JP2013096104A - Coating method for mortar and vibration reception structure coated with mortar - Google Patents

Coating method for mortar and vibration reception structure coated with mortar Download PDF

Info

Publication number
JP2013096104A
JP2013096104A JP2011238175A JP2011238175A JP2013096104A JP 2013096104 A JP2013096104 A JP 2013096104A JP 2011238175 A JP2011238175 A JP 2011238175A JP 2011238175 A JP2011238175 A JP 2011238175A JP 2013096104 A JP2013096104 A JP 2013096104A
Authority
JP
Japan
Prior art keywords
mortar
resin sheet
soft resin
coated
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011238175A
Other languages
Japanese (ja)
Inventor
Ryota Kamata
亮太 鎌田
Toru Tanibe
徹 谷辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2011238175A priority Critical patent/JP2013096104A/en
Publication of JP2013096104A publication Critical patent/JP2013096104A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a coating method for mortar that hardly causes deformation, drooping, and peeling of mortar due to vibrations even when a substrate surface of a vibration reception structure continuously receiving vibrations like a road bridge in service is coated with the mortar, and vibration reception structure coated with the mortar.SOLUTION: A specific resin sheet is arranged on the substrate surface of the vibration reception structure, and a resin sheet surface is coated with the mortar. It is suitable that a sheet arrangement process and a mortar coating process are in specific order.Further, it is suitable that the soft resin sheet has specific hardness. Furthermore, it is suitable that the mortar is fireproofing mortar.

Description

本発明は、モルタルの被覆方法及びモルタルで被覆された受振構造物に関する。   The present invention relates to a mortar coating method and a vibration receiving structure coated with mortar.

構造物の表面に、耐火被覆モルタル等のモルタルを被覆することがある。構造物が道路橋のように継続的に振動がある場合は、構造物の下地表面にモルタルを被覆しても、振動によりモルタルが構造物表面から剥落する虞がある。これは、モルタルが硬化した上で充分な強度に達する前に、振動によりモルタルに与えられる応力が、モルタルの強度(例えば、付着強度、圧縮強度、曲げ強度、せん断強度など)を上回った場合に、被覆したモルタルの一部又は全部が変形又は垂れが生じ、破壊又は剥離を起こし、或いは剥落してしまう。   The surface of the structure may be coated with a mortar such as a fireproof mortar. When the structure continuously vibrates like a road bridge, even if the underlying surface of the structure is covered with mortar, the mortar may peel off from the surface of the structure due to vibration. This is when the stress applied to the mortar by vibration exceeds the strength of the mortar (for example, adhesive strength, compressive strength, bending strength, shear strength, etc.) before it reaches sufficient strength after the mortar is cured. Then, a part or all of the coated mortar is deformed or drooped, causing destruction or peeling, or peeling off.

さて、モルタルが構造物表面から剥落等することを防ぐ方法として、例えば、モルタル表面に繊維シートを貼り付ける方法(例えば、特許文献1参照)、モルタル表面にエポキシ樹脂、ウレタン樹脂、アクリル樹脂等からなるプライマー層およびウレタン硬化物によって形成された補強層を設ける方法(例えば、特許文献2参照)等がある。これらの方法は、下地表面の下側にモルタルを被覆する場合、即ち、構造物の天井部分、庇部分の下側等にモルタルを被覆する場合は有効であることがある。しかし、構造物が供用中の道路橋のように、全面車両通行止めをしない限り常に振動がある構造物の表面にモルタルを被覆する場合は、構造物の下地表面が略垂直な部分や構造物の下地表面の下面に被覆したモルタルが、被覆したモルタルが充分な強度となる前に振動が与えられ、上記の剥落を防止する方法を施しても、モルタルが下地表面から剥落、剥離又はずり落ちてしまう虞が高かった。勿論、被覆したモルタルが充分な強度となるまでの時間について全面車両通行止めを行いモルタルを被覆すればこのような問題は起こらないが、交通渋滞の発生、回り道をするために余計に消費される燃料に基づく二酸化炭素の発生や輸送コストの増大等の社会的損失が大きくなるため、構造物表面にモルタルを被覆するために充分な時間全面車両通行止めが行われないことも多い。   Now, as a method for preventing the mortar from peeling off from the surface of the structure, for example, a method of sticking a fiber sheet on the mortar surface (see, for example, Patent Document 1), an epoxy resin, a urethane resin, an acrylic resin or the like on the mortar surface. And a method of providing a reinforcing layer formed of a primer layer and a urethane cured product (for example, see Patent Document 2). These methods may be effective when mortar is coated on the underside of the underlying surface, that is, when mortar is coated on the underside of the ceiling or the ridge of the structure. However, when the mortar is always covered on the surface of a structure that is subject to vibration unless the entire vehicle is closed, such as a road bridge in which the structure is in service, The mortar coated on the lower surface of the ground surface is subjected to vibration before the coated mortar has sufficient strength, and even if the above-described method for preventing peeling is applied, the mortar is peeled off, peeled off or scraped off from the ground surface. There was a high risk of it. Of course, such a problem will not occur if the mortar is covered with the entire vehicle for the time until the coated mortar becomes sufficiently strong, but this will not occur, but there will be extra fuel consumed due to traffic congestion and detours. Due to the increase in social loss such as the generation of carbon dioxide based on the above and an increase in transportation cost, the vehicle is often not closed for a sufficient time to cover the surface of the structure with mortar.

