JP2013094849A - Welding method by two-electrode plasma torch - Google Patents

Welding method by two-electrode plasma torch Download PDF

Info

Publication number
JP2013094849A
JP2013094849A JP2011243218A JP2011243218A JP2013094849A JP 2013094849 A JP2013094849 A JP 2013094849A JP 2011243218 A JP2011243218 A JP 2011243218A JP 2011243218 A JP2011243218 A JP 2011243218A JP 2013094849 A JP2013094849 A JP 2013094849A
Authority
JP
Japan
Prior art keywords
electrode
welding
plasma
plasma arc
trailing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243218A
Other languages
Japanese (ja)
Other versions
JP5787403B2 (en
Inventor
Kenji Okuyama
山 健 二 奥
Tadashi Hoshino
野 忠 星
Hiroki Sugawara
原 ひろき 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2011243218A priority Critical patent/JP5787403B2/en
Publication of JP2013094849A publication Critical patent/JP2013094849A/en
Application granted granted Critical
Publication of JP5787403B2 publication Critical patent/JP5787403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve poor weld at a welding piece end in two-electrode plasma welding.SOLUTION: In the two-electrode plasma welding of performing welding by using a two-electrode plasma torch 30 having two nozzles communicating with two electrode arrangement spaces and generating plasma arc in each electrode 12a, 12b while traveling and driving the torch and one of welding pieces in a direction along a weld line with the arrangement direction of the two nozzles being parallel to the weld line, a preceding pole is set to preheating, and a following pole is set to back bead forming welding. When the following electrode is at the start end of the welding piece, the plasma arc of the following pole is activated and the traveling drive of the torch is also started at low speed. When the following pole arrives at a position where the preceding pole has activated the plasma arc, the traveling drive is switched to high speed, and both or one of arc current and plasma gas flow rate of the following pole is switched to high. Just before the preceding pole arrives at the rear end of the welding piece, both or one of the plasma arc current and plasma gas flow rate of the preceding pole is reduced to stop the plasma arc at the rear end, and when the following pole arrives at the rear end, crater processing is performed.

Description

本発明は、2個の電極配置空間と各電極配置空間にそれぞれが連通する2個のノズルとを有するインサートチップを備えた2電極プラズマトーチを用いて、前記2個のノズルの並び方向を溶接線と平行にして、該トーチと溶接対象材の少なくとも一方を溶接線に沿う方向に走行駆動しつつ、各電極配置空間にある各電極でプラズマアークを発生して溶接する、2電極プラズマトーチによる溶接方法に関する。   The present invention uses a two-electrode plasma torch having an insert tip having two electrode arrangement spaces and two nozzles communicating with each electrode arrangement space, and welding the arrangement direction of the two nozzles. A two-electrode plasma torch that generates and welds a plasma arc at each electrode in each electrode arrangement space while driving at least one of the torch and the welding target material in a direction along the welding line in parallel with the wire. It relates to a welding method.

従来の1電極トーチによるプラズマアーク溶接のプラズマアークの横断面は略円形である。板厚3mm未満ではプラズマアークによるキーホール溶接は不可能なため、なめ付け溶接(熱伝導型溶接)を採用するが、キーホール溶接及びなめ付け溶接では、高速化すると、
イ)アンダーカットが発生し、
ロ)なめ付け溶接では、広幅ビードによる高温割れが発生しやすい。高速溶接では電流が高電流で広幅アークとなるため、広幅浅溶け込みのビード形状となって、凝固時に高温割れが発生しやすい。
The cross section of the plasma arc of the plasma arc welding by the conventional one-electrode torch is substantially circular. If the plate thickness is less than 3 mm, keyhole welding by plasma arc is impossible, so tanning welding (heat conduction type welding) is adopted. However, in keyhole welding and tanning welding, if speed is increased,
B) Undercut occurs,
B) Hot-cracking due to wide beads tends to occur during tanning welding. In high-speed welding, the current is a high current and a wide arc, so a wide, shallow bead shape is formed, and high temperature cracking is likely to occur during solidification.

従来の1電極トーチによるプラズマアーク溶接では、3〜10mmの板厚でキーホール溶接を高速化すると、ビード形状が、中央部が盛り上がった凸形状で縁部が下がったアンダーカットができるため、高速化が難しい。2本トーチによるワンプール高速化もあるが、ワンプールとするにはトーチ同士を大きく傾けなければならず、引き合うアーク力と傾けたことによる磁気吹きで、アークが乱れやすく、不安定であった。   In conventional plasma arc welding with a one-electrode torch, if the speed of keyhole welding is increased with a plate thickness of 3 to 10 mm, the bead shape can be raised with a convex shape with a raised central portion, and an undercut with a lowered edge portion. Difficult to make. Although there is a one-pool speedup with two torches, torches must be tilted greatly to make a one-pool, and the arc is easily disturbed and unstable due to the attracting arc force and magnetic blown by tilting.

そこで本発明等は、安定したアークで高温割れやアンダーカットのない高速溶接を実現することができるインサートチップおよびこれを用いるプラズマトーチを提供した(特許文献1)。裏波形成しながらの溶接法には、キーホール溶接となめ付け溶接があるが、以後の説明では便宜上、裏波形成はキーホール溶接で表すものとする。   Therefore, the present invention and the like provided an insert tip capable of realizing high-speed welding without a high-temperature crack or undercut with a stable arc, and a plasma torch using the insert tip (Patent Document 1). The welding method while forming the back wave includes keyhole welding and butt welding, but in the following description, for the sake of convenience, the back wave formation is represented by keyhole welding.

特許文献1のプラズマトーチは、2個の電極配置空間と、同一直径線上に分布し各電極配置空間にそれぞれが連通し前記直径線と平行な溶接線に対向して開いた2個のノズルと、を備えるインサートチップおよび該チップを装備し各電極配置空間に各電極を挿入したプラズマトーチである。このプラズマトーチによれば、2つのアークで1つの溶融プールを形成する、ワンプール2アークの溶接をすることができる。プラズマアークの横断面は、溶接の進行方向(y)に長細い熱源となるため、熱量に対するビード幅(x方向)は狭く抑えられ、高速化しても、高温割れが発生しない。また、ワンプール2アークとすることで、後行プラズマアークによる再溶融により表ビードを平らにすることができる。ある程度距離を離した2本のプラズマトーチを用いる並行溶接でやや類似の効果を得ることは出来るが、溶接の進行方向のアーク間隔が広くなるため、短い溶接長のワーク(母材:溶接対象材)では、同一パスでの溶接が不可能であり、二パス溶接が必要となり、高速化は難しい。また、アーク間隔が広いため、後行アークは一度凝固したビードを再溶融しなければならず、後行溶接に高入熱が必要である。特許文献1に提示した、1チップに2個のノズルを備えるインサートチップを用いるワンプール2アーク溶接によれば、ノズル間隔が短いので、これらの問題が解消する。   The plasma torch of Patent Document 1 includes two electrode arrangement spaces, two nozzles that are distributed on the same diameter line, communicate with each electrode arrangement space, and open to face a welding line parallel to the diameter line. , And a plasma torch equipped with the chip and having each electrode inserted into each electrode arrangement space. According to this plasma torch, one pool 2 arc welding can be performed in which one arc is formed by two arcs. Since the cross section of the plasma arc is a heat source that is long and thin in the welding progress direction (y), the bead width (x direction) with respect to the amount of heat is kept narrow, and hot cracking does not occur even if the speed is increased. Moreover, by using one pool 2 arc, the front bead can be flattened by remelting by the subsequent plasma arc. Although a somewhat similar effect can be obtained by parallel welding using two plasma torches separated by a certain distance, the arc distance in the welding direction is widened, so a workpiece with a short welding length (base material: material to be welded) ) Cannot be welded in the same pass, requires two-pass welding, and high speed is difficult. Further, since the arc interval is wide, the succeeding arc must remelt the bead once solidified, and high heat input is required for the subsequent welding. According to the one-pool two-arc welding that uses an insert tip having two nozzles per tip presented in Patent Document 1, the nozzle interval is short, so these problems are solved.

ところで1個のインサートチップで2アークのプラズマアーク溶接ではインサートチップに加わる熱負荷が大きくなる。より高速化するためには、インサートチップの冷却能力を向上する必要がある。   By the way, in two arc plasma arc welding with one insert tip, the heat load applied to the insert tip becomes large. In order to increase the speed, it is necessary to improve the cooling capacity of the insert tip.

