a and 42b.

さらに、受光室41、42a、42bのそれぞれには、被検出成分ガス(NO)の他に、被検出成分ガスの干渉成分の影響を排除するために、その被検出成分ガスの赤外線吸収波長と少なくとも一部が重なる赤外線吸収波長を有するガスが封入されている。
このため、光学フィルタ44、45の各挿入量を調整すれば、受光室41、42a、42bに封入される各ガスが吸収する、HOの吸収波長帯付近の赤外線とCOの吸収波長帯付近の赤外線との各吸収量を調整することができる。
したがって、受光室41と受光室42a、42bとは、光学フィルタ44、45の挿入量を調整することにより、干渉ガス成分の赤外線の吸収量を等しくすることができる。
Further, in each of the light receiving chambers 41, 42a and 42b, in addition to the detected component gas (NO), in order to eliminate the influence of the interference component of the detected component gas, the infrared absorption wavelength of the detected component gas and A gas having an infrared absorption wavelength at least partially overlapping is enclosed.
For this reason, if each insertion amount of the optical filters 44 and 45 is adjusted, the absorption wavelengths of infrared rays and CO 2 near the absorption wavelength band of H 2 O absorbed by the respective gases enclosed in the light receiving chambers 41, 42a, and 42b are absorbed. Each absorption amount with infrared rays in the vicinity of the belt can be adjusted.
Accordingly, the light receiving chamber 41 and the light receiving chambers 42a and 42b can equalize the amount of infrared rays absorbed by the interference gas component by adjusting the amount of insertion of the optical filters 44 and 45.

以上のように、第1実施形態の赤外線検出器4では、上記のように、受光室41、42a、42bと、光学フィルタ44、45と、を備えるようにした。このため、受光室41と受光室42a、42bとは、光学フィルタ44、45の挿入量を別個に調整することで、干渉ガス成分の赤外線の吸収量を等しくすることができる。
したがって、第2実施形態によれば、受光室41内と受光室42a、42b内における干渉ガス成分による赤外線の吸収に基づくガスの膨張量差をなくすことができ、干渉ガス成分による測定誤差の影響を低減することができる。
As described above, the infrared detector 4 of the first embodiment includes the light receiving chambers 41, 42a, and 42b and the optical filters 44 and 45 as described above. For this reason, the light receiving chamber 41 and the light receiving chambers 42a and 42b can equalize the infrared absorption amount of the interference gas component by adjusting the insertion amount of the optical filters 44 and 45 separately.
Therefore, according to the second embodiment, it is possible to eliminate the difference in gas expansion amount based on the absorption of infrared rays by the interference gas components in the light receiving chamber 41 and the light receiving chambers 42a and 42b, and the influence of measurement errors due to the interference gas components Can be reduced.

(第2実施形態の変形例)
(1)第1変形例
この第1変形例は、図4に示す第2実施形態の構成を基本にし、図4の赤外線検出器4bを図5(A)の赤外線検出器4cに置き換えたものである。
赤外線検出器4cは、赤外線検出器4bと同様に、受光室41と、受光室42a、42bと、圧力センサ43と、光学フィルタ44、45と、を備えるが、光学フィルタ44、45を受光室42aと受光室42bの間に配置した点が異なる。光学フィルタ44、45のそれぞれは、光路6と交差する方向に移動でき、かつ、受光室42aと受光室42bとの間における挿入量を個別に調整できるようになっている。
(Modification of the second embodiment)
(1) First Modification This first modification is based on the configuration of the second embodiment shown in FIG. 4, and the infrared detector 4b in FIG. 4 is replaced with the infrared detector 4c in FIG. 5 (A). It is.
Similarly to the infrared detector 4b, the infrared detector 4c includes a light receiving chamber 41, light receiving chambers 42a and 42b, a pressure sensor 43, and optical filters 44 and 45, and the optical filters 44 and 45 are provided in the light receiving chamber. The difference is that it is arranged between 42a and the light receiving chamber 42b. Each of the optical filters 44 and 45 can move in a direction intersecting the optical path 6 and can individually adjust the amount of insertion between the light receiving chamber 42a and the light receiving chamber 42b.