そこで、構造物が供用中の道路橋のように、継続的に振動がある構造物(本明細書中において「受振構造物」ということがある。)の下地表面にモルタルを被覆しても、当該モルタルが剥落し難いモルタルの被覆方法及びモルタルで被覆された構造物が求められていた。   Therefore, even if the mortar is coated on the ground surface of a structure that continuously vibrates, such as a road bridge in which the structure is in service (sometimes referred to as “a vibration receiving structure” in this specification), There has been a demand for a mortar coating method and a mortar-coated structure in which the mortar is difficult to peel off.

特開2008−255517号公報JP 2008-255517 A 特開2008−285972号公報JP 2008-285972 A

本発明は前記問題の解決、即ち、本発明は、モルタルの被覆方法及びモルタルで被覆された受振構造物を提供することを目的とする。より詳しくは、本発明は、構造物が供用中の道路橋のように、継続的に振動がある受振構造物の下地表面にモルタルを被覆する場合であっても、当該モルタルが振動による変形、垂れ、破壊、剥離又は剥落が生じ難いモルタルの被覆方法及びモルタルで被覆された受振構造物を提供することを目的とする。   An object of the present invention is to provide a solution to the above problem, that is, a mortar coating method and a vibration receiving structure coated with mortar. More specifically, the present invention is a case where the mortar is deformed by vibration even when the ground surface of the receiving structure continuously vibrates, such as a road bridge in which the structure is in service, It is an object of the present invention to provide a mortar coating method that hardly causes dripping, breaking, peeling or peeling, and a vibration receiving structure coated with mortar.

本発明者は、前記課題解決のため鋭意検討した結果、本発明は、受振構造物の下地表面に特定の樹脂シートを配設し且つ該樹脂シート表面にモルタルを被覆することにより、前記課題を解決することを見出し本発明を完成させた。本発明は、以下の(1)〜(4)で表すモルタル被覆方法、並びに(5)及び(6)で表すモルタルで被覆された受振構造物である。
(1)受振構造物の下地表面に軟質樹脂シートを配設する工程、及び該軟質樹脂シート表面にモルタルを被覆する工程とを備えるするモルタル被覆方法。
(2)上記シート配設工程の後に、上記モルタル被覆工程を行う上記(1)のモルタル被覆方法。
(3)上記軟質樹脂シートが、ショアD硬度60以下の樹脂シートである上記(1)又は(2)のモルタル被覆方法。
(4)上記モルタルが耐火被覆モルタルである上記(1)〜(3)何れかのモルタル被覆方法。
(5)構造物の下地表面に軟質樹脂シートを具備し、更に、該軟質樹脂シート表面にモルタルを具備するモルタルで被覆された受振構造物。
(6)上記(1)〜(3)何れかのモルタル被覆方法によって、上記軟質樹脂シート表面にモルタルを具備する上記(5)のモルタルで被覆された受振構造物。
As a result of diligent investigations by the present inventor for solving the above-mentioned problems, the present invention provides the above-mentioned problems by disposing a specific resin sheet on the base surface of the vibration receiving structure and coating the resin sheet surface with mortar. The present invention was completed by finding out to solve the problem. The present invention is a mortar coating method represented by the following (1) to (4) and a vibration receiving structure coated with the mortar represented by (5) and (6).
(1) A mortar covering method comprising: a step of disposing a soft resin sheet on a base surface of a vibration receiving structure; and a step of covering the soft resin sheet surface with mortar.
(2) The mortar coating method according to (1), wherein the mortar coating step is performed after the sheet disposing step.
(3) The mortar coating method according to (1) or (2), wherein the soft resin sheet is a resin sheet having a Shore D hardness of 60 or less.
(4) The mortar coating method according to any one of (1) to (3), wherein the mortar is a fireproof coating mortar.
(5) A vibration receiving structure having a soft resin sheet on the base surface of the structure and further coated with a mortar having a mortar on the soft resin sheet surface.
(6) A vibration receiving structure coated with the mortar of (5) above, wherein the surface of the soft resin sheet is provided with the mortar by any one of the mortar coating methods (1) to (3).

本発明によれば、構造物が供用中の道路橋のように、継続的に振動がある受振構造物の下地表面にモルタルを被覆する場合であっても、当該モルタルが振動による変形、垂れ、破壊、剥離又は剥落が生じ難いモルタルの被覆方法及びモルタルで被覆された受振構造物が得られる。また、本発明によれば、表面に被覆したモルタルの効果を備えた受振構造物が得られる。例えば、被覆するモルタルが耐火被覆モルタルの場合、耐火性を備える受振構造物が得られる。   According to the present invention, even when the mortar is coated on the ground surface of a receiving structure with continuous vibration, such as a road bridge in which the structure is in service, the mortar is deformed or drooped by vibration, A mortar coating method and a vibration receiving structure coated with mortar that are unlikely to be broken, peeled off or peeled off are obtained. Moreover, according to this invention, the vibration receiving structure provided with the effect of the mortar coat | covered on the surface is obtained. For example, when the mortar to be coated is a fireproof coated mortar, a vibration receiving structure having fire resistance is obtained.

ステンレス製金網の概略図である。It is the schematic of a stainless steel wire mesh. 試験体一部分の模式的な断面図である。It is typical sectional drawing of a test body part. 剥落確認試験用試験体の模式的な斜視図である。It is a typical perspective view of the test body for peeling confirmation tests. 剥落確認試験用試験体の加振箇所を示した模式的な平面図である。It is the typical top view which showed the vibration location of the test body for peeling confirmation tests. 用いたタッピン螺子の側面図である。It is a side view of the used tapping screw. モルタルを被覆する前の剥落確認試験用試験体の一部分の模式的な斜視図である。It is a typical perspective view of a part of the test body for peeling confirmation test before covering mortar.

