JP2013095151A - Crossing security device and crossing control switching device - Google Patents

Crossing security device and crossing control switching device Download PDF

Info

Publication number
JP2013095151A
JP2013095151A JP2011236454A JP2011236454A JP2013095151A JP 2013095151 A JP2013095151 A JP 2013095151A JP 2011236454 A JP2011236454 A JP 2011236454A JP 2011236454 A JP2011236454 A JP 2011236454A JP 2013095151 A JP2013095151 A JP 2013095151A
Authority
JP
Japan
Prior art keywords
crossing
train
point
end point
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011236454A
Other languages
Japanese (ja)
Other versions
JP5863387B2 (en
Inventor
Yoshinori Harima
義憲 播磨
Yoshihiko Yamazaki
悦彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Signal Co Ltd
Original Assignee
Daido Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Signal Co Ltd filed Critical Daido Signal Co Ltd
Priority to JP2011236454A priority Critical patent/JP5863387B2/en
Publication of JP2013095151A publication Critical patent/JP2013095151A/en
Application granted granted Critical
Publication of JP5863387B2 publication Critical patent/JP5863387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To detect a train on both sides of a crossing and near the crossing without adding a crossing control detector, make an obstacle detection mask section wider than the crossing, and take alarm ending conditions in a single rail track territory of both an up-train and a down-train as the point of time when a train finishes passing through a crossing road.SOLUTION: While train detection at an end point BDC (or DDC) and train detection at an expansion point BBDC (or DDDC) are executed on a time division basis by one crossing control detector for the end point 22 (or 24) through connection destination switching of a switching circuit part 56 under the control by a switching control part 55, an obstacle detection mask section is expanded from only a conventional short section with a train detection length of the end point BDC (or DDC) in an output forming part 57 to a new wide section across train entry to the expansion point BBDC (or DDDC) and train departure from the end point BDC (or DDC). Similarly, connection destinations set on both sides of a crossing road in a single rail track territory are selected by train operating direction. When the train finishes passing through the crossing road, an alarm is stopped.

Description

この発明は、鉄道の複線区間や単線区間の踏切に設置される踏切保安装置であって、無絶縁で使用できる短小軌道回路の一種である開電路形の終止点用踏切制御子を具備しているものの改良に関する。また、その改良に資する踏切制御切替装置にも関する。
なお、本願に添付した特許請求の範囲および明細書では、「列車の運転方向」を「列車運転方向」と言う。また、「列車運転方向」を示す出力がリレー出力であれリレー以外の信号出力であれ、それを「列車運転方向指示」と言う。
The present invention is a railroad crossing safety device installed at a railroad crossing in a double-track section or a single-track section of a railway, and includes an open circuit type railroad crossing controller that is a kind of short track circuit that can be used without insulation. It relates to the improvement of things. It also relates to a crossing control switching device that contributes to the improvement.
In addition, in the claims and specification attached to the present application, the “train operation direction” is referred to as the “train operation direction”. Further, whether the output indicating the “train operation direction” is a relay output or a signal output other than the relay, it is referred to as “train operation direction instruction”.

なお、「上りの列車運転方向指示」は、上り列車が上りの踏切制御区間に進入してから進出するまでの間すなわち上り始動点で検知されてから終止点で検知開始か検知終了されるまでの間、指示状態が上り列車の到来を意味する有意な状態(正論理では1,負論理では0)になり、それ以外のときは、指示状態が上り列車の非在線を意味する無意な状態((正論理では0,負論理では1)になる。また、「下りの列車運転方向指示」は、下り列車が下りの踏切制御区間に進入してから進出するまでの間すなわち下り始動点で検知されてから終止点で検知開始か検知終了されるまでの間、指示状態が下り列車の到来を意味する有意な状態(正論理では1,負論理では0)になり、それ以外のときは、指示状態が下り列車の非在線を意味する無意な状態(正論理では0,負論理では1)になる。   In addition, the “upward train driving direction indication” is from when the upstream train enters the upstream railroad crossing control section until it advances, that is, from when it is detected at the upstream starting point to when the detection starts or ends at the end point. During that time, the indication state becomes a significant state (1 for positive logic, 0 for negative logic), and in other cases, the indication state is an involuntary state that means the absence of an upstream train ((0 for positive logic, 1 for negative logic). Also, “down train driving direction indication” is the time from when the down train enters the down railroad crossing control section until it advances, that is, at the down start point. The indication state becomes a significant state (1 for positive logic and 0 for negative logic) from the time it is detected until the detection starts or ends at the end point, otherwise it is , The instructed state means insignificant that the down train is not State (in positive logic 0, 1 for negative logic) it becomes.

鉄道の線路の踏切に設置される踏切保安装置は(例えば非特許文献1,2参照)、列車を検知するための踏切制御子と、音響にて警報を発するためのスピーカとせん光にて警報を発するための警報灯を装備した踏切警報機と、第3種の踏切には無いが第1種の踏切では踏切遮断機と、踏切制御子の検知結果に基づいて踏切警報機や踏切遮断機の動作を制御する踏切制御装置とを具えている。そして、踏切の手前の始動点に設置された踏切制御子で列車を検知すると、踏切警報機にて警報を発するとともに、少し時間をおいて第1種の踏切では踏切遮断機を降下させ、踏切通過後の終止点に設置された踏切制御子で列車通過を検知すると、警報等を止めるとともに、第1種の踏切では踏切遮断機を上昇させるようになっている。以下、このような踏切保安装置や踏切制御子の構成等を、図面を引用して説明する。   Railroad crossing safety devices installed at railroad crossings (see Non-Patent Documents 1 and 2, for example) are railroad crossing controllers for detecting trains, speakers for sounding alarms, and alarms by flashing light. A level crossing alarm equipped with a warning light, a level crossing breaker in the first type crossing but not in the type 3 level crossing, and a level crossing alarm or level crossing based on the detection result of the level crossing controller And a crossing control device for controlling the operation of the vehicle. And if a train is detected by the level crossing controller installed at the starting point before the level crossing, the level crossing alarm will give an alarm, and after a while, the level 1 crossing will be lowered and the level crossing barrier will be lowered. When the train crossing controller installed at the end point after the passage detects the passage of the train, the alarm is stopped and the level crossing barrier is raised at the first type of crossing. Hereinafter, the structure of such a crossing safety device and a crossing controller will be described with reference to the drawings.

図13は、(a)が複線区間における踏切制御子21,22,23,24の配置図、(b)が単線区間における踏切制御子21,23,24の配置図、(c)が複線区間における踏切制御装置31を含む複線区間における踏切保安装置のブロック図である。また、図14は、(a)が単線区間における踏切制御装置34を含む単線区間における踏切保安装置のブロック図、(b)が閉電路形の始動点用踏切制御子21,23のレール11,12への接続図、(c)が開電路形の終止点用踏切制御子22,24のレール11,12への接続図である。さらに、図15(a)は、終止点用踏切制御子22(又は24)に発振式のものを採用したときのブロック図であり、同図(b)は、終止点用踏切制御子22(又は24)に送受信式のH形を採用したときのブロック図である。   13A is a layout diagram of the crossing controllers 21, 22, 23, and 24 in the double track section, FIG. 13B is a layout diagram of the level crossing controllers 21, 23, and 24 in the single track section, and FIG. 13C is a double track section. It is a block diagram of a level crossing security device in a double track section including a level crossing control device 31 in FIG. 14A is a block diagram of a railroad crossing safety device in a single track section including the crossing control device 34 in the single track section, and FIG. 14B is a rail 11, 12 is a connection diagram to the rails 11 and 12 of the open-circuit type railroad crossing controllers 22 and 24. FIG. Further, FIG. 15A is a block diagram when an oscillating type is adopted as the end point crossing controller 22 (or 24), and FIG. 15B shows the end point crossing controller 22 (or 24). Or it is a block diagram when the transmission / reception type H type is adopted in 24).

また、図16は、コストを考慮して現在設置されている複線区間における踏切保安装置37に係る概要構成図であり、図中で踏切8と斜交する二点鎖線は踏切障害物検知装置35が障害物を検知する検知ビーム等をイメージしたものである。図17(a)は、コストを考慮して現在設置されている単線区間における踏切保安装置38に係る概要構成図である。さらに、図18は、(a)が複線区間における踏切障害物検知装置35に係る従来のリレー信号等の入出力状態を示すブロック図であり、(b)〜(e)がリレー信号等のタイムチャートである。また、図19は、コストを無視すれば理想といえる複線区間における踏切保安装置に係る概要構成図であり、図17(b)は、コストを無視すれば理想といえる単線区間における踏切保安装置に係る概要構成図である。   FIG. 16 is a schematic configuration diagram relating to the railroad crossing safety device 37 in the currently installed double track section in consideration of cost, and a two-dot chain line obliquely crossing the railroad crossing 8 in the drawing is a railroad crossing obstacle detection device 35. Is an image of a detection beam that detects obstacles. FIG. 17A is a schematic configuration diagram relating to the railroad crossing safety device 38 in the currently installed single track section in consideration of the cost. FIG. 18 is a block diagram showing the input / output state of a conventional relay signal and the like related to the crossing obstacle detection device 35 in the double track section, and FIGS. 18A to 18E show the time of the relay signal and the like. It is a chart. Further, FIG. 19 is a schematic configuration diagram relating to a crossing safety device in a double track section that can be said to be ideal if the cost is ignored, and FIG. 17B is a cross-sectional safety device in a single track section that is ideal if the cost is ignored. It is the outline | summary block diagram which concerns.

複線区間の踏切8に係る踏切保安装置では(図13(a)参照)、下り側の線路10について踏切8の起点側で手前位置の下り始動点ADCに始動点用踏切制御子21が設置されるとともに踏切8の終点側で列車通過後位置の下り終止点BDCに終止点用踏切制御子22が設置されるばかりか、上り側の線路10についても踏切8の終点側で手前位置の上り始動点CDCに始動点用踏切制御子23が設置されるとともに踏切8の起点側で列車通過後位置の上り終止点DDCに終止点用踏切制御子24が設置される。始動点ADC,CDCは、踏切警報を発してから列車が踏切8に到達するまでの時間を確保するために、例えば駅中間の踏切で列車の走行速度が100km/Hの場合には踏切8から700〜 800m程の遠くに設定されるが、終止点BDC,DDCは、踏切横断物等による誤作動を避けつつも列車の通過を早く検出するために、踏切8から例えば20〜30m程の近くに設定されることが多い。   In the crossing safety device relating to the crossing 8 in the double-track section (see FIG. 13A), the starting point crossing controller 21 is installed at the downstream starting point ADC at the near side on the starting side of the crossing 8 for the down line 10. At the same time, the end point crossing controller 22 is installed at the end point BDC at the end point of the railroad crossing 8 at the end point after passing the train. A starting point crossing controller 23 is installed at the point CDC, and an end point crossing controller 24 is installed at the starting point DDC at the post-train passing position on the starting point side of the crossing 8. Starting points ADC and CDC are used to ensure the time from when a railroad crossing warning is issued until the train reaches railroad crossing 8, for example, when the train travel speed is 100 km / H at the railroad crossing between stations. Although it is set at a distance of about 700 to 800 m, the stop points BDC and DDC are near 20 to 30 m, for example, from the level crossing 8 in order to quickly detect the passage of the train while avoiding malfunctions due to crossings and the like. It is often set to.

これに対し(図13(b)参照)、線路10が一つしかない単線区間に設けられた踏切8に係る踏切保安装置では、同じ線路10に対し、踏切8の両側に分かれて下り始動点ADCと上り始動点CDCとが設定され、下り始動点ADCには始動点用踏切制御子21が設置される一方、上り始動点CDCには始動点用踏切制御子23が設定される。また、同じ線路10に対し、下り終止点BDCと上り終止点DDCとのうち何れか一方だけが上り下り共用の終止点として設定され、その共用終止点には終止点用踏切制御子が設置される。例えば上り終止点DDCが選択されて、それが踏切8と下り始動点ADCとの間に設定された場合(図13(b)の場合)、そこに終止点用踏切制御子24が設置され、下り終止点BDCは設定されないので、終止点用踏切制御子22は設置されない。このように、踏切8に近い終止点については共用化を図ることで、設備費の過大化が抑制される。   On the other hand (see FIG. 13 (b)), in the railroad crossing safety device according to the railroad crossing 8 provided in the single track section having only one track 10, the starting line is divided into the both sides of the railroad crossing 8 with respect to the same rail track 10. The ADC and the ascending start point CDC are set, and the starting point crossing controller 21 is set at the descending starting point ADC, while the starting point crossing controller 23 is set at the ascending start point CDC. Also, for the same line 10, only one of the down end point BDC and the up end point DDC is set as the up / down common end point, and the end point crossing controller is installed at the common end point. The For example, when the up / down end point DDC is selected and set between the crossing 8 and the down start point ADC (in the case of FIG. 13B), the end point crossing controller 24 is installed there, Since the down end point BDC is not set, the end point crossing controller 22 is not installed. In this way, the end point close to the railroad crossing 8 is shared, thereby suppressing an excessive increase in the facility cost.

また、そのような踏切制御子の設置状況に基づき、複線区間の踏切8に係る踏切保安装置は(図13(c)参照)、下り側の線路10の下り始動点ADC及び下り終止点BDCそれぞれに設置された始動点用踏切制御子21,終止点用踏切制御子22と、上り側の線路10の上り始動点CDC及び上り終止点DDCそれぞれに設置された始動点用踏切制御子23,終止点用踏切制御子24と、それらの踏切制御子21,22,23,24から列車検知結果を入力しそれに基づく論理判定にて列車の踏切への接近および通過と列車運転方向とを認知する複線区間における踏切制御装置31と、音響にて警報を発するためのスピーカと、せん光にて警報を発するための警報灯32と、第1種の踏切では踏切遮断機33とを具えたものとなっている。   Further, based on the installation status of such a crossing controller, the crossing safety device related to the crossing 8 in the double track section (see FIG. 13 (c)) is a down start point ADC and a down end point BDC of the down line 10, respectively. A start-point crossing controller 21 and a stop-point crossing controller 22 installed on the upstream side, a start-point crossing controller 23 installed on each of the upstream start point CDC and the upstream end point DDC of the upstream line 10, and a stop. A double track that recognizes the approach and passage of the train to the railroad crossing and the train driving direction by inputting train detection results from the railroad crossing controller 24 for points and the train crossing controllers 21, 22, 23, and 24, and making a logical determination based on the train detection results. A railroad crossing control device 31 in the section, a speaker for emitting an alarm by sound, an alarm lamp 32 for issuing an alarm by flashing, and a railroad crossing breaker 33 at the first type of railroad crossing. ing

これに対し、単線区間の踏切8に係る踏切保安装置は(図14(a)参照)、同じ線路10の下り始動点ADC,共用終止点DDC,上り始動点CDCそれぞれに設置された始動点用踏切制御子21,終止点用踏切制御子24,始動点用踏切制御子23と、それらの踏切制御子21,24,23から列車検知結果を入力しそれに基づく論理判定にて列車の踏切への接近および通過と列車運転方向とを認知する踏切制御装置34と、音響にて警報を発するためのスピーカと、せん光にて警報を発するための警報灯32と、第1種の踏切では踏切遮断機33とを具えている。なお、その他、複線など跨線数が複数の踏切には列車方向指示器なども、設けられているが、その説明は割愛する。   On the other hand, the railroad crossing safety device related to the railroad crossing 8 in the single track section (see FIG. 14 (a)) is for starting points installed at the downstream starting point ADC, the common end point DDC, and the upstream starting point CDC on the same line 10, respectively. A train crossing controller 21, an end point crossing controller 24, a starting point crossing controller 23, and train detection results are input from these crossing controllers 21, 24, and 23. Railroad crossing control device 34 for recognizing approach and passage and train driving direction, speaker for sounding alarm, warning light 32 for flashing alarm, and crossing at level 1 Machine 33. In addition, a train direction indicator or the like is also provided at a crossing having a plurality of crossovers such as a double track, but the description thereof is omitted.

そして、下り列車が下り始動点ADCと下り終止点BDCや共用終止点DDCとの間に在線しているときには下りSRリレー(下りの列車運転方向指示)が無励磁(有意状態)となるが、それ以外のときには下りSRリレーが励磁(無意状態)される。また、上り列車が上り始動点CDCと上り終止点DDCや共用終止点DDCとの間に在線しているときには上りSRリレー(上りの列車運転方向指示)が無励磁(有意状態)となるが、それ以外のときには上りSRリレーが励磁(無意状態)される。そのような列車運転方向の判別結果として方向別に出力される下りSR及び上りSRと終止点DDCに係る列車検知のリレー出力DPRとが組み合わせられて、最終の警報出力となる警報Rリレー回路が構成されている(図14(a)参照)。そして、この警報Rリレーの条件により、警報音制御器、警報灯制御器(断続リレー)、踏切遮断機制御リレーと呼ばれる機器が駆動され、それらの出力がそれぞれ警報音のスピーカ、警報灯32、踏切遮断機33に送出されて、音や光で警報が発せられるとともに、遮断桿で道路交通が遮断される。   When the down train is present between the down start point ADC and the down end point BDC or the common end point DDC, the down SR relay (down train operation direction instruction) becomes non-excited (significant state). In other cases, the down SR relay is excited (unintentional state). In addition, when the up train is present between the up start point CDC and the up end point DDC or the common end point DDC, the up SR relay (up train operation direction instruction) is de-energized (significant state). In other cases, the upstream SR relay is excited (unintentional state). The alarm R relay circuit that is the final alarm output is configured by combining the down SR and the up SR output for each direction as a result of determination of the train operation direction and the relay output DPR of the train detection related to the end point DDC. (See FIG. 14A). And according to the conditions of this alarm R relay, devices called alarm sound controller, alarm light controller (intermittent relay), crossing circuit breaker control relay are driven, and their outputs are alarm sound speaker, alarm light 32, It is sent to the railroad crossing breaker 33, and an alarm is issued by sound and light, and road traffic is blocked by a barrier.

ここで(図14(b),(c)参照)、踏切制御子について詳述すると、故障時のフェールセーフのため、下り始動点ADCや上り始動点CDCに設置される始動点用踏切制御子21,23には閉電路形の踏切制御子が用いられ(図14(b)参照)、下り終止点BDCや上り終止点DDCに設置される終止点用踏切制御子22,24には開電路形の踏切制御子が用いられる(図14(c)参照)。そのうち、閉電路形踏切制御子21,23は(図14(b)参照)、線路10を成す一対のレール11,12それぞれに一端を溶接等で取り付けられた接続線の対を二対使用するものであり、線路10における接続線取付箇所の取付間隔は約15mほどになっている。そして、その接続線取付箇所の間のレール11,12を介して常に閉電路が構成されており、列車の非在線時には照査用発振信号が閉電路に一巡伝送されて踏切制御子の出力用の出力リレー(出力リレーの名称を、ここでは始動Rリレーと呼ぶ)が励磁されるのに対し、列車が約30m程の列車検知長の区間に存在すると、列車の車軸でレール11,12が短絡されるために、照査用発振信号の伝送が断たれて、始動Rリレーが無励磁となる。   Here (see FIGS. 14 (b) and 14 (c)), the level crossing controller will be described in detail. For the fail-safe at the time of failure, the starting point level crossing controller installed at the down start point ADC or the up start point CDC. Closed circuit type crossing controllers are used for 21 and 23 (see FIG. 14 (b)), and the open point circuit controllers 22 and 24 installed at the down end point BDC and the up end point DDC are open circuits. A shape crossing controller is used (see FIG. 14C). Among them, the closed-circuit type railroad crossing controllers 21 and 23 (see FIG. 14B) use two pairs of connection wires each having one end attached to each of the pair of rails 11 and 12 forming the track 10 by welding or the like. The attachment interval of the connection line attachment location in the track 10 is about 15 m. A closed circuit is always configured via the rails 11 and 12 between the connecting line attachment points. When the train is not present, the oscillation signal for checking is transmitted to the closed circuit once for output of the level crossing controller. While the output relay (the name of the output relay is called the start R relay here) is excited, if the train exists in the section of the train detection length of about 30 m, the rails 11 and 12 are short-circuited on the train axle. Therefore, transmission of the oscillation signal for verification is cut off, and the starting R relay is de-energized.

一方、開電路形踏切制御子22,24は(図14(c)参照)、線路10を成す一対のレール11,12それぞれに一端を溶接等で取り付けられた接続線を一対だけ使用するものであり、その接続線に照査用発振信号を常に送出するようになっているが、レール11,12の間が繋がっていないので常態では開電路が構成されているにとどまるため、その開電路に照査用発振信号が送出されていても、列車の非在線時には照査用発振信号の伝送がレール11,12の間で断たれて、踏切制御子の出力用の出力リレー(出力リレーの名称を、ここでは終止Rリレーと呼ぶ)が無励磁となっている。そして、列車が約30m程の列車検知長の区間に進入して存在すると、列車の車軸でレール11,12が短絡されるために、開電路が一時的に閉電路となって、照査用発振信号が一巡伝送され、終止Rリレーが励磁される。   On the other hand, the open circuit type railroad crossing controllers 22 and 24 (see FIG. 14 (c)) use only one pair of connecting wires each having one end attached to each of the pair of rails 11 and 12 constituting the track 10 by welding or the like. Yes, the oscillation signal for verification is always sent to the connection line, but since the rails 11 and 12 are not connected to each other, the open circuit is normally configured. Even when the oscillating signal is transmitted, the transmission of the oscillating signal for verification is cut off between the rails 11 and 12 when the train is not present, and the output relay for the output of the level crossing controller (the name of the output relay is here) Is called non-excited). And if a train enters a section with a train detection length of about 30 m and the rails 11 and 12 are short-circuited on the train axle, the open circuit becomes temporarily closed, and the oscillation for verification The signal is transmitted in a round and the termination R relay is excited.

このような開電路形の終止点用踏切制御子22,24は(図15参照)、内部に、照査用発振信号の接続線への送出を試行して照査用発振信号の一巡伝送の状態を検出する発振有無検出部25と、照査用発振信号の一巡伝送が検出されたときには終止Rリレーを励磁するが照査用発振信号の一巡伝送が検出されないときには終止Rリレーを励磁しないリレー駆動部26とを具えている。発振有無検出部25には、接続線を発振回路の発振ループの一部とする発振式のものと(図15(a)参照)、照査用発振信号を送信部で生成し接続線で伝送させ受信部で検出する送受信式のH形と(図15(b)参照)、2タイプが実用化されているが、後ほど説明する本発明においては終止点用踏切制御子の方式の違いが問題にならないので、その詳細は図示するにとどめ、ここでは終止点用踏切制御子22(又は24)を具体例にして、接続線A1,B1(第1接続線)との接続状態を詳述する。   Such open-circuit-type end-point crossing controllers 22 and 24 (see FIG. 15) internally try to send the oscillation signal for verification to the connection line and check the state of the round-trip transmission of the oscillation signal for verification. An oscillation presence / absence detecting unit 25 to detect, and a relay driving unit 26 that excites the termination R relay when a round transmission of the verification oscillation signal is detected, but does not excite the termination R relay when a round transmission of the verification oscillation signal is not detected. It has. In the oscillation presence / absence detection unit 25, an oscillation type whose connection line is part of the oscillation loop of the oscillation circuit (see FIG. 15A), an oscillation signal for verification is generated by the transmission unit, and transmitted through the connection line. The transmission / reception type H type detected by the receiving unit (see FIG. 15B) and two types have been put into practical use, but in the present invention described later, the difference in the method of the crossing controller for the end point is a problem. The details are only shown in the figure, and here, the connection state with the connection lines A1 and B1 (first connection line) will be described in detail by taking the end point crossing controller 22 (or 24) as a specific example.

一対の接続線A1,B1のうち一方の接続線A1は一端がレール11に溶接等で接続され他方の接続線B1は一端がレール12に接続されて(図15参照)、その接続線取付箇所15(又は14)から何れの接続線A1,B1も終止点用踏切制御子22(又は24)の方に延びていて、発振有無検出部25に接続されている。なお、必須ではないが大抵は終止点用踏切制御子22(又は24)が踏切器具箱内に収納されているので、接続線A1,B1は、何れも、発振有無検出部25に直に接続されるのでなく、延長線を介在させて間接的に接続されている。即ち、接続線A1,B1は、それぞれ、他端が配線端子盤28の端子に接続され、そこから踏切器具箱内配線27によって終止点用踏切制御子22(又は24)の筐体の端子まで延長され、そこから制御子内配線AA,BBによって発振有無検出部25に接続されて、発振有無検出部25から照査用発振信号を伝達されるものとなっている。   One connection line A1 of the pair of connection lines A1 and B1 has one end connected to the rail 11 by welding or the like, and the other connection line B1 has one end connected to the rail 12 (see FIG. 15). Any connection line A1, B1 extends from 15 (or 14) toward the end point crossing controller 22 (or 24) and is connected to the oscillation presence / absence detecting unit 25. Although it is not essential, the end point crossing controller 22 (or 24) is usually housed in the crossing equipment box, so that both the connection lines A1 and B1 are directly connected to the oscillation presence / absence detecting unit 25. Rather than being connected, they are indirectly connected via an extension line. That is, the other ends of the connection lines A1 and B1 are connected to the terminals of the wiring terminal board 28, and from there to the terminal of the end point crossing controller 22 (or 24) by the crossing device box wiring 27. From there, it is connected to the oscillation presence / absence detection unit 25 by the control-internal wires AA and BB, and the oscillation signal for verification is transmitted from the oscillation presence / absence detection unit 25.

また、リレー駆動部26の終止Rリレーの接点はリレー信号の伝達のため踏切器具箱内配線にて踏切制御装置31,34の入力ユニットに接続されている。
さらに、終止点用踏切制御子22(又は24)は、発振式であれ(図15(a)参照)、H形であれ(図15(b)参照)、何れのタイプであっても、列車検知長を加減して規定値に合わせるために、制御子内配線AA,BBにて伝送される照査用発振信号のレベルを上げ下げ(加減調整)する調整器25a(第1調整部)を具備している。図示した調整器25aは、発振有無検出部25に内蔵状態で配設されていて、入力レベルを手動操作にて調整するようになっているが、照査用発振信号のレベルを調整してから固定できれば、出力レベルを調整するようになっていても良く、発振有無検出部25に添設状態で配設されていても良く、制御子内配線AA,BBに介挿状態で配設されていても良い。
Further, the contact of the end R relay of the relay drive unit 26 is connected to the input unit of the level crossing control devices 31 and 34 by wiring in the level crossing equipment box for transmission of the relay signal.
Further, the end point crossing controller 22 (or 24) may be of any type, whether it is an oscillation type (see FIG. 15 (a)) or an H type (see FIG. 15 (b)). In order to adjust the detection length to a specified value, an adjuster 25a (first adjustment unit) is provided for raising and lowering (adjusting / adjusting) the level of the oscillation signal for verification transmitted through the control-internal wires AA and BB. ing. The illustrated adjuster 25a is provided in the oscillation presence / absence detecting unit 25 so as to adjust the input level by manual operation, but is fixed after adjusting the level of the oscillation signal for verification. If possible, the output level may be adjusted, may be provided in an attached state to the oscillation presence / absence detecting unit 25, or may be provided in the inter-controller wirings AA and BB in an inserted state. Also good.

このように、複線区間の踏切8に係る現状の踏切保安装置37では(図16参照)、下り側の線路10において踏切8の手前・起点側で踏切8から遠くに下り始動点ADCが設定されるとともに踏切8の通過先・終点側で踏切8の近くに下り終止点BDCが設定される。また、上り側の線路10において踏切8の手前・終点側で踏切8から遠くに上り始動点CDCが設定されるとともに踏切8の通過先・起点側で踏切8の近くに上り終止点DDCが設定される。さらに、それらの設定に基づいて、下り始動点ADCでは閉電路形の始動点用踏切制御子21に至る接続線の一端が線路10に溶接され、下り終止点BDCの接続線取付箇所15には開電路形の終止点用踏切制御子22に至る接続線(第1接続線A1,B1)の一端が線路10に溶接される。   In this way, in the current level crossing safety device 37 related to the crossing 8 in the double track section (see FIG. 16), the down start point ADC is set far from the crossing 8 on the downstream side 10 before and at the starting point of the crossing 8. At the same time, a descending end point BDC is set near the level crossing 8 at the destination / end point side of the level crossing 8. In addition, an upstream starting point CDC is set on the upstream line 10 before and at the end of the railroad crossing 8 and far from the railroad crossing 8, and an upstream end point DDC is set near the railroad crossing 8 at the destination and starting point of the railroad crossing 8. Is done. Further, based on these settings, at the descending starting point ADC, one end of the connecting line leading to the closed-circuit-type starting point crossing controller 21 is welded to the line 10, and the connecting line attachment point 15 at the descending end point BDC is One end of a connection line (first connection lines A1, B1) reaching the end point crossing controller 22 of the open circuit type is welded to the line 10.

また、上り始動点CDCでは閉電路形の始動点用踏切制御子23に至る接続線の一端が線路10に接続され、上り終止点DDCの接続線取付箇所14には開電路形の終止点用踏切制御子24に至る接続線(第1接続線A1,B1)の一端が線路10に溶接される。そして、踏切制御子21の始動Rリレーと踏切制御子22の終止Rリレーと踏切制御子23の始動Rリレーと踏切制御子24の終止Rリレーとの励磁有無状態に応じて、踏切制御装置31が警報灯32の動作を制御し、更に第1種の踏切では踏切制御装置31が踏切遮断機33の動作をも制御し、下り始動点ADCと下り終止点BDCとの間が下りの踏切制御区間となり、上り始動点CDCと上り終止点DDCとの間が上りの踏切制御区間となる。   In addition, one end of the connecting line leading to the closed circuit type starting point crossing controller 23 is connected to the line 10 at the ascending start point CDC, and the open line type end point is connected to the connecting line attachment point 14 of the ascending end point DDC. One end of a connection line (first connection lines A 1, B 1) reaching the level crossing controller 24 is welded to the line 10. The level crossing control device 31 is in accordance with the excitation presence / absence states of the start R relay of the level crossing controller 21, the end R relay of the level crossing controller 22, the start R relay of the level crossing controller 23, and the end R relay of the level crossing controller 24. Controls the operation of the warning light 32. Further, at the first type of level crossing, the level crossing control device 31 also controls the operation of the level crossing breaker 33, and the level crossing control between the descending start point ADC and the descending end point BDC is performed. A section between the up start point CDC and the up end point DDC is an up crossing control section.

これに対し、単線区間の踏切8に係る現状の踏切保安装置38では(図17(a)参照)、線路10において踏切8の近くに共用終止点DDCが設定され更にそれより踏切8から遠くに且つ踏切8の両側に分かれて下り始動点ADCと上り始動点CDCが設定され、下り始動点ADCでは閉電路形の始動点用踏切制御子21に至る接続線の一端が線路10に溶接され、共用終止点DDCの接続線取付箇所14には開電路形の終止点用踏切制御子24に至る接続線(第1接続線A1,B1)の一端が線路10に溶接され、上り始動点CDCでは閉電路形の始動点用踏切制御子23に至る接続線の一端が線路10に接続される。そして、踏切制御子21の始動Rリレーと踏切制御子24の終止Rリレーと踏切制御子23の始動Rリレーとの励磁有無状態に応じて、踏切制御装置34が警報灯32の動作を制御し、更に第1種の踏切では踏切制御装置34が踏切遮断機33の動作をも制御し、上り始動点CDCと共用終止点DDCとの間が上りの踏切制御区間となり、下り始動点ADCと共用終止点DDCとの間が下りの踏切制御区間となる。   On the other hand, in the current level crossing safety device 38 related to the level crossing 8 in the single track section (see FIG. 17A), the common end point DDC is set near the level crossing 8 on the track 10, and further from the level crossing 8 further. In addition, a descending start point ADC and an ascending start point CDC are set on both sides of the level crossing 8, and at the descending start point ADC, one end of a connecting line leading to a closed-circuit-type starting point level crossing controller 21 is welded to the line 10. One end of a connection line (first connection line A1, B1) leading to the open-circuit type crossing point controller 24 for the open circuit type is welded to the line 10 at the connection line attachment point 14 of the common termination point DDC. One end of a connection line leading to a closed circuit type starting point crossing controller 23 is connected to the line 10. The level crossing control device 34 controls the operation of the warning light 32 according to the excitation presence / absence state of the start R relay of the level crossing controller 21, the end R relay of the level crossing controller 24, and the start R relay of the level crossing controller 23. Further, in the first type of level crossing, the level crossing control device 34 also controls the operation of the level crossing breaker 33, and the range between the ascending start point CDC and the common end point DDC is an ascending level crossing control section, and is shared with the descending start point ADC. A section between the end point DDC and the lower level crossing control section.