そこで本発明等は、安定したアークで高温割れやアンダーカットのない溶接をより高速で行うことができる、冷却能力が高いインサートチップを提供した(特許文献2)。このインサートチップは、2個の電極配置空間と、各電極配置空間にそれぞれが連通する2個のノズルおよび該2個のノズルの中間点で該2個のノズルが分布する平面に対して交差する平面にあって冷却水が折り返すV型の冷却水流路を備える。これにより、チップ先端面(母材対向面)近くで冷却水が円滑に折返し、局所的に水あるいは泡が滞留することはなく、チップの冷却能力が高い。チップ端面に対して斜めにしかも先端部で交わるように穴開けすることでV型の冷却水流路を安価に形成できる。よって、溶接電流を大きくしてより高速に溶接を行うことができる。特許文献2にはさらに、チップ基体に1対のノズル部材を着脱可に結合したインサートチップも提示した。これによれば、高熱によりノズル部材の下端のノズル部分が変形又は熔損したとき、該ノズル部材を新品と取り替えて、チップ基体はそのまま使用して、メンテナンスコストを安くすることができる。   Therefore, the present invention and the like have provided an insert tip having a high cooling capacity that can perform welding without a high-temperature crack or undercut with a stable arc at a higher speed (Patent Document 2). This insert tip intersects two electrode arrangement spaces, two nozzles respectively communicating with each electrode arrangement space, and a plane in which the two nozzles are distributed at an intermediate point between the two nozzles. A V-shaped cooling water flow path is provided which is flat and the cooling water is turned back. Thereby, the cooling water smoothly turns back near the tip end surface (base material facing surface), the water or bubbles do not stay locally, and the chip cooling ability is high. A V-shaped cooling water flow path can be formed at low cost by making a hole obliquely with respect to the end surface of the chip and intersecting at the tip. Therefore, welding can be performed at a higher speed by increasing the welding current. Patent Document 2 further presented an insert chip in which a pair of nozzle members are detachably coupled to a chip base. According to this, when the nozzle part at the lower end of the nozzle member is deformed or damaged by high heat, the nozzle member can be replaced with a new one, and the chip base can be used as it is, so that the maintenance cost can be reduced.

また、インサートチップの損耗交換コストを低減するため、本発明等は、中央にノズルが開いた笠部,該笠部に連続する幹部および該幹部に連続する雄ねじ部があって、前記幹部と雄ねじ部の間にシール材があり、内部に前記ノズルに連通する電極配置空間がある、2個のノズル部材を、インサートチップ基体に対して着脱可としたインサートチップを提供した(特許文献3)。高熱によりノズル部材の下端のノズル部分が変形又は熔損したとき、該ノズル部材を新品と取り替えて、チップ基体はそのまま使用して、メンテナンスコストを安くすることができる。   Further, in order to reduce the wear replacement cost of the insert tip, the present invention has a cap portion having a nozzle open at the center, a trunk portion continuing to the cap portion, and a male screw portion continuing to the trunk portion. There is provided an insert tip in which two nozzle members having a sealing material between the portions and having an electrode arrangement space communicating with the nozzle inside are detachable from the insert tip base (Patent Document 3). When the nozzle portion at the lower end of the nozzle member is deformed or damaged by high heat, the nozzle member can be replaced with a new one, and the chip base can be used as it is, thereby reducing the maintenance cost.

特開2011− 50982号JP2011-50982A 特願2010−264955号Japanese Patent Application No. 2010-264955 特願2011− 17342号Japanese Patent Application No. 2011-17342

ところが、2電極プラズマトーチの2個のノズルの並び方向を溶接線と平行にして、該トーチと溶接対象材の少なくとも一方を溶接線に沿う方向に走行駆動する2電極プラズマ溶接では例えば、図16の(a)に示すように、溶接方向y(溶接線が延びる方向)で先行して溶接線に作用する先行極(ノズル部材20bの内部の電極棒12b:図2)が発生するプラズマアーク19bで溶接対象材である溶接片31a,31b間の突き当て端面(溶接線)の上側の表面を予熱し、後行極(ノズル部材20aの内部の電極棒12a:図2)が発生するプラズマアーク19aで溶接線をキーホール溶接する態様では、先行ノズル部材20bと後行ノズル部材20aとの距離と溶接方向yのノズル角度に対応する予熱タイムラグにより、溶接線の始端部で入熱不足による裏波形成不足(残し)を生じやすい。この入熱不足(裏波形成不足:残し)は、図16の(b)に示すように、溶接速度が高いほど大きい。   However, in the two-electrode plasma welding in which the arrangement direction of the two nozzles of the two-electrode plasma torch is parallel to the welding line and at least one of the torch and the welding target material is driven to run along the welding line, for example, FIG. As shown in FIG. 2A, a plasma arc 19b in which a leading electrode (electrode rod 12b inside the nozzle member 20b: FIG. 2) that acts on the welding line in advance in the welding direction y (direction in which the welding line extends) is generated. The plasma arc in which the upper surface of the abutting end face (weld line) between the welded pieces 31a and 31b, which are materials to be welded, is preheated to generate the trailing electrode (electrode rod 12a inside the nozzle member 20a: FIG. 2). In the mode in which the weld line is keyhole welded at 19a, the start end of the weld line is caused by the preheating time lag corresponding to the distance between the leading nozzle member 20b and the trailing nozzle member 20a and the nozzle angle in the welding direction y. Likely to cause the back-wave-forming shortage (left) due to insufficient heat input in. This shortage of heat input (insufficient formation of the back wave: remaining) increases as the welding speed increases, as shown in FIG.

また例えば、図15の(a)に示すように、溶接方向y(溶接線が延びる方向)で先行して溶接線に作用する先行極が発生するプラズマアークで溶接線をキーホール溶接し、後行極が発生するプラズマアークで溶接線を加熱(なめ付け)する態様では、先行のキーホール溶接で生成した溶融プールの溶融金属が後行のなめ付けプラズマアークのプールに吸い込まれて、キーホール溶接部となめ付け溶接部との間Aで先行極側から後行極側への溶融金属の流動があり、溶接線の終端部では減肉状態で溶接が終わる。   Further, for example, as shown in FIG. 15 (a), the welding line is keyhole welded with a plasma arc in which a leading electrode acting on the welding line precedes in the welding direction y (direction in which the welding line extends), In the aspect in which the welding line is heated (tanned) by the plasma arc in which the row electrode is generated, the molten metal in the molten pool generated by the preceding keyhole welding is sucked into the pool of the subsequent tanned plasma arc, and the keyhole is obtained. There is a flow of molten metal from the leading electrode side to the trailing electrode side A between the welded portion and the butt welded portion, and the welding ends in a reduced thickness state at the end portion of the weld line.

すなわち、2電極プラズマトーチによる溶接では、溶接片の始端(溶接開始端部),終端(溶接終了端部)で溶接不良を生じ易い。溶接による連続造管では、溶接始端および終端は切除するので、始端,終端の溶接不良は格別な問題とはならないが、短尺材の場合は、始端,終端の切除は、素材の歩留りを悪くするばかりでなく、切除作業が加わる分、コスト高になる。   That is, in welding by a two-electrode plasma torch, welding failure tends to occur at the start end (weld start end) and end (weld end end) of the welded piece. In continuous pipe making by welding, the welding start and end are cut off, so poor welding at the start and end is not a special problem, but in the case of short materials, cutting off the start and end makes the material yield worse. In addition to the excision work, the cost increases.

本発明は、2電極プラズマトーチによる溶接において、溶接対象材の端部における溶接不良を改善することを目的とする。   An object of the present invention is to improve poor welding at the end of a material to be welded in welding with a two-electrode plasma torch.