本発明のモルタル被覆方法は、受振構造物の下地表面に軟質樹脂シートを配設する工程(シート配設工程)、及び該軟質樹脂シート表面にモルタルを被覆する工程(モルタル被覆工程)とを備えるするモルタル被覆方法である。   The mortar coating method of the present invention includes a step of placing a soft resin sheet on the base surface of the vibration receiving structure (sheet placement step), and a step of coating the surface of the soft resin sheet with mortar (mortar coating step). This is a mortar coating method.

本発明におけるモルタルとは、結合材と骨材を含有するものを云い、例えば、セメントモルタル、ポリマーモルタル、ポリマーセメントモルタル、吹付けロックウール等がある。結合材としては、有機質結合材及び無機質結合材の何れを用いることも、また更に両者を併用することもできる。本発明に用いる有機質結合材としては、天然樹脂、合成樹脂及びその原材料が挙げられ、エチレン、ブタジエン、塩化ビニル、スチレン、酢酸ビニル、炭素数4以上の長鎖脂肪酸ビニルエステル、シロキサン、アクリロニトリル、アクリル酸アルキルエステル及びメタクリル酸アルキルエステル並びにこれらの誘導体から選ばれる1種又は2種以上の重合体、或いは、エポキシ樹脂、不飽和ポリエステル樹脂、アスファルト、ゴムアスファルト等が好ましいものとして例示できる。前記の重合体としては、アクリロニトリル・スチレン共重合体、スチレン・アクリル酸アルキルエステル共重合体、エチレン・塩化ビニル・酢酸ビニル共重合体、酢酸ビニル・ネオデカン酸ビニルエステル(商品名:ベオバ)共重合体、酢酸ビニル・アクリル酸アルキルエステル共重合体、アクリル酸アルキルエステル・シリコーン共重合体及びエチレン・酢酸ビニル共重合体から選ばれる共重合体であるのが好ましい。有機質結合材の形態は、液体、エマルション、固体の何れでもよいが、液体、エマルション又は粉末であると、他の材料との混合性が良いことから好ましい。   The mortar in the present invention refers to a material containing a binder and an aggregate, and examples thereof include cement mortar, polymer mortar, polymer cement mortar, and spray rock rock wool. As the binder, either an organic binder or an inorganic binder can be used, or both can be used in combination. Examples of the organic binder used in the present invention include natural resins, synthetic resins and raw materials thereof, such as ethylene, butadiene, vinyl chloride, styrene, vinyl acetate, long chain fatty acid vinyl esters having 4 or more carbon atoms, siloxane, acrylonitrile, acrylics. Preferred examples include one or more polymers selected from acid alkyl esters, alkyl methacrylate esters, and derivatives thereof, or epoxy resins, unsaturated polyester resins, asphalts, rubber asphalts, and the like. Examples of the polymer include acrylonitrile / styrene copolymer, styrene / alkyl acrylate copolymer, ethylene / vinyl chloride / vinyl acetate copolymer, vinyl acetate / neodecanoic acid vinyl ester (trade name: Veova) Preferred is a copolymer, a copolymer selected from vinyl acetate / alkyl acrylate copolymer, alkyl acrylate / silicone copolymer and ethylene / vinyl acetate copolymer. The organic binder may be in the form of a liquid, an emulsion, or a solid, but is preferably a liquid, an emulsion, or a powder because of its good miscibility with other materials.

また、本発明に用いる無機質結合材としては、ポルトランドセメント、アルミナセメント、混合セメント、超速硬セメント等の水硬性セメント、消石灰や石膏等の気硬セメント、硫黄などが例示できる。特に水硬セメントが、取り扱い易く且つ早期に強度が得易いことから好ましい。この水硬性セメントとしては、例えば、普通、早強、超早強、低熱及び中庸熱等の各種ポルトランドセメント、エコセメント、並びにこれらポルトランドセメント又はエコセメントに、フライアッシュ、高炉スラグ、シリカフューム又は石灰石微粉末等を混合した各種混合セメント、太平洋セメント社製「ジェットセメント」(商品名)や住友大阪セメント社製「ジェットセメント」(商品名)等の超速硬セメント、アルミナセメント等が挙げられ、これらの一種又は二種以上を用いることができる。   Examples of the inorganic binder used in the present invention include hydraulic cements such as Portland cement, alumina cement, mixed cement and super-hard cement, pneumatic cements such as slaked lime and gypsum, and sulfur. Particularly, hydraulic cement is preferable because it is easy to handle and can easily obtain strength at an early stage. Examples of the hydraulic cement include various normal Portland cements such as normal strength, very early strength, low heat and moderate heat, ecocement, and portland cement or ecocement, and fly ash, blast furnace slag, silica fume, or limestone fine powder. Various mixed cements mixed with powder, etc., super-fast cements such as “Jet Cement” (trade name) manufactured by Taiheiyo Cement Co., Ltd. and “Jet Cement” (trade name) manufactured by Sumitomo Osaka Cement Co., alumina cement, etc. One kind or two or more kinds can be used.