すなわち、単線の場合、列車が上り始動点CDCの列車検知長の区間に進入し掛かってから共用終止点DDCの列車検知長の区間を進出し終えるまでは、列車が上りの踏切制御区間の中に存在するとの判別がなされ、列車運転方向が上りであることを示す上りSRリレーが常態の励磁(無意)から無励磁(有意)になって、警報灯32にて警報が発せられるとともに、第1種の踏切では踏切遮断機33にて道路交通が遮断される。また、列車が下り始動点ADCの列車検知長の区間に進入し掛かってから共用終止点DDCの列車検知長の区間を進出し終えるまでは、列車が下りの踏切制御区間の中に存在するとの判別がなされ、列車運転方向が下りであることを示す下りSRリレーが常態の励磁(無意)から無励磁(有意)になって、警報灯32にて警報が発せられるとともに、第1種の踏切では踏切遮断機33にて道路交通が遮断される。さらに、それ以外のときには、上りの踏切制御区間にも下りの踏切制御区間にも列車が在線していないとの判別がなされて、スピーカや警報灯32から警報が発せられることがなく、第3種の踏切はもちろん第1種の踏切8でも道路交通が遮断されない。   In other words, in the case of a single line, the train is in the ascending level crossing control section from when the train enters the train detection length section of the ascending start point CDC until the train ends at the train detection length section of the common end point DDC. The upward SR relay indicating that the train operation direction is upward is changed from the normal excitation (involuntary) to the non-excitation (significant), and the warning lamp 32 issues an alarm, At one kind of level crossing, road traffic is blocked by a level crossing barrier 33. In addition, the train exists in the descending railroad crossing control section from when it enters the train detection length section of the descending start point ADC until it has finished entering the train detection length section of the common end point DDC. The determination is made and the down SR relay indicating that the train operation direction is down is changed from normal excitation (involuntary) to non-excitation (significant), an alarm is issued by the warning light 32, and the first type of railroad crossing Then, the road traffic is blocked by the crossing barrier 33. Further, at other times, it is determined that no train is present in the up crossing control section or down crossing control section, and no warning is issued from the speaker or the warning light 32. Road traffic is not blocked at the first level crossing 8 as well as the type crossing.

踏切障害物検知装置35は、赤外光・レーザ光での送受光に係る遮断の有無や(例えば非特許文献2参照)、レーダ方式で測定した距離の遠近(例えば特許文献1参照)などに応じて、踏切の中の障害物を検知するものであり、そのために(図18(a)参照)、踏切8に臨んで設置された感応部と、踏切8に接近して来る列車に停止信号を現示するための他装置(説明は割愛する)にその条件を出力する発報部と、それらの動作を制御する制御部とを具えている。そのうち、感応部は、上述した送受光部や測距部を具備したものであり、障害物に対する遮断検出や遠近測定に基づく判別結果を障害物感応信号SSとして制御部へ送出するようになっている。また、制御部は、障害物感応信号SSに応じて発報制御信号BZを生成し、この発報制御信号BZを発報部に送出することで、発報部による警報の開始や停止を制御するようになっている。   The level crossing obstacle detection device 35 is configured to detect the presence / absence of interruption related to transmission / reception with infrared light / laser light (for example, see Non-Patent Document 2), the distance measured by a radar system (for example, see Patent Document 1), Accordingly, an obstacle in the level crossing is detected. For this purpose (see FIG. 18A), a stop signal is sent to the sensitive unit installed facing the level crossing 8 and the train approaching the level crossing 8. Is provided with a reporting unit that outputs the conditions to another device (not described) and a control unit that controls the operation thereof. Among them, the sensitive unit is provided with the above-described transmission / reception unit and distance measuring unit, and sends a discrimination result based on blockage detection and distance measurement to the control unit as an obstacle sensitive signal SS. Yes. In addition, the control unit generates the alarm control signal BZ according to the obstacle response signal SS, and sends the alarm control signal BZ to the alarm unit, thereby controlling the start and stop of the alarm by the alarm unit. It is supposed to be.

さらに、踏切障害物検知装置35の制御部は、設置先の踏切8を通過する列車を障害物として検知するのを回避するために、下りSRリレーの出力と下り終止点BDCの終止点用踏切制御子22のリレー出力BPR(終止R)を入力して、その信号BPR(BDC)を下り列車の到来時における踏切障害物検知の下り側マスクとすることにより、下り列車の到来時には、すなわち下りSRリレーが励磁されていないときには、リレーBPRが励磁されていなければ障害物感応信号SSに応じた発報制御信号BZの生成を行うが、リレーBPRが励磁されると障害物感応信号SSの如何にかかわらず発報制御信号BZを有意(警報状態)にすることなく発報制御信号BZを無意(無警報状態)にし続けるようになっている。   Further, the control unit of the level crossing obstacle detection device 35 detects the train passing through the installation level crossing 8 as an obstacle, so that the output of the down SR relay and the end point of the down end point BDC are used. By inputting the relay output BPR (stop R) of the controller 22 and using the signal BPR (BDC) as a downward mask for detecting a crossing obstacle when the down train arrives, that is, when the down train arrives, that is, down When the SR relay is not energized, if the relay BPR is not energized, the alarm control signal BZ is generated according to the obstacle response signal SS. Regardless of this, the alert control signal BZ is kept involuntary (no alarm state) without making the alert control signal BZ significant (alarm state).

また、踏切障害物検知装置35の制御部は、上りSRリレーの出力と上り終止点DDCの終止点用踏切制御子24のリレー出力DPR(終止R)も入力して、その信号DPR(DDC)を上り列車の到来時における踏切障害物検知の上り側マスクとすることにより、上り列車の到来時には、すなわち上りSRリレーが励磁されていないときには、リレーDPRが励磁されていなければ障害物感応信号SSに応じた発報制御信号BZの生成を行うが、リレーDPRが励磁されると障害物感応信号SSの如何にかかわらず発報制御信号BZを有意(警報状態)にすることなく発報制御信号BZを無意(無警報状態)にし続けるようになっている。   The control unit of the level crossing obstacle detection device 35 also receives the output of the up SR relay and the relay output DPR (end R) of the end point crossing controller 24 of the up end point DDC, and the signal DPR (DDC). Is used as an upstream mask for detecting crossing obstacles when an up train arrives, so that when the up SR relay is not energized when the up train arrives, that is, when the relay DPR is not energized, the obstacle sensitive signal SS The alarm control signal BZ is generated in accordance with the alarm signal. However, when the relay DPR is excited, the alarm control signal BZ is not made significant (alarm state) regardless of the obstacle response signal SS. It keeps BZ involuntary (no alarm state).

しかも、踏切障害物検知装置35の制御部は、障害物感応信号SSに応じて発報制御信号BZを生成する際、予め設定された所定時間の緩動性を示すようにもなっている。踏切障害物とは、列車が踏切に接近し、踏切警報が開始後、あるいは踏切警報が開始してから更に数秒(踏切により指定する)後に、エンストなどのより踏切道内に滞留している自動車などの物体であり、踏切道を通り抜けようと移動する通行者や自動車などと区別する必要がある。滞留している自動車などの物体であることを、所定時間の間連続して、例えば送受光が遮断されたことをもって認識する。この所定時間は、6秒程度に設定されている。   Moreover, when the control unit of the crossing obstacle detection device 35 generates the alarm control signal BZ in accordance with the obstacle response signal SS, the control unit shows a slow movement for a predetermined time set in advance. Railroad crossing obstacles are cars that stay in a railroad crossing, such as an engine stall, after the train approaches the railroad crossing and the crossing warning starts, or a few seconds after the crossing warning starts (specified by the crossing) It is necessary to distinguish it from a passerby or a car that moves to pass through a railroad crossing. It is recognized that the object is a staying object such as an automobile continuously for a predetermined time when, for example, transmission / reception is interrupted. This predetermined time is set to about 6 seconds.

このような踏切障害物検知装置35の動作について、複線の下り側の線路10を下り列車が踏切8に向かって走行して来た場合を具体例にして説明する(図18(b)〜(e)参照)。下り列車が下り始動点ADCの列車検知長に進入すると(図18(b)左側部分を参照)、それまで励磁状態だった下りSRリレーが励磁されなくなるが、その時点では未だ下り列車が下り終止点BDCに到達していないことから、下り終止点BDCの終止点用踏切制御子22の出力用の出力リレー(出力リレーの名称を、ここではBPRと呼ぶ)が励磁されていないので(図18(c)左側部分を参照)、踏切障害物検知装置35は踏切8に対して障害物の検知を行う。   The operation of the railroad crossing obstacle detection device 35 will be described with reference to a specific example of a case where a down train travels toward the railroad crossing 8 on the double track 10 (see FIGS. 18B to 18B). e)). When the descending train enters the train detection length of the descending starting point ADC (see the left part of FIG. 18 (b)), the descending SR relay that has been energized until that time is no longer energized, but at that point, the descending train still stops descending. Since the point BDC has not been reached, the output relay for output of the end point crossing controller 22 at the descending end point BDC (the name of the output relay is referred to as BPR here) is not excited (FIG. 18). (See (c) the left part), the crossing obstacle detection device 35 detects an obstacle for the crossing 8.

そして、下り列車が進行して踏切8に差し掛かると(図18(d)中央部分を参照)、その下り列車に感応して障害物感応信号SSが不感状態から有感状態になるが、下り列車の速度が想定内であれば、発報制御信号BZが有意(警報状態)になる前に、下り列車が下り終止点BDCの列車検知長の区間に進入して(図18(c)中央部分を参照)、リレーBPRが励磁されることから、踏切障害物検知の下り側マスクが働くため、発報制御信号BZは無意(無警報状態)のまま変わらないので、誤報が出ることはない。   When the down train progresses and reaches the railroad crossing 8 (see the center part of FIG. 18 (d)), the obstacle response signal SS changes from the insensitive state to the sensitive state in response to the down train. If the train speed is within the expected range, before the alarm control signal BZ becomes significant (alarm state), the descending train enters the section of the train detection length at the descending stop point BDC (FIG. 18 (c) center). Since the relay BPR is energized, the descending mask for detecting crossing obstacles works, so that the alarm control signal BZ remains unintentionally (no alarm state), so that no false alarms are generated. .

リレーBPRが励磁されなくなって下り側マスクが働かなくなるのは、下り列車が下り終止点BDCの列車検知長を完全に抜け出てからであり(図18(c)右側部分を参照)、下りSRリレーが励磁状態に戻るのより遅く(図18(b)右側部分を参照)、障害物感応信号SSが不感状態に戻るのよりも遅いので(図18(d)右側部分を参照)、下り列車が下りの踏切制御区間を通過し終えるまで、誤報が出ることはない。   The reason why the relay BPR is not excited and the downward mask does not work is after the downward train has completely escaped the train detection length of the downward end point BDC (see the right side of FIG. 18 (c)), and the downward SR relay. Is slower than the return to the excited state (see the right part of FIG. 18 (b)) and the obstacle sensitive signal SS is slower than the dead state (see the right part of FIG. 18 (d)), There will be no false alarms until it passes through the down crossing control section.

このように、下り列車が想定内の速度で走行していれば、列車の最先頭が踏切8の進入側の縁端に差し掛かってから列車の最先頭が終止点の列車検出長に進入するまでの時間tが、障害物感応信号SSの緩動性に係る所定時間より短くなるため、踏切障害物検知の下り側マスクに使用されるリレーBPRに係る下り終止点BDCが踏切8の手前でなく先に設置されていても、踏切障害物検知の下り側マスクが有効に機能する。   In this way, if the descending train is traveling at the expected speed, from the time when the top of the train reaches the edge of the entry side of the railroad crossing 8 until the top of the train enters the train detection length at the end point Since the time t is shorter than the predetermined time related to the slowness of the obstacle sensing signal SS, the down end point BDC related to the relay BPR used for the down side mask for crossing obstacle detection is not before the crossing 8. Even if installed earlier, the descending mask for level crossing obstacle detection functions effectively.

特開2006−214961号公報JP 2006-216961 A 特願2011−147805号Japanese Patent Application No. 2011-147805 特願2011−208670号Japanese Patent Application No. 2011-208670

鉄道技術者のための信号概論 信号シリーズ1 「鉄道信号一般」社団法人日本鉄道電気技術協会2005年3月18日発行、改訂版p.107〜118Overview of Signals for Railway Engineers Signal Series 1 “General Railway Signals” Japan Railway Electrical Engineering Association, issued on March 18, 2005, revised p. 107-118 鉄道技術者のための電気概論 信号シリーズ8 「踏切保安装置」社団法人日本鉄道電気技術協会2007年10月30日発行、4版p.35〜120Introduction to Electricity for Railway Engineers Signal Series 8 “Level Crossing Security Device” Japan Railway Electrical Engineering Association, issued October 30, 2007, 4th edition, p. 35-120

しかしながら、このような従来の踏切保安装置37では、下り列車の速度が想定の最低速度よりも更に低下したような場合、列車の最先頭が踏切8の進入側の縁端に差し掛かってから列車の最先頭が終止点の列車検出長に進入するまでの時間tが(図18(e)参照)、長くなって、障害物感応信号SSの緩動性に係る所定時間を超えてしまうこともありうる。そして、時間tが所定時間を超えると、発報制御信号BZが有意(警報状態)になるため、誤報が出てしまう。すなわち、マスク条件が成立する時機が遅れて、踏切障害物検知のマスク機能が損なわれるため、列車が踏切障害物として検知されてしまう。かかる不都合な事態は、繰り返しとなる詳細な説明は割愛するが、複線区間の上り側や単線区間についても同様に起こりうることであり、特に幅員の広い踏切では起こりやすい。   However, in such a conventional railroad crossing safety device 37, when the speed of the descending train is further reduced from the assumed minimum speed, the train's top line reaches the edge of the approaching side of the railroad crossing 8 and then the train The time t required to enter the train detection length with the topmost end point (see FIG. 18 (e)) becomes longer and may exceed the predetermined time related to the looseness of the obstacle response signal SS. sell. When the time t exceeds the predetermined time, the alarm control signal BZ becomes significant (alarm state), and thus false alarms are generated. That is, when the mask condition is satisfied, the mask function for detecting a level crossing obstacle is impaired, so that the train is detected as a level crossing obstacle. Such an inconvenient situation is omitted in the repeated detailed explanation, but it can occur in the same way for the upside of the double track section and the single track section, and is particularly likely to occur at a wide crossing.

そして、かかる不都合を回避するには、コスト負担を無視することが許される理想的な安全重視の環境下であれば、踏切制御子を幾つでも増設することができるので、複線区間であれ単線区間であれ線路10の踏切8に踏切保安装置を設置する際、踏切道を挟んだ両側それぞれに、踏切障害物検知のマスク区間(以下、障検マスク区間という)の端を画定するための踏切制御子を設置して、踏切8の幅員の全体が障検マスク区間内に完全に収まるよう障検マスク区間を拡張すると良い。   In order to avoid such inconvenience, any number of railroad crossing controllers can be added in an ideal safety-oriented environment where the cost burden can be ignored. However, when installing a railroad crossing safety device at the railroad crossing 8 of the railroad track 10, a railroad crossing control for demarcating the end of a mask section for detecting a railroad crossing obstacle (hereinafter referred to as a fault detection mask section) on both sides across the railroad crossing road. It is advisable to install a child and expand the fault mask section so that the entire width of the level crossing 8 is completely within the fault mask section.

具体的には、例えば複線区間の場合(図19参照)、下り側の線路10については、下り始動点ADCと踏切8との間であって踏切8に近い所に例えば下り拡張点BBDCを設定するとともに、終止点用踏切制御子22と同様の例えば拡張点用踏切制御子22aを追加導入して、拡張点用踏切制御子22aの接続線を下り拡張点BBDCの接続線取付箇所15aに接続する。さらに、踏切障害物検知装置35を改造して踏切障害物検知装置35aにする際、拡張点用踏切制御子22aの出力用の出力リレー(出力リレーの名称を、ここでは下マスクRリレーと呼ぶ)をも取り込んで、障検マスク区間が下り拡張点BBDCの列車検知長の起点側の端と下り終止点BDCの列車検知長の終点側の端とに亘る区間になるよう、マスク機能を拡張させる。   Specifically, for example, in the case of a double track section (see FIG. 19), for the downstream line 10, for example, a downward extension point BBDC is set between the downward start point ADC and the level crossing 8 and close to the level crossing 8. In addition, for example, an extension point crossing controller 22a similar to the end point crossing controller 22 is additionally introduced, and the connection line of the extension point crossing controller 22a is connected to the connection line attachment point 15a of the downward extension point BBDC. To do. Further, when the level crossing obstacle detection device 35 is modified to be a level crossing obstacle detection device 35a, an output relay for output of the extension point crossing controller 22a (the name of the output relay is referred to as a lower mask R relay here). ) And the mask function has been expanded so that the fault detection mask section extends from the end of the train detection length at the descending extension point BBDC to the end of the train detection length at the descending end point BDC. Let

また、複線区間の上り側の線路10については、上り始動点CDCと踏切8との間であって踏切8に近い所に例えば上り拡張点DDDCを設定するとともに、終止点用踏切制御子24と同様の例えば拡張点用踏切制御子24aを追加導入して、拡張点用踏切制御子24aの接続線を上り拡張点DDDCの接続線取付箇所14aに接続する。さらに、踏切障害物検知装置35aについて、拡張点用踏切制御子24aの出力用の出力リレー(出力リレーの名称を、ここでは上マスクRリレーと呼ぶ)をも取り込んで、障検マスク区間が上り拡張点DDDCの列車検知長の終点側の端と上り終止点DDCの列車検知長の起点側の端とに亘る区間になるよう、マスク機能を拡張させる。   For the upstream line 10 of the double track section, for example, an upstream extension point DDDC is set between the upstream starting point CDC and the railroad crossing 8 and close to the railroad crossing 8, and the end point railroad crossing controller 24 and Similarly, for example, an extension point crossing controller 24a is additionally introduced, and the connection line of the extension point crossing controller 24a is connected to the connection line attachment point 14a of the upstream extension point DDDC. Further, for the level crossing obstacle detection device 35a, an output relay for output of the level crossing controller 24a for the extension point (the name of the output relay is referred to as an upper mask R relay here) is also taken in, and the obstacle detection mask section rises. The mask function is expanded so as to be a section extending from the end of the train detection length of the extension point DDDC to the end of the train detection length of the up end point DDC.

しかしながら、このようなコスト無視の対処策では、開電路形の終止点用踏切制御子を線路10毎に2つずつ設置しなければならず、終止点用踏切制御子についてはイニシャルコストもランニングコストも倍増する。複線区間は単線区間に比べれば営業収益が改善されていると言っても、コストは抑えなければならない。
そこで、踏切制御子を追加しなくても踏切の両側で且つ踏切の近くで列車を検知できて障検マスク区間が踏切より広くなるよう改良することが、第1技術課題となる。
However, in such a cost-ignoring countermeasure, it is necessary to install two open-circuit-type end-point crossing controllers for each line 10, and the initial cost and the running cost of the end-point crossing controllers are limited. Doubles. Even though the double-track section has improved operating revenue compared to the single-track section, the cost must be reduced.
Accordingly, it is a first technical problem to improve the train so that it is possible to detect the train on both sides of the level crossing and near the level crossing without adding a level crossing controller so that the fault detection mask section becomes wider than the level crossing.

この第1技術課題は、上述したように、複線区間における踏切保安装置の場合、上り側の線路10及び下り側の線路10の何れか一方または双方に係るものとなっている。
これに対し、単線区間では、例えば下り終止点BDCが設定されておらず上り終止点DDCが共用終止点とされてそれに終止点用踏切制御子24が接続されている場合(図17(a)参照)、上り列車に係る踏切障害物検知については複線区間について上述したのとほぼ同様にして第1技術課題が生じる。また、下り列車に係る踏切障害物検知については、列車の最先頭が共用終止点DDCから踏切8へ進行する時間でなく、列車の最後尾が共用終止点DDCを出てから踏切8を渡りきるまでの時間が障害物感応信号SSの緩動性に係る所定時間より短いか長いかが警報の適否の分かれ目になるという違いはあるが、やはり同様に第1技術課題が生じる。
As described above, the first technical problem relates to one or both of the upstream line 10 and the downstream line 10 in the case of a crossing safety device in a double track section.
On the other hand, in the single line section, for example, when the down end point BDC is not set, the up end point DDC is set as a common end point, and the end point crossing controller 24 is connected thereto (FIG. 17A). As for the crossing obstacle detection related to the up train, the first technical problem arises in substantially the same manner as described above for the double track section. In addition, regarding the crossing obstacle detection related to the descending train, it is not the time for the top of the train to travel from the common end point DDC to the crossing 8 but crosses the crossing 8 after the end of the train leaves the common end point DDC. Although there is a difference that whether the time until the time is shorter or longer than the predetermined time related to the slidability of the obstacle response signal SS is a difference between the suitability of the alarm, the first technical problem is similarly generated.

しかも、単線区間の踏切保安装置38については次の第2技術課題も生じる(例えば特許文献2,3参照)。詳述すると、既述したように、現状では、単線区間の線路10の踏切8に設置される踏切保安装置38において、列車が踏切道を通過したことを検知し、踏切警報を停止させ更に第1種の踏切では踏切遮断機33を上昇させるために使用する開電路形の終止点用踏切制御子は、踏切道を挟んで起点側あるいは終点側のどちら側か一方だけで左右のレール11,12に接続線を介して取り付けられるのが一般的である。
これらの場合のうち、終止点用踏切制御子24が踏切8の起点側に取付けられた場合は(図17(a)参照)、踏切8が上りの踏切制御区間に属するので、上り列車に対しては、列車速度の如何に拘わらず、上り列車が完全に踏切道を通過し終わったことを検知でき、通過し終えた時点で警報灯32等での警報が停止し、所要の機能がその通りに発揮される。
Moreover, the following second technical problem also arises for the railroad crossing safety device 38 in the single track section (see, for example, Patent Documents 2 and 3). More specifically, as described above, in the present situation, the level crossing safety device 38 installed on the level crossing 8 of the track 10 in the single track section detects that the train has passed the level crossing, stops the level crossing alarm, and further In one type of railroad crossing, the open-circuit type railroad crossing controller used for raising the railroad crossing breaker 33 is composed of the left and right rails 11 on either the starting side or the end side across the railroad crossing. It is common to attach to 12 via a connecting line.
Among these cases, when the end point crossing controller 24 is attached to the starting point side of the crossing 8 (see FIG. 17A), since the crossing 8 belongs to the up crossing control section, Therefore, regardless of the train speed, it can be detected that the up train has completely passed the railroad crossing, and when it has passed, the warning by the warning light 32 etc. stops and the required function is Demonstrated on the street.

一方、下り列車に対しては、踏切8が下りの踏切制御区間に属さないので、列車の速度によっては、あるいは踏切道の幅員によっては、下り列車が踏切道を通過中にも拘わらず通過したものと見做されることがあり、そうするとその時点で警報灯32等での警報が停止するので所期の目的を果たすことができない。
列車が共用終止点DDCを通過し終えたら直ちに警報等を止めるのでなく、予め設定しておいた遅延時素だけ更に経過するのを待ってその後に警報等を止めるので、踏切8を通過する下り列車の速度が通常より多少遅い程度かそれ以上であれば、下り列車が踏切道を通過中にも拘わらず通過したものと見做されることはないのであるが、列車速度の速度があまりに遅かったり列車が踏切8で停止したようなときには、下り列車が踏切8を通過し終える前に通過したものと見做されることが起こりうる。
On the other hand, for the down train, the level crossing 8 does not belong to the down level crossing control section. Therefore, depending on the speed of the train or the width of the level crossing, the crossing passes even though the down train is passing the level crossing. In that case, the alarm with the warning lamp 32 stops at that time, and the intended purpose cannot be achieved.
Rather than stopping the alarm immediately after the train has passed the common end point DDC, it waits for the preset delay time to elapse and then stops the alarm, etc. If the speed of the train is slightly slower than normal, or more than that, it is not considered that the descending train has passed through the railroad crossing, but the train speed is too slow. When the train stops at the railroad crossing 8, it may happen that the descending train has passed before it has passed the railroad crossing 8.

なお、終止点用踏切制御子が踏切8の終点側にだけ取付けられた場合については図示や繰り返しとなる煩雑な説明は割愛するが、この場合も上り下りが入れ替わるだけで同様の不都合が生じうる。
そして、かかる不都合を回避するには、コスト負担を無視することが許される理想的な安全重視の環境下であれば、複線区間における踏切保安装置でも惜しげなく単線区間に適用することができるので、単線区間の線路10の踏切8に踏切保安装置を設置する際、踏切道を挟んだ両側それぞれに始動点用踏切制御子と終止点用踏切制御子とを取り付ければ良い。
In addition, when the end point crossing controller is attached only to the end point side of the crossing 8, the illustration and repeated complicated explanations are omitted, but in this case as well, the same inconvenience may be caused simply by switching up and down. .
And in order to avoid such inconvenience, if it is under an ideal safety-oriented environment where it is allowed to ignore the cost burden, it can be applied to single line sections without any hesitation even at a railroad crossing safety device in a double track section, When installing a railroad crossing safety device at the railroad crossing 8 of the track 10 in the single track section, a start-point crossing controller and a stop-point crossing controller may be attached to both sides across the railroad crossing.

すなわち(図17(b)参照)、踏切8の起点側のレール11,12に対しては遠くの下り始動点ADCに始動点用踏切制御子21を接続線にて接続するとともに近くの上り終止点DDCの接続線取付箇所14には接続線を介して終止点用踏切制御子24を接続し、踏切8の終点側のレール11,12に対しては近くの下り終止点BDCの接続線取付箇所15に接続線を介して終止点用踏切制御子22を接続するとともに遠くの上り始動点CDCには始動点用踏切制御子23を接続線にて接続するのである。これにより、上り始動点CDCから上り終止点DDCに至る上りの踏切制御区間に踏切8が属するばかりでなく、下りの踏切制御区間が下り始動点ADCから下り終止点BDCに至る区間に広がって、踏切8が下りの踏切制御区間にも属することとなるので、上り列車であれ、下り列車であれ、列車速度の如何に拘わらず、さらには踏切道の幅員にも拘わらず、列車が完全に踏切道を通過し終わったことを検知できて、所期の目的が達成される。   That is, (see FIG. 17 (b)), for the rails 11 and 12 on the starting point side of the railroad crossing 8, the starting point railroad crossing controller 21 is connected to the far downstream starting point ADC by a connecting line, and the uphill stop nearby. An end point crossing controller 24 is connected to the connection line attachment point 14 of the point DDC via a connection line, and the connection line attachment of the nearby down end point BDC is attached to the rails 11 and 12 on the end point side of the crossing 8. The end point crossing controller 22 is connected to the location 15 via a connecting line, and the starting point crossing controller 23 is connected to the distant starting point CDC by a connecting line. As a result, not only the level crossing 8 belongs to the up crossing control section from the up start point CDC to the up end point DDC, but also the down crossing control section extends to a section from the down start point ADC to the down end point BDC. Since the level crossing 8 also belongs to the down crossing control section, the train is completely crossed regardless of the train speed regardless of the train speed, whether it is an up train or a down train. The intended purpose is achieved by detecting that the road has been passed.

しかしながら、このようなコスト無視の対処策では、開電路形の終止点用踏切制御子を2つも設置しなければならず、終止点用踏切制御子についてはイニシャルコストもランニングコストも倍増する。単線区間は営業収益に乏しい所なので、コストは抑えなければならない。また、近接した範囲に複数・多数の踏切制御子が設置されるので、それらが同じ線路に送出する照査用発振信号に関して相互干渉が発生しやすくなるが、これを回避するためには列車検知用の信号すなわち照査用発振信号の周波数を変える必要がある。既に多くの信号周波数を使用しているなかで、更に周波数を増やすことは、混変調が増えるなどの不都合もある。
そこで、終止点用踏切制御子が一台しかなくても踏切の両側の終止点で列車を検知できるように改良することが、第2技術課題となる。
However, in such a cost-ignoring countermeasure, it is necessary to install two open-circuit-type end-point crossing controllers, and both the initial cost and the running cost of the end-point crossing controller are doubled. Since the single track section is poor in operating revenue, costs must be kept down. In addition, since multiple and many level crossing controllers are installed in the close range, mutual interference is likely to occur with respect to the oscillation signal for verification sent to the same line. Therefore, it is necessary to change the frequency of the check signal, ie, the oscillation signal for verification. Increasing the frequency further while using many signal frequencies has the disadvantage of increasing cross modulation.
Therefore, it is a second technical problem to improve so that a train can be detected at the stop points on both sides of the crossing even if there is only one stop crossing controller.

本発明の踏切保安装置および踏切制御切替装置は(解決手段1)、鉄道の複線区間の踏切に設置される踏切保安装置等であって、上述の第1技術課題を解決するために創案されたものであり、要するに、複線区間の踏切では、下り側の線路については下り列車しか走行しないうえ一の線路を走行する複数の下り列車が同じ踏切を同時に通過することが無いということに基づいて、また上り側の線路については上り列車しか走行しないうえ一の線路を走行する複数の上り列車が同じ踏切を同時に通過することが無いということに基づいて、一台の開電路形踏切制御子に時分割で終止点用踏切制御子と拡張点用踏切制御子という二台分の機能を発揮させることにより、簡便かつ安価に、踏切に近い踏切の両側で列車を検知できるようにしたうえで、両検知結果に基づいて障検マスク区間を広げて踏切が障検マスク区間に収まるようにしたものである。   A railroad crossing safety device and a railroad crossing control switching device according to the present invention (solution 1) are a railroad crossing safety device and the like installed at a railroad crossing in a double track section of a railway, and were created to solve the first technical problem described above. In short, at a crossing in a double track section, based on the fact that only the down train runs on the down line, and that multiple down trains that run on one track do not pass the same crossing at the same time, In addition, on the upside track, only an up train travels and multiple up trains running on one track do not pass through the same level crossing at the same time. By making it possible to detect the trains on both sides of the railroad crossing close to the railroad crossing easily and inexpensively by demonstrating the functions of the railroad crossing controller for the end point and the railroad crossing controller for the expansion point in the division. Crossing with open Sawaken mask section based on both detection results is obtained by a fit to Sawaken mask interval.