(1)2個の電極配置空間(2a,2b)と各電極配置空間にそれぞれが連通する2個のノズル(3a,3b)とを有するインサートチップ(1)を備えた2電極プラズマトーチ(30)を用いて、前記2個のノズルの並び方向を溶接線と平行にして、該トーチと溶接対象材(31a,31b)の少なくとも一方を溶接線に沿う方向に走行駆動しつつ、各電極配置空間にある各電極(12a,12b)でプラズマアークを発生して溶接線を溶接する、2電極プラズマトーチによる溶接方法において、
前記各電極(12a,12b)の一方を、溶接線の延びる方向で先行する電極すなわち先行極として溶接対象材を予熱するプラズマアーク発生に設定し、他方を、後行する電極すなわち後行極として裏波形成溶接のプラズマアークに設定し、
裏波形成溶接に設定した後行極が溶接対象材の始端以前(始端を含む)にあるときに、該後行極による裏波形成溶接のプラズマアークを起動し、
前記先行極のプラズマアークは、裏波形成溶接のプラズマアーク発生と同時又はその前に起動し、先行の又は同時のプラズマアークの起動と同時又は該起動の後に前記走行駆動を開始し、
前記先行極および後行極のプラズマアークは、各極が溶接対象材の終端以降(終端を含む)にあるときに停止する、
ことを特徴とする2電極プラズマトーチによる溶接方法(図7,図9,図13)。
(1) A two-electrode plasma torch (30) having an insert tip (1) having two electrode arrangement spaces (2a, 2b) and two nozzles (3a, 3b) communicating with each electrode arrangement space, respectively ), The arrangement direction of the two nozzles is made parallel to the weld line, and at least one of the torch and the welding target material (31a, 31b) is driven and driven in the direction along the weld line. In a welding method using a two-electrode plasma torch that generates a plasma arc at each electrode (12a, 12b) in space and welds a weld line,
One of the electrodes (12a, 12b) is set to generate a plasma arc that preheats the material to be welded as the preceding electrode, that is, the leading electrode in the direction in which the weld line extends, and the other is set as the following electrode, that is, the trailing electrode. Set to plasma arc for back wave forming welding,
When the trailing electrode set for reverse wave forming welding is before the start end (including the starting end) of the material to be welded, the plasma arc of reverse wave forming welding by the following electrode is started,
The leading electrode plasma arc is started simultaneously with or before the plasma arc generation of the back wave forming welding, and the traveling drive is started simultaneously with or after the starting of the preceding or simultaneous plasma arc,
The plasma arc of the leading electrode and the trailing electrode is stopped when each pole is after the end of the material to be welded (including the end),
A welding method using a two-electrode plasma torch (FIGS. 7, 9, and 13).

(2)2個の電極配置空間(2a,2b)と各電極配置空間にそれぞれが連通する2個のノズル(3a,3b)とを有するインサートチップ(1)を備えた2電極プラズマトーチ(30)を用いて、前記2個のノズルの並び方向を溶接線と平行にして、該トーチと溶接対象材(31a,31b)の少なくとも一方を溶接線に沿う方向に走行駆動しつつ、各電極配置空間にある各電極(12a,12b)でプラズマアークを発生して溶接線を溶接する、2電極プラズマトーチによる溶接方法において、
前記各電極(12a,12b)の一方を、溶接線の延びる方向で先行する電極すなわち先行極として裏波形成溶接のプラズマアークに設定し、他方を、後行する電極すなわち後行極として溶接線をなめ付けするプラズマアークに設定し、
裏波形成溶接に設定した先行極が溶接対象材の始端以前(始端を含む)にあるときに、該先行極による裏波形成溶接のプラズマアークを起動し、
前記後行極のプラズマアークは、裏波形成溶接のプラズマアークの起動と同時又は溶接対象材の始端にあるときに起動し、先行の又は同時のプラズマアークの起動と同時又は該起動の後に前記走行駆動を開始し、
前記先行極および後行極のプラズマアークは、各極が溶接対象材の終端以降(終端を含む)にあるときに停止する、
ことを特徴とする2電極プラズマトーチによる溶接方法(図11,図15の(b))。
(2) A two-electrode plasma torch (30) having an insert tip (1) having two electrode arrangement spaces (2a, 2b) and two nozzles (3a, 3b) communicating with each electrode arrangement space, respectively ), The arrangement direction of the two nozzles is made parallel to the weld line, and at least one of the torch and the welding target material (31a, 31b) is driven and driven in the direction along the weld line. In a welding method using a two-electrode plasma torch that generates a plasma arc at each electrode (12a, 12b) in space and welds a weld line,
One of the electrodes (12a, 12b) is set to a plasma arc for back wave forming welding as the preceding electrode or leading electrode in the extending direction of the welding line, and the other is the welding line as the following electrode or trailing electrode. Set the plasma arc to lick
When the leading electrode set for back wave forming welding is before the start end (including the starting end) of the material to be welded, the plasma arc of back surface forming welding by the leading electrode is started,
The plasma arc of the trailing electrode is activated simultaneously with the activation of the plasma arc of the back wave forming welding or when it is at the beginning of the material to be welded, and simultaneously with the activation of the preceding or simultaneous plasma arc or after the activation. Start driving,
The plasma arc of the leading electrode and the trailing electrode is stopped when each pole is after the end of the material to be welded (including the end),
A welding method using a two-electrode plasma torch (FIG. 11 and FIG. 15B).

なお、理解を容易にするために括弧内には、図面に示し後述する実施例の対応又は相当要素の記号もしくは対応事項を、例示として参考までに付記した。以下も同様である。   In addition, in order to facilitate understanding, in parentheses, the correspondence of the examples shown in the drawings and described later, or the symbols or corresponding matters of corresponding elements are added for reference. The same applies to the following.

上記(1)によれば、先行極/後行極間距離相当の予熱タイムラグ(図16の(b))を生ずるが、この予熱の無い冷えた鋼板区間は、走行駆動の速度を低くすることにより、溶接対象材先端での裏波形成不良を少なくできる。予熱タイムラグ区間を過ぎると先行極の予熱効果により後行極での鋼板は溶け易くなり走行駆動速度を上げて、溶接の生産性を高くすることができる。溶接対象材の後端は低速,低電流のクレータ処理により、高速,高電流で後行の裏波形成アーク(例えばキーホールアーク)の後方に長く延びた溶融プールを短くし、後方に流れていた溶湯を後行裏波アーク側に引き戻すことで、後端表面の窪みを平坦に修正して、後端不良を少なく出来る。これらにより、溶接対象材の先端,後端の素材の歩留りをよくすることができる。   According to the above (1), a preheating time lag corresponding to the distance between the leading electrode and the trailing electrode is generated ((b) in FIG. 16). In this cold steel plate section without preheating, the traveling drive speed is reduced. Therefore, it is possible to reduce the back wave formation failure at the tip of the material to be welded. After the preheating time lag interval, the steel plate at the trailing electrode is easily melted by the preheating effect of the leading electrode, so that the traveling drive speed can be increased and the productivity of welding can be increased. The rear end of the material to be welded has a low-speed, low-current crater treatment that shortens the molten pool that extends at the high-speed, high-current back behind the back wave forming arc (for example, keyhole arc) and flows backward. By pulling the molten metal back to the trailing back-arc arc side, the dent on the rear end surface can be corrected to be flat, and rear end defects can be reduced. By these, the yield of the raw material of the front-end | tip of a welding object material and a rear end can be improved.

先行極(予熱用)が溶接対象材の先端にあるときに先行極(予熱用)にプラズマアーク(予熱)を起動することにより、先行極/後行極間距離相当の予熱タイムラグ(図16の(a))による溶接対象材先端での裏波形成不良(図16の(b))を回避できる。後行極によりキーホールが形成されると先行局の予熱効果により後行極での鋼板は溶け易くなり走行駆動速度を上げることにより、溶接の生産性を高くすることができる。溶接対象材の後端は低速,低電流のクレータ処理により、高速,高電流で後行の裏波形成アークの後方に長く延びた溶融プールを短くし、後方に流れていた溶湯を後行裏波アーク側に引き戻すことで、後端表面の窪みを平坦に修正して、後端不良を少なくできる。これらにより、溶接対象材の先端,後端の素材の歩留りをよくすることができる。   When the leading electrode (for preheating) is located at the tip of the material to be welded, a plasma arc (preheating) is activated on the leading electrode (for preheating), so that a preheating time lag corresponding to the distance between the leading electrode and the trailing electrode (see FIG. 16). It is possible to avoid the back wave formation defect ((b) of FIG. 16) at the tip of the welding target material due to (a)). When the keyhole is formed by the trailing electrode, the steel plate at the trailing electrode is easily melted by the preheating effect of the leading station, and the traveling drive speed is increased, so that the productivity of welding can be increased. The rear end of the material to be welded has a low-speed, low-current crater treatment to shorten the molten pool that extends long behind the back-forming arc at a high speed, high current, and the molten metal that flows backward By pulling back to the wave arc side, the recess on the rear end surface can be corrected to be flat, and rear end defects can be reduced. By these, the yield of the raw material of the front-end | tip of a welding object material and a rear end can be improved.