また、本発明に用いる骨材としては、モルタルやコンクリートに使用可能な骨材であればよく、例えば、川砂、海砂、山砂、砕砂、人工細骨材、スラグ細骨材、再生細骨材、スラグ細骨材、珪砂、石粉、川砂利、陸砂利、砕石、人工粗骨材、再生粗骨材、スラグ粗骨材等が挙げられ、これらの一種又は二種以上の使用が可能である。本発明で用いるモルタルに、軽量骨材を含有させることが、当該モルタルが振動による変形、垂れ又は剥落が生じ難いことから好ましい。この軽量骨材としては、無機質軽量骨材や有機質軽量骨材の何れでも良く、併用することもできる。無機質軽量骨材としては、例えば天然鉱物の発泡又は膨張した物質である膨張バーミキュライト,パーライト,膨張頁岩,軽石,シラスバルーン等の他、シリカゲルを発泡させた物,各種のスラグを造粒して発泡させた物,ガラス屑を造粒して発泡させた物,粘土粉体を造粒して発泡させた物等のような人工軽量骨材が使用できる。また、無機質軽量骨材として、製鉄所の高炉から副生する高炉スラグ、玄武岩、安山岩、輝緑岩などの天然石をキュポラ、電気炉等で融解した後に、遠心力、空気、水蒸気などの流体圧で吹製して繊維化したロックウール(岩綿、スラグウール、ミネラルウールとも称される)を、解砕機等で粒状にしたロックウール粒状綿も使用できる。また、有機質軽量骨材としては、合成樹脂又はゴム等のかさ比重2以下である固形且つ水に不溶又は難溶である有機物が使用でき、その好ましい例としてはポリスチレン,ポリエチレン,ポリエチレン−酢酸ビニル共重合物,ポリプロピレン,ポリウレタン,ポリ塩化ビニル,ポリ塩化ビニリデン,天然ゴム,合成ゴム等がある。その形状は、粒状物、発泡体などが使用できる。また、炭酸カルシウムやフライアッシュ等の無機質粉末を有機質に混ぜて形成した無機質粉末含有の有機質軽量骨材(例えば、発泡炭酸カルシウム)等を用いることができる。   The aggregate used in the present invention may be any aggregate that can be used for mortar and concrete. For example, river sand, sea sand, mountain sand, crushed sand, artificial fine aggregate, slag fine aggregate, regenerated fine bone Wood, slag fine aggregate, quartz sand, stone powder, river gravel, land gravel, crushed stone, artificial coarse aggregate, recycled coarse aggregate, slag coarse aggregate, etc., one or more of these can be used is there. It is preferable that the mortar used in the present invention contains a lightweight aggregate because the mortar is less likely to be deformed, drooped or peeled off due to vibration. As this lightweight aggregate, either an inorganic lightweight aggregate or an organic lightweight aggregate may be used, and they can be used in combination. Examples of inorganic lightweight aggregates include expanded vermiculite, perlite, expanded shale, pumice, shirasu balloon, etc., which are foamed or expanded natural minerals, foamed silica gel, and various types of slag. Artificial lightweight aggregates such as those obtained by granulating and foaming glass scrap, and those obtained by granulating and foaming clay powder can be used. In addition, natural lightweight aggregates such as blast furnace slag, basalt, andesite, and diorite that are by-produced from the blast furnace at the steelworks are melted in a cupola, electric furnace, etc., and then fluid pressure such as centrifugal force, air, and water vapor is used. Rock wool granular cotton obtained by blowing and fiberizing rock wool (also referred to as rock wool, slag wool, mineral wool) into granules with a crusher or the like can also be used. As the organic light-weight aggregate, a solid material having a bulk specific gravity of 2 or less such as synthetic resin or rubber can be used, and preferable examples thereof include polystyrene, polyethylene, and polyethylene-vinyl acetate. Examples include polymers, polypropylene, polyurethane, polyvinyl chloride, polyvinylidene chloride, natural rubber, and synthetic rubber. As the shape, a granular material, a foam or the like can be used. Moreover, the organic lightweight aggregate (for example, calcium carbonate foam) containing the inorganic powder formed by mixing the inorganic powder such as calcium carbonate and fly ash with the organic material can be used.

本発明に用いる軟質樹脂シートとしては、スポンジ状樹脂シート、軟質樹脂板、軟質樹脂織物等が挙げられる。この軟質樹脂シートに用いる樹脂としては、シリコーンゴム,ウレタンゴム,スチレン・ブタジエンゴム,ブチルゴム,アクリルゴム,クロロプレンゴム等の合成ゴム、天然ゴム、軟質ポリエチレン、軟質ポリプロピレン、軟質ポリビニル樹脂、ポリスチレン等が好ましいものとして例示できる。本発明に用いる軟質樹脂シートは、ショアD硬度60以下の樹脂シートであることが好ましい。また、本発明に用いる軟質樹脂シートは、シートの厚みが0.5〜20mmのものが好ましく、より好ましくは1〜15mmの軟質樹脂シート、更に好ましくは2〜10mmの軟質樹脂シートとする。軟質樹脂シートの厚みが0.5mmよりも薄いと、構造物の振動が被覆するモルタルに伝わり易く、軟質樹脂シートの厚みが20mmよりも厚いと、カッター又は鋏みによる切断が行えないためシート配設工程に労力が著しく掛かる。   Examples of the soft resin sheet used in the present invention include a sponge-like resin sheet, a soft resin plate, and a soft resin fabric. As the resin used for the soft resin sheet, synthetic rubber such as silicone rubber, urethane rubber, styrene / butadiene rubber, butyl rubber, acrylic rubber, chloroprene rubber, natural rubber, soft polyethylene, soft polypropylene, soft polyvinyl resin, polystyrene, and the like are preferable. It can be illustrated as a thing. The soft resin sheet used in the present invention is preferably a resin sheet having a Shore D hardness of 60 or less. The soft resin sheet used in the present invention preferably has a thickness of 0.5 to 20 mm, more preferably 1 to 15 mm, and still more preferably 2 to 10 mm. If the thickness of the soft resin sheet is less than 0.5 mm, the vibration of the structure is easily transmitted to the mortar covered, and if the thickness of the soft resin sheet is more than 20 mm, the sheet cannot be cut by a cutter or stagnation. The process is labor intensive.