この第1変形例によれば、第2実施形態の場合と同様に、光学フィルタ44、45の各挿入量を調整すれば、受光室41、42a、42bに封入される各ガスが吸収する、HOの吸収波長帯付近の赤外線とCOの吸収波長帯付近の赤外線との各吸収量を調整することができる。したがって、受光室41と受光室42a、42bとは、光学フィルタ44、45の挿入量を調整することにより、干渉ガス成分の赤外線の吸収量を等しくすることができる。 According to the first modification, as in the case of the second embodiment, if the insertion amounts of the optical filters 44 and 45 are adjusted, the gases sealed in the light receiving chambers 41, 42a, and 42b are absorbed. Each absorption amount of the infrared rays near the absorption wavelength band of H 2 O and the infrared rays near the absorption wavelength band of CO 2 can be adjusted. Accordingly, the light receiving chamber 41 and the light receiving chambers 42a and 42b can equalize the amount of infrared rays absorbed by the interference gas component by adjusting the amount of insertion of the optical filters 44 and 45.

(2)第2変形例
この第2変形例は、図4に示す第2実施形態の構成を基本にし、図4の赤外線検出器4bを図5(B)の赤外線検出器4dに置き換えたものである。
赤外線検出器4dは、赤外線検出器4bと同様に、受光室41と、受光室42a、42bと、圧力センサ43と、光学フィルタ44、45と、を備える。しかし、光学フィルタ45を受光室42aと受光室42bとの間に配置し、光学フィルタ44を受光室42bの後段側に配置した点が異なる。
(2) Second Modification This second modification is based on the configuration of the second embodiment shown in FIG. 4, and the infrared detector 4b in FIG. 4 is replaced with the infrared detector 4d in FIG. 5 (B). It is.
Similarly to the infrared detector 4b, the infrared detector 4d includes a light receiving chamber 41, light receiving chambers 42a and 42b, a pressure sensor 43, and optical filters 44 and 45. However, the difference is that the optical filter 45 is disposed between the light receiving chamber 42a and the light receiving chamber 42b, and the optical filter 44 is disposed on the rear side of the light receiving chamber 42b.

光学フィルタ45は、光路6と交差する方向に移動でき、かつ、受光室42aと受光室42bとの間における挿入量を調整できるようになっている。また、光学フィルタ44は、受光室42bの後段側において光路6と交差する方向に移動でき、かつ、受光室42bの後段における挿入量を調整できるようになっている。   The optical filter 45 can move in a direction intersecting the optical path 6 and can adjust the amount of insertion between the light receiving chamber 42a and the light receiving chamber 42b. The optical filter 44 can move in the direction intersecting the optical path 6 on the rear side of the light receiving chamber 42b, and can adjust the insertion amount in the rear side of the light receiving chamber 42b.

この第2変形例によれば、第2実施形態の場合と同様に、光学フィルタ44、45の各挿入量を調整すれば、受光室41、42a、42bに封入される各ガスが吸収する、HOの吸収波長帯付近の赤外線とCOの吸収波長帯付近の赤外線との各吸収量を調整することができる。したがって、受光室41と受光室42a、42bとは、光学フィルタ44、45の挿入量を調整することにより、干渉ガス成分の赤外線の吸収量を等しくすることができる。 According to the second modification, as in the case of the second embodiment, if the insertion amounts of the optical filters 44 and 45 are adjusted, the gases sealed in the light receiving chambers 41, 42a, and 42b are absorbed. Each absorption amount of the infrared rays near the absorption wavelength band of H 2 O and the infrared rays near the absorption wavelength band of CO 2 can be adjusted. Accordingly, the light receiving chamber 41 and the light receiving chambers 42a and 42b can equalize the amount of infrared rays absorbed by the interference gas component by adjusting the amount of insertion of the optical filters 44 and 45.

1…赤外線光源、2…光チョッパ、3…試料セル、4、4a〜4d…赤外線検出器、5…モータ、6…光路、41、42、42a、42b…受光室、43…圧力センサ、44、45…光学フィルタ   DESCRIPTION OF SYMBOLS 1 ... Infrared light source, 2 ... Optical chopper, 3 ... Sample cell, 4, 4a-4d ... Infrared detector, 5 ... Motor, 6 ... Optical path, 41, 42, 42a, 42b ... Light receiving chamber, 43 ... Pressure sensor, 44 45 ... Optical filter

Claims (4)