上記(2)によれば、溶接対象材の先端から後端に渡って、後行極のパイロットガス流量が少なく電流も低いソフトなブラズマアークで、先行の裏波形成アークのすぐ後方近傍で表面のみアーク溶融することで溶接表面がなめ付けされて、高速溶接でも、アンダーカットの少ない表面ビードが得られる。後行極が溶接対象材の先端に達すると先行極のプラズマアーク電流を高く切換え同時に走行駆動速度を上げることにより、先端部の裏波溶接の残し(図16の(b))を少なくし溶接の生産性を高くすることができる。   According to (2) above, a soft plasma arc with a low pilot gas flow rate and low current at the trailing electrode across the front end to the rear end of the material to be welded. Only by arc melting, the welding surface is tanned, and surface beads with less undercut can be obtained even in high-speed welding. When the trailing electrode reaches the tip of the material to be welded, the plasma arc current of the leading electrode is switched to high and simultaneously the traveling drive speed is increased, thereby reducing the remaining of the backside welding at the tip (FIG. 16 (b)). Productivity can be increased.

(a)は、本発明の2電極プラズマトーチによる溶接方法を実施する溶接装置のシステム構成の一例を示すブロック図であり、溶接片31a,31bに対して2電極プラズマトーチ30を走行駆動する態様を示す。(b)は、2電極プラズマトーチ30に対して溶接片31a,31bを走行駆動する態様のブロック図である。(A) is a block diagram which shows an example of the system configuration | structure of the welding apparatus which implements the welding method by the two-electrode plasma torch of this invention, and the aspect which drive | works the two-electrode plasma torch 30 with respect to the welding pieces 31a and 31b Indicates. (B) is a block diagram of a mode in which the welding pieces 31 a and 31 b are driven to travel with respect to the two-electrode plasma torch 30. 図1に示す2電極プラズマトーチ30の縦断面y−zの拡大図である。FIG. 2 is an enlarged view of a longitudinal section yz of the two-electrode plasma torch 30 shown in FIG. 図1に示す2電極プラズマトーチ30の縦断面x−zの拡大図である。FIG. 2 is an enlarged view of a longitudinal section xz of the two-electrode plasma torch 30 shown in FIG. (a)は図2に示す2電極プラズマトーチ30の先端を、IVa−IVa線方向に見上げた底面図、(b)は図3に示すIVb−IVb線方向に見上げた底面図、(c)は図2に示すIVc−IVc線方向に見下ろした横断面図である。2A is a bottom view in which the tip of the two-electrode plasma torch 30 shown in FIG. 2 is looked up in the IVa-IVa line direction, FIG. 3B is a bottom view in which the tip is looked up in the IVb-IVb line direction shown in FIG. FIG. 4 is a cross-sectional view looking down in the direction of the IVc-IVc line shown in FIG. 2. (a)は、図2に示すプラズマトーチの先端のインサートチップおよびインナーキャップ6をトーチ本体から取り外して示す縦断面図、(b)は(a)に示すチップ基体1とインナーキャップ6のみを示す縦断面図、(c)は、(a)に示すナット25a,25bをノズル部材20a,20bから取り外してノズル部材をチップ基体1から抜き出しナット25a,25bとともに示す正面図(外観図)である。FIG. 2A is a longitudinal sectional view showing the insert tip and inner cap 6 at the tip of the plasma torch shown in FIG. 2 removed from the torch body, and FIG. 2B shows only the chip base 1 and the inner cap 6 shown in FIG. (C) is a front view (outside view) showing nuts 25a and 25b shown in (a) removed from the nozzle members 20a and 20b, the nozzle member being extracted from the chip base 1, and the nuts 25a and 25b. (a1)は図5の(c)に示すノズル部材20aの縦断面図、(a2)は該ノズル部材20aの底面図である。(b1)は図2に示すノズル部材20a,20bの一つ又は両方に取り替えてチップ基体1に装備できる第1変形形態のノズル部材20cの縦断面図、(b2)は該ノズル部材20cの底面図である。(c1)は図2に示すノズル部材20a,20bの一つ又は両方に取り替えてチップ基体1に装備できる第2変形形態のノズル部材20dの縦断面図、(c2)は該ノズル部材20dの底面図である。(A1) is a longitudinal sectional view of the nozzle member 20a shown in FIG. 5 (c), and (a2) is a bottom view of the nozzle member 20a. (B1) is a longitudinal sectional view of a nozzle member 20c of the first modified embodiment that can be mounted on the chip substrate 1 by replacing one or both of the nozzle members 20a, 20b shown in FIG. 2, and (b2) is a bottom surface of the nozzle member 20c. FIG. (C1) is a longitudinal sectional view of a nozzle member 20d of the second modified embodiment that can be mounted on the chip substrate 1 by replacing one or both of the nozzle members 20a, 20b shown in FIG. 2, and (c2) is a bottom surface of the nozzle member 20d. FIG. 図1の(a)に示す溶接装置を用いる本発明の第1実施例の溶接方法を実施するときの、溶接条件を切換える主要タイミングでの、溶接片31a,31bに対する2電極プラズマトーチ30の相対位置を示し、(1)はキーホール溶接を行う後行極を溶接片31a,31bの溶接始端において溶接を開始するタイミングを、(2)は溶接開始時に予熱を行う先行極が対向した位置に後行極が到達し対向するタイミングを、(3)は先行極が溶接片31a,31bの後端に達する直前のタイミングを、そして(4)は後行極が溶接片31a,31bの後端に達したタイミングを示す。When the welding method according to the first embodiment of the present invention using the welding apparatus shown in FIG. 1A is performed, the relative position of the two-electrode plasma torch 30 with respect to the welding pieces 31a and 31b at the main timing for switching the welding conditions. (1) is the timing at which welding is started at the welding start of the welded pieces 31a and 31b, and (2) is at the position where the leading electrode that performs preheating at the start of welding is opposed. (3) is the timing immediately before the leading electrode reaches the rear end of the welding pieces 31a and 31b, and (4) is the timing at which the trailing electrode reaches the rear end of the welding pieces 31a and 31b. Indicates the timing of reaching. 本発明の第1実施例の溶接方法での、先行極,後行極に対する溶接電流およびプラズマガスの供給,停止タイミングと供給量切換えのタイミングならびに溶接速度(トーチ30のy方向移動速度)の切換えタイミングの概要(基本パターン)を示すタイムチャートであり、タイミング(1)〜(4)は、図7に示すタイミング(1)〜(4)に対応する。In the welding method of the first embodiment of the present invention, switching of welding current and plasma gas supply, stop timing, supply amount switching timing and welding speed (moving speed of the torch 30 in the y direction) to the leading electrode and trailing electrode. It is a time chart which shows the outline | summary (basic pattern) of timing, and timing (1)-(4) respond | corresponds to timing (1)-(4) shown in FIG. 図1の(a)に示す溶接装置を用いる本発明の第2実施例の溶接方法を実施するときの、溶接条件を切換える主要タイミングでの、溶接片31a,31bに対する2電極プラズマトーチ30の相対位置を示し、(1)は予熱を行う先行極を溶接片31a,31bの溶接始端において溶接を開始するタイミングを、(2)はキーホール溶接を行う後行極が溶接片31a,31bの先端に達したタイミングを、(3)は先行極が溶接片31a,31bの後端に達する直前のタイミングを、そして(4)は後行極が溶接片31a,31bの後端に達したタイミングを示す。When the welding method of the second embodiment of the present invention using the welding apparatus shown in FIG. 1 (a) is performed, the relative position of the two-electrode plasma torch 30 with respect to the welding pieces 31a and 31b at the main timing for switching the welding conditions. (1) indicates the timing at which welding is started at the welding start of the welding pieces 31a and 31b, and (2) is the trailing electrode at which the keyhole welding is performed at the tips of the welding pieces 31a and 31b. (3) is the timing immediately before the leading electrode reaches the rear ends of the weld pieces 31a and 31b, and (4) is the timing when the trailing electrode reaches the rear ends of the weld pieces 31a and 31b. Show. 本発明の第2実施例の溶接方法での、先行極,後行極に対する溶接電流およびプラズマガスの供給,停止タイミングと供給量切換えのタイミングならびに溶接速度の切換えタイミングの概要(基本パターン)を示すタイムチャートであり、タイミング(1)〜(4)は、図9に示すタイミング(1)〜(4)に対応する。An outline (basic pattern) of welding current and plasma gas supply / stop timing and supply amount switching timing and welding speed switching timing for the leading electrode and trailing electrode in the welding method of the second embodiment of the present invention is shown. It is a time chart, and timings (1) to (4) correspond to timings (1) to (4) shown in FIG. 図1の(a)に示す溶接装置を用いる本発明の第3実施例の溶接方法を実施するときの、溶接条件を切換える主要タイミングでの、溶接片31a,31bに対する2電極プラズマトーチ30の相対位置を示し、(1)はキーホール溶接を行う先行極を溶接片31a,31bの溶接始端において溶接を開始するタイミングを、(2)は予熱を行う後行極が溶接片31a,31bの先端に達したタイミングを、(3)は先行極が溶接片31a,31bの後端に達する直前のタイミングを、そして(4)は後行極が溶接片31a,31bの後端に達したタイミングを示す。When the welding method of the third embodiment of the present invention using the welding apparatus shown in FIG. 1 (a) is performed, the relative position of the two-electrode plasma torch 30 with respect to the welding pieces 31a and 31b at the main timing for switching the welding conditions. (1) indicates the timing at which welding is started at the welding start of the welding pieces 31a, 31b, and (2) is the trailing electrode at which the preheating is performed at the tip of the welding pieces 31a, 31b. (3) is the timing immediately before the leading electrode reaches the rear ends of the weld pieces 31a and 31b, and (4) is the timing when the trailing electrode reaches the rear ends of the weld pieces 31a and 31b. Show. 本発明の第3実施例の溶接方法での、先行極,後行極に対する溶接電流およびプラズマガスの供給,停止タイミングと供給量切換えのタイミングならびに溶接速度の切換えタイミングの概要(基本パターン)を示すタイムチャートであり、タイミング(1)〜(4)は、図9に示すタイミング(1)〜(4)に対応する。An outline (basic pattern) of welding current and plasma gas supply / stop timing and supply amount switching timing and welding speed switching timing for the leading electrode and trailing electrode in the welding method of the third embodiment of the present invention is shown. It is a time chart, and timings (1) to (4) correspond to timings (1) to (4) shown in FIG. 図1の(a)に示す溶接装置を用いる本発明の第4実施例の溶接方法を実施するときの、溶接条件を切換える主要タイミングでの、溶接片31a,31bに対する2電極プラズマトーチ30の相対位置を示し、(1)は予熱を行う先行極およびキーホール溶接を行う後行極を溶接片31a,31bの先端側タブ38a,38bのスリットの上方において溶接を開始するタイミングを示し、(1)の(a)は溶接線の断面を、(1)の(b)は溶接線の平面(溶接片の表面)を示す。(2)は先行極および後行極を後端側タブ39a,39bのスリットの上方に達した溶接終了タイミングを示す。When the welding method according to the fourth embodiment of the present invention using the welding apparatus shown in FIG. 1A is performed, the relative position of the two-electrode plasma torch 30 with respect to the welding pieces 31a and 31b at the main timing for switching the welding conditions. (1) indicates the timing of starting welding the leading electrode for preheating and the trailing electrode for keyhole welding above the slits of the distal end tabs 38a and 38b of the welded pieces 31a and 31b. (A) in () shows the cross section of the weld line, and (b) in (1) shows the plane of the weld line (surface of the weld piece). (2) shows the welding end timing when the leading electrode and the trailing electrode reach above the slits of the rear end tabs 39a and 39b. 本発明の第4実施例の溶接方法での、先行極,後行極に対する溶接電流およびプラズマガスの供給,停止タイミングと供給量切換えのタイミングの概要(基本パターン)を示すタイムチャートであり、タイミング(1),(2)は、図13に示すタイミング(1)〜(4)に対応する。It is a time chart which shows the outline | summary (basic pattern) of the timing of supply, stop timing, and supply amount switching of the welding current and plasma gas with respect to a leading electrode and a trailing electrode in the welding method of 4th Example of this invention. (1) and (2) correspond to the timings (1) to (4) shown in FIG. (a)は、先行極のキーホール溶接のプールの溶融金属が、後行極のなめ付け溶接のプールに吸い込まれる状態を示す、溶接線部位の断面図である。(b)は、吸い込みを防ぐ程度に溶接片31a,31bおよび2電極プラズマトーチ30を下進方向へ傾けた状態を示す溶接線部位の断面図である。(A) is sectional drawing of the weld line site | part which shows the state in which the molten metal of the pool of a keyhole welding of a leading electrode is sucked in the pool of the tanning welding of a trailing electrode. (B) is a cross-sectional view of a weld line portion showing a state in which the welding pieces 31a and 31b and the two-electrode plasma torch 30 are inclined in the downward direction to the extent that suction is prevented. (a)は予熱を行う先行極に対してキーホール溶接を行う後行極が離れていることにより、後行極を溶接片31a,31bの先端において先行極と同時に溶接を起動する場合の溶接片先端部の予熱タイムラグ(予熱不足領域)を示す断面図である。(b)は、予熱タイムラグによるキーホール不良領域(残し)を点線で示す側面図である。(A) is a case where welding is started simultaneously with the leading electrode at the tip of the welding pieces 31a and 31b because the trailing electrode that performs keyhole welding is separated from the leading electrode that performs preheating. It is sectional drawing which shows the preheating time lag (preheating insufficient area | region) of one front-end | tip part. (B) is a side view which shows the keyhole defect area | region (remaining) by a preheating time lag with a dotted line.