具体的には、本発明の踏切保安装置は(解決手段1,当初請求項1)、鉄道の複線区間において線路を横切る踏切の両側に分かれて前記線路に設定された始動点および終止点のうち前記始動点に係る列車検知を行う閉電路形の始動点用踏切制御子と、前記線路と前記終止点の所で第1接続線にて接続されて前記終止点に係る列車検知を行う開電路形の終止点用踏切制御子と、前記始動点用踏切制御子での列車検知結果と前記終止点用踏切制御子での列車検知結果とに基づいて踏切警報を発する踏切制御装置と、前記踏切制御装置に内蔵されていて又は前記踏切制御装置の外部に設けられていて前記線路に係る前記始動点への列車到来に応じて列車在線と上り下りを判別して列車運転方向指示を出す列車方向判別手段と、前記踏切に係る障害物検知を行うとともに前記列車運転方向指示を警報認容条件とし且つマスク条件を警報抑制条件として警報が認容されているときには障害物検知結果に応じて警報を発する踏切障害物検知装置とを備えた踏切保安装置において、
前記始動点と前記踏切との間に設定された拡張点の所で前記線路に接続された第2接続線と、
前記第1接続線と前記終止点用踏切制御子との間に割り込む形で介挿接続されるとともに,前記第2接続線にも接続されて,第1切替状態では前記終止点用踏切制御子の接続先を前記第1接続線に切り替えるが,第2切替状態では前記終止点用踏切制御子の接続先を前記第2接続線に切り替える切替回路部と、
前記列車方向判別手段の判別結果に基づいて,前記始動点への列車到来時には先ず前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記拡張点に係る列車検知を行わせ,その後の前記拡張点への列車進行時には前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記終止点に係る列車検知を行わせる切替制御部と、
前記列車方向判別手段の判別結果と前記終止点用踏切制御子の検出結果とに基づいて,前記拡張点への列車進入と前記終止点からの列車進出とに亘る障検マスク区間に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出する出力形成部と
を設けたことを特徴とする。
Specifically, the railroad crossing safety device according to the present invention (Solution 1, Initial Claim 1) is divided into both sides of a railroad crossing across the track in the double track section of the railway, and the start point and the stop point set on the track A closed-circuit-type start-point crossing controller for detecting a train related to the start point, and an open circuit for detecting a train related to the end point connected to the track at the first connection line at the end point A crossing controller for a final point, a crossing control device for issuing a crossing warning based on a train detection result in the start point crossing controller and a train detection result in the end point crossing controller, and the crossing A train direction that is built in the control device or provided outside the railroad crossing control device, and determines the train on-line and the up-and-down direction according to the arrival of the train at the starting point related to the track and issues a train operation direction instruction Discriminating means and obstacle related to the crossing Crossing safety with a level crossing obstacle detection device that issues an alarm according to the obstacle detection result when the alarm is accepted with the train driving direction indication as an alarm acceptance condition and the mask condition as an alarm suppression condition In the device
A second connecting line connected to the track at an extension point set between the starting point and the railroad crossing;
The end point crossing controller is inserted and connected between the first connection line and the end point crossing controller, and is also connected to the second connection line in the first switching state. A switching circuit unit that switches the connection destination of the end point crossing controller to the second connection line in the second switching state,
Based on the determination result of the train direction determining means, when the train arrives at the starting point, first, the switching circuit unit is set to the second switching state, so that the end point crossing controller is related to the extension point. Switching control for causing the end point crossing controller to detect the train related to the end point by causing the switching circuit unit to take the first switching state when the train proceeds to the extension point thereafter And
Based on the determination result of the train direction determination means and the detection result of the end point crossing controller, a signal corresponding to the fault mask section spanning the train approach to the extension point and the train advance from the end point And an output forming section for sending this signal to the crossing obstacle detection device as the mask condition.

また、本発明の踏切制御切替装置は(解決手段1,当初請求項2)、この装置を現行の踏切保安装置に追加して接続を変更する程度のことで容易かつ安価に上記の踏切保安装置を現出させうるようにしたものであり、具体的には、
鉄道の複線区間において線路を横切る踏切の両側に分かれて前記線路に設定された始動点および終止点のうち前記終止点の所で前記線路に接続された第1接続線と,前記始動点と前記踏切との間に設定された拡張点の所で前記線路に接続された第2接続線とのうち,何れか一方の接続点を選択して開電路形の終止点用踏切制御子と接続させることにより前記終止点用踏切制御子に時分割で二台分の列車検知機能を発揮させる踏切制御切替装置であって、
前記第1接続線に対する接続手段と,前記第2接続線に対する接続手段と,前記終止点用踏切制御子に対する接続手段と,前記線路に係る列車の上り下り及び在線を判別して列車運転方向指示を出す列車方向判別手段に対する接続手段と,前記踏切に係る障害物検知を行うとともに前記列車運転方向指示およびマスク条件による警報認容時には障害物検知結果に応じて警報を発する踏切障害物検知装置に対する接続手段とを有する筐体と、
前記筐体に内蔵されていて,第1切替状態では前記終止点用踏切制御子と前記第1接続線とを接続させるが,第2切替状態では前記終止点用踏切制御子と前記第2接続線とを接続させる切替回路部と、
前記筐体に内蔵されていて,前記列車方向判別手段の判別結果に基づいて,前記始動点への列車到来時には先ず前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記拡張点に係る列車検知を行わせ,その後の前記拡張点への列車進行時には前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記終止点に係る列車検知を行わせる切替制御部と、
前記筐体に内蔵されていて,前記列車方向判別手段の判別結果と前記終止点用踏切制御子の検出結果とに基づいて,前記拡張点への列車進入と前記終止点からの列車進出とに亘る障検マスク区間に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出する出力形成部と
を設けたことを特徴とする。
Further, the level crossing control switching device of the present invention (Solution 1, first claim 2) is the above level crossing safety device which can be easily and inexpensively added to the current level crossing safety device to change the connection. Can be revealed, specifically,
A first connecting line connected to the track at the stop point among the start point and the stop point set on the track divided on both sides of a railroad crossing across the track in a double track section of the railway, the start point and the Select one of the second connection lines connected to the track at the extension point set between the crossing and connect it to the open-circuit-type end point crossing controller A railroad crossing control switching device that causes the railroad crossing controller for the end point to exhibit the train detection function for two cars in a time-sharing manner,
A connection means for the first connection line, a connection means for the second connection line, a connection means for the railroad crossing controller for the end point, and a train operation direction instruction by discriminating up and down and on-line of the train related to the track Connecting to the train direction discriminating means for issuing the obstacle, and connecting to the railroad crossing obstacle detection device for performing obstacle detection related to the railroad crossing and issuing an alarm according to the obstacle detection result at the time of alarm acceptance by the train operation direction instruction and the mask condition A housing having means;
The end point crossing controller is connected to the first connection line in the first switching state, and the end point crossing controller and the second connection are connected in the second switching state. A switching circuit unit for connecting the wires,
When the train arrives at the starting point based on the determination result of the train direction determining means, which is built in the housing, first the switching circuit unit is brought into the second switching state to thereby make the end point crossing. By causing the controller to detect the train related to the extension point, and then causing the switching circuit unit to take the first switching state when the train proceeds to the extension point, the end point crossing controller is allowed to take the end point. A switching control unit for performing train detection according to:
Based on the determination result of the train direction determination means and the detection result of the railroad crossing controller for the stop point, which is built in the casing, the train approaching the extension point and the train advancement from the stop point An output forming unit is provided that generates a signal corresponding to a span of obstacle detection masks and sends the signal to the crossing obstacle detection device as the mask condition.

また、本発明の踏切保安装置および踏切制御切替装置は(解決手段2)、鉄道の単線区間の踏切に設置される踏切保安装置等であって、上述の第1技術課題と第2技術課題とを同時に解決するために創案されたものであり、要するに、単線区間では一の踏切を上り列車と下り列車が同時に通過することが無いということに基づいて、一台の開電路形踏切制御子に時分割で二台分の機能を発揮させることにより、簡便かつ安価に、踏切に近い踏切の両側で列車を検知できるようにしたうえで、両検知結果に基づいて障検マスク区間を広げて障検マスク区間に踏切が収まるようにしたものである。また、同時に、踏切に近い踏切の両側で列車を検知できるようにしたことにより、上り列車であれ、下り列車であれ、列車の速度の如何に拘わらず、更には踏切道の幅員にも拘わらず、当該列車が完全に踏切道を通過し終えた時点で踏切警報を停止するようにしたものである。   A railroad crossing safety device and a railroad crossing control switching device of the present invention are (solution means 2), such as a railroad crossing safety device installed at a railroad crossing in a single track section of a railway, and the first technical problem and the second technical problem described above. In short, based on the fact that no one train crosses the same train at the same time in a single track section, the single open-circuit type railroad crossing controller By demonstrating the functions of two cars in a time-sharing manner, trains can be detected on both sides of a railroad crossing close to a railroad crossing easily and inexpensively. The railroad crossing fits in the inspection mask section. At the same time, by making it possible to detect trains on both sides of a railroad crossing close to a railroad crossing, regardless of the speed of the train, whether it is an ascending train or a descending train, and even the width of the railroad crossing The railroad crossing warning is stopped when the train has completely passed the railroad crossing.

具体的には、本発明の踏切保安装置は(解決手段2,当初請求項3)、鉄道の単線区間の線路に設けられた踏切の両側に分かれて前記線路に設定された下り始動点および上り始動点それぞれに係る列車検知を行う複数の閉電路形の始動点用踏切制御子と、前記始動点のうち何れか一方と前記踏切との間に設定された終止点に係る列車検知を行う開電路形の終止点用踏切制御子と、前記始動点用踏切制御子での列車検知結果と前記終止点用踏切制御子での列車検知結果とに基づいて踏切警報を発する踏切制御装置と、前記踏切制御装置に内蔵されていて又は前記踏切制御装置の外部に設けられていて前記線路に対する前記始動点用踏切制御子の接続箇所への列車到来に応じて列車在線と上り下りを判別して列車運転方向指示を出す列車方向判別手段と、前記踏切に係る障害物検知を行うとともに前記列車運転方向指示を警報認容条件とし且つマスク条件を警報抑制条件として警報が認容されているときには障害物検知結果に応じて警報を発する踏切障害物検知装置とを備えた踏切保安装置において、
前記下り始動点と前記踏切との間に設定された本来あるべき理想的な上り終止点の所で前記線路に接続された第1接続線と、
前記上り始動点と前記踏切との間に設定された本来あるべき理想的な下り終止点の所で前記線路に接続された第2接続線と、
前記第1接続線と前記第2接続線との双方と接続されて,第1切替状態では前記終止点用踏切制御子の接続先を前記第1接続線に切り替えるが,第2切替状態では前記終止点用踏切制御子の接続先を前記第2接続線に切り替える切替回路部と、
前記列車運転方向指示に応じて,前記上り始動点と前記下り始動点とのうち前記上り始動点への列車到来が先行したときには,先ず前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記下り終止点に係る列車検知を行わせ,その後の前記下り終止点への列車進行時には前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記上り終止点に係る列車検知を行わせるとともに、前記上り始動点と前記下り始動点とのうち前記下り始動点への列車到来が先行したときには,先ず前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記上り終止点に係る列車検知を行わせ,その後の前記上り終止点への列車進行時には前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記下り終止点に係る列車検知を行わせる切替制御部と、
前記列車方向判別手段の判別結果と前記終止点用踏切制御子の検出結果とに基づいて,前記上り終止点と前記下り終止点とに亘る障検マスク区間における列車在線に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出するとともに、前記踏切制御装置に踏切警報を終止させる踏切警報終止条件として,前記上り始動点への列車到来が先行したときには,前記終止点用踏切制御子による前記下り終止点に係る列車検知結果を除外して前記終止点用踏切制御子による前記上り終止点に係る列車検知結果のみを前記踏切制御装置へ送出し,且つ,前記下り始動点への列車到来が先行したときには,前記終止点用踏切制御子による前記上り終止点に係る列車検知結果を除外して前記終止点用踏切制御子による前記下り終止点に係る列車検知結果のみを前記踏切制御装置へ送出する出力形成部と
を設けたことを特徴とする。
Specifically, the railroad crossing safety device according to the present invention (Solution 2, Initial Claim 3) is divided into both sides of a railroad crossing provided on the track of a single track section of the railway, and the down start point and the uphill set on the railroad A plurality of closed-circuit-type starting point crossing controllers that detect trains related to each starting point, and an opening that detects trains related to the end point set between any one of the starting points and the crossing. A railroad crossing controller for an end point of an electric circuit type, a railroad crossing control device that issues a railroad crossing warning based on a train detection result in the crossing controller for the starting point and a train detection result in the railroad crossing controller for the end point, and A train that is either built in a level crossing control device or provided outside the level crossing control device, and determines whether the train is on the line or not depending on the arrival of the train at the connection point of the starting point level crossing controller with respect to the track. Train direction determination that gives driving direction instructions A level crossing fault that detects an obstacle according to the obstacle detection result while detecting an obstacle related to the level crossing and using the train operation direction instruction as an alarm acceptance condition and a mask condition as an alarm suppression condition. In a railroad crossing safety device equipped with an object detection device,
A first connection line connected to the line at an ideal up end point set between the down start point and the railroad crossing;
A second connection line connected to the line at an ideal down end point that should be originally set between the up start point and the crossing;
Connected to both the first connection line and the second connection line, and in the first switching state, the connection point of the end point crossing controller is switched to the first connection line, but in the second switching state, A switching circuit section for switching the connection destination of the end point crossing controller to the second connection line;
In response to the train operation direction instruction, when a train arrives at the up start point out of the up start point and the down start point, first, the switching circuit unit is caused to take the second switching state. The end point crossing controller performs train detection related to the descending end point, and when the train proceeds to the descending end point thereafter, the switching circuit unit takes the first switching state to thereby terminate the end point. When a railroad crossing controller detects a train related to the ascending end point, and when a train arrives at the descending start point among the ascending start point and the descending start point, the switching circuit unit firstly By making one switching state, the end point crossing controller performs train detection related to the up end point, and when the train proceeds to the up end point thereafter, the switching circuit unit performs the second switching. A switching control unit that causes the train detection according to the downlink end point to the end point for crossing control element by assume a state,
Based on the determination result of the train direction determination means and the detection result of the crossing controller for the end point, a signal corresponding to the train line in the fault mask section extending between the up stop point and the down stop point is generated. , This signal is sent to the level crossing obstacle detection device as the mask condition, and when the train arrives at the uphill starting point as a level crossing alarm stop condition for the level crossing control device to stop the level crossing alarm, the stop Excluding the train detection result related to the descending end point by the point crossing controller, only the train detection result related to the up end point by the end point crossing controller is sent to the level crossing control device, and When the arrival of the train at the starting point is preceded, the train detection result related to the ascending end point by the end point crossing controller is excluded, and the end point crossing controller Ri train detection result only of the end point is characterized by providing an output forming part for sending to the crossing controller.

また、本発明の踏切制御切替装置は(解決手段2,当初請求項4)、この装置を現行の踏切保安装置に追加して接続を変更する程度のことで容易かつ安価に上記の踏切保安装置を現出させうるようにしたものであり、具体的には、
鉄道の単線区間の線路に設けられた踏切の両側に分かれて前記線路に設定された下り始動点および上り始動点のうち前記下り始動点と前記踏切との間に設定された本来あるべき理想的な上り終止点の所で前記線路に接続された第1接続線と,前記上り始動点と前記踏切との間に設定された本来あるべき理想的な下り終止点の所で前記線路に接続された第2接続線とのうち,何れか一方を選択して開電路形の終止点用踏切制御子と接続させることにより前記終止点用踏切制御子に時分割で二台分の列車検知機能を発揮させる踏切制御切替装置であって、
前記第1接続線に対する接続手段と,前記第2接続線に対する接続手段と,前記終止点用踏切制御子に対する接続手段と,始動点用踏切制御子での列車検知結果と前記終止点用踏切制御子での列車検知結果とに基づいて踏切警報を発し且つその踏切警報を終止する踏切制御装置に対する接続手段と,前記踏切制御装置に内蔵されていて又は前記踏切制御装置の外部に設けられていて前記線路に係る列車の上り下り及び在線を判別して列車運転方向指示を出す列車方向判別手段に対する接続手段と,前記踏切に係る障害物検知を行うとともに前記列車運転方向指示およびマスク条件による警報認容時には障害物検知結果に応じて警報を発する踏切障害物検知装置に対する接続手段とを有する筐体と、
前記筐体に内蔵されていて,第1切替状態では前記終止点用踏切制御子と前記第1接続線とを接続させるが,第2切替状態では前記終止点用踏切制御子と前記第2接続線とを接続させる切替回路部と、
前記筐体に内蔵されていて,前記列車運転方向指示に応じて,前記上り始動点と前記下り始動点とのうち前記上り始動点への列車到来が先行したときには,先ず前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記下り終止点に係る列車検知を行わせ,その後の前記下り終止点への列車進行時には前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記上り終止点に係る列車検知を行わせるとともに、前記上り始動点と前記下り始動点とのうち前記下り始動点への列車到来が先行したときには,先ず前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記上り終止点に係る列車検知を行わせ,その後の前記上り終止点への列車進行時には前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記下り終止点に係る列車検知を行わせる切替制御部と、
前記列車方向判別手段の判別結果と前記終止点用踏切制御子の検出結果とに基づいて,前記上り終止点と前記下り終止点とに亘る障検マスク区間における列車在線に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出するとともに、前記踏切制御装置に踏切警報を終止させる踏切警報終止条件として,前記上り始動点への列車到来が先行したときには,前記終止点用踏切制御子による前記下り終止点に係る列車検知結果を除外して前記終止点用踏切制御子による前記上り終止点に係る列車検知結果のみを前記踏切制御装置へ送出し,且つ,前記下り始動点への列車到来が先行したときには,前記終止点用踏切制御子による前記上り終止点に係る列車検知結果を除外して前記終止点用踏切制御子による前記下り終止点に係る列車検知結果のみを前記踏切制御装置へ送出する出力形成部と
を設けたことを特徴とする。
Further, the level crossing control switching device according to the present invention (solution means 2, initial claim 4) is the above level crossing safety device which is easily and inexpensively added to the current level crossing safety device to change the connection. Can be revealed, specifically,
Ideally set between the descending start point and the level crossing among the descending start point and the ascending start point set on the track divided on both sides of the railroad crossing provided on the railway in the single track section of the railway A first connecting line connected to the line at the up-end stop point, and an ideal down-end point set between the up start point and the level crossing. By selecting either one of the second connection lines and connecting it to the open-circuit type crossing controller for the end point, the end point crossing controller for the end point is provided with a train detection function for two vehicles in a time-sharing manner. A crossing control switching device to be exhibited,
Connection means for the first connection line, connection means for the second connection line, connection means for the end point crossing controller, train detection result at the start point crossing controller and the end point crossing control A means for issuing a railroad crossing alarm based on the train detection result at the child and terminating the railroad crossing alarm, and being incorporated in or external to the railroad crossing control device. Connecting means to train direction discriminating means for discriminating up and down and on-line of the train related to the track and issuing a train operation direction instruction, and performing obstacle detection relating to the railroad crossing and alarm acceptance according to the train operation direction instruction and mask conditions A housing having connection means for a crossing obstacle detection device that sometimes issues an alarm according to the obstacle detection result;
The end point crossing controller is connected to the first connection line in the first switching state, and the end point crossing controller and the second connection are connected in the second switching state. A switching circuit unit for connecting the wires,
When the train arrives at the ascending start point among the ascending start point and the descending start point according to the train operation direction instruction, first, the switching circuit unit is connected to the switching circuit unit. By taking the second switching state, the end point crossing controller performs the train detection related to the descending end point, and when the train proceeds to the descending end point thereafter, the switching circuit unit causes the first switching state. By making the end point crossing controller detect the train related to the ascending end point, and when the arrival of the train to the descending start point of the ascending start point and the descending start point precedes First, by causing the switching circuit unit to take the first switching state, the end point crossing controller performs the train detection related to the up end point, and the train travels to the up end point before A switching control unit that causes the train detection according to the downlink end point to the end point for crossing control element by assume the second switching state the switching circuit portion,
Based on the determination result of the train direction determination means and the detection result of the crossing controller for the end point, a signal corresponding to the train line in the fault mask section extending between the up stop point and the down stop point is generated. , This signal is sent to the level crossing obstacle detection device as the mask condition, and when the train arrives at the uphill starting point as a level crossing alarm stop condition for the level crossing control device to stop the level crossing alarm, the stop Excluding the train detection result related to the descending end point by the point crossing controller, only the train detection result related to the up end point by the end point crossing controller is sent to the level crossing control device, and When the arrival of the train at the starting point is preceded, the train detection result related to the ascending end point by the end point crossing controller is excluded, and the end point crossing controller Ri train detection result only of the end point is characterized by providing an output forming part for sending to the crossing controller.

このような本発明の踏切保安装置や踏切制御切替装置にあっては(解決手段1)、二台目の終止点用踏切制御子を追加して線路に接続するのでなく、その代りに、接続先を切り替える簡素な切替回路部を追加して線路に接続するとともに終止点用踏切制御子と線路との間に割り込む形で介挿接続させ、更に列車在線と上り下りに応じて終止点用踏切制御子の接続先を踏切の両側の線路部分の何れかに切り替えるようにしたことにより、簡便な改良でありながらも、一台の終止点用踏切制御子が時分割で二台分の機能を発揮して踏切の両側の拡張点と終止点とで列車を検知することとなる。そのため、本発明の適用先が上り側の線路であれ下り側の線路であれ、その線路を走行する列車については、列車速度の如何に拘わらず、列車が踏切道に近づいたことに加えて列車が完全に踏切道を通過し終わったことまで検知できる。   In such a level crossing safety device and level crossing control switching device of the present invention (Solution 1), a second end point crossing controller is not added and connected to the track, but instead connected. A simple switching circuit that switches the destination is added and connected to the track, and is connected by interposing between the railroad crossing controller for the termination point and the railroad track. By switching the connection point of the controller to one of the rail sections on both sides of the railroad crossing, it is a simple improvement, but one railroad crossing controller for the end point has the function of two vehicles in a time-sharing manner. The train will be detected at the extension point and end point on both sides of the railroad crossing. Therefore, whether the application of the present invention is an upstream track or a downstream track, the train traveling on the track is not limited to the train speed, the train is approaching the railroad crossing It is possible to detect until has completely passed the railroad crossing.

そして、このような踏切前後での列車検知に基づいて、列車を踏切障害物と誤認して発報することを回避するためのマスク条件を定める障検マスク区間が、従来の短かった終止点の列車検知長だけから、新たな拡張点への列車進入と終止点からの列車進出とに亘る広い区間に拡張されるようにしたことにより、障検マスク区間に踏切が収まることになるので、列車速度の如何に拘わらず、列車の誤認警報を確実に回避することができる。
したがって、この発明によれば、踏切制御子を追加しなくても踏切の両側で且つ踏切の近くで列車を検知できて障検マスク区間を踏切より広くすることができ、その結果、複線区間における第1技術課題が解決される。
Based on the train detection before and after such a crossing, the obstacle mask section that defines the mask conditions for avoiding false detection of a train as a crossing obstacle is a conventional short stop point. The railroad crossing can be accommodated in the fault detection mask section by expanding it to a wide section that extends from the train detection length only to the train entry to the new extension point and the train advance from the end point. Regardless of the speed, train false alarms can be reliably avoided.
Therefore, according to the present invention, it is possible to detect the train on both sides of the railroad crossing and near the railroad crossing without adding a railroad crossing controller, thereby making the fault detection mask section wider than the railroad crossing. The first technical problem is solved.

また、本発明の踏切保安装置や踏切制御切替装置にあっては(解決手段2)、二台目の終止点用踏切制御子を追加して線路等に接続するのでなく、その代りに、接続先を切り替える簡素な切替回路部を追加して線路に接続するとともに終止点用踏切制御子と線路との間に割り込む形で介挿接続させ、更に列車在線と上り下りに応じて終止点用踏切制御子の接続先を踏切の両側の線路部分の何れかに切り替えるようにしたことにより、簡便な改良でありながらも、一台の終止点用踏切制御子が時分割で二台分の機能を発揮して踏切の両側の終止点で列車を検知することとなる。そのため、踏切が上りの踏切制御区間ばかりか下りの踏切制御区間にも属するようになって、上り列車であれ、下り列車であれ、列車速度の如何に拘わらず、列車が完全に踏切道を通過し終わったことが検知できて、単線区間における第2技術課題が解決される。   Further, in the level crossing safety device and the level crossing control switching device of the present invention (Solution 2), a second end point crossing controller is not added and connected to the track, but instead connected. A simple switching circuit that switches the destination is added and connected to the track, and is connected by interposing between the railroad crossing controller for the termination point and the railroad track. By switching the connection point of the controller to one of the rail sections on both sides of the railroad crossing, it is a simple improvement, but one railroad crossing controller for the end point has the function of two vehicles in a time-sharing manner. The train will be detected at the end points on both sides of the railroad crossing. Therefore, the level crossing belongs to not only the level crossing control section but also the level crossing control section, and the train completely passes the level crossing regardless of the train speed, whether it is an up train or a down train. It can be detected that the process has been completed, and the second technical problem in the single wire section is solved.

そして、このような踏切の両側の終止点での列車検知に基づいて、列車を踏切障害物と誤認して発報するの回避するためのマスク条件を定める障検マスク区間が、従来の短かった踏切の片側の終止点の列車検知長だけから、新たな踏切の両側の終止点に亘る広い区間に拡張されるようにしたことにより、障検マスク区間に踏切が収まることになるので、列車速度の如何に拘わらず、列車の誤認発報を確実に回避することができる。
したがって、この発明によれば、踏切制御子を追加しなくても踏切の両側で且つ踏切の近くで列車を検知できて障検マスク区間を踏切より広くすることができ、その結果、単線区間における第1技術課題も解決される。
And based on the train detection at the end points on both sides of such a level crossing, the fault detection mask section that defines the mask conditions for avoiding false detection of a train as a level crossing obstacle has been short in the past The railroad crossing can be accommodated in the fault mask section because it is expanded from the train detection length at the end point on one side of the level crossing to a wide section that extends to the end points on both sides of the new level crossing. Regardless of this, it is possible to reliably avoid false alarms for trains.
Therefore, according to the present invention, it is possible to detect the train on both sides of the railroad crossing and near the railroad crossing without adding a railroad crossing controller, so that the fault detection mask section can be made wider than the railroad crossing. The first technical problem is also solved.

さらに、前記踏切警報終止条件を整える回路が鉄道分野で多用されているリレー回路で具現化しやすいうえ、従来と互換性の高い終止点検出結果が踏切制御装置に送出されるので、踏切制御装置が、入力に係る接続の変更は別として、従来品のままでも使用することができる、という更なる作用効果をも奏するものとなっている。   In addition, the circuit for adjusting the level crossing alarm termination condition is easy to be realized by a relay circuit frequently used in the railway field, and the end point detection result having high compatibility with the conventional one is sent to the level crossing control unit. Aside from changing the connection related to the input, there is also a further effect that the conventional product can be used as it is.

本発明の実施例1について、踏切制御切替装置を導入した複線区間における踏切保安装置の概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a level crossing safety device in a double track section in which a level crossing control switching device is introduced in Example 1 of the present invention. 複線区間における踏切保安装置のうち下り側に導入された踏切制御切替装置に係る回路図と接続図である。It is the circuit diagram and connection figure which concern on the level crossing control switching apparatus introduced in the down side among the level crossing security apparatuses in a double track section. 複線区間における踏切保安装置のうち上り側に導入された踏切制御切替装置に係る回路図と接続図である。It is the circuit diagram and connection figure which concern on the level crossing control switching apparatus introduced in the up side among the level crossing security apparatuses in a double track section. 複線区間における切替制御部および出力形成部における各リレーの動作に係るタイムチャートである。It is a time chart which concerns on operation | movement of each relay in the switching control part in a double track | line area, and an output formation part. 複線区間における切保安装置のうち踏切制御装置を中心とした制御部分に係るブロック図である。It is a block diagram which concerns on the control part centering on a railroad crossing control apparatus among the road safety | security apparatuses in a double track section. (a)が複線区間における踏切障害物検知装置に係る新たなリレー信号等の入出力状態を示すブロック図、(b)〜(e)がリレー信号等のタイムチャートである。(A) is a block diagram which shows the input / output states, such as a new relay signal, concerning the crossing obstacle detection device in a double track section, and (b)-(e) are time charts, such as a relay signal. 本発明の実施例2について、踏切制御切替装置を導入した単線区間における切保安装置の概要構成図である。It is a schematic block diagram of the gate safety apparatus in the single track | line area which introduced the level crossing control switching apparatus about Example 2 of this invention. 単線区間における踏切制御切替装置に係る回路図と接続図である。It is the circuit diagram and connection diagram which concern on a level crossing control switching device in a single track section. 単線区間における切保安装置のうち踏切制御装置を中心とした制御部分に係るブロック図である。It is a block diagram which concerns on the control part centering on a level crossing control apparatus among the line safety devices in a single track | line area. 単線区間における踏切保安装置の動作状態を示し、(a)が上り列車到来時の概略図、(b)が上り列車到来後進入時の概略図である。The operation state of a railroad crossing safety device in a single track section is shown, (a) is a schematic diagram when an up train arrives, and (b) is a schematic diagram when an approach is made after the up train arrives. (a)が単線区間における踏切障害物検知装置に係る新たなリレー信号等の入出力状態を示すブロック図、(b)〜(e)がリレー信号等のタイムチャートである。(A) is a block diagram which shows the input / output states, such as a new relay signal, which concerns on a level crossing obstacle detection device in a single track section, and (b)-(e) are time charts, such as a relay signal. 単線区間における踏切保安装置の動作状態を示し、(a)が下り列車到来時の概略図、(b)が下り列車到来後進入時の概略図である。The operation state of a railroad crossing safety device in a single track section is shown, (a) is a schematic diagram when a down train arrives, and (b) is a schematic diagram when an approach after arrival of a down train. 従来の踏切保安装置を示し、(a)が複線区間における踏切制御子の配置図、(b)が単線区間における踏切制御子の配置図、(c)が複線区間における切保安装置のうち制御部分のブロック図である。1 shows a conventional railroad crossing safety device, where (a) is a layout diagram of a level crossing controller in a double-track section, (b) is a layout diagram of a level crossing controller in a single-track section, and (c) is a control part of a crossing safety device in a double-track section. FIG. 従来の踏切保安装置を示し、(a)が単線区間における切保安装置のうち制御部分のブロック図、(b)が閉電路形の始動点用踏切制御子の接続図、(c)が開電路形の終止点用踏切制御子の接続図である。A conventional railroad crossing safety device is shown, (a) is a block diagram of the control part of the road safety device in a single track section, (b) is a connection diagram of a start-point crossing controller for a closed circuit type, (c) is an open circuit It is a connection diagram of a level crossing controller for an end point. 現行の終止点用踏切制御子を示し、(a)が発振式のもののブロック図、(b)が送受信式のH形のブロック図である。FIG. 2 shows a current end-point crossing controller, where (a) is a block diagram of an oscillation type, and (b) is a block diagram of a transmission / reception type H-shape. 従来の複線区間における踏切保安装置の概要構成図である。It is a general | schematic block diagram of the level crossing security apparatus in the conventional double track area. (a)が従来の単線区間における踏切保安装置の概要構成図、(b)が理想の単線区間における踏切保安装置の概要構成図である。(A) is a general | schematic block diagram of the level crossing security apparatus in the conventional single track section, (b) is a schematic block diagram of the level crossing security apparatus in the ideal single track section. (a)が踏切障害物検知装置に係る従来のリレー信号等の入出力状態を示すブロック図、(b)〜(e)がリレー信号等のタイムチャートである。(A) is a block diagram which shows the input-output state of the conventional relay signal etc. which concern on a level crossing obstacle detection apparatus, (b)-(e) is time charts, such as a relay signal. 理想の複線区間における踏切保安装置の概要構成図である。It is a schematic block diagram of a level crossing security device in an ideal double track section.

このような本発明の踏切保安装置および踏切制御切替装置について、これを実施するための具体的な形態を、以下の実施例1,2により説明する。
図1〜図6に示した実施例1は、複線区間に係る上述した解決手段1(出願当初の請求項1,2)を終止点用踏切制御子とは別体の踏切制御切替装置を追加する形で具現化したものであり、図7〜図12に示した実施例2は、単線区間に係る上述した解決手段2,3(出願当初の請求項3,4,5,6)を終止点用踏切制御子とは別体の踏切制御切替装置を追加する形で具現化したものである。
With regard to such a railroad crossing safety device and a railroad crossing control switching device of the present invention, specific modes for carrying out this will be described with reference to the following first and second embodiments.
In the first embodiment shown in FIG. 1 to FIG. 6, the above-described solution means 1 (claims 1 and 2 at the time of application) related to the double track section is added with a crossing control switching device that is separate from the end-point crossing controller. The embodiment 2 shown in FIGS. 7 to 12 terminates the above-described solving means 2 and 3 (claims 3, 4, 5, and 6 at the beginning of the application) related to the single wire section. The point crossing controller is embodied by adding a separate level crossing control switching device.