受振構造物の下地表面に軟質樹脂シートを配設する方法は、特に限定されない。例えば、受振構造物の下地表面の形状に合わせて軟質樹脂シートを成形した後に該構造物の下地表面に軟質樹脂シートを止める方法、受振構造物の下地表面に軟質樹脂シートを止めた後に下地表面の形状に合わせて軟質樹脂シートを成形する方法などがある。構造物の下地表面を1枚の軟質樹脂シートで覆いきれない場合は、複数の軟質樹脂シートにより覆うようにする。このとき、各軟質樹脂シートを一部又は全部重ねても良いし、1cm程度の隙間を空けても良い。また、受振構造物の下地表面に軟質樹脂シートを止める方法は、接着剤による接着、溶着、釘打ち、鋲打ち、ステープル、螺子止め、ボルト止め等を用いることができる。軟質樹脂シートの全面を接着剤等で受振構造物の下地表面に止めるよりも、部分的に下地表面に止める方が、構造物の振動が被覆するモルタルに伝わり難いことから好ましい。例えば、軟質樹脂シート裏面(下地表面側の面)に点又は線状に接着剤付け接着する方法、点又は線状に溶着する方法、釘打ち、鋲打ち、ステープル、螺子止め、ボルト止め等がある。   The method for disposing the soft resin sheet on the base surface of the vibration receiving structure is not particularly limited. For example, a method of fastening a soft resin sheet to the base surface of the structure after forming a soft resin sheet in accordance with the shape of the base surface of the vibration receiving structure, a base surface after stopping the soft resin sheet to the base surface of the vibration receiving structure There is a method of forming a soft resin sheet according to the shape of the above. When the base surface of the structure cannot be covered with a single soft resin sheet, the structure is covered with a plurality of soft resin sheets. At this time, each soft resin sheet may be partially or entirely overlapped, or a gap of about 1 cm may be left. As a method for fastening the soft resin sheet to the base surface of the vibration receiving structure, adhesive bonding, welding, nailing, hammering, stapling, screwing, bolting, or the like can be used. Rather than stopping the entire surface of the soft resin sheet on the base surface of the vibration receiving structure with an adhesive or the like, it is preferable to partially stop the soft resin sheet on the base surface because the vibration of the structure is less likely to be transmitted to the covering mortar. For example, a method of adhering and adhering to the back surface (surface on the base surface side) of a soft resin sheet in a dot or line form, a method of welding in a dot or line form, nailing, hammering, stapling, screwing, bolting, etc. is there.

モルタル被覆工程において、軟質樹脂シート表面にモルタルを被覆する方法は、特に限定されない。例えば、吹付け工法、鏝塗り、型枠を設置し型枠と軟質樹脂シートの間にモルタルを打ち込む又は充填する方法等がある。吹付け工法又は/及び鏝塗りにより、軟質樹脂シート表面にモルタルを被覆することが型枠を設置する必要が無いことから好ましい。また、軟質樹脂シートと被覆するモルタルの接着力を高める等の目的で、モルタルを被覆する前の軟質樹脂シート表面に、スチレン・ブタジエンゴムエマルション,アクリル樹脂エマルション,エポキシ樹脂等のプライマーを塗布しても良い。   In the mortar coating step, the method for coating the surface of the soft resin sheet with mortar is not particularly limited. For example, there are a spraying method, a lacquering method, a method of installing a mold, and a method of driving or filling mortar between the mold and the soft resin sheet. It is preferable to cover the surface of the soft resin sheet with a mortar by spraying or / and glazing because it is not necessary to install a mold. In addition, a primer such as styrene / butadiene rubber emulsion, acrylic resin emulsion, or epoxy resin is applied to the surface of the soft resin sheet before coating the mortar for the purpose of increasing the adhesive force between the soft resin sheet and the mortar to be coated. Also good.

本発明のモルタル被覆方法は、鋼製道路橋、鉄筋コンクリート製道路橋、コンクリートと鋼殻の合成構造からなる道路橋、鋼製鉄道橋、鉄筋コンクリート製鉄道橋、鉄筋コンクリート製タービン建屋、鋼製工場屋根等の新設工事或いは補修工事又は補強工事に好適に用いることができる。また、本発明のモルタル被覆方法は、これら受振構造物の上面、下面、壁面、内部の何れにも用いることができる。尚、道路橋及び鉄道橋には、高架橋が含まれる。   The mortar covering method of the present invention includes a steel road bridge, a reinforced concrete road bridge, a road bridge composed of a composite structure of concrete and steel shell, a steel railway bridge, a reinforced concrete railway bridge, a reinforced concrete turbine building, a steel factory roof, etc. It can be suitably used for new construction, repair work or reinforcement work. Moreover, the mortar coating method of the present invention can be used for any of the upper surface, the lower surface, the wall surface, and the interior of these vibration receiving structures. The road bridge and the railway bridge include a viaduct.