(3)前記後行極が溶接対象材の始端にあるときに、前記先行極および後行極のプラズマアークを同時に起動し、この起動と同時に前記走行駆動を低速で開始し(図7,図8,表1)、
前記先行極がプラズマアークを起動した位置に前記後行極が到達すると、前記走行駆動を高速に、かつ後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を高く切換え、
前記先行極が溶接対象材の後端に達する直前に先行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げて後端でプラズマアークを停止し、後行極が該後端に達すると前記走行駆動の速度を下げ、かつ後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げ、後行極によるクレータ処理期間後に、後行極のプラズマアークを停止する、上記(1)に記載の2電極プラズマトーチによる溶接方法。
(3) When the trailing electrode is at the starting end of the material to be welded, the plasma arcs of the leading electrode and the trailing electrode are simultaneously activated, and simultaneously with this activation, the traveling drive is started at a low speed (FIG. 7, FIG. 8, Table 1),
When the trailing electrode reaches the position where the leading electrode has started the plasma arc, the traveling drive is switched at a high speed and both or one of the plasma arc current and the plasma gas flow rate of the trailing electrode are switched high.
Immediately before the leading electrode reaches the rear end of the material to be welded, the plasma arc is stopped at the rear end by decreasing both or one of the plasma arc current and plasma gas flow rate of the leading electrode, and the trailing electrode reaches the rear end. (1) The speed of the traveling drive is decreased, and both or one of the plasma arc current and the plasma gas flow rate of the trailing electrode are decreased, and the plasma arc of the trailing electrode is stopped after the crater treatment period by the trailing electrode. A welding method using the two-electrode plasma torch described in 1.

これによれば、溶接対象材の先端より溶接対象材領域に入り込んだ先行極(予熱用)と溶接対象材の先端にある後行極(裏波形成溶接用)が同時にプラズマアークを起動するので、先行極/後行極間距離相当の予熱タイムラグ(図16の(b))を生ずるが、走行駆動の速度が低いので、溶接対象材先端での裏波形成不良が少ない。予熱タイムラグ区間を過ぎると走行駆動速度を上げるので、溶接の生産性は高い。溶接対象材の後端は低速、ならびに、低電流又は低プラズマガス流量、のクレータ処理により、後端表面の窪みが平坦に修正され、後端不良が少ない。これらにより、溶接対象材の先端,後端の素材の歩留りがよくなる。   According to this, since the leading electrode (for preheating) that enters the welding target material region from the tip of the welding target material and the trailing electrode (for back wave forming welding) at the leading end of the welding target material simultaneously activate the plasma arc. Although a preheating time lag corresponding to the distance between the leading electrode and the trailing electrode is generated ((b) in FIG. 16), since the traveling drive speed is low, there is little back-wave formation failure at the tip of the welding target material. Since the traveling drive speed is increased after the preheating time lag section, the welding productivity is high. The rear end of the material to be welded is cratered at a low speed and with a low current or low plasma gas flow rate, so that the recess on the rear end surface is corrected to be flat, and there are few rear end defects. By these, the yield of the raw material of the front-end | tip of a welding object material and a rear end improves.