なお、それらの図示に際しては、簡明化等のため、筐体やネジ等の機械的部材や,電気回路・電子回路の回路素子などについては詳細な図示を割愛し、発明の説明に必要なものや関連するものを中心に記号で図示した。
また、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したが、それらについて背景技術の欄で述べたことは以下の実施例についても共通するので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。
In the illustration, for the sake of simplicity, mechanical members such as housings and screws, circuit elements of electric circuits and electronic circuits, etc. are omitted in detail and are necessary for explaining the invention. And related items are shown with symbols.
In addition, the same reference numerals are given to the same constituent elements as those in the past in the illustration, but what has been described in the background art section is the same in the following embodiments, and therefore, the same repetitive elements are repeated. The description will be omitted, and the description below will focus on differences from the prior art.

本発明の複線区間における切保安装置および踏切制御切替装置に係る実施例1について、その具体的な構成を、図面を引用して説明する。
図1は、踏切制御切替装置50,60を導入した複線区間における切保安装置40の概要構成図であり、図中で踏切8と斜交する二点鎖線は踏切障害物検知装置35が障害物を検知する検知ビーム等をイメージしたものである。図2は、複線区間における切保安装置40のうち下り側に導入された踏切制御切替装置50に係る回路図と接続図であり、図3は、複線区間における切保安装置40のうち上り側に導入された踏切制御切替装置60に係る回路図と接続図であり、図4は切替回路部66及び出力形成部67における各リレーの動作に係るタイムチャートであり、図5は、複線区間における切保安装置40のうち踏切制御装置31を中心とした制御部分に係るブロック図であり、図6(a)は、踏切障害物検知装置35に係るリレー信号等の入出力状態を示すブロック図である。
A specific configuration of the first embodiment of the crossing safety device and the crossing control switching device in the double track section of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a crossing safety device 40 in a double track section in which crossing control switching devices 50 and 60 are introduced. In the drawing, a two-dot chain line obliquely crossing a crossing 8 indicates that a crossing obstacle detection device 35 is an obstacle. This is an image of a detection beam or the like for detecting the above. FIG. 2 is a circuit diagram and a connection diagram related to a crossing control switching device 50 introduced on the down side of the cross security device 40 in the double track section, and FIG. 3 is a diagram on the upstream side of the cross security device 40 in the double track section. 4 is a circuit diagram and a connection diagram relating to the introduced level crossing control switching device 60, FIG. 4 is a time chart relating to the operation of each relay in the switching circuit unit 66 and the output forming unit 67, and FIG. FIG. 6 is a block diagram relating to a control part centering on the crossing control device 31 in the security device 40, and FIG. 6A is a block diagram showing an input / output state of a relay signal and the like related to the crossing obstacle detection device 35. .

この踏切保安装置40は(図1参照)、既述した従来の踏切保安装置37(図16参照)に対して上り側の線路10には踏切制御切替装置50を設置するとともに下り側の線路10には踏切制御切替装置60を設置することにより、既述した理想的な状態(図19参照)と同等の状態を終止点用踏切制御子の追加なしで実現したものである。
具体的には(図1参照)、既述したように、鉄道の複線区間において下り側と上り側との両線路10,10を横切る踏切8の両側に分かれて、下り側の線路10については踏切8より起点側で遠めの所に下り始動点ADCが設定されるとともに踏切8より終点側で近めの所に下り終止点BDCが設定されており、上り側の線路10については踏切8より終点側で遠めの所に上り始動点CDCが設定されるとともに踏切8より起点側で近めの所に上り終止点DDCが設定されている、ということが前提になっている。
The railroad crossing safety device 40 (see FIG. 1) is provided with a railroad crossing control switching device 50 on the upstream line 10 with respect to the conventional railroad crossing safety device 37 (see FIG. 16) described above, and the downstream rail 10. By installing the railroad crossing control switching device 60, a state equivalent to the ideal state described above (see FIG. 19) is realized without the addition of the end point crossing controller.
Specifically (see FIG. 1), as described above, in the double-track section of the railway, it is divided into both sides of the railroad crossing 8 that crosses both the downside and upside lines 10, 10, and the downside line 10 A down start point ADC is set at a location farther from the crossing 8 at the starting point side, and a down end point BDC is set at a point closer to the end point side from the crossing 8. It is assumed that the upstream starting point CDC is set at a location farther on the end point side and the upstream end point DDC is set at a location closer to the starting point side than the level crossing 8.

また、既述したように、下り始動点ADCに係る列車検知を行う閉電路形の始動点用踏切制御子21と、下り終止点BDCに係る列車検知を行う開電路形の終止点用踏切制御子22と、上り始動点CDCに係る列車検知を行う閉電路形の始動点用踏切制御子23と、上り終止点DDCに係る列車検知を行う開電路形の終止点用踏切制御子24と、複線区間における踏切制御装置31と、踏切障害物検知装置35と、図示しない電源装置を具えていることも前提となっており、踏切制御装置31は、始動点用踏切制御子21,23での列車検知結果を始動Rリレーの接点出力にて受けるとともに、終止点用踏切制御子22,24での列車検知結果を終止Rリレーの接点出力にて受けて、それらの列車検知結果に基づき、下り始動点ADCと下り終止点BDCとに亘る下りの踏切制御区間に下り列車が進入してから進出するまで踏切警報を発するとともに、上り始動点CDCと上り終止点DDCとに亘る上りの踏切制御区間に上り列車が進入してから進出するまでも踏切警報を発する。   Further, as described above, a closed-circuit-type start-point crossing controller 21 that performs train detection related to the descending start point ADC, and an open-circuit-type end point crossing control that performs train detection related to the descending end point BDC. A closed-circuit-type start-point crossing controller 23 that performs train detection related to the ascending start point CDC, an open-circuit-type end point crossing controller 24 that performs train detection related to the ascending end point DDC, It is also assumed that a crossing control device 31 in a double track section, a crossing obstacle detection device 35, and a power supply device (not shown) are provided. The crossing control device 31 is a starting point crossing controller 21 or 23. The train detection result is received at the contact output of the start R relay, and the train detection result at the end point crossing controllers 22 and 24 is received at the contact output of the stop R relay. Starting point ADC and descending A level crossing alarm is issued until a descending train enters the descending railroad crossing control section extending to the stop point BDC until it advances, and an upstream train enters the upstream railroad crossing control section extending from the upstream starting point CDC to the upstream end point DDC. A railroad crossing warning will be issued from the start to the advance.

ここでは、踏切8に係る下り始動点ADC及び上り始動点CDCへの列車到来に応じて列車在線と上り下りを判別して列車運転方向指示を出す列車方向判別手段が、踏切制御装置31に内蔵されているものとする。この列車方向判別手段は、既述したように、下り列車が下りの踏切制御区間に進入してから進出するまでの間は下りSRリレー(下りの列車運転方向指示)を無励磁状態(有意な状態)にするが、それ以外のときは下りSRリレー(下りの列車運転方向指示)を励磁状態(無意な状態)にする。また、上り列車が上りの踏切制御区間に進入してから進出するまでの間は上りSRリレー(上りの列車運転方向指示)を無励磁状態(有意な状態)にするが、それ以外のときは上りSRリレー(上りの列車運転方向指示)を励磁状態(無意な状態)にするようになっている。   Here, the train crossing control device 31 includes a train direction discriminating means for discriminating between the train on-line and the up-down according to the arrival of the train at the descending start point ADC and the ascending start point CDC related to the railroad crossing 8, and issuing a train driving direction instruction. It is assumed that As described above, this train direction discriminating means operates the down SR relay (down train operation direction instruction) in the non-excited state (significant) until the down train enters the down crossing control section and advances. In other cases, the down SR relay (down train operation direction instruction) is set in an excited state (involuntary state). Also, the upstream SR relay (upward train operation direction instruction) is in the non-excited state (significant state) until the upstream train enters the upstream railroad crossing control section and advances, but otherwise The uplink SR relay (upward train operation direction instruction) is in an excited state (involuntary state).

さらに、既述したように、踏切障害物検知装置35は、感応部にて踏切8に係る障害物検知を行うとともに、下りSRリレーを警報認容条件とし且つ下り側マスク条件を警報抑制条件として警報が認容されているときであって、而も上りSRリレーを警報認容条件とし且つ上り側マスク条件を警報抑制条件として警報が認容されているときに限って、感応部での障害物検知結果に応じて、予め設定された所定時間の緩動性の条件も満たされると、発報部から警報を発するようになっている。   Further, as described above, the level crossing obstacle detection device 35 detects an obstacle related to the level crossing 8 at the sensitive unit, and alerts using the down SR relay as the alarm acceptance condition and the down side mask condition as the alarm suppression condition. When the alarm is accepted with the upstream SR relay as the alarm acceptance condition and the upstream mask condition as the alarm suppression condition, the obstacle detection result in the sensitive part is included. Accordingly, when a predetermined condition for slowness for a predetermined time is also satisfied, an alarm is issued from the reporting unit.

このように従来踏切保安装置の構成要素をほぼそのまま引き継いだうえで、この踏切保安装置40は(図1参照)、上り側の線路10に踏切制御切替装置50を設置するに先だって下り始動点ADCと踏切8との間に下り拡張点BBDCを設定しておくとともに、下り側の線路10に踏切制御切替装置60を設置するに先だって上り始動点CDCと踏切8との間に上り拡張点DDDCを設定しておくことも、前提となっている。下り拡張点BBDCも上り拡張点DDDCも、障検マスク区間を列車の踏切通過後から踏切到達前へ拡張するためのものなので、終止点BDC,DDCと同様に踏切横断物等による誤作動を避けながらも、障検マスク区間の拡張を踏切8の近くにとどめて過大拡張を避けるために、踏切8から例えば20〜30m程の近くに設定される。   As described above, the level crossing safety device 40 (see FIG. 1) takes over the components of the conventional level crossing safety device almost as it is, and before the railroad crossing control switching device 50 is installed on the line 10 on the upstream side, the starting point ADC of the downhill starting point is set. A downward extension point BBDC is set between the railroad crossing 8 and the railroad crossing 8, and the upstream extension point DDDC is set between the upstream starting point CDC and the railroad crossing 8 before the railroad crossing control switching device 60 is installed on the downstream line 10. It is also a prerequisite to set it. Both the downward extension point BBDC and the upward extension point DDDC are intended to extend the fault mask section from after passing the train to the level before reaching the level crossing, so avoid malfunctions due to crossings at the level crossing as with the end points BDC and DDC. However, in order to limit the extension of the fault detection mask section near the level crossing 8 and avoid over-extension, it is set near 20-30 m from the level crossing 8, for example.

踏切制御切替装置50と踏切制御切替装置60は、同一構造のもので良いが、別体のものであって接続先が異なるので、別の符号を付して説明する。既述した接続線A1,B1(第1接続線)や,新たな接続線A2,B2(第2接続線)についても、区別する必要がないときにはその符号を踏襲するが、踏切制御切替装置50,60の何れの側のものかを区別するときには、踏切制御切替装置50の側のものは接続線A1d,B1d(第1接続線)や接続線A2d,B2d(第2接続線)とし、踏切制御切替装置60の側のものは接続線A1u,B1u(第1接続線)や接続線A2u,B2u(第2接続線)とする。   The level crossing control switching device 50 and the level crossing control switching device 60 may have the same structure, but are different and have different connection destinations. The connection lines A1 and B1 (first connection lines) and the new connection lines A2 and B2 (second connection lines) described above are also followed when there is no need to distinguish them. , 60 on the side of the level crossing control switching device 50 is defined as connection lines A1d, B1d (first connection line) and connection lines A2d, B2d (second connection line). Those on the control switching device 60 side are connection lines A1u and B1u (first connection lines) and connection lines A2u and B2u (second connection lines).

すなわち、この踏切保安装置40は、踏切制御切替装置50と下り側の線路10との接続のために(図1,図2参照)、下り終止点BDCの所で下り側の線路10の接続線取付箇所15に一端を溶接等にて接続された一対の接続線A1d,B1d(第1接続線)と、下り拡張点BBDCの所で下り側の線路10の接続線取付箇所15aに一端を溶接等にて接続された一対の接続線A2d,B2d(第2接続線)とを具えている。
また、踏切制御切替装置60と上り側の線路10との接続のために(図1,図3参照)、上り終止点DDCの所で上り側の線路10の接続線取付箇所14に一端を溶接等にて接続された一対の接続線A1u,B1u(第1接続線)と、上り拡張点DDDCの所で上り側の線路10の接続線取付箇所14aに一端を溶接等にて接続された一対の接続線A2u,B2u(第2接続線)とを具えている。
That is, the railroad crossing safety device 40 is used to connect the railroad crossing control switching device 50 to the downstream line 10 (see FIGS. 1 and 2), and the connection line of the downstream line 10 at the downstream end point BDC. A pair of connection lines A1d and B1d (first connection line), one end of which is connected to the attachment point 15 by welding or the like, and one end welded to the connection line attachment point 15a of the line 10 on the downstream side at the downward extension point BBDC And a pair of connection lines A2d and B2d (second connection lines) connected by, for example.
For connection between the railroad crossing control switching device 60 and the upstream line 10 (see FIGS. 1 and 3), one end is welded to the connecting line attachment point 14 of the upstream line 10 at the upstream end point DDC. A pair of connection lines A1u and B1u (first connection lines) connected by, for example, and a pair of ends connected to a connection line attachment point 14a of the upstream line 10 at the upstream extension point DDDC by welding or the like. Connection lines A2u and B2u (second connection lines).

第1接続線としての接続線A1d,B1dと接続線A1u,B1uは何れも基本的には既存の第1接続線A1,B1と同様の絶縁被覆電線で良く長さも同じで良い。これに対し、第2接続線としての接続線A2d,B2dと接続線A2u,B2uは、何れも、材質面ではやはり既存の第1接続線A1,B1と同様の絶縁被覆電線で良いが、踏切制御切替装置50,60も踏切器具箱内に収納しようとすると第1接続線A1,B1よりも長くなりがちで、例えば第1接続線A1d,B1d,A1u,B1uが好ましいとされる15m以下になっていると、踏切道の幅員やレールまでのアプローチの長さなど合わせると50mを超えることになって、第2接続線A2d,B2d,A2u,B2uのインダクタンスが増加するので、第2接続線A2d,B2d,A2u,B2uにはコンデンサを直列に介挿接続して増加インダクタンスの影響を相殺することにより、第1接続線A1d,B1d,A1u,B1uと第2接続線A2d,B2d,A2u,B2uのインピーダンス特性をなるべく近づけておくのが望ましい。   The connection lines A1d and B1d as the first connection lines and the connection lines A1u and B1u are basically all insulated wires similar to the existing first connection lines A1 and B1 and may have the same length. On the other hand, the connection lines A2d and B2d and the connection lines A2u and B2u as the second connection lines may be the same insulation-coated electric wires as the existing first connection lines A1 and B1. The control switching devices 50 and 60 tend to be longer than the first connection lines A1 and B1 when stored in the railroad crossing equipment box. For example, the first connection lines A1d, B1d, A1u, and B1u are preferably 15 m or less. If the width of the railroad crossing and the length of the approach to the rail are combined, it will exceed 50 m, and the inductance of the second connection lines A2d, B2d, A2u, B2u will increase, so the second connection line The capacitors A2d, B2d, A2u, and B2u are connected in series to cancel the influence of the increased inductance, so that the first connection lines A1d, B1d, A1u, and B1u 2 connection lines A2d, B2d, A2u, to leave close as possible to the impedance characteristics of B2u desirable.

踏切制御切替装置50は(図2参照)、切替制御部55と切替回路部56と出力形成部57とそれらを内蔵する筐体とを具えている。切替制御部55と切替回路部56と出力形成部57は、ここでは何れもリレー回路からなるものを示したが、外部との接続条件や入出力条件に適合していれば、電子回路など他の回路からなるものであっても良い。踏切制御切替装置50の筐体には、外部接続のために、接続線A1d,B1dに対する接続手段としての第1接続端子51と、接続線A2d,B2dに対する接続手段としての第2接続端子52と、終止点用踏切制御子22に対する接続手段としての接続端子53,54と、列車方向判別手段を含んだ踏切制御装置31に対する接続手段としての接続端子54a,54bと、踏切障害物検知装置35に対する接続手段としての接続端子54cとが装備されている。   The level crossing control switching device 50 (see FIG. 2) includes a switching control unit 55, a switching circuit unit 56, an output forming unit 57, and a housing in which they are built. Here, the switching control unit 55, the switching circuit unit 56, and the output forming unit 57 are all composed of relay circuits. These circuits may be used. For the external connection, a first connection terminal 51 as a connection means for the connection lines A1d and B1d and a second connection terminal 52 as a connection means for the connection lines A2d and B2d are provided in the casing of the level crossing control switching device 50. , Connection terminals 53 and 54 as connection means for the end crossing controller 22, connection terminals 54 a and 54 b as connection means for the crossing control device 31 including train direction determination means, and a crossing obstacle detection device 35. A connection terminal 54c as a connection means is provided.

そのうち接続端子51は踏切器具箱内配線41と配線端子盤28を介して接続線A1d,B1dの他端に接続されていて下り終止点BDCに係る下り側の線路10の接続線取付箇所15へ照査用発振信号を送出する際の仲介を行うようになっており、接続端子52は踏切器具箱内配線42と配線端子盤28を介して接続線A2d,B2dの他端に接続されていて下り拡張点BBDCに係る下り側の線路10の接続線取付箇所15aへ照査用発振信号を送出する際の仲介を行うようになっており、接続端子53は踏切器具箱内配線27を介して終止点用踏切制御子22の制御子内配線AA,BBに接続されていて照査用発振信号を入力するようになっている。   Among them, the connection terminal 51 is connected to the other end of the connection lines A1d and B1d via the railroad crossing equipment box wiring 41 and the wiring terminal board 28, and to the connection line attachment point 15 of the down line 10 related to the down end point BDC. The connection terminal 52 is connected to the other end of the connection lines A2d and B2d via the railroad crossing equipment box wiring 42 and the wiring terminal board 28 so as to mediate when sending the oscillation signal for verification. It mediates when the oscillation signal for verification is sent to the connecting line attachment point 15a of the downstream line 10 related to the extension point BBDC, and the connection terminal 53 is the end point via the rail 27 in the railroad crossing equipment box. It is connected to the control-internal wirings AA and BB of the railroad crossing controller 22 for inputting a check oscillation signal.

また、接続端子54は踏切器具箱内配線43を介して終止点用踏切制御子22のリレー出力BPRを入力するのを仲介するようになっており、接続端子54aは踏切器具箱内配線44を介して出力形成部57のリレー出力BPPRを踏切制御装置31へ送出する際の仲介を行うようになっており、これに対応して、踏切制御装置31は、終止点用踏切制御子22からそのリレー出力BPRを直接的に入力するのでなく、その代わりとして、介在する踏切制御切替装置50の出力形成部57等でリレー出力BPRを処理して出来たリレー出力BPPRを入力するものとなっている(図2,図5参照)。この出力BPPRが踏切制御装置31において、踏切警報を停止するための踏切警報終止条件となる。   Further, the connection terminal 54 mediates the input of the relay output BPR of the end point crossing controller 22 via the crossing device box wiring 43, and the connection terminal 54a connects the crossing device box wiring 44. Accordingly, the level crossing control device 31 receives the relay point BPPR from the end point crossing controller 22 from the end point crossing controller 22 in response to the relaying of the relay output BPPR of the output forming unit 57 to the level crossing control device 31. Instead of directly inputting the relay output BPR, the relay output BPPR generated by processing the relay output BPR by the output forming unit 57 of the level crossing control switching device 50 or the like is input instead. (See FIGS. 2 and 5). This output BPPR serves as a level crossing alarm stop condition for stopping the level crossing alarm in the level crossing control device 31.

さらに(図2参照)、接続端子54bは踏切器具箱内配線45を介して踏切制御装置31から下りSRリレー(下りの列車運転方向指示)を入力するのを仲介するようになっている。また、接続端子54cは踏切器具箱内配線46を介して出力形成部57の下マスクRリレーの出力を踏切障害物検知装置35へ踏切障害物検知の下り側マスクとして送出する際の仲介を行うようになっており、これに対応して、踏切障害物検知装置35は(図6(a)参照)、マスク条件のうちの下り側マスクとして、終止点用踏切制御子22からそのリレー出力BPRを直接的に入力するのでなく、その代わりに、介在する踏切制御切替装置50の出力形成部57等でリレー出力BPRを処理して出来た下マスクRリレー出力を入力するものとなっている。   Further (see FIG. 2), the connection terminal 54b mediates the input of the down SR relay (down train operation direction instruction) from the crossing control device 31 via the crossing equipment box wiring 45. Further, the connection terminal 54c mediates when the output of the lower mask R relay of the output forming unit 57 is sent to the level crossing obstacle detection device 35 as a descending side mask for level crossing obstacle detection through the wiring 46 in the crossing device box. Corresponding to this, the level crossing obstacle detection device 35 (see FIG. 6A) uses the relay output BPR from the end point crossing controller 22 as a descending mask of the mask conditions. Instead, the lower mask R relay output obtained by processing the relay output BPR by the output forming unit 57 of the level crossing control switching device 50 or the like is input instead.

このような踏切制御切替装置50の外部接続を前提として、装置50の内部の切替制御部55と切替回路部56と出力形成部57は、以下のようになっている(図2参照)。
切替制御部55は、例えば下切替Rリレーを主体としたリレー回路で具現化されており、踏切制御装置31から入力した既述の下りSRリレーの接点と後述の下マスクRリレーの接点とで構成されている。そして、切替制御部55の主体の下切替Rリレーは、下りの踏切制御区間に列車が在線していないときには、下マスクRリレーが無励磁(落下)状態であることを前提として、無励磁(落下)状態になっているが、下り列車が下りの踏切制御区間に進入したときに踏切制御装置31からの下りSRリレーの無励磁(落下)接点が構成することにより励磁(動作)状態となる。それから、下マスクRリレーが励磁(動作)状態になると、回路が絶たれて下切替Rリレーが無励磁(落下)状態となる。その間は、下切替Rリレーは励磁(動作)状態を継続する。
On the premise of such external connection of the level crossing control switching device 50, the switching control unit 55, the switching circuit unit 56, and the output forming unit 57 inside the device 50 are as follows (see FIG. 2).
The switching control unit 55 is embodied by a relay circuit mainly composed of, for example, a lower switching R relay. The switching control unit 55 includes a contact of the above described down SR relay input from the level crossing control device 31 and a contact of the lower mask R relay described later. It is configured. And the lower switching R relay of the main body of the switching control unit 55 is de-energized (assuming that the lower mask R relay is in the non-excited (falling) state when the train is not in the descending level crossing control section. Fall) state, but when the down train enters the down crossing control section, the non-excited (falling) contact of the down SR relay from the crossing control device 31 constitutes an excited (operating) state. . Then, when the lower mask R relay is excited (operated), the circuit is disconnected and the lower switching R relay is de-energized (dropped). In the meantime, the lower switching R relay continues to be excited (operated).

切替回路部56は、これも切替制御部55と同様にリレー回路で具現化されていて、接続端子51と接続端子53とを筐体内で接続する分岐配線a1,b1と、この分岐配線a1,b1に介挿して直列接続された下切替Rリレーの無励磁(落下)接点と、接続端子52と接続端子53とを筐体内で接続する分岐配線a2,b2と、この分岐配線a2,b2に介挿して直列接続された下切替Rリレーの励磁(動作)接点と、後者の分岐配線a2,b2のうち下切替Rリレーの励磁接点より接続線A2d,B2d寄りの部分に介挿して直列接続された可変容量部56a(第2調整部)とを具えている。可変容量部56aは、単一のバリアブルコンデンサでも良く、複数のコンデンサの組み合わせ回路からなるものでも良いが、コンデンサの開放故障時のインピーダンスの変化を最小限に抑えるには、複数のコンデンサを並列に接続して回路を構成することが、稼動性の維持・向上につながる。更に並列接続の場合、例えば固定容量のコンデンサと可変容量のコンデンサとを接続して大容量の確保と容量値の安定と可変範囲の適度な限定とを図るのも良い。   Similarly to the switching control unit 55, the switching circuit unit 56 is embodied as a relay circuit, and the branch wirings a1 and b1 that connect the connection terminal 51 and the connection terminal 53 in the housing, and the branch wiring a1 and The non-excited (falling) contact of the lower switching R relay connected in series via b1, the branch wirings a2 and b2 for connecting the connection terminal 52 and the connection terminal 53 within the housing, and the branch wirings a2 and b2 An excitation (operation) contact of the lower switching R relay connected in series and the latter branch wirings a2 and b2 are connected in series to the portion closer to the connection lines A2d and B2d than the excitation contact of the lower switching R relay. The variable capacitance unit 56a (second adjusting unit) is provided. The variable capacitance unit 56a may be a single variable capacitor or a combination circuit of a plurality of capacitors. However, in order to minimize the impedance change at the time of capacitor open failure, a plurality of capacitors are connected in parallel. Connecting and configuring the circuit leads to maintenance and improvement of operability. Further, in the case of parallel connection, for example, a fixed capacitor and a variable capacitor may be connected to secure a large capacity, stabilize the capacitance value, and appropriately limit the variable range.

そして、切替回路部56は、下切替Rリレーが励磁されていない第1切替状態では、分岐配線a1,b1ひいては終止点用踏切制御子22と第1接続線A1d,B1dとを接続させる一方、分岐配線a2,b2ひいては終止点用踏切制御子22と第2接続線A2d,B2dとを切断するようになっている。また、切替回路部56は、下切替Rリレーが励磁されている第2切替状態では、分岐配線a1,b1ひいては終止点用踏切制御子22と第1接続線A1d,B1dとを切断する一方、分岐配線a2,b2ひいては終止点用踏切制御子22と第2接続線A2d,B2dとを接続させるようになっている。   In the first switching state in which the lower switching R relay is not energized, the switching circuit unit 56 connects the branch wirings a1 and b1 and thus the end point crossing controller 22 and the first connection lines A1d and B1d. The branch wirings a2 and b2 and the end point crossing controller 22 and the second connection lines A2d and B2d are cut off. Further, in the second switching state in which the lower switching R relay is excited, the switching circuit unit 56 disconnects the branch wirings a1 and b1 and consequently the end point crossing controller 22 and the first connection lines A1d and B1d. The branch wirings a2 and b2, and thus the end point crossing controller 22 and the second connection lines A2d and B2d are connected.

そのため、踏切制御切替装置50を介して間接的に第1接続線A1d,B1dと第2接続線A2d,B2dとに接続される終止点用踏切制御子22は、踏切制御切替装置50の切替状態に依存して第1接続線A1d,B1dと第2接続線A2d,B2dとのうち何れか一方に対して択一的に接続され延いては接続線取付箇所15,15aの何れか一方の所で線路10に接続されるようになっている。そして、終止点用踏切制御子22は、第1切替状態では下り拡張点BBDCに係る列車検知を行わないで下り終止点BDCに係る列車検知を行い、第2切替状態では下り終止点BDCに係る列車検知を行わないで下り拡張点BBDCに係る列車検知を行うものとなっている。   Therefore, the crossing control for end point 22 connected to the first connection lines A1d, B1d and the second connection lines A2d, B2d indirectly via the crossing control switching device 50 is the switching state of the crossing control switching device 50. Depending on the first connection lines A1d, B1d and the second connection lines A2d, B2d, and alternatively connected to either one of the connection line attachment points 15, 15a. Is connected to the line 10. The end point crossing controller 22 performs the train detection related to the down end point BDC without performing the train detection related to the down extension point BBDC in the first switching state, and relates to the down end point BDC in the second switching state. The train detection related to the descending extension point BBDC is performed without performing the train detection.

また、上述した構成の切替制御部55は、列車方向判別手段の判別結果として下りSRリレーの接点出力を踏切制御装置31から入力していて、それに基づいて、下り始動点ADCへの列車到来時には先ず切替回路部56に第2切替状態をとらせることにより終止点用踏切制御子22に下り拡張点BBDCに係る列車検知を行わせ、その後の下り拡張点BBDCへの列車進行時には切替回路部56に第1切替状態をとらせることにより終止点用踏切制御子22に下り終止点BDCに係る列車検知を行わせるものとなっている。   Further, the switching control unit 55 configured as described above inputs the contact output of the descending SR relay from the railroad crossing control device 31 as the discrimination result of the train direction discriminating means, and based on that, when the train arrives at the descending start point ADC First, by causing the switching circuit unit 56 to enter the second switching state, the end point crossing controller 22 performs train detection related to the downward extension point BBDC, and the switching circuit unit 56 at the time of traveling to the downward extension point BBDC thereafter. By causing the first switching state to be taken, the end point crossing controller 22 is made to detect the train related to the descending end point BDC.

出力形成部57は、下マスクRリレーを主体とした下マスクRリレー回路と、終止整形リレーBPPRを主体とした終止整形リレー回路とに大別される。
それらのうち、終止整形リレー回路は、常態では励磁されない上記の終止整形リレーBPPRと、上述した下切替Rリレーの接点出力と、終止点用踏切制御子22の検出結果であるリレー出力BPRの接点とで構成されている。
また、下マスクRリレー回路は、常態では励磁されない上記の下マスクRリレーと、列車方向判別手段の判別結果である下りの列車運転方向指示として踏切制御装置31から入力した下りSRリレーの接点出力と、終止点用踏切制御子22の検出結果であるリレー出力BPRの接点とで構成されている。
The output forming unit 57 is roughly classified into a lower mask R relay circuit mainly composed of a lower mask R relay and a termination shaping relay circuit mainly composed of a termination shaping relay BPPR.
Among them, the termination shaping relay circuit is a contact of the termination shaping relay BPPR that is not normally excited, the contact output of the above-described lower switching R relay, and the relay output BPR that is the detection result of the end point crossing controller 22. It consists of and.
Also, the lower mask R relay circuit is a contact output of the lower mask R relay that is not normally excited and the downward SR relay input from the level crossing control device 31 as a downward train operation direction instruction that is a determination result of the train direction determination means. And a contact point of the relay output BPR, which is a detection result of the end point crossing controller 22.

そして、下マスクRリレー回路では、下り列車が下り始動点ADCに到来して下りSRリレーの無励磁(落下)接点が構成され、それから更に下り列車が進行して下り拡張点BBDCの列車検知長の区間に進入してリレー出力BPRの励磁(動作)接点が構成されると、下マスクRリレーが励磁(動作)状態になる。すると、上述したように下切替Rリレーが無励磁(落下)状態に戻り更にそれに伴う切替回路部56の切替による終止点用踏切制御子22の列車検知位置の下り拡張点BBDCから下り終止点BDCへの遷移によって一旦はリレー出力BPRが無励磁(落下)状態に戻るが、下マスクRリレーは自己保持機能にて励磁(動作)状態を維持する。   In the lower mask R relay circuit, the down train arrives at the down start point ADC and the non-excited (falling) contact of the down SR relay is configured, and then the down train further proceeds to detect the train detection length of the down extension point BBDC. If the excitation (operation) contact of the relay output BPR is configured by entering this section, the lower mask R relay enters the excitation (operation) state. Then, as described above, the lower switching R relay returns to the non-excited (falling) state, and further, the switching circuit unit 56 is switched accordingly. The relay output BPR once returns to the non-excited (falling) state by the transition to, but the lower mask R relay maintains the excited (operating) state by the self-holding function.

そして、それから更に下り列車が進行して下り終止点BDCの列車検知長の区間に進入してリレー出力BPRの励磁(動作)接点が再び構成され、その後に下り列車が下り終止点BDCの列車検知長の区間から完全に抜け出てリレー出力BPRが励磁されなくなると、先に下りSRが励磁(動作)状態に戻っている(下りSRが励磁状態になるのは、下り列車の最先頭が下り終止点BDCの列車検知長の区間に到達した時点である(図6(b)参照))ので、下マスクRリレーが無励磁(落下)状態になる。
このような下マスクRリレーは、下り拡張点BBDCへの列車進入と下り終止点BDCからの列車進出とに亘る障検マスク区間に対応した信号を生成するものとなっている。
Then, the descending train further proceeds to enter the train detection length section of the descending end point BDC, and the excitation (operation) contact point of the relay output BPR is reconfigured. Thereafter, the descending train detects the train at the descending end point BDC. When the relay output BPR is completely excited from the long section and the relay output BPR is not excited, the descending SR returns to the excited (operating) state first (the descending SR enters the excited state because the top of the descending train stops descending. Since this is the time when the train reaches the train detection length section at point BDC (see FIG. 6B), the lower mask R relay is in a non-excited (falling) state.
Such a lower mask R relay generates a signal corresponding to a failure detection mask section extending from the train approach to the descending extension point BBDC and the train advancement from the descending end point BDC.