光源からの赤外光の光路上に配置され試料ガスが流通される試料セルと、
前記試料セルを透過した前記赤外光の光路上に配置される赤外線検出器と、を備え、
前記赤外線検出器は、
被検出成分ガスの赤外線吸収波長と少なくとも一部が重なる赤外線吸収波長を有するガスが封入され、光路に沿って前記試料セル側から順に配置される第1の受光室および第2の受光室と、
前記第1の受光室と前記第2の受光室とにおける赤外光の吸収量の差を検出するセンサと、
前記第1の受光室および前記第2の受光室に封入されているガスの赤外線吸収帯の全部をそれぞれ反射し、または前記赤外線吸収帯のうち予め定めた異なる一部をそれぞれ反射する第1の光学フィルタおよび第2の光学フィルタと、を備え、
前記第1の光学フィルタおよび第2の光学フィルタのそれぞれは、前記第1の受光室よりも後段側の位置に配置されていることを特徴とする赤外線ガス分析計。
A sample cell arranged on the optical path of the infrared light from the light source and through which the sample gas flows;
An infrared detector disposed on the optical path of the infrared light transmitted through the sample cell,
The infrared detector is
A first light receiving chamber and a second light receiving chamber, which are filled with a gas having an infrared absorption wavelength at least partially overlapping with the infrared absorption wavelength of the component gas to be detected, and are arranged in order from the sample cell side along the optical path;
A sensor for detecting a difference in absorption amount of infrared light between the first light receiving chamber and the second light receiving chamber;
Reflecting all of the infrared absorption bands of the gas sealed in the first light receiving chamber and the second light receiving chamber, respectively, or reflecting different predetermined portions of the infrared absorption bands, respectively. An optical filter and a second optical filter,
Each of said 1st optical filter and 2nd optical filter is arrange | positioned in the position of the back | latter stage side with respect to said 1st light receiving chamber, The infrared gas analyzer characterized by the above-mentioned.
前記第1の受光室と前記第2の受光室のそれぞれは単一の空間からなり、
前記第1の光学フィルタおよび前記第2の光学フィルタは、前記第2の受光室の後段、または前記第1の受光室と前記第2の受光室との間に配置されていることを特徴とする請求項1に記載の赤外線ガス分析計。
Each of the first light receiving chamber and the second light receiving chamber comprises a single space,
The first optical filter and the second optical filter are disposed after the second light receiving chamber or between the first light receiving chamber and the second light receiving chamber. The infrared gas analyzer according to claim 1.
前記第1の光学フィルタは単一の空間からなり、
前記第2の受光室は、ガスが流通できるように接続され、かつ、前記光路上に順に配置される第3の受光室と第4の受光室とからなり、
前記第1の光学フィルタおよび前記第2の光学フィルタは、
前記第1の受光室と前記第3の受光室との間および前記第3の受光室と前記第4の受光室との間に配置され、
前記第3の受光室と前記第4の受光室との間にそれぞれ配置され、
または前記第3の受光室と前記第4の受光室との間、および前記第4受光室の後段に配置されていることを特徴とする請求項1に記載の赤外線ガス分析計。
The first optical filter comprises a single space;
The second light receiving chamber includes a third light receiving chamber and a fourth light receiving chamber that are connected so that gas can flow and are sequentially arranged on the optical path.
The first optical filter and the second optical filter are:
Between the first light receiving chamber and the third light receiving chamber and between the third light receiving chamber and the fourth light receiving chamber;
Arranged between the third light receiving chamber and the fourth light receiving chamber,
2. The infrared gas analyzer according to claim 1, wherein the infrared gas analyzer is disposed between the third light receiving chamber and the fourth light receiving chamber and at a subsequent stage of the fourth light receiving chamber.
前記第1の光学フィルタおよび前記第2の光学フィルタは、前記光路と交差する方向に移動するように構成し、挿入量を調整するようになっていることを特徴とする請求項1乃至請求項3のうちの何れか1項に記載の赤外線ガス分析計。   The first optical filter and the second optical filter are configured to move in a direction intersecting the optical path, and the insertion amount is adjusted. The infrared gas analyzer according to any one of 3.
JP2011240991A 2011-11-02 2011-11-02 Infrared gas analyzer Pending JP2013096889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011240991A JP2013096889A (en) 2011-11-02 2011-11-02 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011240991A JP2013096889A (en) 2011-11-02 2011-11-02 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JP2013096889A true JP2013096889A (en) 2013-05-20