(4)前記先行極が溶接対象材の始端にあるときに、先行極のプラズマアーク(予熱)を起動すると同時に前記走行駆動を低速で開始し、前記後行極が溶接対象材の始端に達すると後行極のプラズマアークを起動し(図9,図10,表2)、
前記後行極によりキーホールが形成されるときに、前記走行駆動を高速に、かつ後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を高く切換え、
前記先行極が溶接対象材の後端に達する直前に先行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げて後端でプラズマアークを停止し、後行極が該後端に達すると前記走行駆動の速度を下げ、かつ後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げ、後行極によるクレータ処理期間後に、後行極のプラズマアークを停止する、上記(1)に記載の2電極プラズマトーチによる溶接方法。
(4) When the leading electrode is at the starting end of the material to be welded, the plasma arc (preheating) of the leading electrode is started and simultaneously the traveling drive is started at a low speed, and the trailing electrode reaches the starting end of the material to be welded. Then, the plasma arc of the trailing electrode is started (Fig. 9, Fig. 10, Table 2),
When a keyhole is formed by the trailing electrode, the traveling drive is switched at a high speed, and either or both of the plasma arc current and the plasma gas flow rate of the trailing electrode are switched high,
Immediately before the leading electrode reaches the rear end of the material to be welded, the plasma arc is stopped at the rear end by decreasing both or one of the plasma arc current and plasma gas flow rate of the leading electrode, and the trailing electrode reaches the rear end. (1) The speed of the traveling drive is decreased, and both or one of the plasma arc current and the plasma gas flow rate of the trailing electrode are decreased, and the plasma arc of the trailing electrode is stopped after the crater treatment period by the trailing electrode. A welding method using the two-electrode plasma torch described in 1.

これによれば、先行極(予熱用)が溶接対象材の先端にあるときに先行極(予熱用)がプラズマアーク(予熱)を起動するので、先行極/後行極間距離相当の予熱タイムラグ(図16の(b))による溶接対象材先端での裏波形成不良を生じない。後行極により裏波(例えばキーホール)が形成されると走行駆動速度を上げるので、溶接の生産性は高い。溶接対象材の後端は低速、ならびに、低電流又は低プラズマガス流量、のクレータ処理により、後端表面の窪みが平坦に修正され、後端不良が少ない。これらにより、溶接対象材の先端,後端の素材の歩留りがよくなる。   According to this, since the leading electrode (for preheating) activates the plasma arc (preheating) when the leading electrode (for preheating) is at the tip of the material to be welded, a preheating time lag corresponding to the distance between the leading electrode and the trailing electrode. The back wave formation defect at the tip of the material to be welded due to ((b) of FIG. 16) does not occur. When a back wave (for example, a keyhole) is formed by the trailing electrode, the traveling drive speed is increased, so that the welding productivity is high. The rear end of the material to be welded is cratered at a low speed and with a low current or low plasma gas flow rate, so that the recess on the rear end surface is corrected to be flat, and there are few rear end defects. By these, the yield of the raw material of the front-end | tip of a welding object material and a rear end improves.

(5)前記先行極が溶接対象材の始端にあるときに、先行極のプラズマアーク(裏波形成溶接)を起動すると同時に前記走行駆動を低速で開始し、前記後行極が溶接対象材の始端に達すると後行極のプラズマアーク(なめ付け)を起動し(図11,図12)、
前記後行極が溶接対象材の先端に達すると前記走行駆動を高速に、かつ先行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を高く切換え、
前記先行極が溶接対象材の後端に達する直前に先行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げ前記走行駆動を低速に切換えて後端で先行極のプラズマアークを停止し、後行極が該後端に達すると前記後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げ、後行極によるクレータ処理期間後に、後行極のプラズマアークを停止する、上記(2)に記載の2電極プラズマトーチによる溶接方法。
(5) When the leading electrode is at the starting end of the material to be welded, the plasma drive (back wave forming welding) of the leading electrode is started and simultaneously the traveling drive is started at a low speed, and the trailing electrode is When it reaches the beginning, it activates the plasma arc (tanning) of the trailing electrode (FIGS. 11 and 12),
When the trailing electrode reaches the tip of the material to be welded, the traveling drive is switched at high speed, and the plasma arc current and the plasma gas flow rate of the leading electrode are switched to high or both,
Immediately before the leading electrode reaches the rear end of the material to be welded, both or one of the plasma arc current and plasma gas flow rate of the leading electrode is lowered and the traveling drive is switched to low speed to stop the plasma arc of the leading electrode at the rear end. When the trailing electrode reaches the trailing edge, both or one of the plasma arc current and the plasma gas flow rate of the trailing electrode is decreased, and the plasma arc of the trailing electrode is stopped after the crater treatment period by the trailing electrode. A welding method using a two-electrode plasma torch according to 2).

これによれば、溶接対象材の先端から後端に渡って、後行極のブラズマによって溶接表面がなめ付けされて、高速溶接でも、アンダーカットの少ない表面ビードが得られる。溶接の生産性が高い。後行極が溶接対象材の先端に達すると先行極のプラズマアーク電流を高く切換え同時に走行駆動速度を上げるので、溶接の生産性が高い。   According to this, the welding surface is tanned by the plasma of the trailing electrode from the front end to the rear end of the material to be welded, and a surface bead with less undercut is obtained even in high-speed welding. High welding productivity. When the trailing electrode reaches the tip of the material to be welded, the plasma arc current of the leading electrode is switched high and the traveling drive speed is increased at the same time, so that the welding productivity is high.

(6)前記溶接対象材を溶接の始端よりも終端が低くなる姿勢に傾けて、前記走行駆動を溶接線と平行な方向とする(図15の(b))、上記(1),(3),(4)又は(5)に記載の2電極プラズマトーチによる溶接方法。溶接対象材を水平とした場合、溶接対象材の後端部で、裏波形成プラズマによって生ずるプールの溶融金属がなめ付け溶接のプールに吸い込まれて後端部のビードが減肉状態となりやすく、これは、厚板であるほどまた粘性が低い金属ほど顕著になる。本実施態様のように溶接対象材を傾けると、重力によりプールの溶融金属に溶接方向に向かう力が加わって上記吸い込みが抑制され、後端部ビードの減肉が低減し後端部のビード表面が平坦になる。   (6) The welding target material is tilted to a posture in which the end is lower than the starting end of welding, and the traveling drive is set in a direction parallel to the welding line ((b) of FIG. 15), (1), (3 ), A welding method using a two-electrode plasma torch according to (4) or (5). When the material to be welded is horizontal, the molten metal in the pool caused by the back surface forming plasma is sucked into the pool for tanning welding at the rear end of the material to be welded, and the bead at the rear end tends to be thinned. This becomes more prominent with thicker plates and lower viscosity metals. When the material to be welded is tilted as in this embodiment, gravity is applied to the molten metal in the pool in the welding direction to suppress the suction, reducing the thinning of the rear end bead and reducing the rear bead surface. Becomes flat.

(7)前記2電極プラズマトーチ(30)は、溶接対象材の表面に対して垂直姿勢である、上記(6)に記載の2電極プラズマトーチによる溶接方法。これによれば、2電極プラズマトーチ30が溶接片31a,31bの表面に対して垂直姿勢であるので、先行極の裏波形成溶接条件および後行極のなめ付け溶接条件の設定又は調整が容易である。   (7) The welding method by the two-electrode plasma torch according to the above (6), wherein the two-electrode plasma torch (30) is in a vertical posture with respect to the surface of the material to be welded. According to this, since the two-electrode plasma torch 30 is in a vertical posture with respect to the surfaces of the welding pieces 31a and 31b, it is easy to set or adjust the back electrode forming welding conditions for the leading electrode and the tanning welding conditions for the trailing electrode. It is.

(8)溶接対象材の始端および終端に、溶接線に連なる先端および終端水冷タブ(38a,38b/39a,39b;キーホール溶接時は、溶接線方向につらなるスリットのあるタブを使用する)を、溶接対象材と連続に当接し(図13,図14)、
前記先行極および後行極が、前記先端水冷タブ(38a,38b)に対向する位置で先行極,後行極のプラズマアークを起動して前記走行駆動を開始し、
前記先行極および後行極のプラズマ発生を、各電極が溶接対象材の後端を通過した後に停止する、上記(1),(2)又は(6)に記載の2電極プラズマトーチによる溶接方法。
(8) At the start and end of the material to be welded, use the tip and end water-cooled tabs (38a, 38b / 39a, 39b; use tabs with slits extending in the weld line direction during keyhole welding). Abutting continuously with the material to be welded (FIGS. 13 and 14),
The leading electrode and the trailing electrode start the traveling drive by starting the plasma arc of the leading electrode and the trailing electrode at a position facing the tip water cooling tab (38a, 38b),
The welding method by the two-electrode plasma torch according to the above (1), (2) or (6), wherein the plasma generation of the leading electrode and the trailing electrode is stopped after each electrode passes through the rear end of the material to be welded. .