さらに、下マスクRリレー回路が、その信号を、下マスクRリレーの接点出力にて、接続端子54cと踏切器具箱内配線46を介して、踏切障害物検知の下り側マスク条件として、踏切障害物検知装置35に送出するようになっている。
そのため、踏切障害物検知装置35は、その内部構成は従来のままでも、外部入力の変更によって、下り列車に係る障検マスク区間が、踏切8の通過先の部分しか占めていなかった狭い旧区間から、踏切8を区間内に収めた広い新区間に拡張されたものとなっている。
Furthermore, the lower mask R relay circuit uses the signal as a descending mask condition for detecting a level crossing obstacle via the connection terminal 54c and the rail 26 in the level crossing device box at the contact output of the lower mask R relay. It is sent to the object detection device 35.
Therefore, the level crossing obstacle detection device 35 is a narrow old section in which the obstacle mask section related to the descending train occupies only the passage destination of the level crossing 8 due to the change of the external input even though the internal configuration remains the same. Therefore, the railroad crossing 8 is extended to a wide new section in the section.

出力形成部57の終止整形リレー回路では、下切替Rリレーが無励磁(落下)状態に戻っているときに限って、終止点用踏切制御子22のリレー出力BPRが励磁(動作)状態になると、それに応じて終止整形リレーBPPRも励磁(動作)状態になるようになっている。そのため、終止整形リレーBPPRは、下り拡張点BBDCに係る列車検知結果を無視して、下り終止点BDCに係る列車検知結果だけを伝えるものとなる。また、終止点用踏切制御子22のリレー出力BPRそのものでなく終止整形リレーBPPRの接点出力を終止Rリレー出力として入力する踏切制御装置31は、その内部構成は従来のままでも、不都合なく、下り始動点ADCに係る列車検知結果と下り終止点BDCに係る列車検知結果とに基づいて踏切警報(警報R)を発し、また踏切警報を終止することができるものとなっている。   In the end shaping relay circuit of the output forming unit 57, the relay output BPR of the end point crossing controller 22 is in an excited (operating) state only when the lower switching R relay returns to the non-excited (falling) state. Accordingly, the end shaping relay BPPR is also in an excited (operating) state. Therefore, the end shaping relay BPPR ignores the train detection result related to the downward extension point BBDC and transmits only the train detection result related to the downward end point BDC. Further, the level crossing control device 31 that inputs the contact output of the stop shaping relay BPPR as the stop R relay output instead of the relay output BPR itself of the end point crossing controller 22 is not inconvenienced even if the internal configuration is the same as the conventional one. A railroad crossing alarm (alarm R) can be issued based on the train detection result related to the starting point ADC and the train detection result related to the descending stop point BDC, and the railroad crossing alarm can be stopped.

なお、終止点用踏切制御子22には、製品により多少のばらつきがあるが、0.5〜0.7秒程度の緩放性(励磁されなくなってから落下するまでの遅れ)がある。また、この実施例の回路構成では、下切替Rリレーの動作が直接的に下マスクRリレーの状態によって規定されるとともに、下マスクRリレーの動作が終止整形リレーBPPR及び下りSRリレーを介して間接的に下切替Rリレーの状態によって規定され、相互依存の関係にあることから、緩放性や緩動性のない通常のリレーだけで構成すると、踏切制御切替装置50のリレー回路の動作状態が不安定になるので、それを回避するために、下切替Rリレーには終止点用踏切制御子22の緩放性より短い0.1秒程度の緩放性を持たせるとともに、終止整形リレーBPPRにはそれらより長い1秒程度の緩動性を持たせている。ちなみに、踏切障害物検知装置35において発報制御信号BZを生成する際の緩動性に係る所定時間は6秒程度に設定されている。   Note that the end-point crossing controller 22 has some variation depending on the product, but has a slow release property (a delay from when it is not excited until it falls) about 0.5 to 0.7 seconds. In the circuit configuration of this embodiment, the operation of the lower switching R relay is directly defined by the state of the lower mask R relay, and the operation of the lower mask R relay is performed via the end shaping relay BPPR and the lower SR relay. Since it is indirectly defined by the state of the lower switching R relay and is in an interdependent relationship, the operation state of the relay circuit of the level crossing control switching device 50 is constituted only by a normal relay without slow release or slow movement In order to avoid this, the lower switching R relay is provided with a release performance of about 0.1 seconds shorter than the release performance of the end point crossing controller 22 and a termination shaping relay. The BPPR has a slowness of about 1 second longer than those. Incidentally, the predetermined time relating to the slowness when generating the alarm control signal BZ in the crossing obstacle detection device 35 is set to about 6 seconds.

踏切制御切替装置60は、上述したように上記の踏切制御切替装置50と同一構造のもので良いが、別体のものであって接続先が異なるうえ、別の符号を付して図示したので、繰り返しを厭わずに説明する。踏切制御切替装置60は(図3参照)、やはり何れもリレー回路からなる切替制御部65と切替回路部66と出力形成部67と、それらを内蔵する筐体とを具えている。踏切制御切替装置60の筐体にも、外部接続のために、接続線A1u,B1uに対する接続手段と、接続線A2u,B2uに対する接続手段と、終止点用踏切制御子24に対する接続手段と、列車方向判別手段を含んだ踏切制御装置31に対する接続手段と、踏切障害物検知装置35に対する接続手段とが装備されている。   The level crossing control switching device 60 may have the same structure as the level crossing control switching device 50 as described above, but it is a separate unit and has a different connection destination, and is shown with a different symbol. Explain without repeating. The level crossing control switching device 60 (see FIG. 3) also includes a switching control unit 65, a switching circuit unit 66, an output forming unit 67, and a housing that incorporates them. The casing of the level crossing control switching device 60 is also connected to the connection means for the connection lines A1u, B1u, the connection means for the connection lines A2u, B2u, the connection means for the end point crossing controller 24, and the train. A connecting means for the crossing control device 31 including a direction discriminating means and a connecting means for the crossing obstacle detection device 35 are provided.

各接続手段は、図示と符号を省いたが内外接続端子にて具現化されており、そのうち接続線A1u,B1uに対する接続手段は踏切器具箱内配線と配線端子盤28を介して接続線A1u,B1uの他端に接続されていて上り終止点DDCに係る上り側の線路10の接続線取付箇所14へ照査用発振信号を送出する際の仲介を行うようになっており、接続線A2u,B2uに対する接続手段は踏切器具箱内配線と配線端子盤28を介して接続線A2u,B2uの他端に接続されていて上り拡張点DDDCに係る上り側の線路10の接続線取付箇所14aへ照査用発振信号を送出する際の仲介を行うようになっており、終止点用踏切制御子24に対する接続手段は、二つあって、そのうちの一つが踏切器具箱内配線を介して終止点用踏切制御子24の制御子内配線AA,BBに接続されていて照査用発振信号を入力するようになっている。   Each connection means is embodied by internal and external connection terminals although illustration and reference numerals are omitted, and the connection means for the connection lines A1u, B1u is connected to the connection lines A1u, It is connected to the other end of B1u and mediates when sending the oscillation signal for verification to the connecting line attachment point 14 of the upstream line 10 related to the upstream end point DDC, and the connecting lines A2u, B2u Is connected to the other end of the connection lines A2u and B2u via the wiring in the railroad crossing equipment box and the wiring terminal board 28, and is used for checking the connection line attachment point 14a of the upstream line 10 related to the upstream extension point DDDC. There are two connection means to the end point crossing controller 24, and one of them is a crossing control for the end point via the wiring in the crossing device box. Child 2 Control daughterscope lines AA of, and inputs the Shosa oscillation signal is connected to the BB.

また、終止点用踏切制御子24に対する接続手段のうち他の一つは、踏切器具箱内配線を介して終止点用踏切制御子24のリレー出力DPRを入力するのを仲介するようになっている。踏切制御装置31に対する接続手段も二つあり、そのうちの一つは、踏切器具箱内配線を介して出力形成部67のリレー出力DPPRを踏切制御装置31へ送出する際の仲介を行うようになっており、これに対応して、踏切制御装置31は、終止点用踏切制御子24からそのリレー出力DPRを直接的に入力するのでなく、その代わりとして、介在する踏切制御切替装置60の出力形成部67等でリレー出力DPRを処理して出来たリレー出力DPPRを入力するものとなっている(図3,図5参照)。この出力DPPRも踏切制御装置31において、踏切警報を停止するための踏切警報終止条件となる。   Further, the other one of the connecting means to the end point crossing controller 24 mediates the input of the relay output DPR of the end point crossing controller 24 via the wiring in the crossing device box. Yes. There are also two connection means for the level crossing control device 31, and one of them is an intermediary when sending the relay output DPPR of the output forming unit 67 to the level crossing control device 31 via the wiring in the level crossing equipment box. Correspondingly, the level crossing control device 31 does not directly input the relay output DPR from the end point level crossing controller 24, but instead forms the output of the interposed level crossing control switching device 60. The relay output DPPR generated by processing the relay output DPR by the unit 67 or the like is input (see FIGS. 3 and 5). This output DPPR is also a level crossing alarm end condition for stopping the level crossing alarm in the level crossing control device 31.

さらに(図3参照)、踏切制御装置31に対する接続手段の他の一つは、踏切器具箱内配線を介して踏切制御装置31から上りSRリレー(上りの列車運転方向指示)を入力するのを仲介するようになっている。また、踏切障害物検知装置35に対する接続手段は踏切器具箱内配線を介して出力形成部67の上マスクRリレーの出力を踏切障害物検知装置35へ踏切障害物検知の上り側マスクとして送出する際の仲介を行うようになっており、これに対応して、踏切障害物検知装置35は(図6(a)参照)、マスク条件のうちの上り側マスクとして、終止点用踏切制御子24からそのリレー出力DPRを直接的に入力するのでなく、その代わりに、介在する踏切制御切替装置60の出力形成部67等でリレー出力DPRを処理して出来た上マスクRリレー出力を入力するものとなっている。   Further (see FIG. 3), another one of the connection means for the crossing control device 31 is to input an up SR relay (up train operation direction instruction) from the crossing control device 31 via the wiring in the crossing equipment box. It has come to mediate. Further, the connecting means for the crossing obstacle detection device 35 sends the output of the upper mask R relay of the output forming unit 67 to the crossing obstacle detection device 35 as an upward mask for detecting the crossing obstacle through the wiring in the crossing device box. Correspondingly, the crossing obstacle detection device 35 (see FIG. 6A) corresponds to the end point crossing controller 24 as an upstream mask in the mask conditions. The relay output DPR is not input directly, but instead, the upper mask R relay output obtained by processing the relay output DPR at the output forming unit 67 of the level crossing control switching device 60 or the like is input. It has become.

このような踏切制御切替装置60の外部接続を前提として、装置60の内部の切替制御部65と切替回路部66と出力形成部67は、以下のようになっている(図3参照)。
切替制御部65は、例えば上切替Rリレーを主体としたリレー回路で具現化されており、踏切制御装置31から入力した既述の上りSRリレーの接点と後述の上マスクRリレーの接点とで構成されている。そして、切替制御部65の主体の上切替Rリレーは、上りの踏切制御区間に列車が在線していないときには、上マスクRリレーが無励磁(落下)状態であることを前提として、無励磁(落下)状態になっているが、上り列車が上りの踏切制御区間に進入したときに踏切制御装置31からの上りSRリレーの無励磁(落下)接点が構成することにより励磁(動作)状態となる。それから、上マスクRリレーが励磁(動作)状態になると、回路が絶たれて上切替Rリレーが無励磁(落下)状態となる。その間は、上切替Rリレーは励磁(動作)状態を継続する。
On the premise of such external connection of the level crossing control switching device 60, the switching control unit 65, the switching circuit unit 66, and the output forming unit 67 inside the device 60 are as follows (see FIG. 3).
The switching control unit 65 is embodied by, for example, a relay circuit mainly composed of an upper switching R relay. The switching control unit 65 includes a contact of the above-described uplink SR relay input from the level crossing control device 31 and a contact of an upper mask R relay described later. It is configured. Then, the upper switching R relay of the switching control unit 65 is not energized (assuming that the upper mask R relay is in an unexcited (falling) state when the train is not in the ascending level crossing control section. Fall) state, but when the up train enters the up crossing control section, the non-excited (falling) contact of the up SR relay from the crossing control device 31 constitutes an excited (operating) state. . Then, when the upper mask R relay is in an excited (operating) state, the circuit is disconnected and the upper switching R relay is in a non-excited (falling) state. During this time, the upper switching R relay continues to be in an excited (operating) state.

切替回路部66は、これも切替制御部65と同様にリレー回路で具現化されていて、接続線A1u,B1uに対する接続手段と終止点用踏切制御子24の制御子内配線AA,BBに対する接続手段とを筐体内で接続する分岐配線a1,b1と、この分岐配線a1,b1に介挿して直列接続された上切替Rリレーの無励磁(落下)接点と、接続線A2u,B2uに対する接続手段と終止点用踏切制御子24の制御子内配線AA,BBに対する接続手段とを筐体内で接続する分岐配線a2,b2と、この分岐配線a2,b2に介挿して直列接続された上切替Rリレーの励磁(動作)接点と、後者の分岐配線a2,b2のうち上切替Rリレーの励磁接点より接続線A2u,B2u寄りの部分に介挿して直列接続された可変容量部66a(第2調整部)とを具えている。可変容量部66aは、上述した可変容量部56aと同様、単一のバリアブルコンデンサからなるものでも良く、複数のコンデンサの組み合わせ回路からなるものでも良い。   Similarly to the switching control unit 65, the switching circuit unit 66 is embodied by a relay circuit, and is connected to the connection means for the connection lines A1u and B1u and to the wirings AA and BB in the controller for the end point crossing controller 24. Branch wirings a1 and b1 for connecting the devices in the casing, non-excitation (falling) contacts of the upper switching R relays connected in series via the branch wirings a1 and b1, and connection means for the connection lines A2u and B2u And branch wirings a2 and b2 for connecting the end point crossing controller 24 to the wirings AA and BB in the controller within the housing, and the upper switching R connected in series via the branch wirings a2 and b2 The variable capacitor 66a (second adjustment) is connected in series with the excitation (operation) contact of the relay and the latter branch wirings a2 and b2 from the excitation contact of the upper switching R relay closer to the connection lines A2u and B2u. Part And it includes a door. Similar to the variable capacitance unit 56a described above, the variable capacitance unit 66a may be composed of a single variable capacitor or a combination circuit of a plurality of capacitors.

そして、切替回路部66は、上切替Rリレーが励磁されていない第1切替状態では、分岐配線a1,b1ひいては終止点用踏切制御子24と第1接続線A1u,B1uとを接続させる一方、分岐配線a2,b2ひいては終止点用踏切制御子24と第2接続線A2u,B2uとを切断するようになっている。また、切替回路部66は、上切替Rリレーが励磁されている第2切替状態では、分岐配線a1,b1ひいては終止点用踏切制御子24と第1接続線A1u,B1uとを切断する一方、分岐配線a2,b2ひいては終止点用踏切制御子24と第2接続線A2u,B2uとを接続させるようになっている。   In the first switching state in which the upper switching R relay is not excited, the switching circuit 66 connects the branch wirings a1 and b1 and consequently the end point crossing controller 24 and the first connection lines A1u and B1u. The branch wirings a2 and b2, and thus the end point crossing controller 24 and the second connection lines A2u and B2u are disconnected. Further, in the second switching state in which the upper switching R relay is excited, the switching circuit unit 66 disconnects the branch wirings a1 and b1 and consequently the end point crossing controller 24 and the first connection lines A1u and B1u. The branch wirings a2 and b2, and thus the end point crossing controller 24 and the second connection lines A2u and B2u are connected.

そのため、踏切制御切替装置60を介して間接的に第1接続線A1u,B1uと第2接続線A2u,B2uとに接続される終止点用踏切制御子24は、踏切制御切替装置60の切替状態に依存して第1接続線A1u,B1uと第2接続線A2u,B2uとのうち何れか一方に対して択一的に接続され延いては接続線取付箇所14,14aの何れか一方の所で線路10に接続されるようになっている。そして、終止点用踏切制御子24は、第1切替状態では上り拡張点DDDCに係る列車検知を行わないで上り終止点DDCに係る列車検知を行い、第2切替状態では上り終止点DDCに係る列車検知を行わないで上り拡張点DDDCに係る列車検知を行うものとなっている。   Therefore, the level crossing controller 24 for the end point that is indirectly connected to the first connection lines A1u, B1u and the second connection lines A2u, B2u via the level crossing control switching device 60 is switched by the level crossing control switching device 60. Depending on the first connection lines A1u, B1u and the second connection lines A2u, B2u, and alternatively connected to either one of the connection line attachment points 14, 14a. Is connected to the line 10. The end point crossing controller 24 performs the train detection related to the up end point DDC without performing the train detection related to the up extension point DDDC in the first switching state, and relates to the up end point DDC in the second switching state. The train detection related to the upstream extension point DDDC is performed without performing the train detection.

また、上述した構成の切替制御部65は、列車方向判別手段の判別結果として上りSRリレーの接点出力を踏切制御装置31から入力していて、それに基づいて、上り始動点CDCへの列車到来時には先ず切替回路部66に第2切替状態をとらせることにより終止点用踏切制御子24に上り拡張点DDDCに係る列車検知を行わせ(図4の左側の部分を参照)、その後の上り拡張点DDDCへの列車進行時には切替回路部66に第1切替状態をとらせることにより終止点用踏切制御子24に上り終止点DDCに係る列車検知を行わせるものとなっている(図4の中間の部分を参照)。   Further, the switching control unit 65 configured as described above inputs the contact output of the ascending SR relay from the railroad crossing control device 31 as the discrimination result of the train direction discriminating means, and based on that, when the train arrives at the ascending start point CDC First, by causing the switching circuit unit 66 to enter the second switching state, the end point crossing controller 24 performs train detection related to the upstream extension point DDDC (see the left part of FIG. 4), and the subsequent upstream extension point. When the train travels to the DDDC, the switching circuit unit 66 is set to the first switching state, thereby causing the end point crossing controller 24 to detect the train related to the up stop point DDC (middle of FIG. 4). See section).

出力形成部67は(図3参照)、上マスクRリレーを主体とした上マスクRリレー回路と、終止整形リレーDPPRを主体とした終止整形リレー回路とに大別される。
それらのうち、終止整形リレー回路は、常態では励磁されない上記の終止整形リレーDPPRと、上述した上切替Rリレーの接点出力と、終止点用踏切制御子24の検出結果であるリレー出力DPRの接点とで構成されている。
また、上マスクRリレー回路は、常態では励磁されない上記の上マスクRリレーと、列車方向判別手段の判別結果である上りの列車運転方向指示として踏切制御装置31から入力した上りSRリレーの接点出力と、終止点用踏切制御子24の検出結果であるリレー出力DPRの接点とで構成されている。
The output forming unit 67 (see FIG. 3) is roughly divided into an upper mask R relay circuit mainly composed of an upper mask R relay and a termination shaping relay circuit mainly composed of a termination shaping relay DPPR.
Among them, the stop shaping relay circuit is a contact of the above-described termination shaping relay DPPR that is not normally excited, the contact output of the above-described upper switching R relay, and the relay output DPR that is the detection result of the end point crossing controller 24. It consists of and.
Further, the upper mask R relay circuit is a contact output of the upper mask R relay, which is not normally excited, and the up SR relay input from the level crossing control device 31 as an up train operation direction instruction which is a discrimination result of the train direction discrimination means. And a contact point of the relay output DPR which is a detection result of the end point crossing controller 24.

そして、上マスクRリレー回路では、上り列車が上り始動点CDCに到来して上りSRリレーの無励磁(落下)接点が構成され(図4の左側の部分を参照)、それから更に上り列車が進行して上り拡張点DDDCの列車検知長の区間に進入してリレー出力DPRの励磁(動作)接点が構成されると、上マスクRリレーが励磁(動作)状態になる(図4の中間の部分を参照)。上マスクRリレーが励磁(動作)状態になると上述したように上切替Rリレーが無励磁(落下)状態に戻り更にそれに伴う切替回路部66の切替による終止点用踏切制御子24の列車検知位置の上り拡張点DDDCから上り終止点DDCへの遷移によって一旦はリレー出力DPRが無励磁(落下)状態に戻るが、上マスクRリレーは自己保持機能にて励磁(動作)状態を維持する。   In the upper mask R relay circuit, the ascending train arrives at the ascending starting point CDC, and the non-excited (falling) contact of the ascending SR relay is configured (see the left part of FIG. 4), and the ascending train further proceeds. Then, when entering the train detection length section of the ascending extension point DDDC and configuring the excitation (operation) contact of the relay output DPR, the upper mask R relay enters the excitation (operation) state (the middle part of FIG. 4). See). When the upper mask R relay is in the excited (operating) state, the upper switching R relay returns to the non-excited (falling) state as described above, and the train detection position of the end point crossing controller 24 by the switching of the switching circuit unit 66 is accordingly accompanied. The relay output DPR once returns to the non-excited (falling) state due to the transition from the upstream extension point DDDC to the upstream end point DDC, but the upper mask R relay maintains the excited (operating) state by the self-holding function.

そして、それから更に上り列車が進行して上り終止点DDCの列車検知長の区間に進入してリレー出力DPRの励磁(動作)接点が再び構成され、その後に上り列車が上り終止点DDCの列車検知長の区間から完全に抜け出てリレー出力DPRが励磁されなくなると(図4の右側の部分を参照)、先に上りSRが励磁(動作)状態に戻っている(上りSRが励磁状態になるのは、上り列車の最先頭が上り終止点DDCの列車検知長の区間に到達した時点である)ので、上マスクRリレーが無励磁(落下)状態になる。
このような上マスクRリレーは、上り拡張点DDDCへの列車進入と上り終止点DDCからの列車進出とに亘る障検マスク区間に対応した信号を生成するものとなっている。
Then, the upstream train further advances and enters the train detection length section of the upstream end point DDC to reconfigure the excitation (operation) contact of the relay output DPR, and then the upstream train detects the train of the upstream end point DDC. When the relay section DPR is completely excited from the long section (see the right part of FIG. 4), the upstream SR is first returned to the excited (operating) state (the upstream SR is in the excited state). Is the time when the top of the ascending train reaches the train detection length section of the ascending end point DDC), so that the upper mask R relay is in a non-excited (falling) state.
Such an upper mask R relay generates a signal corresponding to a fault detection mask section extending from a train approach to the ascending extension point DDDC and a train advancing from the ascending end point DDC.

さらに、上マスクRリレー回路が、その信号を、上マスクRリレーの接点出力にて、踏切障害物検知の上り側マスク条件として、踏切障害物検知装置35に送出するようになっている。そのため、踏切障害物検知装置35は、その内部構成は従来のままでも、外部入力の変更によって、上り列車に係る障検マスク区間が、踏切8の通過先の部分しか占めていなかった狭い旧区間から、踏切8を区間内に収めた広い新区間に拡張されたものとなっている。   Further, the upper mask R relay circuit sends the signal to the level crossing obstacle detection device 35 as an upward mask condition for level crossing obstacle detection at the contact output of the upper mask R relay. Therefore, the level crossing obstacle detection device 35 is a narrow old section in which the obstacle mask section related to the upstream train occupies only the passage destination part of the level crossing 8 due to the change of the external input even though the internal configuration remains the same. Therefore, the railroad crossing 8 is extended to a wide new section in the section.

出力形成部67の終止整形リレー回路では、上切替Rリレーが無励磁(落下)状態に戻っているときに限って、終止点用踏切制御子24のリレー出力DPRが励磁(動作)状態になると、それに応じて終止整形リレーDPPRも励磁(動作)状態になるようになっている。そのため、終止整形リレーDPPRは、上り拡張点DDDCに係る列車検知結果を無視して、上り終止点DDCに係る列車検知結果だけを伝えるものとなる。また、終止点用踏切制御子24のリレー出力DPRそのものでなく終止整形リレーDPPRの接点出力を終止Rリレー出力として入力する踏切制御装置31は、その内部構成は従来のままでも、不都合なく、上り始動点CDCに係る列車検知結果と上り終止点DDCに係る列車検知結果とに基づいて踏切警報(警報R)を発することができるものとなっている。   In the termination shaping relay circuit of the output forming unit 67, the relay output DPR of the end point crossing controller 24 is in the excited (operating) state only when the upper switching R relay is returned to the non-excited (falling) state. Accordingly, the end shaping relay DPPR is also in an excited (operating) state. Therefore, the termination shaping relay DPPR ignores the train detection result related to the uplink extension point DDDC and transmits only the train detection result related to the uplink termination point DDC. Further, the level crossing control device 31 for inputting the contact output of the stop shaping relay DPPR as the stop R relay output instead of the relay output DPR itself of the end point crossing controller 24 is not inconvenient even if the internal configuration is the same as the conventional one. A railroad crossing warning (alarm R) can be issued based on the train detection result related to the starting point CDC and the train detection result related to the up stop point DDC.

なお、終止点用踏切制御子24にも、上述した終止点用踏切制御子22と同様、0.5〜0.7秒程度の緩放性がある。また、この実施例の回路構成では、上切替Rリレーの動作が直接的に上マスクRリレーの状態によって規定されるとともに、上マスクRリレーの動作が終止整形リレーDPPR及び上りSRリレーを介して間接的に上切替Rリレーの状態によって規定され、相互依存の関係にあることから、やはり緩放性や緩動性のない通常のリレーだけで構成すると、踏切制御切替装置60のリレー回路の動作状態が不安定になるので、それを回避するために、上切替Rリレーには終止点用踏切制御子24の緩放性より短い0.1秒程度の緩放性を持たせるとともに、終止整形リレーDPPRにはそれらより長い1秒程度の緩動性を持たせている。   The end point crossing controller 24 also has a slow release property of about 0.5 to 0.7 seconds, like the end point crossing controller 22 described above. In the circuit configuration of this embodiment, the operation of the upper switching R relay is directly defined by the state of the upper mask R relay, and the operation of the upper mask R relay is performed via the end shaping relay DPPR and the upstream SR relay. Since it is indirectly defined by the state of the upper switching R relay and is in an interdependent relationship, the operation of the relay circuit of the level crossing control switching device 60 is made up of only ordinary relays having no slow release or slow movement. Since the state becomes unstable, in order to avoid this, the upper switching R relay is provided with a release performance of about 0.1 seconds shorter than the release performance of the end point crossing controller 24 and the termination shaping. The relay DPPR has a slowness of about 1 second longer than those.

この実施例1の踏切制御切替装置50,60及びそれを導入した踏切保安装置40について、その使用態様及び動作を、図面を引用して説明する。
図6(b)〜(e)は、下り列車が来たときの列車検知と踏切障害物検知とに係るリレー信号等のタイムチャートである。
With respect to the level crossing control switching devices 50 and 60 of the first embodiment and the level crossing security device 40 in which the level crossing control switching devices 50 and 60 are used, usage modes and operations thereof will be described with reference to the drawings.
FIGS. 6B to 6E are time charts of relay signals and the like related to train detection and railroad crossing obstacle detection when a down train arrives.

複線区間の線路10に対して新たに踏切保安装置40を設置する場合は上述した構成通りに踏切制御子21,22,23,24や,踏切制御装置31,警報灯32,踏切遮断機33,踏切障害物検知装置35,踏切制御切替装置50,60の配設とそれらに係る配線を行えば良く、既設の複線区間における踏切保安装置37に踏切制御切替装置50,60を追加して踏切保安装置37を踏切保安装置40にする場合は踏切制御切替装置50,60を追加してからそれに係る配線を変更すれば良いが、何れの場合も、設置が済んだら運用を開始する前に、第1接続線A1,B1と第2接続線A2,B2との長さの相違に基づく接続線切替時のインピーダンス変化に起因する照査用発振信号の不所望な変動を解消するために、照査用発振信号のレベル調整を行う。   When a new level crossing safety device 40 is installed on the track 10 in the double track section, the level crossing controllers 21, 22, 23, 24, the level crossing control device 31, the warning light 32, the level crossing breaker 33, as described above, The level crossing obstacle detection device 35 and the level crossing control switching devices 50 and 60 may be arranged and wired accordingly. The level crossing control switching devices 50 and 60 are added to the level crossing safety device 37 in the existing double-track section, and the level crossing security is achieved. When the device 37 is used as the railroad crossing safety device 40, the crossing control switching devices 50 and 60 may be added and then the wiring related thereto may be changed. However, in any case, after the installation is completed, the first operation is started. In order to eliminate undesired fluctuations in the oscillation signal for verification caused by the impedance change at the time of connection line switching based on the difference in length between the first connection line A1, B1 and the second connection line A2, B2, the oscillation for verification Signal level Do Le adjustment.

この踏切制御切替装置50,60の切替回路部56,66では、終止点BDC,DDCに係る接続線A1,B1に接続された分岐配線a1,b1には可変容量部56a,66a(第2調整部)が無く、拡張点BBDC,DDDCに係る接続線A2,B2に接続された分岐配線a2,b2の側にだけ可変容量部56a,66a(第2調整部)が組み込まれているので、例えばレベル調整の間だけ下りSRリレーや上りSRリレーの模擬信号を外部から接続端子54b等を介して切替制御部55,65に送り込むといったことにより、先ず切替回路部56,66に第1切替状態をとらせて接続線A1,B1に照査用発振信号を送出しながら終止点用踏切制御子22,24の調整器25a(第1調整部)にて終止点BDC,DDCに係る照査用発振信号のレベル調整を済ませ、次に切替回路部56,66に第2切替状態をとらせて接続線A2,B2に照査用発振信号を送出しながら切替回路部56,66の可変容量部56a,66a(第2調整部)にて拡張点BBDC,DDDCに係る照査用発振信号のレベル調整も行って、第1,第2切替状態における照査用発振信号のレベルを一致させる。   In the switching circuit units 56 and 66 of the crossing control switching devices 50 and 60, the variable capacitance units 56a and 66a (second adjustment) are connected to the branch wirings a1 and b1 connected to the connection lines A1 and B1 related to the end points BDC and DDC. Part), and the variable capacitance parts 56a and 66a (second adjustment part) are incorporated only on the side of the branch wirings a2 and b2 connected to the connection lines A2 and B2 related to the extension points BBDC and DDDC. Only during the level adjustment, a simulation signal of the downlink SR relay or the uplink SR relay is sent from the outside to the switching control units 55 and 65 via the connection terminal 54b or the like, so that the first switching state is first set in the switching circuit units 56 and 66. The oscillation for verification related to the end points BDC and DDC is performed by the adjuster 25a (first adjustment unit) of the end point crossing controllers 22 and 24 while sending the verification oscillation signal to the connection lines A1 and B1. Level adjustment of the switching circuit units 56 and 66, the switching circuit units 56 and 66 are set in the second switching state, and an oscillation signal for checking is sent to the connection lines A2 and B2. The level of the oscillation signal for verification related to the extension points BBDC and DDDC is also adjusted at 66a (second adjustment unit) to match the levels of the oscillation signal for verification in the first and second switching states.

こうして、簡便に、終止点BDC,DDCでも拡張点BBDC,DDDCでも列車検知が的確に行える状態になるので、踏切保安装置40を稼動させる。
上述したように踏切制御装置31が終止Rリレーとして終止点用踏切制御子22のリレー出力BPRや終止点用踏切制御子24のリレーDPRの代わりに入力するようになった終止整形リレーBPPR,DPPRは、やはり上述したように出力形成部57,67によって拡張点BBDC,DDDCに係る列車検知結果を含まないように処理されて、終止点BDC,DDCに係る列車検知結果だけを含んでいるため、踏切制御切替装置50,60が導入されていても、踏切制御装置31による踏切警報の制御等は現行通り行われる。
Thus, the railroad crossing safety device 40 is operated because the train detection can be performed accurately at the end points BDC and DDC and at the extension points BBDC and DDDC.
As described above, the stop shaping relays BPPR and DPPR that the level crossing control device 31 inputs as the end R relay instead of the relay output BPR of the end point crossing controller 22 or the relay DPR of the end point crossing controller 24. Is processed so as not to include the train detection results related to the extension points BBDC and DDDC by the output forming units 57 and 67 as described above, and includes only the train detection results related to the end points BDC and DDC. Even if the level crossing control switching devices 50 and 60 are installed, the control of the level crossing alarm by the level crossing control device 31 is performed as it is.