Family

ID=48618961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240991A Pending JP2013096889A (en) 2011-11-02 2011-11-02 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP2013096889A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837490A (en) * 2014-03-12 2014-06-04 大连民族学院 Method for detecting oil steam based on infrared spectroscopic analysis
CN104614316A (en) * 2015-02-11 2015-05-13 中国科学技术大学 Infrared spectrometer and reaction tank thereof
CN105911010A (en) * 2016-06-12 2016-08-31 北京千安哲信息技术有限公司 Trace gas pollutant detecting device and method
CN105973831A (en) * 2016-06-30 2016-09-28 电子科技大学 Four-path gas component measurement pyroelectric infrared detector
CN111289460A (en) * 2020-03-16 2020-06-16 潍坊歌尔微电子有限公司 Gas concentration detection device, detection method thereof, control device and storage medium
CN111435111A (en) * 2019-01-11 2020-07-21 英飞凌科技股份有限公司 Photoacoustic gas sensor with optimal reference path length
EP3674689A4 (en) * 2017-08-21 2021-07-28 Hubei Cubic-ruiyi Instrument Co., Ltd Gas analyzer and gas analyzing method
CN117250166A (en) * 2023-09-21 2023-12-19 江苏舒茨测控设备股份有限公司 Non-spectroscopic infrared gas detection method and sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103163A (en) * 1977-05-03 1978-07-25 Fuji Electric Co., Ltd. Infrared gas analyzing apparatus
JPS63225148A (en) * 1987-03-16 1988-09-20 Shimadzu Corp Infrared ray detector
JP2004061207A (en) * 2002-07-26 2004-02-26 Shimadzu Corp Infrared gas analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103163A (en) * 1977-05-03 1978-07-25 Fuji Electric Co., Ltd. Infrared gas analyzing apparatus
JPS63225148A (en) * 1987-03-16 1988-09-20 Shimadzu Corp Infrared ray detector
JP2004061207A (en) * 2002-07-26 2004-02-26 Shimadzu Corp Infrared gas analyzer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837490A (en) * 2014-03-12 2014-06-04 大连民族学院 Method for detecting oil steam based on infrared spectroscopic analysis
CN104614316A (en) * 2015-02-11 2015-05-13 中国科学技术大学 Infrared spectrometer and reaction tank thereof
CN105911010A (en) * 2016-06-12 2016-08-31 北京千安哲信息技术有限公司 Trace gas pollutant detecting device and method
CN105973831A (en) * 2016-06-30 2016-09-28 电子科技大学 Four-path gas component measurement pyroelectric infrared detector
EP3674689A4 (en) * 2017-08-21 2021-07-28 Hubei Cubic-ruiyi Instrument Co., Ltd Gas analyzer and gas analyzing method
CN111435111A (en) * 2019-01-11 2020-07-21 英飞凌科技股份有限公司 Photoacoustic gas sensor with optimal reference path length
CN111435111B (en) * 2019-01-11 2023-10-27 英飞凌科技股份有限公司 Photoacoustic gas sensor with optimal reference path length
CN111289460A (en) * 2020-03-16 2020-06-16 潍坊歌尔微电子有限公司 Gas concentration detection device, detection method thereof, control device and storage medium
CN117250166A (en) * 2023-09-21 2023-12-19 江苏舒茨测控设备股份有限公司 Non-spectroscopic infrared gas detection method and sensor

Similar Documents

Publication Publication Date Title
JP2013096889A (en) Infrared gas analyzer
JP4199766B2 (en) Exhaust gas analysis method and exhaust gas analyzer
CN103733046A (en) Gas analyzer
JP6024856B2 (en) Gas analyzer
JPH07151684A (en) Infrared ray type gas analyzer
CN103558165B (en) A kind of dual-wavelength difference methane concentration sensor
JP2011169633A (en) Gas concentration calculation device and gas concentration measurement module
JP2009257808A (en) Infrared gas analyzer
JPH08247942A (en) Infrared ray gas analyzer
KR100910871B1 (en) Method and apparatus for measuring water contained in the chimney gas
US20070114417A1 (en) Method for cross interference correction for correlation spectroscopy
JP5804619B2 (en) Light-emitting element luminous intensity compensation device in opacimeter
JPH06249779A (en) Gas analyzer
KR102407278B1 (en) Suction Complex Gas Detector Using Waveguide
KR102407279B1 (en) Diffusion Composite Gas Detector Using Waveguide
CN202994654U (en) Double light source four detector infrared gas sensor
JP2004061207A (en) Infrared gas analyzer
CN112033925A (en) Multi-component wide-range gas analyzer and gas analysis method
CN203720078U (en) Double wavelength difference methane concentration sensor
JP3174710B2 (en) Gas analyzer
Stolberg-Rohr et al. In optics humidity compensation in NDIR exhaust gas measurements of NO2
JP2006275641A (en) Spectroscopic gas sensor
JP4906477B2 (en) Gas analyzer and gas analysis method
KR20150136760A (en) Gas detecting sensor and method
JP2006337068A (en) Method and apparatus for analyzing exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124