これによれば、溶接対象材の始端,終端の外側でプラズマアークの起動と停止が行われるので、始端,終端に溶接不良を生じない。溶接対象材の先端,後端の素材の歩留りがよくなる。板厚や材質によっては、始端および後端で、後行裏波形成溶接側の電流やプラズマガス流量,溶接速度を低くし、始端部の溶接残しや、後端部のクレータ処理を行う。   According to this, since the plasma arc is started and stopped outside the start and end of the material to be welded, poor welding does not occur at the start and end. The yield of the material at the front and rear ends of the material to be welded is improved. Depending on the plate thickness and material, the current, plasma gas flow rate, and welding speed on the back and back wave forming welding side are lowered at the start and rear ends, and the remaining welding at the start end and crater treatment at the rear end are performed.

本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。   Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

図1の(a)に、本発明の2電極プラズマトーチによる溶接方法を実施する溶接装置のシステム構成の一例を示す。この例では、紙面と垂直な水平方向xで対向端面が突き当てられて溶接線を形成する溶接片31aおよび31bは固定で、2電極プラズマトーチ30が、図示を省略した走行機構で支持されトーチ走行モータ36で、該溶接線に対向して溶接線の左始端よりも左側から右終端の右側まで、溶接線と平行な方向yに、走行駆動される。なお、本発明を実施する態様には、2電極プラズマトーチ30を走行駆動するのに代えて、図1の(b)に示すように、2電極プラズマトーチ30を固定設置して、溶接片31a,31bを走行台で支持し走行台を走行機構を介してワーク走行モータで、溶接線の左始端がトーチ30よりも右側となる位置から、右始端がトーチ30よりも左側となる位置まで、溶接線と平行な方向yに、走行駆動する態様もある。しかし説明を簡易にするため、以下には、前者すなわち2電極プラズマトーチ30を走行駆動する態様を示す。   FIG. 1 (a) shows an example of the system configuration of a welding apparatus for carrying out the welding method using the two-electrode plasma torch of the present invention. In this example, welded pieces 31a and 31b that form a weld line by abutting opposite end surfaces in a horizontal direction x perpendicular to the paper surface are fixed, and a two-electrode plasma torch 30 is supported by a travel mechanism (not shown). The traveling motor 36 travels in a direction y parallel to the welding line from the left side of the welding line to the right side of the right terminal, facing the welding line. In the embodiment for carrying out the present invention, instead of driving the two-electrode plasma torch 30 to travel, the two-electrode plasma torch 30 is fixedly installed as shown in FIG. , 31b is supported by a traveling platform and the traveling platform is a workpiece traveling motor via a traveling mechanism, from a position where the left starting end of the welding line is on the right side of the torch 30 to a position where the right starting end is on the left side of the torch 30. There is also a mode of traveling driving in a direction y parallel to the weld line. However, in order to simplify the description, the former, that is, a mode in which the two-electrode plasma torch 30 is driven to travel is shown below.

図1の(a)を再度参照すると、溶接制御を行う並列運転制御盤35は、CPUおよびメモリを内蔵するシーケンサ(マイコン),ディスプレイおよび操作ボード(タッチパネルなど)を主要素とするコンピュータ制御回路であり、オペレータがプログラムした2電極プラズマアーク溶接制御シーケンスを実行する。2電極プラズマトーチ30は2組のプラズマアーク発生機構を内蔵しており、一方の組と他方の組のプラズマアーク起動,停止を、それぞれ溶接電流・ガス供給装置32aおよび32bが実行する。   Referring again to FIG. 1 (a), the parallel operation control panel 35 that performs welding control is a computer control circuit that includes a sequencer (microcomputer) incorporating a CPU and memory, a display, and an operation board (such as a touch panel) as main elements. Yes, a two-electrode plasma arc welding control sequence programmed by the operator is executed. The two-electrode plasma torch 30 incorporates two sets of plasma arc generating mechanisms, and the welding current / gas supply devices 32a and 32b execute starting and stopping of the plasma arc of one set and the other set, respectively.

これらの溶接電流・ガス供給装置32a,32bのそれぞれには並列運転制御盤35が、各プラズマアーク電流,各プラズマガス流量ならびに起動,停止を指令し、溶接電流・ガス供給装置32a,32bは各指令に従って各プラズマアークを起動,プラズマアーク電流切換え,ガス流量切換えおよび停止を行い、また、各組の状態情報を並列運転制御盤35に与える。並列運転制御盤35はまた、トーチ走行モータ36の駆動,停止および速度制御を行うモータドライバ(モータ制御器:図示略)に、起動(走行),停止および速度を指令し、該モータドライバが指令に従ってモータ36の起動,停止および速度変更を行いしかも、トーチ30の走行駆動の位置(溶接片に対する溶接方向yの位置)を計測して位置データを並列運転制御盤35に与える。並列運転制御盤35はこの位置データを参照してシーケンス制御の内容を切換える(図8,表1)。   Each of these welding current / gas supply devices 32a, 32b has a parallel operation control panel 35 instructing each plasma arc current, each plasma gas flow rate, starting and stopping, and the welding current / gas supply devices 32a, 32b Each plasma arc is started, plasma arc current is switched, gas flow rate is switched and stopped according to the command, and each group of state information is given to the parallel operation control panel 35. The parallel operation control panel 35 also commands the motor driver (motor controller: not shown) for driving, stopping and speed control of the torch travel motor 36 to start (run), stop and speed, and the motor driver Then, the motor 36 is started, stopped, and the speed is changed, and the travel drive position of the torch 30 (the position in the welding direction y with respect to the weld piece) is measured and the position data is given to the parallel operation control panel 35. The parallel operation control panel 35 refers to this position data and switches the contents of the sequence control (FIG. 8, Table 1).

図2に、図1に示す2電極プラズマトーチ30の一部の縦断面を拡大して示す。インサートチップのチップ基体1は、インサートキャップ6をチップ台5にねじ締めすることにより、チップ台5に固定されている。チップ台5は絶縁本体7に固定され、絶縁本体7に電極台10a,10bおよび絶縁スペーサ11が固定されている。   FIG. 2 shows an enlarged longitudinal section of a part of the two-electrode plasma torch 30 shown in FIG. The chip base 1 of the insert chip is fixed to the chip base 5 by screwing the insert cap 6 to the chip base 5. The chip base 5 is fixed to the insulating body 7, and the electrode bases 10 a and 10 b and the insulating spacer 11 are fixed to the insulating body 7.

シールドキャップ8は絶縁本体7に固定されている。2つ割で外筒14の直径方向に分離した第1電極台10aと第2電極台10bは、絶縁スペーサ11で分離されている。   The shield cap 8 is fixed to the insulating body 7. The first electrode base 10a and the second electrode base 10b separated in the diameter direction of the outer cylinder 14 by two are separated by an insulating spacer 11.

図示のインサートチップは、チップ基体1に2個のノズル部材20a,20bを装着したものであり、詳細を示す図5を参照すると、各ノズル部材20a,20bには、中央にノズル3a,3bが開いた笠部21a,21b,該笠部に連続する幹部22a,22bおよび該幹部に連続する雄ねじ部24a,24bがあって、前記幹部と雄ねじ部の間にシール材であるOリング23a,23bがあり、内部に前記ノズル3a,3bに連通する電極配置空間2a,2bがある。   The illustrated insert chip is obtained by mounting two nozzle members 20a and 20b on a chip base 1. Referring to FIG. 5 showing the details, each nozzle member 20a and 20b has a nozzle 3a and 3b in the center. There are open cap portions 21a, 21b, trunk portions 22a, 22b continuing to the cap portions, and male screw portions 24a, 24b continuing to the trunk portion, and O-rings 23a, 23b which are sealing materials between the trunk portions and the male screw portions. There are electrode arrangement spaces 2a and 2b communicating with the nozzles 3a and 3b.

チップ基体1には、各ノズル部材の前記雄ねじ部から幹部までが挿通する各ノズル部材挿入穴18a,18b,各ノズル部材挿入穴に挿通した各ノズル部材の笠部が先端平面1d,1eに当接することにより閉じられる、ノズル部材挿入穴の一部をなし幹部との間に冷却水通流空間を形成する冷却水循環穴1f,1g,水受穴1h(図4),水出穴1i,隣り合う冷却水循環穴をつなぐ横通水穴1j,冷却水循環穴1fを水受穴1hにつなぐ横通水穴1k、および、冷却水循環穴1gを水出穴1iにつなぐ横通水穴1lがある。   In the chip base 1, the nozzle member insertion holes 18a and 18b through which the male threaded portion to the trunk portion of the nozzle members are inserted, and the cap portions of the nozzle members inserted through the nozzle member insertion holes contact the tip planes 1d and 1e. Cooling water circulation holes 1f, 1g, water receiving holes 1h (FIG. 4), water outlet holes 1i, which form part of the nozzle member insertion holes and form a cooling water flow space with the trunk, which are closed by contact. There are a lateral water hole 1j that connects the matching cooling water circulation holes, a horizontal water hole 1k that connects the cooling water circulation hole 1f to the water receiving hole 1h, and a horizontal water hole 1l that connects the cooling water circulation hole 1g to the water outlet hole 1i.