そこで、踏切制御切替装置50,60の導入によって拡張されるマスク条件とそれを入力する踏切障害物検知装置35の動作について説明する。向きは反対になるが、上り側でも下り側でも、同様の動作になるので、以下、既述した従来例(図18(b)〜(e)参照)と同様、複線区間の下り側を具体例にして詳述する(図6(b)〜(e)参照)。   Therefore, the mask conditions expanded by the introduction of the level crossing control switching devices 50 and 60 and the operation of the level crossing obstacle detection device 35 for inputting the mask conditions will be described. Although the directions are opposite, since the same operation is performed on both the upstream side and the downstream side, the downstream side of the double-track section is specified in the same manner as in the conventional example described above (see FIGS. 18B to 18E). An example will be described in detail (see FIGS. 6B to 6E).

下り列車が下り側の線路10を走行して来て下り始動点ADCの列車検知長の区間に進入すると(図6(b)左側部分を参照)、それまで励磁されて無意状態だった下りSRリレーが励磁されなくなって有意状態になり、それに応じて切替制御部55の下切替Rリレーも無励磁状態から励磁状態になり、更にそれに応じて切替制御部55が第2切替状態をとるので、終止点用踏切制御子22は下り拡張点BBDCに係る列車検知を行う。
もっとも、その時点では未だ下り列車が下り拡張点BBDCに到達していないことから、終止点用踏切制御子22のリレー出力BPRが励磁されず無意状態になっているので、下マスクRリレーも励磁されず無意状態のままであり(図6(c)左側部分を参照)、踏切障害物検知装置35は踏切8に対して障害物の検知と検知時の警報出力を行う。
When the descending train travels on the descending track 10 and enters the train detection length section of the descending starting point ADC (refer to the left part of FIG. 6 (b)), the descending SR that has been excited until then and has been in an involuntary state. Since the relay is not excited and becomes a significant state, the lower switching R relay of the switching control unit 55 is changed from the non-excited state to the excited state accordingly, and the switching control unit 55 takes the second switching state accordingly. The end point crossing controller 22 performs train detection related to the downward extension point BBDC.
However, since the descending train has not yet reached the descending extension point BBDC at that time, the relay output BPR of the end point crossing controller 22 is not energized, and the lower mask R relay is also energized. The railroad crossing obstacle detection device 35 detects the obstacle and outputs an alarm at the time of detection to the railroad crossing 8 without being involuntarily left (see the left part of FIG. 6C).

そして、下り列車が進行して下り拡張点BBDCの列車検知長の区間に進入すると(図6(c)中央部分を参照)、リレーBPRが励磁されて有意状態になり、それに応じて下マスクRリレーも励磁されて有意状態になるので、踏切障害物検知装置35では踏切障害物検知の下り側マスクが働く。
また、下マスクRリレーの励磁に応じて切替制御部55の下切替Rリレーも励磁状態から無励磁状態になり、更にそれに応じて切替回路部56が第1切替状態をとるので、終止点用踏切制御子22は下り終止点BDCに係る列車検知を行う。
Then, when the descending train proceeds and enters the train detection length section of the descending extension point BBDC (see the center portion of FIG. 6 (c)), the relay BPR is excited and becomes a significant state, and accordingly the lower mask R Since the relay is also excited and becomes in a significant state, the level crossing obstacle detection device 35 acts as a downward mask for crossing obstacle detection.
Further, the lower switching R relay of the switching control unit 55 changes from the excited state to the non-excited state in accordance with the excitation of the lower mask R relay, and further, the switching circuit unit 56 takes the first switching state accordingly. The railroad crossing controller 22 performs train detection related to the descending end point BDC.

それから、下り列車が更に進行して踏切8に差し掛かると(図6(d)中央部分を参照)、その下り列車に感応して踏切障害物検知装置35では障害物感応信号SSが不感状態から有感状態になるが、踏切障害物検知装置35では既に下り側マスクが効いているため、発報制御信号BZが無意(無警報状態)のまま変わらないので、誤報は出ない。
但し、ここでいう、不感状態、有感状態とは、当該列車のみに対する不感状態、有感状態であり踏切障害物検知としては、踏切警報が開始後、あるいは踏切警報が開始してから更に数秒(踏切により指定する)後から、マスク条件が成立するの間、有感状態となり、踏切道に滞留する障害物を検知する。
その後、下り列車が下り終止点BDCへ進行して(図6(b)中央部分を参照)、終止点用踏切制御子22のリレーBPRが励磁されて有意状態になると、緩動性に基づき少し遅れて終止整形リレーBPPRが励磁されて有意状態になり、それに応じて踏切制御装置31によって下りSRリレーが励磁されて無意状態に戻るが、下マスクRリレーは有意な励磁状態のままなので(図6(c)中央部分を参照)、やはり誤報は出ない。
Then, when the descending train further proceeds and reaches the railroad crossing 8 (see the center portion of FIG. 6 (d)), the obstacle sensing signal SS is detected from the insensitive state in the railroad crossing obstacle detection device 35 in response to the descending train. Although it becomes a sensitive state, since the descending mask is already in effect at the level crossing obstacle detection device 35, the alarm control signal BZ remains unintentionally (no alarm state), so that no false alarm is generated.
However, the insensitive state and sensible state mentioned here are the insensitive state and sensible state only for the train, and as a level crossing obstacle detection, several seconds after the level crossing alarm starts or after the level crossing alarm starts. After (designated by a crossing), an obstacle staying on the crossing road is detected while the mask condition is satisfied.
Thereafter, when the descending train proceeds to the descending end point BDC (see the center portion of FIG. 6B) and the relay BPR of the end point crossing controller 22 is excited and becomes in a significant state, it is slightly based on the looseness. The end shaping relay BPPR is excited to become significant after a delay, and the descending SR relay is excited by the level crossing control device 31 accordingly to return to the involuntary state, but the lower mask R relay remains in a significant excited state (see FIG. 6 (c) (see the center)), no false alarms will occur.

そして、更に下り列車が走行して踏切8を完全に通り抜けると(図6(d)中央右寄り部分を参照)、踏切障害物検知装置35では障害物感応信号SSが有感状態から不感状態に戻るが、依然として、下マスクRリレーが有意な励磁状態のままなので(図6(c)中央右寄り部分を参照)、踏切障害物検知装置35から誤報が出ることはない。
それから、下り列車が走行して下り終止点BDCの列車検知長の区間をも完全に抜けると(図6(c)右側部分を参照)、終止点用踏切制御子22のリレーBPRが励磁されなくなって無意状態になり、これに応じて終止整形リレーBPPRと共に下マスクRリレーも励磁されなくなって無意状態になり、踏切保安装置40の全体が列車非在線状態に戻る。
When the descending train further travels and completely passes through the railroad crossing 8 (see the center right side portion in FIG. 6 (d)), the obstacle response signal SS returns from the sensitive state to the insensitive state in the crossing obstacle detection device 35. However, since the lower mask R relay is still in a significantly excited state (see the center right side portion of FIG. 6 (c)), there is no false alarm from the crossing obstacle detection device 35.
Then, when the descending train travels and completely passes through the train detection length section of the descending stop point BDC (see the right side of FIG. 6C), the relay BPR of the end point crossing controller 22 is not excited. Accordingly, the lower mask R relay is not excited together with the stop shaping relay BPPR in response to this, and is in an involuntary state, and the entire level crossing safety device 40 returns to the non-train state.

このような下り側の踏切障害物検知発報マスク動作は、列車の走行方向を上り側にするとともに、対応するリレーや信号を置き換えれば、そのまま成り立つので、繰り返しとなる詳細な説明は割愛するが、踏切制御切替装置50,60を導入した踏切保安装置40では、障検マスク区間が踏切道を挟んでその両側に位置する拡張点BBDC,DDDCと終止点BDC,DDCとに亘る区間に拡張されて、踏切8が障検マスク区間内に完全に収まるため、下り列車の最先頭が踏切8に差し掛かってから下り列車の最後尾が踏切8を抜け出すまでの時間tが、列車の高速走行に対応して短い場合はもちろん(図6(d)参照)、列車の低速走行に対応して長い場合でも(図6(e)参照)、踏切障害物検知装置35が踏切通過中の列車を検知して誤報が出るという虞は、全くない。   Such downhill crossing obstacle detection and alarm masking operation is performed as long as the traveling direction of the train is set to the upside and the corresponding relay or signal is replaced. Therefore, repeated detailed description is omitted. In the railroad crossing safety device 40 in which the crossing control switching devices 50 and 60 are introduced, the fault detection mask section is extended to a section extending between the extension points BBDC and DDDC and the end points BDC and DDC located on both sides of the railroad crossing road. Since the level crossing 8 is completely within the obstacle mask section, the time t from when the top of the descending train reaches the level crossing 8 until the tail of the descending train exits the level crossing 8 corresponds to high-speed train travel. Of course, if it is short (see FIG. 6 (d)), even if it is long corresponding to the low-speed running of the train (see FIG. 6 (e)), the crossing obstacle detection device 35 detects the train passing through the crossing. The Fear is, not at all that the broadcast comes out.

上述した構成より明らかなように、障検マスク区間の拡張のために追加導入されたものが、拡張点用踏切制御子22a,24aでなく、それより遙かに簡素で安価な踏切制御切替装置50,60及び接続線にとどまるため、コストアップは小さい。   As is clear from the above-described configuration, what is additionally introduced for the extension of the fault detection mask section is not the extension point crossing controllers 22a and 24a, but a much simpler and cheaper level crossing control switching device. The cost increase is small because only 50 and 60 and the connecting line remain.

本発明の単線区間における踏切保安装置および踏切制御切替装置に係る実施例2について、その具体的な構成を、図面を引用して説明する。
図7は、踏切制御切替装置84を導入した単線区間における踏切保安装置80の概要構成図であり、図中で踏切8と斜交する二点鎖線は踏切障害物検知装置35が障害物を検知する検知ビーム等をイメージしたものである。図8は、踏切制御切替装置84に係る回路図と接続図であり、図9は、踏切制御装置34を中心とした制御部分に係るブロック図であり、図11(a)は、踏切障害物検知装置35に係るリレー信号等の入出力状態を示すブロック図である。
About the Example 2 which concerns on the level crossing safety device and level crossing control switching device in the single track section of the present invention, the concrete composition is explained referring to drawings.
FIG. 7 is a schematic configuration diagram of a level crossing safety device 80 in a single line section in which the level crossing control switching device 84 is introduced. In the drawing, the crossing obstacle detecting device 35 detects an obstacle in a two-dot chain line obliquely crossing the level crossing 8. It is an image of a detection beam that performs. FIG. 8 is a circuit diagram and a connection diagram relating to the level crossing control switching device 84, FIG. 9 is a block diagram relating to a control portion centering on the level crossing control device 34, and FIG. 11 (a) is a level crossing obstacle. It is a block diagram which shows the input / output states, such as a relay signal, which concern on the detection apparatus.

この踏切保安装置80は(図7,図8参照)、鉄道の単線区間の線路10に設けられた踏切8に係る踏切警報を行うために設けられたものであり、踏切8の起点側の下り始動点ADCの所で線路10に接続線を介して接続された閉電路形の始動点用踏切制御子21と、踏切8の終点側の上り始動点CDCの所で線路10に接続線を介して接続された閉電路形の始動点用踏切制御子23と、始動点用踏切制御子21の接続先の下り始動点ADCと踏切8との間に設定された本来あるべき理想的な上り終止点の所(ここでは、上検知点DDCと呼ぶ)で線路10の接続線取付箇所14に溶接にて一端部を接続された第1接続線A1,B1と、始動点用踏切制御子23の接続先の上り始動点CDCと踏切8との間に設定された本来あるべき理想的な下り終止点の所(ここでは、下検知点DDDCと呼ぶ)で線路10の接続線取付箇所15に溶接にて一端部を接続された第2接続線A2,B2とを備えている。   The railroad crossing safety device 80 (see FIGS. 7 and 8) is provided to issue a railroad crossing alarm related to the railroad crossing 8 provided on the track 10 in the single track section of the railway. A closed-circuit-type starting point crossing controller 21 connected to the line 10 via the connecting line at the starting point ADC, and an upstream starting point CDC on the end point side of the crossing 8 via the connecting line to the line 10 An ideal uphill stop that should be originally set between the crossing controller 8 for the start point of the closed-circuit type and the descending start point ADC to which the start point crossing controller 21 is connected and the crossing 8 is connected. At the point (here, referred to as the upper detection point DDC), the first connection lines A1 and B1 whose one ends are connected to the connection line attachment point 14 of the line 10 by welding, and the start point crossing controller 23 Ideally set between the upstream starting point CDC of the connection destination and the level crossing 8 Ri at the end point (here, referred to as a lower sensing point DDDC) and a second connecting line A2, B2 connected to one end by welding to the connection line attachment point 15 of the line 10 at.

また、踏切保安装置80は、線路10に接続線を介して接続されると線路10の接続線取付箇所に係る列車検知を行う開電路形の終止点用踏切制御子24と、始動点用踏切制御子21での列車検知結果を示す下始動Rリレーの出力と始動点用踏切制御子23での列車検知結果を示す上始動Rリレーの出力と終止点用踏切制御子24での列車検知結果を示す出力リレー(ここでは、出力リレーの名称をDPPRリレーと呼ぶ)の出力とを入力してそれらに基づき踏切警報制御を行って列車運転方向を判別するとともに列車運転方向に応じて上りSRリレーで上りSRを出力したり下りSRリレーで下りSRを出力する単線区間における踏切制御装置34と、それらを組み合わせた結果である警報Rリレーの出力に応動するスピーカや,警報灯32,踏切遮断機33と、線路10に係る障害物検知を行うとともに上記列車運転方向指示およびマスク条件による警報認容時には障害物検知結果に応じて警報を発する踏切障害物検知装置35と、例えば金属製箱体からなる筐体にて一ユニットに纏められた踏切制御切替装置84も備えている。   Further, the railroad crossing safety device 80 includes an open-circuit-type end-point crossing controller 24 that detects a train related to a connection line attachment point of the line 10 when connected to the line 10 via a connection line, and a start-point level crossing. The output of the lower start R relay indicating the train detection result at the controller 21, the output of the upper start R relay indicating the train detection result at the start point crossing controller 23, and the train detection result at the end point crossing controller 24. The output of the output relay (in this case, the name of the output relay is called a DPPR relay) is input, and the railroad crossing alarm control is performed based on the output to discriminate the train operation direction and the up SR relay according to the train operation direction The crossing control device 34 in the single line section that outputs the uplink SR or outputs the downlink SR by the downlink SR relay, the speaker that responds to the output of the alarm R relay that is the result of combining them, and the alarm lamp 3 , A railroad crossing breaker 33, a railroad crossing obstacle detection device 35 that performs obstacle detection on the track 10 and issues an alarm according to the obstacle detection result when the train operation direction instruction and the alarm condition are acceptable. There is also provided a crossing control switching device 84 that is integrated into one unit in a box-shaped housing.

これらのうち、接続線A1,B1と接続線A2,B2は、接続先の線路10が単線のため同じものになっている点は別として、上述したものと同じで良く、上述したように長さが相違する。また、終止点用踏切制御子24は、既述した終止点用踏切制御子22と同一構成のもので良く、踏切制御装置34と踏切障害物検知装置35も既述したものと同じで良いので、これらの詳細な説明は繰り返しとなるので割愛する。
踏切制御切替装置84は、新たに導入されたものなので以下詳述するが、これは、上述した一の筐体に加えて、その筐体に何れも内蔵されている切替制御部85と切替回路部86と出力形成部87とを具えている。
Among these, the connection lines A1 and B1 and the connection lines A2 and B2 may be the same as described above except that the connection line 10 is the same because the connection line 10 is a single line, and as described above, Are different. Further, the end point crossing controller 24 may have the same configuration as the end point crossing controller 22 described above, and the crossing control device 34 and the crossing obstacle detection device 35 may be the same as described above. These detailed descriptions will be omitted because they are repeated.
Since the level crossing control switching device 84 is newly introduced, it will be described in detail below. In addition to the above-described one case, this is a switching control unit 85 and a switching circuit that are all built in the case. A portion 86 and an output forming portion 87 are provided.

踏切制御切替装置84の筐体には内外接続用の接続端子が幾つか設けられており、それらは、踏切制御切替装置84と外部との接続のために、第1接続線A1,B1に対する接続手段と、第2接続線A2,B2に対する接続手段と、終止点用踏切制御子24に対する接続手段と、踏切制御装置34に対する接続手段と、踏切障害物検知装置35に対する接続手段などに割り振られている。それらの接続端子へ直に外部配線を接続しても良いが、踏切器具箱内配線や配線端子盤28の端子など介して接続されることが多い。   The casing of the level crossing control switching device 84 is provided with several connection terminals for internal and external connection, which are connected to the first connection lines A1 and B1 for connection between the level crossing control switching device 84 and the outside. Means, connection means for the second connection lines A2 and B2, connection means for the end point crossing controller 24, connection means for the crossing control device 34, connection means for the crossing obstacle detection device 35, etc. Yes. Although external wiring may be directly connected to these connection terminals, they are often connected via a railroad crossing device box wiring, a terminal of the wiring terminal board 28, or the like.

切替制御部85は、例えば、上述した切替制御部55とそっくりで下切替Rリレーを主体とした下切替側リレー回路と、やはり上述した切替制御部65とそっくりで上切替Rリレーを主体とした上切替側リレー回路とを、並設する形で具現化されている。違いは、下マスクRリレーや上マスクRリレーに代えて一に統合されたマスクRリレーの接点出力を入力するようになっている点である。なお、設置先が単線区間の線路10であるため、下りSRリレーと上りSRリレーが同時期に無励磁状態(有意状態)になることがないので、下切替Rリレーと上切替Rリレーも同時に励磁されて有意状態になることはない。   For example, the switching control unit 85 is similar to the switching control unit 55 described above and has a lower switching side relay circuit mainly including a lower switching R relay, and is also similar to the switching control unit 65 described above and mainly includes an upper switching R relay. The upper switching relay circuit is embodied in parallel. The difference is that instead of the lower mask R relay and the upper mask R relay, the contact output of the mask R relay integrated into one is input. Since the installation destination is the line 10 in the single line section, the down SR relay and the up SR relay will not be in the non-excited state (significant state) at the same time. It is not excited to become significant.

切替制御部85のうち下切替側リレー回路の部分は、踏切制御装置34から入力した既述の下りSRリレーの接点と、出力形成部87のマスクRリレーの接点とで構成されている。そして、主体の下切替Rリレーは、下りの踏切制御区間に列車が在線していないときには、マスクRリレーが無励磁(落下)状態であることを前提として、無励磁(落下)状態になっているが、下り列車が下りの踏切制御区間に進入したときに踏切制御装置34からの下りSRリレーの無励磁(落下)接点が構成することにより励磁(動作)状態となる。それから、マスクRリレーが励磁(動作)状態になると、回路が絶たれて下切替Rリレーが無励磁(落下)状態に遷移するようになっている。その間は、下切替Rリレーは励磁(動作)状態を継続する。   The lower switching side relay circuit portion of the switching control unit 85 is configured by the contact point of the above-described downlink SR relay input from the level crossing control device 34 and the contact point of the mask R relay of the output forming unit 87. Then, the main lower switching R relay is in the non-excited (falling) state on the assumption that the mask R relay is in the non-excited (falling) state when the train is not in the descending level crossing control section. However, when the descending train enters the descending level crossing control section, the non-excited (falling) contact of the descending SR relay from the level crossing control device 34 is configured to be in an excited (operating) state. Then, when the mask R relay is in an excited (operating) state, the circuit is cut off and the lower switching R relay is changed to a non-excited (falling) state. In the meantime, the lower switching R relay continues to be excited (operated).

また、切替制御部85のうち上切替側リレー回路の部分は、踏切制御装置34から入力した既述の上りSRリレーの接点と、出力形成部87のマスクRリレーの接点とで構成されている。そして、主体の上切替Rリレーは、上りの踏切制御区間に列車が在線していないときには、マスクRリレーが無励磁(落下)状態であることを前提として、無励磁(落下)状態になっているが、上り列車が上りの踏切制御区間に進入したときに踏切制御装置34からの上りSRリレーの無励磁(落下)接点が構成することにより励磁(動作)状態となる。それから、マスクRリレーが励磁(動作)状態になると、回路が絶たれて上切替Rリレーが無励磁(落下)状態に遷移するようになっている。その間は、上切替Rリレーは励磁(動作)状態を継続する。   Further, the upper switching relay circuit portion of the switching control unit 85 includes the above-described uplink SR relay contact point input from the level crossing control device 34 and the mask R relay contact point of the output forming unit 87. . The main switching R relay is in a non-excited (falling) state on the premise that the mask R relay is in a non-excited (falling) state when the train is not in the ascending level crossing control section. However, when the up train enters the up crossing control section, the non-excited (falling) contact of the up SR relay from the crossing control device 34 constitutes an excited (operating) state. Then, when the mask R relay is in an excited (operating) state, the circuit is cut off and the upper switching R relay is changed to a non-excited (falling) state. During this time, the upper switching R relay continues to be in an excited (operating) state.

切替回路部86は、これもリレー回路で具現化されていて、上述した切替回路部56,66を重ね合わせて接続したような回路になっている。すなわち、切替回路部86は、これも切替制御部55と同様にリレー回路で具現化されていて、終止点用踏切制御子24の制御子内配線AA,BBと接続線A1,B1とを筐体内で接続する分岐配線a1,b1と、下切替Rリレーの無励磁(落下)接点と上切替Rリレーの励磁(動作)接点とを並列接続してから分岐配線a1に介挿して直列接続した二接点接続回路と、下切替Rリレーの無励磁(落下)接点と上切替Rリレーの励磁(動作)接点とを並列接続してから分岐配線b1に介挿して直列接続した二接点接続回路とを具えている。   The switching circuit unit 86 is also embodied as a relay circuit, and is a circuit in which the above-described switching circuit units 56 and 66 are overlapped and connected. That is, the switching circuit unit 86 is also embodied as a relay circuit in the same manner as the switching control unit 55, and includes the control-internal wirings AA and BB and the connection lines A1 and B1 of the end point crossing controller 24. The branch wirings a1 and b1 to be connected in the body, the non-excitation (falling) contact of the lower switching R relay and the excitation (operation) contact of the upper switching R relay are connected in parallel, and then inserted in series into the branch wiring a1. A two-contact connection circuit, a two-contact connection circuit in which a non-excitation (falling) contact of the lower switching R relay and an excitation (operation) contact of the upper switching R relay are connected in parallel and then connected in series via the branch wiring b1 It has.

さらに、切替回路部86は、終止点用踏切制御子24の制御子内配線AA,BBと接続線A2,B2とを筐体内で接続する分岐配線a2,b2と、上切替Rリレーの無励磁(落下)接点と下切替Rリレーの励磁(動作)接点とを並列接続してから分岐配線a2に介挿して直列接続した二接点接続回路と、上切替Rリレーの無励磁(落下)接点と下切替Rリレーの励磁(動作)接点とを並列接続してから分岐配線b2に介挿して直列接続した二接点接続回路と、分岐配線a2,b2に介挿して直列接続された可変容量部56a(第2調整部)も具えている。可変容量部56aは、上述したものと同じで良い。   Further, the switching circuit 86 includes branch wirings a2 and b2 that connect the control-internal wirings AA and BB and the connection lines A2 and B2 of the end point crossing controller 24 within the housing, and the non-excitation of the upper switching R relay. A two-contact connection circuit in which the (drop) contact and the excitation (operation) contact of the lower switching R relay are connected in parallel and then connected in series via the branch wiring a2, and the non-excitation (falling) contact of the upper switching R relay; A two-contact connection circuit in which the excitation (operation) contact of the lower switching R relay is connected in parallel and then connected in series via the branch line b2, and a variable capacitor 56a connected in series via the branch lines a2 and b2. (Second adjustment unit) is also provided. The variable capacitor 56a may be the same as described above.

そして、切替回路部86は、上切替Rリレーが励磁されずに下切替Rリレーが励磁されている第1切替状態では、分岐配線a1,b1ひいては終止点用踏切制御子22と第1接続線A1,B1とを接続させる一方、分岐配線a2,b2ひいては終止点用踏切制御子22と第2接続線A2,B2とを切断するようになっている。また、切替回路部86は、下切替Rリレーが励磁されずに上切替Rリレーが励磁されている第2切替状態では、分岐配線a1,b1ひいては終止点用踏切制御子22と第1接続線A1,B1とを切断する一方、分岐配線a2,b2ひいては終止点用踏切制御子22と第2接続線A2,B2とを接続させるようになっている。   In the first switching state in which the upper switching R relay is not excited and the lower switching R relay is excited, the switching circuit unit 86 is connected to the branch wirings a1 and b1 and the end point crossing controller 22 and the first connection line. While A1 and B1 are connected, the branch lines a2 and b2 and thus the end point crossing controller 22 and the second connection lines A2 and B2 are disconnected. Further, in the second switching state in which the lower switching R relay is not excited and the upper switching R relay is excited, the switching circuit unit 86 is connected to the branch lines a1 and b1 and the end point crossing controller 22 and the first connection line. While cutting A1 and B1, the branch wirings a2 and b2, and thus the end point crossing controller 22 and the second connection lines A2 and B2 are connected.

そのため、踏切制御切替装置84を介して間接的に第1接続線A1,B1と第2接続線A2,B2とに接続される終止点用踏切制御子24は、踏切制御切替装置84の切替状態に依存して第1接続線A1,B1と第2接続線A2,B2とのうち何れか一方に対して択一的に接続され延いては接続線取付箇所14,15の何れか一方の所で線路10に接続されるようになっている。そして、終止点用踏切制御子24は、第1切替状態では下検知点DDDC(本来あるべき理想的な下り終止点の所DDDC)に係る列車検知を行わないで上検知点DDC(本来あるべき理想的な上り終止点の所DDC)に係る列車検知を行い、第2切替状態では上検知点DDC(本来あるべき理想的な上り終止点の所DDC)に係る列車検知を行わないで下検知点DDDC(本来あるべき理想的な下り終止点の所DDDC)に係る列車検知を行うものとなっている。   Therefore, the level crossing controller 24 for the end point that is indirectly connected to the first connection lines A1 and B1 and the second connection lines A2 and B2 via the level crossing control switching device 84 is the switching state of the level crossing control switching device 84. Depending on the first connection line A1, B1 and the second connection line A2, B2, and alternatively connected to either one of the connection line attachment points 14, 15 Is connected to the line 10. In the first switching state, the end point crossing controller 24 does not perform the train detection related to the lower detection point DDDC (the ideal down end point DDDC which should be originally) and does not perform the train detection. Train detection related to the ideal upstream end point DDC), and in the second switching state, the lower detection is performed without performing the train detection related to the upper detection point DDC (the ideal upstream end point DDC). Train detection is performed according to the point DDDC (the ideal DDDC at the ideal end of downfall).

また、上述した構成の切替制御部85は、列車方向判別手段の判別結果として上りSRリレーの接点出力を踏切制御装置34から入力していて、それに基づいて、上り始動点CDCへの列車到来時には先ず切替回路部86に第2切替状態をとらせることにより終止点用踏切制御子24に下検知点DDDCに係る列車検知を行わせ、その後の下検知点DDDCへの列車進行時には切替回路部86に第1切替状態をとらせることにより終止点用踏切制御子24に上検知点DDCに係る列車検知を行わせるものとなっている。   The switching control unit 85 configured as described above receives the contact output of the ascending SR relay from the railroad crossing control device 34 as the discrimination result of the train direction discriminating means, and based on that, when the train arrives at the ascending start point CDC. First, by causing the switching circuit unit 86 to enter the second switching state, the end point crossing controller 24 performs train detection related to the lower detection point DDDC, and then the switching circuit unit 86 when the train proceeds to the lower detection point DDDC. When the first switching state is taken, the end point crossing controller 24 performs train detection related to the upper detection point DDC.

さらに、切替制御部85は、列車方向判別手段の判別結果として下りSRリレーの接点出力を踏切制御装置34から入力していて、それに基づいて、下り始動点ADCへの列車到来時には先ず切替回路部86に第1切替状態をとらせることにより終止点用踏切制御子24に上検知点DDCに係る列車検知を行わせ、その後の上り終止点DDCへの列車進行時には切替回路部86に第2切替状態をとらせることにより終止点用踏切制御子24に下検知点DDDCに係る列車検知を行わせるものにもなっている。   Further, the switching control unit 85 receives the contact output of the descending SR relay from the railroad crossing control device 34 as the discrimination result of the train direction discriminating means, and based on that, the switching circuit unit firstly receives the train at the descending start point ADC. 86 makes the end point crossing controller 24 detect the train relating to the upper detection point DDC by causing the end point to switch to the first switching state. By taking the state, the end point crossing controller 24 is made to perform train detection related to the lower detection point DDDC.

出力形成部87は、マスクRリレーを主体としたマスクRリレー回路と、終止整形リレー上DPPR及び下DPPRを主体とした終止整形リレー回路とに大別される。
それらのうち、終止整形リレー回路は、常態では励磁されない上記の終止整形リレー上DPPR及び下DPPRと、上述した上切替Rリレー及び下切替Rリレーの接点出力と、終止点用踏切制御子24の検出結果であるリレー出力DPRの接点とで構成されている。
また、マスクRリレー回路は、常態では励磁されない上記のマスクRリレーと、列車方向判別手段の判別結果である列車運転方向指示として踏切制御装置34から入力した下りSRリレーの接点出力および上りSRリレーの接点出力と、終止点用踏切制御子24の検出結果であるリレー出力DPRの接点とで構成されている。
The output forming unit 87 is roughly classified into a mask R relay circuit mainly including a mask R relay and a termination shaping relay circuit mainly including a termination shaping relay upper DPPR and a lower DPPR.
Among them, the end shaping relay circuit is not excited in the normal state, and the above-described end shaping relay upper DPPR and lower DPPR, the contact output of the above-described upper switching R relay and lower switching R relay, and the end point crossing controller 24 It is comprised with the contact of the relay output DPR which is a detection result.
Further, the mask R relay circuit includes the above-described mask R relay that is not normally excited, the contact output of the down SR relay and the up SR relay that are input from the crossing control device 34 as a train operation direction instruction that is a determination result of the train direction determination means. And the contact of the relay output DPR which is the detection result of the end point crossing controller 24.

そして、マスクRリレー回路では、上り列車が上り始動点CDCに到来して上りSRリレーの無励磁(落下)接点が構成され、それから更に上り列車が進行して下検知点DDDCの列車検知長の区間に進入してリレー出力DPRの励磁(動作)接点が構成されると、マスクRリレーが励磁(動作)状態になる。マスクRリレーが励磁(動作)状態になると上述したように上切替Rリレーが無励磁(落下)状態に戻り更にそれに伴う切替回路部86の切替による終止点用踏切制御子24の列車検知位置の下検知点DDDCから上検知点DDCへの遷移によって一旦はリレー出力DPRが無励磁(落下)状態に戻るが、マスクRリレーは自己保持機能にて励磁(動作)状態を維持する。   In the mask R relay circuit, the upstream train arrives at the upstream starting point CDC, and the non-excited (falling) contact point of the upstream SR relay is configured, and then the upstream train further travels to the train detection length of the lower detection point DDDC. When entering the section and forming the excitation (operation) contact of the relay output DPR, the mask R relay enters the excitation (operation) state. When the mask R relay is in the excited (operating) state, the upper switching R relay returns to the non-excited (falling) state as described above, and the train detection position of the end point crossing controller 24 by the switching of the switching circuit unit 86 is accordingly changed. Although the relay output DPR once returns to the non-excited (falling) state due to the transition from the lower detecting point DDDC to the upper detecting point DDC, the mask R relay maintains the excited (operating) state by the self-holding function.