また、本発明のモルタルで被覆された受振構造物は、受振構造物の下地表面に軟質樹脂シートを具備し、更に、該軟質樹脂シート表面にモルタルを具備するモルタルで被覆された構造物である。ここでいう軟質樹脂シート及びモルタルは、上記のものと同じものである。本発明のモルタルで被覆された構造物は、上記何れかのモルタル被覆方法により、構造物の下地表面に具備した軟質樹脂シート表面にモルタルを被覆された受振構造物であると好適である。モルタルが耐火被覆モルタルであると、本発明のモルタルで被覆された受振構造物が耐火構造物となることから好適である。   Moreover, the vibration receiving structure covered with the mortar of the present invention is a structure in which the base surface of the vibration receiving structure is provided with a soft resin sheet, and the soft resin sheet surface is further covered with a mortar provided with the mortar. . The soft resin sheet and mortar here are the same as those described above. The structure coated with the mortar of the present invention is preferably a vibration receiving structure in which the surface of the soft resin sheet provided on the base surface of the structure is coated with mortar by any one of the mortar coating methods described above. When the mortar is a fireproof coating mortar, the vibration receiving structure covered with the mortar of the present invention is preferably a fireproof structure.

[実施例1]
[樹脂シート硬さ試験]
剥落確認試験試験に使用する樹脂シートにおいて、JIS Z 2246「ショア硬さ試験」に従い硬さを測定した。試験片は40mm×40mm×10mmとし、D型試験機を使用した。測定結果を表1に示した。
[Example 1]
[Resin sheet hardness test]
In the resin sheet used for the peeling confirmation test, the hardness was measured according to JIS Z 2246 “Shore hardness test”. The test piece was 40 mm × 40 mm × 10 mm, and a D-type tester was used. The measurement results are shown in Table 1.

Figure 2013096104
Figure 2013096104

[剥落確認試験用試験体作製]
鋼橋に用いられる普通鋼材としては、一般構造用圧延鋼材(JIS G 3101)、溶接構造用圧延鋼材(JIS G 3106)、溶接構造用耐候性熱間圧延鋼材(JIS G 3114)があるが、本試験においては一般構造用圧延鋼材(JIS G 3101)を使用した。鋼橋床桁に耐火被覆材(モルタル)を被覆する場合を模擬した試験体を作製した。鋼橋床桁におけるH型鋼フランジ下部を参考に、300×2000×9mmの鋼板(SS400)を用い、この鋼板に樹脂エマルション(プライマー)を塗布した樹脂シート(平板)11を図1に示したステンレス製金網2(線径1.6mm、線間隔50mm、格子間隔(目開き)48.4mm)とともに図5に示したタッピン螺子5を用いて螺子止めをした。このとき、樹脂シート11のプライマーを塗布した面が、ステンレス製金網2と接するように配置した。各タッピン螺子の間隔(螺子中心部分の距離)は、鋼板長手方向では300mm、鋼板短手方向では200mmとした。つまり、12個のタッピン螺子5を用いて、ステンレス製金網2とともに樹脂シート11を螺子止めにより鋼板1に固定した。鋼板1のタッピン螺子5を取り付ける位置には、予め直径4.6mmの刃を用いてドリルで深さ7mmの孔(下孔9)を空けておいた。また、螺子止めするときに、平ワッシャー6をタッピン螺子5とステンレス製金網2の間に挟み込んだ。用いた樹脂シート11の形状は、300×2000mmで、厚みは2mm、5mm及び10mmのものを用いた。また、用いたステンレス製金網2は、一部分が凹み金網取付部12を形成しており、この部分にタッピン螺子を用いて、樹脂シート11とともに鋼板1に螺子止めをした。このとき、樹脂シート11からステンレス製金網2の上端部までの距離は15mmであった。また、タッピン螺子5には、タッピングする為に設けられている溝14が備わっている。モルタルを被覆する前の剥落確認試験用試験体の一部分の模式的な斜視図を図6に示した。
[Preparation of test specimen for peeling confirmation test]
Common steel materials used for steel bridges include general structural rolled steel materials (JIS G 3101), rolled steel materials for welded structures (JIS G 3106), and weather resistant hot rolled steel materials for welded structures (JIS G 3114). In this test, a general structural rolled steel (JIS G 3101) was used. A test body was prepared that simulated the case where a steel bridge deck girder was coated with a fireproof coating material (mortar). The stainless steel shown in FIG. 1 is a resin sheet (flat plate) 11 in which a 300 × 2000 × 9 mm steel plate (SS400) is applied with reference to the lower part of the H-shaped steel flange in the steel bridge deck girder and a resin emulsion (primer) is applied to this steel plate. The metal mesh 2 (line diameter 1.6 mm, line interval 50 mm, lattice interval (opening) 48.4 mm) and the tapping screw 5 shown in FIG. At this time, it arrange | positioned so that the surface which apply | coated the primer of the resin sheet 11 may contact the stainless steel metal-mesh 2. The interval between the tapping screws (the distance between the screw center portions) was 300 mm in the longitudinal direction of the steel sheet and 200 mm in the lateral direction of the steel sheet. That is, using 12 tapping screws 5, the resin sheet 11 together with the stainless steel wire mesh 2 was fixed to the steel plate 1 by screwing. At a position where the tapping screw 5 of the steel plate 1 is attached, a hole (a lower hole 9) having a depth of 7 mm was previously drilled using a blade having a diameter of 4.6 mm. Further, when screwing, the flat washer 6 was sandwiched between the tapping screw 5 and the stainless steel wire mesh 2. The resin sheet 11 used had a shape of 300 × 2000 mm and a thickness of 2 mm, 5 mm, and 10 mm. In addition, the stainless steel mesh 2 used was partially dented to form a metal mesh attachment portion 12, and a tapping screw was used in this portion to screw the steel sheet 1 together with the resin sheet 11. At this time, the distance from the resin sheet 11 to the upper end part of the stainless steel metal mesh 2 was 15 mm. Further, the tapping screw 5 is provided with a groove 14 provided for tapping. FIG. 6 shows a schematic perspective view of a part of the test specimen for the peeling confirmation test before coating the mortar.