そして、それから更に上り列車が進行して上検知点DDCの列車検知長の区間に進入してリレー出力DPRの励磁(動作)接点が再び構成され、その後に上り列車が上検知点DDCの列車検知長の区間から完全に抜け出てリレー出力DPRが励磁されなくなると、先に上りSRが励磁(動作)状態に戻っている(上りSRが励磁状態になるのは、上り列車の最先頭が上検知点DDCの列車検知長の区間に到達した時点である)ので、マスクRリレーが無励磁(落下)状態になる。このようなマスクRリレーは、上り列車に関して、下り終止点BDCへの列車進入と上り終止点DDCからの列車進出とに亘る障検マスク区間に対応した信号を生成するものとなっている。   Then, the upward train further advances and enters the train detection length section of the upper detection point DDC to reconfigure the excitation (operation) contact of the relay output DPR, and then the upstream train detects the train at the upper detection point DDC. When the relay output DPR is completely de-energized after exiting the long section, the up SR is first returned to the excited (operating) state (the up SR is in the excited state because the top of the up train detects the top Since this is the point when the train reaches the train detection length section at the point DDC), the mask R relay enters a non-excited (falling) state. Such a mask R relay generates a signal corresponding to a fault detection mask section that extends from the train approach to the descending end point BDC and the train proceeding from the ascending stop point DDC for the ascending train.

また、マスクRリレー回路では、下り列車が下り始動点ADCに到来して下りSRリレーの無励磁(落下)接点が構成され、それから更に下り列車が進行して上検知点DDCの列車検知長の区間に進入してリレー出力DPRの励磁(動作)接点が構成されたときにも、マスクRリレーが励磁(動作)状態になる。すると、上述したように下切替Rリレーが無励磁(落下)状態に戻り更にそれに伴う切替回路部86の切替による終止点用踏切制御子24の列車検知位置の上検知点DDCから下検知点DDDCへの遷移によって一旦はリレー出力DPRが無励磁(落下)状態に戻るが、マスクRリレーは自己保持機能にて励磁(動作)状態を維持する。   Further, in the mask R relay circuit, the descending train arrives at the descending start point ADC to form the non-excited (falling) contact point of the descending SR relay, and then the descending train further advances to the train detection length of the upper detection point DDC. The mask R relay is also in the excitation (operation) state when entering the section and forming the excitation (operation) contact of the relay output DPR. Then, as described above, the lower switching R relay returns to the non-excited (falling) state, and further, the switching circuit unit 86 is switched accordingly. Although the relay output DPR once returns to the non-excited (falling) state by the transition to, the mask R relay maintains the excited (operating) state by the self-holding function.

そして、それから更に下り列車が進行して下検知点DDDCの列車検知長の区間に進入してリレー出力DPRの励磁(動作)接点が再び構成され、その後に下り列車が下検知点DDDCの列車検知長の区間から完全に抜け出てリレー出力DPRが励磁されなくなると、先に下りSRが励磁(動作)状態に戻っている(下りSRが励磁状態になるのは、下り列車の最先頭が下検知点DDDCの列車検知長の区間に到達した時点である)ので、マスクRリレーが無励磁(落下)状態になる。このようなマスクRリレーは、下り列車に関して、上検知点DDCへの列車進入と下検知点DDDCからの列車進出とに亘る障検マスク区間に対応した信号を生成するものとなっている。   Then, the further downward train advances and enters the train detection length section of the lower detection point DDDC to reconfigure the excitation (operation) contact of the relay output DPR, and then the downward train detects the train at the lower detection point DDDC. When the relay output DPR is completely de-energized after exiting the long section, the descending SR returns to the excited (operating) state first. Since this is the time when the train reaches the train detection length section at point DDDC), the mask R relay is in a non-excited (falling) state. Such a mask R relay generates a signal corresponding to a failure detection mask section that extends from the lower detection point DDDC to the train approach to the upper detection point DDC and the train advancement from the lower detection point DDDC.

上述したことと纏めると、マスクRリレーは、上り列車についても、下り列車についても、上検知点DDCと下検知点DDDCとに亘る障検マスク区間における列車在線に対応した信号を生成するものとなっている。さらに、マスクRリレー回路は、その信号を、マスクRリレーの接点出力にて、踏切障害物検知の上り側マスク条件および下り側マスク条件として、踏切障害物検知装置35に送出するようになっている。
そのため、踏切障害物検知装置35は、その内部構成は従来のままでも、外部入力の変更によって、下り列車についても、上り列車についても、障検マスク区間が、踏切8の通過先の部分しか占めていなかった狭い旧区間から、踏切8を区間内に収めた広い新区間に拡張されたものとなっている。
In summary, the mask R relay generates a signal corresponding to the train line in the fault detection mask section extending from the upper detection point DDC to the lower detection point DDDC for both the upward train and the downward train. It has become. Further, the mask R relay circuit sends the signal to the level crossing obstacle detection device 35 as an upward mask condition and a downward mask condition for level crossing obstacle detection at the contact output of the mask R relay. Yes.
Therefore, the level crossing obstacle detection device 35 remains the same as that of the conventional structure, but due to a change in the external input, the obstacle mask section occupies only the portion where the level crossing 8 passes due to the down train and the up train. It has been expanded from a narrow old section that was not used to a wide new section that includes the railroad crossing 8 within the section.

出力形成部87の終止整形リレー回路では、上切替Rリレーが無励磁(落下)状態に戻っているときに限って、終止点用踏切制御子24のリレー出力DPRが励磁(動作)状態になると、それに応じて終止整形リレー上DPPRも励磁(動作)状態になるようになっている。そのため、終止整形リレー上DPPRは、下検知点DDDCに係る列車検知結果を無視して、上検知点DDCに係る列車検知結果だけを伝えるものとなる。また、終止点用踏切制御子24のリレー出力DPRそのものでなく終止整形リレー上DPPRの接点出力を上終止Rリレー出力として入力する踏切制御装置34は、その内部構成は従来のままでも、不都合なく、上り始動点CDCに係る列車検知結果と上検知点DDCに係る列車検知結果とに基づいて踏切警報(警報R)を発し、また踏切警報を終止することができるものとなっている。   In the end shaping relay circuit of the output forming unit 87, the relay output DPR of the end point crossing controller 24 is in the excited (operating) state only when the upper switching R relay is returned to the non-excited (falling) state. Accordingly, the DPPR on the end shaping relay is also in an excited (operating) state. For this reason, the DPPR on the end shaping relay ignores the train detection result related to the lower detection point DDDC and transmits only the train detection result related to the upper detection point DDC. Further, the level crossing control device 34 that inputs the contact output of the DPPR on the end shaping relay instead of the relay output DPR itself of the level crossing controller 24 for the end point as the upper end R relay output has no inconvenience even if the internal configuration is the same as the conventional one. The railroad crossing alarm (alarm R) can be issued and the railroad crossing alarm can be terminated based on the train detection result related to the upstream start point CDC and the train detection result related to the upper detection point DDC.

また、出力形成部87の終止整形リレー回路では、下切替Rリレーが無励磁(落下)状態に戻っているときに限って、終止点用踏切制御子24のリレー出力DPRが励磁(動作)状態になると、それに応じて終止整形リレー下DPPRも励磁(動作)状態になるようになっている。そのため、終止整形リレー下DPPRは、上検知点DDCに係る列車検知結果を無視して、下検知点DDDCに係る列車検知結果だけを伝えるものとなる。また、終止点用踏切制御子24のリレー出力DPRそのものでなく終止整形リレー下DPPRの接点出力を下終止Rリレー出力として入力する踏切制御装置34は、その内部構成は従来のままでも、不都合なく、下り始動点ADCに係る列車検知結果と下検知点DDDCに係る列車検知結果とに基づいて踏切警報(警報R)を発し、また踏切警報を終止することができるものとなっている。   In the termination shaping relay circuit of the output forming unit 87, the relay output DPR of the end point crossing controller 24 is in the excited (operating) state only when the lower switching R relay is returned to the non-excited (falling) state. Accordingly, the DPPR under the termination shaping relay is also in an excited (operating) state accordingly. Therefore, the lower shaping relay DPPR ignores the train detection result related to the upper detection point DDC and transmits only the train detection result related to the lower detection point DDDC. Further, the level crossing control device 34 for inputting the contact output of the lower end PRPR relay PRPR as the lower end R relay output instead of the relay output DPR itself of the end point crossing controller 24 is not inconvenient even if the internal configuration is the same as the conventional one. The railroad crossing alarm (alarm R) can be issued and the railroad crossing alarm can be terminated based on the train detection result related to the descending start point ADC and the train detection result related to the lower detection point DDDC.

なお、終止整形リレー上DPPRの接点出力と終止整形リレー下DPPRの接点出力とが、踏切制御装置34において踏切警報を停止するための踏切警報終止条件となっており、図9に示した踏切制御の具体例は、既述した図14(a)の従来例と、入力部分が少し異なっているが、具体的には、従来例ではリレー出力DPRを入力していたリレー接点の接続が本実施例では終止整形リレー上DPPRのリレー接点と終止整形リレー下DPPRリレー接点とを直列接続したものになっているが、この程度の相違は踏切制御装置34の入力に係る接続変更の範疇に属するものであり、踏切制御装置34の改造には当たらない。終止整形リレー上DPPRのリレー接点と終止整形リレー下DPPRリレー接点との直列接続回路を踏切制御切替装置84に移設すれば、踏切制御装置34については入力接続の変更すら必要がなく、終止点用踏切制御子24の出力から外した配線を踏切制御切替装置84に接続し直すだけで済む。また、踏切制御切替装置84でも、踏切制御切替装置50,60と同様、終止点用踏切制御子24や,マスクRリレー,終止整形リレー上DPPR及び下DPPRには、上述したのと同様の緩放性や緩動性が付与されている。   The contact output of DPPR on the end shaping relay and the contact output of DPPR below the end shaping relay are the level crossing alarm termination conditions for stopping the level crossing alarm in the level crossing control device 34, and the level crossing control shown in FIG. 14A is slightly different from the conventional example of FIG. 14A described above. Specifically, in the conventional example, the connection of the relay contact that inputs the relay output DPR is performed in this embodiment. In the example, the DPPR relay contact on the end shaping relay and the DPPR relay contact on the lower end shaping relay are connected in series, but this degree of difference belongs to the category of connection change related to the input of the crossing control device 34. Therefore, the railroad crossing control device 34 is not modified. If the series connection circuit of the DPPR relay contact on the end shaping relay and the DPPR relay contact on the lower end shaping relay is moved to the level crossing control switching device 84, it is not necessary to change the input connection for the level crossing control device 34. It is only necessary to reconnect the wiring removed from the output of the level crossing controller 24 to the level crossing control switching device 84. Further, the railroad crossing control switching device 84, as well as the railroad crossing control switching devices 50, 60, has the same slow speed as described above for the crossing point controller 24 for the end point, the mask R relay, the upper DPPR and the lower DPPR. Release and slow mobility are given.

この実施例2の踏切制御切替装置84及びそれを導入した単線区間における踏切保安装置80について、その使用態様及び動作を、図面を引用して説明する。
図10は、踏切保安装置80の概略図であり、(a)が上り列車到来時の切替状態を示し、(b)が上り列車到来後進入時の切替状態を示している。また、図11(b)〜(e)は、上り列車に対する列車検知と踏切障害物検知とに係るリレー信号等のタイムチャートである。さらに、図12は、踏切保安装置80の概略図であり、(a)が下り列車到来時の切替状態を示し、(b)が下り列車到来後進入時の切替状態を示している。
The use mode and operation of the level crossing control switching device 84 of the second embodiment and the level crossing security device 80 in the single line section in which it is introduced will be described with reference to the drawings.
FIG. 10 is a schematic diagram of the railroad crossing safety device 80, where (a) shows the switching state when the incoming train arrives, and (b) shows the switching state when entering after the incoming train arrives. Moreover, FIG.11 (b)-(e) is time charts, such as a relay signal concerning the train detection with respect to an upstream train, and a level crossing obstacle detection. Furthermore, FIG. 12 is a schematic diagram of the railroad crossing safety device 80, in which (a) shows a switching state when the down train arrives, and (b) shows a switching state when the vehicle enters after the down train arrives.

単線区間の線路10に対して新たに踏切保安装置80を設置する場合は上述した構成通りに踏切制御子21,23,24や,踏切制御装置34,警報灯32,踏切遮断機33,踏切障害物検知装置35,踏切制御切替装置84の配設とそれらに係る配線を行えば良く、既設の単線区間における踏切保安装置38に踏切制御切替装置84を追加して踏切保安装置38を踏切保安装置80にする場合は踏切制御切替装置84を追加してからそれに係る配線を変更すれば良いが、何れの場合も、設置が済んだら運用を開始する前に、上述したように模擬信号等で切替回路部86の接続状態を切り替えながら調整器25aや可変容量部56aを操作して照査用発振信号のレベル調整を行うことにより、第1接続線A1,B1と第2接続線A2,B2との長さの相違に基づく接続線切替時のインピーダンス変化に起因する照査用発振信号の不所望な変動を解消しておく。それから運用を開始する。   When a new level crossing safety device 80 is installed on the track 10 in the single track section, the level crossing controllers 21, 23, 24, the level crossing control device 34, the warning light 32, the level crossing breaker 33, and the level crossing trouble are as described above. It suffices to arrange the object detection device 35 and the level crossing control switching device 84 and to wire them. The level crossing control switching device 84 is added to the level crossing safety device 38 in the existing single-line section, and the level crossing safety device 38 is used as the level crossing safety device 38. If it is set to 80, it is sufficient to change the wiring related to it after adding the crossing control switching device 84. However, in any case, after the installation is completed, switching is performed with a simulation signal or the like as described above before starting the operation. By adjusting the level of the oscillation signal for verification by operating the adjuster 25a and the variable capacitance unit 56a while switching the connection state of the circuit unit 86, the first connection line A1, B1 and the second connection line A2, B2 Keep eliminating unwanted variations in Shosa oscillation signal due to the impedance change at the connection line switching based on the difference in length. Then start operation.

踏切保安装置80の設置された単線の線路10を上り列車が終点側から踏切8に向かって走行して来て上り始動点CDCの列車検知長の区間の区間に進入すると(図10(a)参照)、始動点用踏切制御子23が上り列車を検知して、始動点用踏切制御子23の上始動Rリレーが無励磁になる。すると、それまで励磁されて無意状態だった上りSRリレーが励磁されなくなって有意状態になり(図11(b)の左側部分を参照)、それに応じて、上りの踏切制御区間の始点が踏切制御装置34によって確認されて踏切警報が開始されるとともに、踏切保安装置80の踏切制御切替装置84の切替制御部85では下切替Rリレーが無励磁状態のまま上切替Rリレーが無励磁状態から励磁状態になり、更にそれに応じて切替回路部86が第2切替状態をとるので、終止点用踏切制御子24は下検知点DDDCに係る列車検知を行う。   When the ascending train travels from the end point side toward the level crossing 8 on the single track 10 where the railroad crossing safety device 80 is installed and enters the section of the train detection length section of the ascending starting point CDC (FIG. 10A). Reference), the starting point crossing controller 23 detects an upward train, and the upper starting R relay of the starting point crossing controller 23 is de-energized. Then, the up SR relay that has been energized until then becomes unexcited and becomes in a significant state (see the left part of FIG. 11B), and accordingly, the start point of the up crossing control section is the level crossing control. The crossing warning is started by confirmation by the device 34, and at the switching control unit 85 of the crossing control switching device 84 of the crossing safety device 80, the upper switching R relay is excited from the non-excited state while the lower switching R relay is in the non-excited state. Since the switching circuit unit 86 enters the second switching state accordingly, the end point crossing controller 24 detects the train related to the lower detection point DDDC.

線路10が単線で同時には下り列車が来ないうえ、この時点では未だ上り列車が下検知点DDDCにすら到達していないことから、始動点用踏切制御子21も終止点用踏切制御子24も列車を検知せず、始動点用踏切制御子21の下始動Rリレーは励磁状態を維持し、終止点用踏切制御子24の出力リレーDPRも励磁されず無意状態になっているので、マスクRリレーも励磁されず無意状態のままであり(図11(c)左側部分を参照)、踏切障害物検知装置35は踏切8に対して障害物の検知と検知時の警報出力を行う。   Since the track 10 is a single line and the down train does not come at the same time, and the up train has not yet reached the lower detection point DDDC at this time, both the start point crossing controller 21 and the end point crossing controller 24 Without detecting the train, the lower start R relay of the starting point crossing controller 21 maintains the excited state, and the output relay DPR of the end point crossing controller 24 is not excited and is in an involuntary state. The relay is not energized and remains in an involuntary state (see the left part of FIG. 11C), and the crossing obstacle detection device 35 detects an obstacle and outputs an alarm at the time of detection to the crossing 8.

そして、上り列車が進行して下検知点DDDCの列車検知長の区間に進入すると(図10(b)参照)、終止点用踏切制御子24によって上り列車が検知され、リレーDPRが励磁されて有意状態になり、それに応じてマスクRリレーも励磁されて有意状態になるので(図11(c)中央部分を参照)、踏切障害物検知装置35では踏切障害物検知のマスクが働く。
また、マスクRリレーの励磁に応じて切替制御部85では上切替Rリレーが励磁状態から無励磁状態になり、更にそれに応じて切替回路部86が第1切替状態をとるので、終止点用踏切制御子24は上検知点DDCに係る列車検知ができる状態で待機することになる。
When the ascending train advances and enters the train detection length section of the lower detection point DDDC (see FIG. 10B), the ascending train is detected by the end point crossing controller 24 and the relay DPR is excited. Since it becomes a significant state and the mask R relay is also excited and becomes a significant state accordingly (see the center portion in FIG. 11C), a crossing obstacle detection mask works in the crossing obstacle detection device 35.
Further, in the switching control unit 85 in accordance with the excitation of the mask R relay, the upper switching R relay changes from the excited state to the non-excited state, and the switching circuit unit 86 takes the first switching state accordingly. The controller 24 stands by in a state where the train detection related to the upper detection point DDC can be performed.

それから、上り列車が更に進行して踏切8に差し掛かると(図11(d)中央部分を参照)、その上り列車に感応して踏切障害物検知装置35では障害物感応信号SSが不感状態から有感状態になるが、踏切障害物検知装置35では既にマスクが効いているため、発報制御信号BZが無意(無警報状態)のまま変わらないので、誤報は出ない。
但し、ここでいう、不感状態、有感状態とは、当該列車のみに対する不感状態、有感状態であり踏切障害物検知としては、踏切警報が開始後、あるいは踏切警報が開始してから更に数秒(踏切により指定する)後から、マスク条件が成立するの間、有感状態となり、踏切道に滞留する障害物を検知する。
その後、上り列車が上検知点DDCへ進行して(図11(b)右側部分を参照)、終止点用踏切制御子24のリレーDPRが励磁されて有意状態になると、緩動性に基づき少し遅れて終止整形リレー上DPPRが励磁されて有意状態になり、それに応じて踏切制御装置34によって上りSRリレーが励磁されて無意状態に戻るが、マスクRリレーは有意な励磁状態のままなので(図11(c)中央部分を参照)、やはり誤報は出ない。
Then, when the ascending train further proceeds and reaches the railroad crossing 8 (see the center portion of FIG. 11 (d)), the obstacle sensing signal SS is detected from the insensitive state in the railroad crossing obstacle detection device 35 in response to the ascending train. Although it is in the sensitive state, since the mask is already effective in the crossing obstacle detection device 35, the alarm control signal BZ remains unintentional (no alarm state), so that no false alarm is generated.
However, the insensitive state and sensible state mentioned here are the insensitive state and sensible state only for the train, and as a level crossing obstacle detection, several seconds after the level crossing alarm starts or after the level crossing alarm starts. After (designated by a crossing), an obstacle staying on the crossing road is detected while the mask condition is satisfied.
Thereafter, when the upward train proceeds to the upper detection point DDC (see the right side of FIG. 11 (b)) and the relay DPR of the end point crossing controller 24 is excited and becomes in a significant state, it is slightly based on the looseness. The DPPR on the end shaping relay is excited with a delay and becomes a significant state, and the up SR relay is excited by the level crossing control device 34 to return to the involuntary state, but the mask R relay remains in a significant excitation state (see FIG. 11 (c) (see center)), there is no false alarm.

そして、更に上り列車が走行して踏切8を完全に通り抜けると(図11(d)中央右寄り部分を参照)、踏切障害物検知装置35では障害物感応信号SSが有感状態から不感状態に戻るが、依然として、マスクRリレーが有意な励磁状態のままなので(図11(c)中央右寄り部分を参照)、踏切障害物検知装置35から誤報が出ることはない。
それから、上り列車が走行して上検知点DDCの列車検知長の区間をも完全に抜けると(図11(c)右側部分を参照)、終止点用踏切制御子24のリレーDPRが励磁されなくなって無意状態になり、これに応じて終止整形リレー上DPPRと共にマスクRリレーも励磁されなくなって無意状態になり、踏切保安装置80の全体が列車非在線状態に戻る。
Then, when the upward train further travels and passes completely through the railroad crossing 8 (see the portion on the right side of the center of FIG. 11 (d)), the obstacle response signal SS returns from the sensitive state to the insensitive state in the crossing obstacle detection device 35. However, since the mask R relay is still in a significant excitation state (see the center right side portion of FIG. 11 (c)), no false alarm is issued from the crossing obstacle detection device 35.
Then, when the up train travels and completely passes through the train detection length section of the upper detection point DDC (see the right part of FIG. 11C), the relay DPR of the end point crossing controller 24 is not excited. In response to this, the DP R on the end shaping relay and the mask R relay are not excited in response to this, and the insignificant state is entered, and the entire level crossing safety device 80 returns to the non-train state.

このような、終止点用踏切制御子24による列車検知位置の切替と踏切障害物検知発報マスク動作によって、踏切制御切替装置84を導入した踏切保安装置80では、上りの踏切制御区間が踏切道を挟んでその両側に位置する上り始動点CDCと上検知点DDCとに亘る区間に維持されるとともに、障検マスク区間が踏切道を挟んでその両側に位置する下検知点DDDCと上検知点DDCとに亘る区間に拡張されて、踏切8が障検マスク区間内に完全に収まるため、上り列車の最先頭が踏切8に差し掛かってから下り列車の最後尾が踏切8を抜け出すまでの時間tが、列車の高速走行に対応して短い場合はもちろん(図11(d)参照)、列車の低速走行に対応して長い場合でも(図11(e)参照)、踏切障害物検知装置35が踏切通過中の列車を検知して誤報が出るという虞は、全くない。障害物感応信号SSに緩動性を持たせる必要もなく、コストアップも小さい。   In such a level crossing safety device 80 in which the level crossing control switching device 84 is introduced by switching the train detection position by the level crossing controller 24 for the end point and the masking operation for detecting the level crossing obstacle, the ascending level crossing control section is the level crossing control section. Is maintained in a section extending from the upstream starting point CDC and the upper detection point DDC located on both sides of the road, and the lower detection point DDDC and the upper detection point located on both sides of the railroad crossing road. Since the railroad crossing 8 is expanded into the section extending to the DDC and completely fits within the fault detection mask zone, the time t from when the top of the upstream train reaches the railroad crossing 8 until the tail of the downward train exits the railroad crossing 8 However, the railroad crossing obstacle detection device 35 is not limited to the case where it is short corresponding to the high-speed traveling of the train (see FIG. 11D) but the case corresponding to the low-speed traveling of the train is long (see FIG. 11E). During a crossing They fear that false alarms by detecting the train comes out is, no. It is not necessary to give the obstacle sensitive signal SS a slow movement, and the cost increase is small.

上りと下りの列車が同じ線路10を逆向きに走行する単線区間に踏切保安装置80が適用されているので、多少重複するが、下り列車についても説明する。踏切保安装置80の設置された単線の線路10を下り列車が起点側から踏切8に向かって走行して来て下り始動点ADCの列車検知長の区間に進入すると(図12(a)参照)、始動点用踏切制御子21が下り列車を検知して、始動点用踏切制御子21の下始動Rリレーが無励磁になる。すると、それまで励磁されて無意状態だった下りSRリレーが励磁されなくなって有意状態になり、それに応じて、下りの踏切制御区間の始点が踏切制御装置34によって確認されて踏切警報が開始されるとともに、踏切保安装置80の踏切制御切替装置84の切替制御部85では上切替Rリレーが無励磁状態のまま下切替Rリレーが無励磁状態から励磁状態になり、更にそれに応じて切替回路部86が第1切替状態をとるので、終止点用踏切制御子24は上検知点DDCに係る列車検知を行う。   Since the railroad crossing security device 80 is applied to a single line section where the up and down trains travel on the same line 10 in the opposite direction, the down train will be described although it overlaps somewhat. When the descending train travels from the starting side toward the railroad crossing 8 on the single track 10 where the railroad crossing safety device 80 is installed, and enters the train detection length section of the descending starting point ADC (see FIG. 12A). The starting point crossing controller 21 detects a descending train, and the lower starting R relay of the starting point crossing controller 21 is de-energized. Then, the descending SR relay that has been energized until then becomes inexcitable and becomes in a significant state, and accordingly, the start point of the descending level crossing control section is confirmed by the level crossing control device 34 and a level crossing alarm is started. At the same time, in the switching control unit 85 of the level crossing control switching device 84 of the level crossing safety device 80, the lower switching R relay changes from the non-excited state to the excited state while the upper switching R relay remains in the non-excited state. Therefore, the end point crossing controller 24 detects the train related to the upper detection point DDC.

線路10が単線で同時には上り列車が来ないうえ、この時点では未だ下り列車が上検知点DDCにすら到達していないことから、始動点用踏切制御子23も終止点用踏切制御子24も列車を検知せず、始動点用踏切制御子23の始動Rリレーは励磁状態を維持し、終止点用踏切制御子24の出力リレーDPRも励磁されず無意状態になっているので、マスクRリレーも励磁されず無意状態のままであり、踏切障害物検知装置35は踏切8に対して障害物の検知と検知時の警報出力を行う。   Since the track 10 is a single line and no upward trains come at the same time, and the downward train has not yet reached the upper detection point DDC at this point, both the starting point crossing controller 23 and the end point crossing controller 24 Since the train R is not detected, the start R relay of the start point crossing controller 23 maintains an excited state, and the output relay DPR of the end point crossing controller 24 is not excited and is in an involuntary state. The level crossing obstacle detection device 35 detects the obstacle and outputs a warning at the time of detection to the level crossing 8 without being excited.

そして、下り列車が進行して上検知点DDCの列車検知長の区間に進入すると(図12(b)参照)、終止点用踏切制御子24によって下り列車が検知され、リレーDPRが励磁されて有意状態になり、それに応じてマスクRリレーも励磁されて有意状態になるので、踏切障害物検知装置35では踏切障害物検知のマスクが働く。
また、マスクRリレーの励磁に応じて切替制御部85では下切替Rリレーが励磁状態から無励磁状態になり、更にそれに応じて切替回路部86が第2切替状態をとるので、終止点用踏切制御子24は下検知点DDDCに係る列車検知ができる状態で待機することになる。
When the descending train advances and enters the train detection length section of the upper detection point DDC (see FIG. 12B), the descending train is detected by the end point crossing controller 24, and the relay DPR is excited. Since it becomes a significant state and the mask R relay is also excited and becomes a significant state accordingly, the crossing obstacle detection device 35 operates a mask for detecting a crossing obstacle.
In response to the excitation of the mask R relay, the switching control unit 85 switches the lower switching R relay from the excited state to the non-excited state, and accordingly the switching circuit unit 86 takes the second switching state. The controller 24 stands by in a state where the train detection relating to the lower detection point DDDC can be performed.

それから、下り列車が更に進行して踏切8に差し掛かると、その上り列車に感応して踏切障害物検知装置35では障害物感応信号SSが不感状態から有感状態になるが、踏切障害物検知装置35では既にマスクが効いているため、発報制御信号BZが無意(無警報状態)のまま変わらないので、誤報は出ない。
その後、上り列車が下検知点DDDCへ進行して、終止点用踏切制御子24のリレーDPRが励磁されて有意状態になると、緩動性に基づき少し遅れて終止整形リレー上DPPRが励磁されて有意状態になり、それに応じて踏切制御装置34によって下りSRリレーが励磁されて無意状態に戻るが、マスクRリレーは有意な励磁状態のままなので、やはり誤報は出ない。
Then, when the descending train further progresses and reaches the level crossing 8, the level crossing obstacle detection device 35 responds to the up train and the obstacle sensing signal SS changes from the insensitive state to the sensitive state. Since the mask is already effective in the device 35, the alarm control signal BZ remains unintentional (no alarm state), so that no false alarm is generated.
Thereafter, when the up train advances to the lower detection point DDDC and the relay DPR of the end point crossing controller 24 is excited and becomes in a significant state, the DPPR on the end shaping relay is excited with a slight delay based on the slowness. The state becomes significant, and the descending SR relay is excited by the railroad crossing control device 34 accordingly and returns to the involuntary state. However, since the mask R relay remains in a significant excited state, no false alarm is generated.

そして、更に下り列車が走行して踏切8を完全に通り抜けると、踏切障害物検知装置35では障害物感応信号SSが有感状態から不感状態に戻るが、依然として、マスクRリレーが有意な励磁状態のままなので、やはり踏切障害物検知装置35から誤報が出ることはない。
それから、下り列車が走行して下検知点DDDCの列車検知長の区間をも完全に抜けると、終止点用踏切制御子24のリレーDPRが励磁されなくなって無意状態になり、これに応じて終止整形リレー下DPPRと共にマスクRリレーも励磁されなくなって無意状態になり、踏切保安装置80の全体が列車非在線状態に戻る。
When the further down train runs and completely passes through the level crossing 8, the obstacle detection signal 35 returns from the sensitive state to the insensitive state in the level crossing obstacle detection device 35, but the mask R relay is still in a significant excitation state. Therefore, no false alarm is issued from the crossing obstacle detection device 35.
Then, when the descending train travels and completely passes through the section of the train detection length of the lower detection point DDDC, the relay DPR of the end point crossing controller 24 is not excited and enters an involuntary state, and is terminated accordingly. The mask R relay is no longer excited together with the DPPR under the shaping relay and becomes involuntary, and the entire railroad crossing safety device 80 returns to the non-train state.

このような、終止点用踏切制御子24による列車検知位置の切替と踏切障害物検知発報マスク動作によって、踏切制御切替装置84を導入した踏切保安装置80では、下りの踏切制御区間が踏切道を挟んでその両側に位置する下り始動点ADCと下検知点DDDCとに亘る区間に拡張されるとともに、障検マスク区間が踏切道を挟んでその両側に位置する下検知点DDDCと上検知点DDCとに亘る区間に拡張されて、上りのときと同じく踏切8が障検マスク区間内に完全に収まる。
このように踏切制御切替装置84を導入した踏切保安装置80にあっては、終止点用踏切制御子24が一台だけのままであっても、上りの踏切制御区間も下りの踏切制御区間も障検マスク区間も理想状態になる。
In such a level crossing security device 80 in which the level crossing control switching device 84 is introduced by the switching of the train detection position by the level crossing controller 24 for the end point and the mask operation for detecting the level crossing obstacle, the descending level crossing control section is the level crossing control road. Is extended to a section extending between the down start point ADC and the lower detection point DDDC located on both sides of the road, and the lower detection point DDDC and the upper detection point are located on both sides of the fault crossing road with the fault mask section interposed therebetween. The road crossing 8 is expanded to a section extending to the DDC, and the crossing 8 is completely within the fault mask section as in the uphill.
In the crossing safety device 80 that has introduced the crossing control switching device 84 in this way, even if only one end point crossing controller 24 remains, both the up crossing control section and the down crossing control section The fault mask section is also in an ideal state.

[その他]
上記実施例では、切替制御部55,65,85や、切替回路部56,66,86、出力形成部57,67,87を、非同期式のリレー回路にて具体化したことから、回路動作の安定化のために、マスクRリレーや終止整形リレーに緩放性や緩動性を持たせたが、例えばデジタル回路やプログラマブルなマイクロプロセッサといった電子回路を採用して同期式の順序回路にて具体化しても良く、そうすれば、不所望なレーシング等の不安定現象の発現を容易に抑えることができるので、緩放性や緩動性は考慮すら必要ない。
[Others]
In the above embodiment, the switching control units 55, 65, 85, the switching circuit units 56, 66, 86, and the output forming units 57, 67, 87 are embodied by asynchronous relay circuits. For stabilization, the mask R relay and the stop shaping relay have been given slow release and slow release. However, for example, digital circuits and programmable microprocessors can be used to implement them in a synchronous sequential circuit. In that case, since it is possible to easily suppress the occurrence of undesired phenomena such as undesired racing, it is not necessary to consider the slow release property or the slow motion property.

上記実施例では、可変容量部56aが、一つだけ設けられて、分岐配線a2,b2の何れかに介挿されていたが、可変容量部は、分岐配線a2,b2の双方に設けられていても良く、さらには分岐配線a1,b1の何れか一方または双方にだけ設けられていても良く、分岐配線a1,b1の何れか一方または双方と分岐配線a2,b2の何れか一方または双方とに設けられていても良い。コモンモードの雷サージに対する耐力を高めるためには、分岐配線a1,b1の両方に及び/又は分岐配線a2,b2の両方に同じ容量のコンデンサーを介挿し回線を平衡させるのがベターである。   In the above embodiment, only one variable capacitor 56a is provided and is inserted in either of the branch lines a2 and b2. However, the variable capacitor is provided in both of the branch lines a2 and b2. Further, it may be provided only on one or both of the branch wirings a1 and b1, and either one or both of the branch wirings a1 and b1 and one or both of the branch wirings a2 and b2. May be provided. In order to increase the resistance to a common mode lightning surge, it is better to equilibrate the lines by inserting capacitors of the same capacity in both the branch lines a1 and b1 and / or in both branch lines a2 and b2.

上記実施例1では、第1接続線A1,B1や第2接続線A2,B2を踏切制御切替装置50の筐体の接続端子51や接続端子52に接続するに際して、第1接続線A1,B1や第2接続線A2,B2を配線端子盤28の端子に一旦接続しておき、その配線端子盤28から踏切制御切替装置50までは踏切器具箱内配線41,42で延長するようになっていたが、踏切器具箱内への収納は必須でないので、また踏切器具箱内に収納する場合でも配線端子盤28の使用は必須でないので、第1接続線A1,B1や第2接続線A2,B2は接続端子51や接続端子52に直接接続しても良い。   In the first embodiment, when connecting the first connection lines A1 and B1 and the second connection lines A2 and B2 to the connection terminals 51 and the connection terminals 52 of the housing of the crossing control switching device 50, the first connection lines A1 and B1. The second connection lines A2 and B2 are once connected to the terminals of the wiring terminal board 28, and from the wiring terminal board 28 to the level crossing control switching device 50 are extended by the rail crossing equipment box wirings 41 and 42. However, since the storage in the railroad crossing equipment box is not essential, and the use of the wiring terminal board 28 is not essential even in the case of storage in the railroad crossing equipment box, the first connection lines A1, B1 and the second connection lines A2, B2 may be directly connected to the connection terminal 51 or the connection terminal 52.

上記実施例2では、既存の踏切保安装置に踏切制御切替装置84を追加設置する場合の例として、下検知点DDDCには終止点用踏切制御子が接続されておらず、上検知点DDCが共用終止点とされて、そこの接続線取付箇所14に第1接続線A1,B1を介して終止点用踏切制御子24が接続されている踏切保安装置を更新して踏切保安装置80に改良する場合を述べたが、上検知点DDCには終止点用踏切制御子が接続されておらず、下検知点DDDCが共用終止点とされて、そこの接続線取付箇所15に接続線A2,B2を介して終止点用踏切制御子が接続されている踏切保安装置を更新して改良する場合も、接続線取付箇所14,15を入れ替えれば、ほぼ同様に行うことができる。   In the second embodiment, as an example in the case where a level crossing control switching device 84 is additionally installed in an existing level crossing safety device, the end point crossing controller is not connected to the lower detection point DDDC, and the upper detection point DDC is The level crossing safety device in which the end point crossing controller 24 is connected to the connecting line attachment point 14 via the first connection lines A1 and B1 is updated and improved to the level crossing safety device 80. However, the upper detection point DDC is not connected to the end point crossing controller, and the lower detection point DDDC is used as a common end point. Even when the crossing safety device to which the end point crossing controller is connected via B2 is updated and improved, the connection line attachment points 14 and 15 can be replaced in substantially the same manner.

上記実施例1では複線区間における上り側の線路10と下り側の線路10との双方に踏切制御切替装置50,60が設置されていたが、予算や工期などの都合によっては、それらのうち何れか片方だけを設置しても良く、他方は、遅れて設置しても良く、設置しないままにしても良い。そのように複数の線路のうち一部の線路にだけ踏切制御切替装置を設置した場合、設置した線路については本発明の効果を享受することができる。
上記実施例では、踏切8が第1種でそこに踏切遮断機33が設置されていたが、本発明の実施に踏切遮断機33は必須でないので、踏切8が第3種の場合は踏切遮断機33を省いても良い。
In the first embodiment, the railroad crossing control switching devices 50 and 60 are installed on both the upstream line 10 and the downstream line 10 in the double track section. Only one of them may be installed, and the other may be installed later or may be left uninstalled. When the railroad crossing control switching device is installed only on some of the plurality of tracks, the effect of the present invention can be enjoyed with respect to the installed tracks.
In the above embodiment, the level crossing 8 is the first type and the level crossing breaker 33 is installed there. However, since the level crossing breaker 33 is not essential for the implementation of the present invention, the level crossing is cut off when the level crossing 8 is the third type. The machine 33 may be omitted.

本発明の踏切保安装置および踏切制御切替装置が単線区間と狭義の複線区間に適用できることは上記実施例にて具体的に説明したが、複々線など、上り側の線路と下り側の線路とのうち何れか一方または双方が更に複数敷設されている広義の複線区間にも本発明は適用することができる。   The level crossing safety device and the level crossing control switching device according to the present invention can be applied to the single line section and the narrowly defined double line section in the above-described embodiment, but, among the double line, the up line and the down line The present invention can also be applied to a broad-lined double track section in which either one or both are further laid.

8…踏切、10…線路、11,12…レール、
14,14a,15,15a…接続線取付箇所、
21…始動点用踏切制御子(閉電路形踏切制御子)、
22…終止点用踏切制御子(開電路形踏切制御子)、
23…始動点用踏切制御子(閉電路形踏切制御子)、
24…終止点用踏切制御子(開電路形踏切制御子)、
25…発振有無検出部(電路開閉検出部)、25a…調整器(第1調整部)、
26…リレー駆動部、27…踏切器具箱内配線、28…配線端子盤、
31…踏切制御装置(複線用,列車方向判別手段)、32…警報灯、
33…踏切遮断機、34…踏切制御装置(単線用,列車方向判別手段)、
35…踏切障害物検知装置、35a…踏切障害物検知装置(マスク拡張)、
37…踏切保安装置(複線用)、38…踏切保安装置(単線用)、
40…踏切保安装置(複線用)、41〜46…踏切器具箱内配線、
50…踏切制御切替装置(接続線切替ユニット)、
51〜54,54a,54b,54c…接続端子、
55…切替制御部、56…切替回路部、
56a…可変容量部(第2調整部)、57…出力形成部、
60…踏切制御切替装置(接続線切替ユニット)、
65…切替制御部、66…切替回路部、67…出力形成部、
80…踏切保安装置(単線用)、
84…踏切制御切替装置(接続線切替ユニット)、
85…切替制御部、86…切替回路部、87…出力形成部、
AA,BB…制御子内配線、a1,b1…分岐配線、a2,b2…分岐配線、
A1,B1…接続線(第1接続線)、A2,B2…接続線(第2接続線)、
ADC…下り始動点、BDC…下り終止点、CDC…上り始動点、DDC…上り終止点
8 ... Railroad crossing, 10 ... Track, 11, 12 ... Rail,
14, 14 a, 15, 15 a.
21 ... Starting point level crossing controller (closed circuit type level crossing controller),
22 ... Ending point crossing controller (open circuit type crossing controller),
23 ... Starting point crossing controller (closed-circuit type crossing controller),
24 ... Ending point crossing controller (open circuit type crossing controller),
25 ... Oscillation presence / absence detection unit (electric circuit open / close detection unit), 25a ... Adjuster (first adjustment unit),
26 ... relay drive unit, 27 ... wiring in the railroad crossing equipment box, 28 ... wiring terminal board,
31 ... Crossing control device (for double track, train direction discriminating means), 32 ... warning light,
33 ... Railroad crossing breaker, 34 ... Railroad crossing control device (for single track, train direction discrimination means),
35 ... Crossing obstacle detection device, 35a ... Crossing obstacle detection device (mask expansion),
37 ... Crossing safety device (for double wires), 38 ... Crossing safety device (for single wires),
40 ... Railroad crossing safety device (for double wires), 41-46 ... Wiring in railroad crossing equipment box,
50 ... railroad crossing control switching device (connection line switching unit),
51-54, 54a, 54b, 54c ... connection terminals,
55 ... switching control unit, 56 ... switching circuit unit,
56a ... variable capacity part (second adjusting part), 57 ... output forming part,
60 ... railroad crossing control switching device (connection line switching unit),
65 ... switching control unit, 66 ... switching circuit unit, 67 ... output forming unit,
80 ... Railroad crossing safety device (for single wire),
84 ... railroad crossing control switching device (connection line switching unit),
85 ... switching control unit, 86 ... switching circuit unit, 87 ... output forming unit,
AA, BB ... Wiring inside controller, a1, b1 ... Branch wiring, a2, b2 ... Branch wiring,
A1, B1 ... connection line (first connection line), A2, B2 ... connection line (second connection line),
ADC ... Downlink start point, BDC ... Downlink end point, CDC ... Uplink start point, DDC ... Upstream end point

Claims (4)

鉄道の複線区間において線路を横切る踏切の両側に分かれて前記線路に設定された始動点および終止点のうち前記始動点に係る列車検知を行う閉電路形の始動点用踏切制御子と、前記線路と前記終止点の所で第1接続線にて接続されて前記終止点に係る列車検知を行う開電路形の終止点用踏切制御子と、前記始動点用踏切制御子での列車検知結果と前記終止点用踏切制御子での列車検知結果とに基づいて踏切警報を発する踏切制御装置と、前記踏切制御装置に内蔵されていて又は前記踏切制御装置の外部に設けられていて前記線路に係る前記始動点への列車到来に応じて列車在線と上り下りを判別して列車運転方向指示を出す列車方向判別手段と、前記踏切に係る障害物検知を行うとともに前記列車運転方向指示を警報認容条件とし且つマスク条件を警報抑制条件として警報が認容されているときには障害物検知結果に応じて警報を発する踏切障害物検知装置とを備えた踏切保安装置において、
前記始動点と前記踏切との間に設定された拡張点の所で前記線路に接続された第2接続線と、
前記第1接続線と前記終止点用踏切制御子との間に割り込む形で介挿接続されるとともに,前記第2接続線にも接続されて,第1切替状態では前記終止点用踏切制御子の接続先を前記第1接続線に切り替えるが,第2切替状態では前記終止点用踏切制御子の接続先を前記第2接続線に切り替える切替回路部と、
前記列車方向判別手段の判別結果に基づいて,前記始動点への列車到来時には先ず前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記拡張点に係る列車検知を行わせ,その後の前記拡張点への列車進行時には前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記終止点に係る列車検知を行わせる切替制御部と、
前記列車方向判別手段の判別結果と前記終止点用踏切制御子の検出結果とに基づいて,前記拡張点への列車進入と前記終止点からの列車進出とに亘る障検マスク区間に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出する出力形成部と
を設けたことを特徴とする踏切保安装置。
A closed-circuit type starting point crossing controller for detecting a train related to the starting point among the starting point and the end point set on the line divided into both sides of a railroad crossing across the line in a double track section of the railway, and the line And an open circuit type railroad crossing controller for detecting a train related to the stop point connected by a first connection line at the stop point, and a train detection result at the start point crossing controller A railroad crossing control device that issues a railroad crossing warning based on a train detection result at the railroad crossing controller for the end point, and a railroad crossing control device that is built in or is external to the railroad crossing control device Train direction discriminating means for discriminating train on-line and up / down according to the arrival of the train at the starting point and issuing a train operation direction instruction, performing obstacle detection related to the railroad crossing and warning acceptance condition for the train operation direction instruction And trout In crossing safety system and a railway crossing obstacle detection device for issuing an alarm in response to the obstacle detection results when the alarm condition as an alarm suppression condition is acceptable,
A second connecting line connected to the track at an extension point set between the starting point and the railroad crossing;
The end point crossing controller is inserted and connected between the first connection line and the end point crossing controller, and is also connected to the second connection line in the first switching state. A switching circuit unit that switches the connection destination of the end point crossing controller to the second connection line in the second switching state,
Based on the determination result of the train direction determining means, when the train arrives at the starting point, first, the switching circuit unit is set to the second switching state, so that the end point crossing controller is related to the extension point. Switching control for causing the end point crossing controller to detect the train related to the end point by causing the switching circuit unit to take the first switching state when the train proceeds to the extension point thereafter And
Based on the determination result of the train direction determination means and the detection result of the end point crossing controller, a signal corresponding to the fault mask section spanning the train approach to the extension point and the train advance from the end point A crossing safety device, comprising: an output forming unit that generates the signal as a mask condition and sends the signal to the crossing obstacle detection device.
鉄道の複線区間において線路を横切る踏切の両側に分かれて前記線路に設定された始動点および終止点のうち前記終止点の所で前記線路に接続された第1接続線と,前記始動点と前記踏切との間に設定された拡張点の所で前記線路に接続された第2接続線とのうち,何れか一方の接続点を選択して開電路形の終止点用踏切制御子と接続させることにより前記終止点用踏切制御子に時分割で二台分の列車検知機能を発揮させる踏切制御切替装置であって、
前記第1接続線に対する接続手段と,前記第2接続線に対する接続手段と,前記終止点用踏切制御子に対する接続手段と,前記線路に係る列車の上り下り及び在線を判別して列車運転方向指示を出す列車方向判別手段に対する接続手段と,前記踏切に係る障害物検知を行うとともに前記列車運転方向指示およびマスク条件による警報認容時には障害物検知結果に応じて警報を発する踏切障害物検知装置に対する接続手段とを有する筐体と、
前記筐体に内蔵されていて,第1切替状態では前記終止点用踏切制御子と前記第1接続線とを接続させるが,第2切替状態では前記終止点用踏切制御子と前記第2接続線とを接続させる切替回路部と、
前記筐体に内蔵されていて,前記列車方向判別手段の判別結果に基づいて,前記始動点への列車到来時には先ず前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記拡張点に係る列車検知を行わせ,その後の前記拡張点への列車進行時には前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記終止点に係る列車検知を行わせる切替制御部と、
前記筐体に内蔵されていて,前記列車方向判別手段の判別結果と前記終止点用踏切制御子の検出結果とに基づいて,前記拡張点への列車進入と前記終止点からの列車進出とに亘る障検マスク区間に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出する出力形成部と
を設けたことを特徴とする踏切制御切替装置。
A first connecting line connected to the track at the stop point among the start point and the stop point set on the track divided on both sides of a railroad crossing across the track in a double track section of the railway, the start point and the Select one of the second connection lines connected to the track at the extension point set between the crossing and connect it to the open-circuit-type end point crossing controller A railroad crossing control switching device that causes the railroad crossing controller for the end point to exhibit the train detection function for two cars in a time-sharing manner,
A connection means for the first connection line, a connection means for the second connection line, a connection means for the railroad crossing controller for the end point, and a train operation direction instruction by discriminating up and down and on-line of the train related to the track Connecting to the train direction discriminating means for issuing the obstacle, and connecting to the railroad crossing obstacle detection device for performing obstacle detection related to the railroad crossing and issuing an alarm according to the obstacle detection result at the time of alarm acceptance by the train operation direction instruction and the mask condition A housing having means;
The end point crossing controller is connected to the first connection line in the first switching state, and the end point crossing controller and the second connection are connected in the second switching state. A switching circuit unit for connecting the wires,
When the train arrives at the starting point based on the determination result of the train direction determining means, which is built in the housing, first the switching circuit unit is brought into the second switching state to thereby make the end point crossing. By causing the controller to detect the train related to the extension point, and then causing the switching circuit unit to take the first switching state when the train proceeds to the extension point, the end point crossing controller is allowed to take the end point. A switching control unit for performing train detection according to:
Based on the determination result of the train direction determination means and the detection result of the railroad crossing controller for the stop point, which is built in the casing, the train approaching the extension point and the train advancement from the stop point A railroad crossing control switching device, comprising: an output forming unit that generates a signal corresponding to a crossing obstacle detection mask section and sends the signal to the railroad crossing obstacle detection device as the mask condition.
鉄道の単線区間の線路に設けられた踏切の両側に分かれて前記線路に設定された下り始動点および上り始動点それぞれに係る列車検知を行う複数の閉電路形の始動点用踏切制御子と、前記始動点のうち何れか一方と前記踏切との間に設定された終止点に係る列車検知を行う開電路形の終止点用踏切制御子と、前記始動点用踏切制御子での列車検知結果と前記終止点用踏切制御子での列車検知結果とに基づいて踏切警報を発する踏切制御装置と、前記踏切制御装置に内蔵されていて又は前記踏切制御装置の外部に設けられていて前記線路に対する前記始動点用踏切制御子の接続箇所への列車到来に応じて列車在線と上り下りを判別して列車運転方向指示を出す列車方向判別手段と、前記踏切に係る障害物検知を行うとともに前記列車運転方向指示を警報認容条件とし且つマスク条件を警報抑制条件として警報が認容されているときには障害物検知結果に応じて警報を発する踏切障害物検知装置とを備えた踏切保安装置において、
前記下り始動点と前記踏切との間に設定された本来あるべき理想的な上り終止点の所で前記線路に接続された第1接続線と、
前記上り始動点と前記踏切との間に設定された本来あるべき理想的な下り終止点の所で前記線路に接続された第2接続線と、
前記第1接続線と前記第2接続線との双方と接続されて,第1切替状態では前記終止点用踏切制御子の接続先を前記第1接続線に切り替えるが,第2切替状態では前記終止点用踏切制御子の接続先を前記第2接続線に切り替える切替回路部と、
前記列車運転方向指示に応じて,前記上り始動点と前記下り始動点とのうち前記上り始動点への列車到来が先行したときには,先ず前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記下り終止点に係る列車検知を行わせ,その後の前記下り終止点への列車進行時には前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記上り終止点に係る列車検知を行わせるとともに、前記上り始動点と前記下り始動点とのうち前記下り始動点への列車到来が先行したときには,先ず前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記上り終止点に係る列車検知を行わせ,その後の前記上り終止点への列車進行時には前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記下り終止点に係る列車検知を行わせる切替制御部と、
前記列車方向判別手段の判別結果と前記終止点用踏切制御子の検出結果とに基づいて,前記上り終止点と前記下り終止点とに亘る障検マスク区間における列車在線に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出するとともに、前記踏切制御装置に踏切警報を終止させる踏切警報終止条件として,前記上り始動点への列車到来が先行したときには,前記終止点用踏切制御子による前記下り終止点に係る列車検知結果を除外して前記終止点用踏切制御子による前記上り終止点に係る列車検知結果のみを前記踏切制御装置へ送出し,且つ,前記下り始動点への列車到来が先行したときには,前記終止点用踏切制御子による前記上り終止点に係る列車検知結果を除外して前記終止点用踏切制御子による前記下り終止点に係る列車検知結果のみを前記踏切制御装置へ送出する出力形成部と
を設けたことを特徴とする踏切保安装置。
A plurality of closed-circuit-type starting point crossing controllers for detecting a train relating to each of a downward starting point and an upward starting point set on the railroad line on both sides of a railroad crossing provided on a railway line of a single track section; An open circuit type crossing controller for an end point that performs train detection related to a stop point set between any one of the start points and the crossing, and a train detection result at the crossing controller for the start point And a railroad crossing control device that issues a railroad crossing warning based on the train detection result at the railroad crossing controller for the end point, and is incorporated in the railroad crossing control device or provided outside the railroad crossing control device and A train direction discriminating means for discriminating a train presence line and an up / down direction according to arrival of a train at a connection point of the starting point crossing controller, and performing an obstacle operation detection on the railroad crossing as well as detecting an obstacle related to the railroad crossing. Driving direction finger In crossing safety system and a railway crossing obstacle detection device for issuing an alarm in response to the obstacle detection results when the alarm is acceptable as and alarm suppression condition the mask condition and alarm acceptance condition,
A first connection line connected to the line at an ideal up end point set between the down start point and the railroad crossing;
A second connection line connected to the line at an ideal down end point that should be originally set between the up start point and the crossing;
Connected to both the first connection line and the second connection line, and in the first switching state, the connection point of the end point crossing controller is switched to the first connection line, but in the second switching state, A switching circuit section for switching the connection destination of the end point crossing controller to the second connection line;
In response to the train operation direction instruction, when a train arrives at the up start point out of the up start point and the down start point, first, the switching circuit unit is caused to take the second switching state. The end point crossing controller performs train detection related to the descending end point, and when the train proceeds to the descending end point thereafter, the switching circuit unit takes the first switching state to thereby terminate the end point. When a railroad crossing controller detects a train related to the ascending end point, and when a train arrives at the descending start point among the ascending start point and the descending start point, the switching circuit unit firstly By making one switching state, the end point crossing controller performs train detection related to the up end point, and when the train proceeds to the up end point thereafter, the switching circuit unit performs the second switching. A switching control unit that causes the train detection according to the downlink end point to the end point for crossing control element by assume a state,
Based on the determination result of the train direction determination means and the detection result of the crossing controller for the end point, a signal corresponding to the train line in the fault mask section extending between the up stop point and the down stop point is generated. , This signal is sent to the level crossing obstacle detection device as the mask condition, and when the train arrives at the uphill starting point as a level crossing alarm stop condition for the level crossing control device to stop the level crossing alarm, the stop Excluding the train detection result related to the descending end point by the point crossing controller, only the train detection result related to the up end point by the end point crossing controller is sent to the level crossing control device, and When the arrival of the train at the starting point is preceded, the train detection result related to the ascending end point by the end point crossing controller is excluded, and the end point crossing controller Ri crossing safety device, characterized in that the train detection result only of the end point is provided and an output forming part for sending to the crossing controller.
鉄道の単線区間の線路に設けられた踏切の両側に分かれて前記線路に設定された下り始動点および上り始動点のうち前記下り始動点と前記踏切との間に設定された本来あるべき理想的な上り終止点の所で前記線路に接続された第1接続線と,前記上り始動点と前記踏切との間に設定された本来あるべき理想的な下り終止点の所で前記線路に接続された第2接続線とのうち,何れか一方を選択して開電路形の終止点用踏切制御子と接続させることにより前記終止点用踏切制御子に時分割で二台分の列車検知機能を発揮させる踏切制御切替装置であって、
前記第1接続線に対する接続手段と,前記第2接続線に対する接続手段と,前記終止点用踏切制御子に対する接続手段と,始動点用踏切制御子での列車検知結果と前記終止点用踏切制御子での列車検知結果とに基づいて踏切警報を発する踏切制御装置に対する接続手段と,前記踏切制御装置に内蔵されていて又は前記踏切制御装置の外部に設けられていて前記線路に係る列車の上り下り及び在線を判別して列車運転方向指示を出す列車方向判別手段に対する接続手段と,前記踏切に係る障害物検知を行うとともに前記列車運転方向指示およびマスク条件による警報認容時には障害物検知結果に応じて警報を発する踏切障害物検知装置に対する接続手段とを有する筐体と、
前記筐体に内蔵されていて,第1切替状態では前記終止点用踏切制御子と前記第1接続線とを接続させるが,第2切替状態では前記終止点用踏切制御子と前記第2接続線とを接続させる切替回路部と、
前記筐体に内蔵されていて,前記列車運転方向指示に応じて,前記上り始動点と前記下り始動点とのうち前記上り始動点への列車到来が先行したときには,先ず前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記下り終止点に係る列車検知を行わせ,その後の前記下り終止点への列車進行時には前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記上り終止点に係る列車検知を行わせるとともに、前記上り始動点と前記下り始動点とのうち前記下り始動点への列車到来が先行したときには,先ず前記切替回路部に前記第1切替状態をとらせることにより前記終止点用踏切制御子に前記上り終止点に係る列車検知を行わせ,その後の前記上り終止点への列車進行時には前記切替回路部に前記第2切替状態をとらせることにより前記終止点用踏切制御子に前記下り終止点に係る列車検知を行わせる切替制御部と、
前記列車方向判別手段の判別結果と前記終止点用踏切制御子の検出結果とに基づいて,前記上り終止点と前記下り終止点とに亘る障検マスク区間における列車在線に対応した信号を生成し,この信号を前記マスク条件として前記踏切障害物検知装置へ送出するとともに、前記踏切制御装置に踏切警報を終止させる踏切警報終止条件として,前記上り始動点への列車到来が先行したときには,前記終止点用踏切制御子による前記下り終止点に係る列車検知結果を除外して前記終止点用踏切制御子による前記上り終止点に係る列車検知結果のみを前記踏切制御装置へ送出し,且つ,前記下り始動点への列車到来が先行したときには,前記終止点用踏切制御子による前記上り終止点に係る列車検知結果を除外して前記終止点用踏切制御子による前記下り終止点に係る列車検知結果のみを前記踏切制御装置へ送出する出力形成部と
を設けたことを特徴とする踏切制御切替装置。
Ideally set between the descending start point and the level crossing among the descending start point and the ascending start point set on the track divided on both sides of the railroad crossing provided on the railway in the single track section of the railway A first connecting line connected to the line at the up-end stop point, and an ideal down-end point set between the up start point and the level crossing. By selecting either one of the second connection lines and connecting it to the open-circuit type crossing controller for the end point, the end point crossing controller for the end point is provided with a train detection function for two vehicles in a time-sharing manner. A crossing control switching device to be exhibited,
Connection means for the first connection line, connection means for the second connection line, connection means for the end point crossing controller, train detection result at the start point crossing controller and the end point crossing control Connecting means to a railroad crossing control device that issues a railroad crossing warning based on the train detection result at the child, and the train ascending to the railroad line that is built in the railroad crossing control device or provided outside the railroad crossing control device Connecting means to train direction discriminating means for discriminating down and standing lines and issuing train operation direction instructions, and detecting obstacles related to the railroad crossings and responding to obstacle detection results when alarming is accepted by the train operation direction instructions and mask conditions A housing having means for connecting to a crossing obstacle detection device that issues a warning,
The end point crossing controller is connected to the first connection line in the first switching state, and the end point crossing controller and the second connection are connected in the second switching state. A switching circuit unit for connecting the wires,
When the train arrives at the ascending start point among the ascending start point and the descending start point according to the train operation direction instruction, first, the switching circuit unit is connected to the switching circuit unit. By taking the second switching state, the end point crossing controller performs the train detection related to the descending end point, and when the train proceeds to the descending end point thereafter, the switching circuit unit causes the first switching state. By making the end point crossing controller detect the train related to the ascending end point, and when the arrival of the train to the descending start point of the ascending start point and the descending start point precedes First, by causing the switching circuit unit to take the first switching state, the end point crossing controller performs the train detection related to the up end point, and the train travels to the up end point before A switching control unit that causes the train detection according to the downlink end point to the end point for crossing control element by assume the second switching state the switching circuit portion,
Based on the determination result of the train direction determination means and the detection result of the crossing controller for the end point, a signal corresponding to the train line in the fault mask section extending between the up stop point and the down stop point is generated. , This signal is sent to the level crossing obstacle detection device as the mask condition, and when the train arrives at the uphill starting point as a level crossing alarm stop condition for the level crossing control device to stop the level crossing alarm, the stop Excluding the train detection result related to the descending end point by the point crossing controller, only the train detection result related to the up end point by the end point crossing controller is sent to the level crossing control device, and When the arrival of the train at the starting point is preceded, the train detection result related to the ascending end point by the end point crossing controller is excluded, and the end point crossing controller Ri crossing control switching device, characterized in that the train detection result only of the end point is provided and an output forming part for sending to the crossing controller.
JP2011236454A 2011-10-27 2011-10-27 Railroad crossing safety device and railroad crossing control switching device Active JP5863387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236454A JP5863387B2 (en) 2011-10-27 2011-10-27 Railroad crossing safety device and railroad crossing control switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236454A JP5863387B2 (en) 2011-10-27 2011-10-27 Railroad crossing safety device and railroad crossing control switching device

Publications (2)

Publication Number Publication Date
JP2013095151A true JP2013095151A (en) 2013-05-20
JP5863387B2 JP5863387B2 (en) 2016-02-16

Family

ID=48617583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236454A Active JP5863387B2 (en) 2011-10-27 2011-10-27 Railroad crossing safety device and railroad crossing control switching device

Country Status (1)

Country Link
JP (1) JP5863387B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140130A (en) * 2014-01-30 2015-08-03 東日本旅客鉄道株式会社 Railroad-crossing object detection device
CN108717162A (en) * 2018-08-13 2018-10-30 北京市地铁运营有限公司通信信号分公司 Using relay status to switch breakdown real time on-line monitoring system and monitoring method
CN113079549A (en) * 2020-01-03 2021-07-06 普天信息技术有限公司 Cell switching method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144258A (en) * 1988-11-24 1990-06-04 Nippon Signal Co Ltd:The Railway crossing control device
JP2003341516A (en) * 2002-05-30 2003-12-03 Nippon Signal Co Ltd:The System for supplying signal for train

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144258A (en) * 1988-11-24 1990-06-04 Nippon Signal Co Ltd:The Railway crossing control device
JP2003341516A (en) * 2002-05-30 2003-12-03 Nippon Signal Co Ltd:The System for supplying signal for train

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140130A (en) * 2014-01-30 2015-08-03 東日本旅客鉄道株式会社 Railroad-crossing object detection device
CN108717162A (en) * 2018-08-13 2018-10-30 北京市地铁运营有限公司通信信号分公司 Using relay status to switch breakdown real time on-line monitoring system and monitoring method
CN113079549A (en) * 2020-01-03 2021-07-06 普天信息技术有限公司 Cell switching method and device

Also Published As

Publication number Publication date
JP5863387B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
US11967242B2 (en) Railroad crossing and adjacent signalized intersection vehicular traffic control preemption systems and methods
JP5863387B2 (en) Railroad crossing safety device and railroad crossing control switching device
US9809237B2 (en) Gate crossing arm collision detection system and method
AU2018201890B2 (en) System and method for controlling a level crossing
JP5822563B2 (en) Railroad crossing safety device, updating method thereof, and railroad crossing control switching device
KR100873322B1 (en) Train occupation detection system and method
JP6032800B2 (en) Railroad crossing safety device and railroad crossing control switching device
JP5466058B2 (en) Wireless level crossing warning system
JP5766088B2 (en) End point crossing controller and adjusting method thereof
JP6076085B2 (en) Railroad crossing control circuit
KR100327676B1 (en) Safety system of a railroad crossing gate
CN216467864U (en) Railway monitoring system
JP2016214310A (en) Control apparatus of model vehicle, and computer program for model vehicle control
JP2011195120A (en) Radio type crossing warning system
JP3441942B2 (en) Train detection method, train operation system and train detection device using the same
CN113859331A (en) Railway monitoring system and monitoring method thereof
JP6846209B2 (en) Railroad crossing control system and railway control system using optical cable
JP2868250B2 (en) Level crossing alarm control device
JP6645648B2 (en) Level crossing security device and level crossing object detection device
JP2016214298A (en) Control apparatus of model vehicle, and computer program for model vehicle control
JP2876005B1 (en) Level crossing alarm
US20180273068A1 (en) Method for controlling a level crossing and railway installation for implementing such method
KR100798136B1 (en) An controller for ATS balise and the method thereof
JP6344734B2 (en) Railroad crossing object detection device
JP6192344B2 (en) Railroad crossing object detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5863387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250