この後、普通ポルトランドセメント、膨脹バーミュキライト及び混和材料を含有する市販の耐火被覆材(耐火被覆モルタル)を、ステンレス製金網2を埋設するように吹き付けた後、金鏝により耐火被覆材の厚みが25mmとなるように平らに均し成形したものを試験体とした。比較例の試験体として、樹脂シートを用いずに、鋼板にプライマーを塗布した後にステンレス製金網タッピン螺子を取り付け、他と同様に耐火被覆材で被覆した試験体も作製した。何れの耐火被覆材層の形状も、300×1800×25mmである。このモルタル被覆工程は、20℃の恒温室で行った。   After that, after spraying a commercially available fireproof coating material (fireproof coating mortar) containing ordinary Portland cement, expanded vermiculite and an admixture so as to embed the stainless steel wire mesh 2, the fireproof coating material of the fireproof coating material is made with a hammer. The test specimen was flattened so as to have a thickness of 25 mm. As a test sample of a comparative example, without using a resin sheet, a primer was applied to a steel plate, a stainless steel wire mesh tapping screw was attached, and a test sample coated with a fireproof coating material was prepared in the same manner as the other test samples. The shape of any fireproof covering material layer is 300 × 1800 × 25 mm. This mortar coating process was performed in a constant temperature room at 20 ° C.

[剥落確認試験]
作製した試験体を1時間そのまま静置した後に、耐火被覆材層が鋼板の下側になるように試験体を静かに裏返し、鋼板の端部から50mmの位置を鋼材(支点)4で図3のように支えた。1kgの鋼製ハンマーを垂直位置から略その自重のみで振り下ろして鋼板1に振動を加えた。ハンマーを振り下ろす箇所(加振箇所8)は、図4に示した100mm間隔の格子点(図中○で示した。)として、各加振箇所毎に50回ハンマーを振り下ろし鋼板1に振動を加えた。振動を加え終わった後に、耐火被覆材(モルタル)の剥落の有無を目視で確認した。剥落の有無を、用いた樹脂シートの種類及び厚みとともに表2に示した。尚、耐火被覆材(モルタル)は、振動を加え終わった直後において未硬化であった。
[Peeling confirmation test]
After leaving the prepared test body for 1 hour as it is, the test body was gently turned over so that the fireproof coating layer was on the lower side of the steel plate, and the position of 50 mm from the end of the steel plate was a steel material (fulcrum) 4 as shown in FIG. It supported like. A 1 kg steel hammer was shaken down from the vertical position only by its own weight, and vibration was applied to the steel plate 1. The place where the hammer is shaken down (vibration place 8) is the lattice points (shown by ○ in the figure) at intervals of 100 mm shown in FIG. Was added. After the addition of vibration, the presence or absence of peeling of the fireproof coating material (mortar) was visually confirmed. The presence or absence of peeling is shown in Table 2 together with the type and thickness of the resin sheet used. The fireproof coating material (mortar) was uncured immediately after the vibration was applied.

Figure 2013096104
Figure 2013096104

試験結果から、本願発明の実施例に当たる試験体(No.1〜12)は、振動による耐火被覆材の変形、垂れ又は剥落は全く見られなかったが、比較例に当たる試験体(No.13〜15)は、何れも振動による耐火被覆材の剥落が見られた。   From the test results, the specimens (Nos. 1 to 12) corresponding to the examples of the present invention did not show any deformation, dripping or peeling of the fireproof coating material due to vibration, but the specimens corresponding to the comparative examples (Nos. 13 to 13). In 15), the fireproof coating material was peeled off due to vibration.

本発明のモルタル被覆方法は、供用中の道路橋又は供用中の鉄道橋、或いは稼働中のタービン建屋又は稼働中の工場建屋等の継続的に振動がある構造物(受振構造物)の補修工事、補強工事等に使用することができる。また、本発明のモルタルで被覆された受振構造物は、道路橋、鉄道橋、稼働中のタービン建屋及び工場建屋等として用いることができる。   The mortar covering method of the present invention is a repair work for a structure (receiving structure) having continuous vibration such as a road bridge in service, a railway bridge in service, a turbine building in operation, or a factory building in operation. Can be used for reinforcement work. Moreover, the vibration receiving structure covered with the mortar of the present invention can be used as a road bridge, a railway bridge, an operating turbine building, a factory building, and the like.

1 鋼板(鋼橋床桁を模したときの受振構造物の下地)
2 ステンレス製金網
3 耐火被覆材(耐火被覆モルタル)
4 鋼材(支点)
5 タッピン螺子
6 平ワッシャ
7 格子点の間隔(100mm)
8 加振箇所
9 下孔
10 試験体
11 樹脂シート
12 金網取付部
13 耐火被覆材層(耐火被覆モルタル)5の厚み
14 タッピングする為に設けられている溝
1 Steel plate (base of vibration receiving structure when imitating steel bridge deck girder)
2 Stainless steel wire mesh 3 Fireproof coating material (Fireproof mortar)
4 Steel (fulcrum)
5 Tapping screw 6 Flat washer 7 Lattice spacing (100 mm)
8 Excitation location 9 Pilot hole 10 Specimen 11 Resin sheet 12 Wire mesh attachment portion 13 Thickness 14 of fireproof covering material layer (fireproof covering mortar) 5 Groove provided for tapping

Claims (6)

受振構造物の下地表面に軟質樹脂シートを配設する工程、及び該軟質樹脂シート表面にモルタルを被覆する工程とを備えるするモルタル被覆方法。   A mortar coating method comprising: a step of disposing a soft resin sheet on a base surface of a vibration receiving structure; and a step of covering the surface of the soft resin sheet with mortar. 上記シート配設工程の後に、上記モルタル被覆工程を行う請求項1記載のモルタル被覆方法。   The mortar coating method according to claim 1, wherein the mortar coating step is performed after the sheet disposing step. 上記軟質樹脂シートが、ショアD硬度60以下の樹脂シートである請求項1又は請求項2記載のモルタル被覆方法。   The mortar coating method according to claim 1, wherein the soft resin sheet is a resin sheet having a Shore D hardness of 60 or less. 上記モルタルが耐火被覆モルタルである請求項1〜3何れか記載のモルタル被覆方法。   The mortar coating method according to claim 1, wherein the mortar is a fireproof coating mortar. 受振構造物の下地表面に軟質樹脂シートを具備し、更に、該軟質樹脂シート表面にモルタルを具備するモルタルで被覆された受振構造物。   A vibration receiving structure comprising a soft resin sheet on a base surface of the vibration receiving structure and further coated with a mortar having a mortar on the surface of the soft resin sheet. 請求項1〜3何れかのモルタル被覆方法によって、上記軟質樹脂シート表面にモルタルを具備する請求項5のモルタルで被覆された受振構造物。   The vibration receiving structure coated with the mortar according to claim 5, wherein the soft resin sheet surface is provided with the mortar by the mortar coating method according to claim 1.
JP2011238175A 2011-10-31 2011-10-31 Coating method for mortar and vibration reception structure coated with mortar Pending JP2013096104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238175A JP2013096104A (en) 2011-10-31 2011-10-31 Coating method for mortar and vibration reception structure coated with mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238175A JP2013096104A (en) 2011-10-31 2011-10-31 Coating method for mortar and vibration reception structure coated with mortar

Publications (1)

Publication Number Publication Date
JP2013096104A true JP2013096104A (en) 2013-05-20

Family

ID=48618361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238175A Pending JP2013096104A (en) 2011-10-31 2011-10-31 Coating method for mortar and vibration reception structure coated with mortar

Country Status (1)

Country Link
JP (1) JP2013096104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165433A (en) * 2017-03-28 2018-10-25 日鐵住金建材株式会社 Lath for exterior wall ventilation construction method
CN114100175A (en) * 2021-11-30 2022-03-01 安徽华塑股份有限公司 Device and method for reducing heat exchange self-polymerization in VCM refining process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165433A (en) * 2017-03-28 2018-10-25 日鐵住金建材株式会社 Lath for exterior wall ventilation construction method
JP7065419B2 (en) 2017-03-28 2022-05-12 日鉄建材株式会社 Las for outer wall ventilation method
CN114100175A (en) * 2021-11-30 2022-03-01 安徽华塑股份有限公司 Device and method for reducing heat exchange self-polymerization in VCM refining process

Similar Documents

Publication Publication Date Title
US10166697B2 (en) Insulated flying table concrete form, electrically heated flying table concrete form and method of accelerating concrete curing using same
US20050252419A1 (en) Lightweight composite materials and methods
NO320406B1 (en) Lightweight additive and pulp
JP2009203106A (en) Polymer cement material of high toughness for reinforcing bending of concrete frame and method for reinforcing bending of concrete frame using polymer cement material of high toughness
US11168025B2 (en) Composite system and consolidation method, in particular for structures made from reinforced concrete or masonry hardenable or hardened matrix and textile reinforcing mesh forming this system
JP2008050213A (en) Material for repairing cross section and method for repairing cross section
Wilby Concrete materials and structures: a university civil engineering text
JP2013096104A (en) Coating method for mortar and vibration reception structure coated with mortar
CN106630780A (en) Preparation for concrete ceramsite wallboard
KR101823875B1 (en) Shear strengthening method for underground box structure
CN101705731A (en) Lightweight ceramisite concrete external wallboard and preparation method thereof
JPH1150034A (en) Adhesive composition for panel for mending road bridge floor
KR101181030B1 (en) Vibration type trowel and method for repairing concrete facilities using the same
JP2008008137A (en) Repair structure of slate tile roof
JP2002371795A (en) Structure and method for repairing body structure
JP5881101B2 (en) Cement-based thickener primer and thickening method
KR102280960B1 (en) Ultra rapidly crack reinforce composition and manufacturing metho thereof and construction method using thereof
CN106630779A (en) A light-weight concrete exterior wall panel
CN106630808A (en) A ceramsite concrete light-weight wallboard and preparation thereof
CN103848608A (en) Concrete wallboard
JP2006104808A (en) Embedded form and its manufacturing method
Fowler Are Polymer Concrete Materials and Products Really Sustainable?
JPH1088694A (en) Method of fire-resistive covering construction for steel frame
CN107963837A (en) A kind of lightweight ceramisite concrete wallboard and preparation
Papayianni et al. Development of fire resistant shotcrete with olivine aggregates