図5の(a)に示すように、ノズル部材20a,20bの雄ねじ部24a,24bにナット25a,25bをねじ結合してチップ基体1に締め付けることにより、ノズル部材20a,20bをチップ基体1に結合している。   As shown in FIG. 5A, the nut members 25a and 25b are screwed to the male screw portions 24a and 24b of the nozzle members 20a and 20b and fastened to the chip base 1 so that the nozzle members 20a and 20b are attached to the chip base 1. Are connected.

図2を再度参照すると、ノズル部材20a,20bの電極配置空間2a,2bは、チップ基体1の中心軸(z)と直交する同一直径線(y)に分布し、該中心軸から等距離にあって中心軸(z)に平行に延びる。電極配置空間2a,2bに連続するノズル3a,3bはこの実施例では、電極配置空間2a,2bの中心軸と同心であって、図示しない母材に対向する。これらのノズル3a,3bも、本実施例では、チップ基体(外筒14)の中心軸(z)と直交する同一直径線(y)上に分布し、該中心軸に平行かつそれから等距離にある。   Referring to FIG. 2 again, the electrode arrangement spaces 2a and 2b of the nozzle members 20a and 20b are distributed on the same diameter line (y) orthogonal to the central axis (z) of the chip base 1, and are equidistant from the central axis. Thus, it extends parallel to the central axis (z). In this embodiment, the nozzles 3a and 3b continuing to the electrode arrangement spaces 2a and 2b are concentric with the central axis of the electrode arrangement spaces 2a and 2b and face a base material (not shown). In the present embodiment, these nozzles 3a and 3b are also distributed on the same diameter line (y) perpendicular to the central axis (z) of the chip base (outer cylinder 14), parallel to the central axis and equidistant from the central axis. is there.

各電極配置空間2a,2bに先端部が挿入された第1電極12a,第2電極12bが、絶縁本体7を貫通し各電極台10a,10bにねじ13a,13bで固定され、各電極配置空間2a,2bの軸心位置に、センタリングストーン9a,9bで位置決めされている。チップ基体1の、母材(図示せず)に対向する先端面(下端面)には、各電極配置空間2a,2bにつながったノズル3a,3bが開口している。ノズル3a,3bを結ぶ直線(y)が延びる方向が溶接方向である。チップ基体1は、該直線(y)が延びる方向(溶接方向)には図2に示すように広幅であるが、該直線(y)と直交する方向(x)すなわち溶接対象の開先の幅方向では楔状であって側面が傾斜面1a,1b(図4の(a))となっている。   The first electrode 12a and the second electrode 12b, the tip portions of which are inserted into the electrode arrangement spaces 2a and 2b, penetrate the insulating body 7, and are fixed to the electrode bases 10a and 10b with screws 13a and 13b. Centering stones 9a and 9b are positioned at the axial center positions of 2a and 2b. Nozzles 3a and 3b connected to the electrode arrangement spaces 2a and 2b are opened on the tip surface (lower end surface) of the chip base 1 facing the base material (not shown). The direction in which the straight line (y) connecting the nozzles 3a and 3b extends is the welding direction. The tip base 1 is wide in the direction (welding direction) in which the straight line (y) extends, as shown in FIG. 2, but the direction (x) perpendicular to the straight line (y), that is, the width of the groove to be welded. The direction is wedge-shaped, and the side surfaces are inclined surfaces 1a and 1b (FIG. 4A).

トーチ先端面(図2上ではノズルが開いた下端面)を示す図4の(a)も参照すると、
チップ基体1の先端の中心軸位置には先端突起1cがあり、溶接方向となるy方向で該先端突起1cの両側に、ノズル部材20a,20bの笠21a,21bの裏面をうける先端平面1d,1eがある。各先端平面1d,1eの中央位置に、ノズル部材挿入穴18a,18b(図5の(b))がある。ノズル部材挿入穴18a,18bに挿入されたノズル部材20a,20bの笠部21a,21bの、円弧の一部を直線状に削除した切欠面26a,26bが、先端突起1cの側面である係止面にぴったり接触する。すなわち係合する。これによりチップ基体1に対するノズル部材20a,20bの、中心軸を中心とする回転が阻止される。この係合は、ノズル部材20a,20bをチップ基体1に挿入してナット25a,25bでねじ締め付けして固定するときのノズル部材20a,20bの廻り止め、および、ノズル部材20a,20bをチップ基体1から取り外すためにナット25a,25bを緩め廻しするときのノズル部材20a,20bの廻り止め、として機能する。この係合は更に、ノズル軸がチップ基体中心軸(z)に対して傾斜したノズル部材20c,20d(図6)の該ノズル軸の傾斜方向を溶接方向(y)に固定(設定)する機能もある。
Referring also to FIG. 4 (a) showing the tip surface of the torch (the lower end surface where the nozzle is open in FIG. 2),
There is a tip projection 1c at the center axis position of the tip of the tip base 1, and a tip plane 1d that faces the back surfaces of the caps 21a, 21b of the nozzle members 20a, 20b on both sides of the tip projection 1c in the y direction as the welding direction. There is 1e. There are nozzle member insertion holes 18a and 18b (FIG. 5B) at the center positions of the respective tip planes 1d and 1e. The notch surfaces 26a and 26b obtained by removing a part of the arc in a straight line from the cap portions 21a and 21b of the nozzle members 20a and 20b inserted into the nozzle member insertion holes 18a and 18b are the side surfaces of the tip protrusion 1c. Contact the surface exactly. That is, it engages. Thereby, the rotation of the nozzle members 20a and 20b with respect to the chip base 1 around the central axis is prevented. This engagement is achieved when the nozzle members 20a and 20b are inserted into the chip base 1 and screwed with the nuts 25a and 25b and fixed, and the nozzle members 20a and 20b are prevented from rotating. It functions as a detent for the nozzle members 20a, 20b when the nuts 25a, 25b are loosened to be removed from the nozzle 1. This engagement further has a function of fixing (setting) the inclination direction of the nozzle shaft of the nozzle members 20c and 20d (FIG. 6) whose nozzle shaft is inclined with respect to the chip base central axis (z) in the welding direction (y). There is also.

ノズル部材挿入穴18a,18bの、先端平面1d,1e側の部分は大径の冷却水循環穴1f,1gとなっており、冷却水循環穴1f,1gとその中を貫通した幹部22a,22bの外周面との間に冷却水通流空間(冷媒通流空間)が形成される。   The portions of the nozzle member insertion holes 18a, 18b on the tip planes 1d, 1e side are large-diameter cooling water circulation holes 1f, 1g, and the outer circumferences of the cooling water circulation holes 1f, 1g and the trunk portions 22a, 22b penetrating therethrough. A cooling water flow space (refrigerant flow space) is formed between the surfaces.

図4の(c)に、チップ基体1の横断面(図2上のIVc−IVc線断面)を示す。チップ基体1には、水受穴1h,水出穴1i,冷却水循環穴1f,1gをつなぐ横通水穴1j,冷却水循環穴1fを水受穴1jにつなぐ横通水穴1k、および、冷却水循環穴1gを水出穴1iにつなぐ横通水穴1lがある。   FIG. 4C shows a cross section of the chip substrate 1 (IVc-IVc line cross section in FIG. 2). The chip base 1 includes a water receiving hole 1h, a water outlet hole 1i, a lateral water hole 1j that connects the cooling water circulation holes 1f and 1g, a horizontal water hole 1k that connects the cooling water circulation hole 1f to the water receiving hole 1j, and cooling. There is a lateral water hole 1l that connects the water circulation hole 1g to the water outlet hole 1i.

図3に、図2の断面と直交する断面を示す。チップ基体1の水受穴1hは水流管16aに、水出穴1iは水流管16bに連通している。図4の(c)も参照すると、水流管16aに注入された冷却水は、電極台10a,絶縁本体7およびチップ台5の水流路を通ってチップ基体1の水受穴1hに入って穴底に至り、そこから横通水穴1kを通って、水循環穴1fと幹部22aの外周面との間の冷却水通流空間に入り、つぎに横通水穴1jを通って、水循環穴1gと幹部22bの外周面との間の冷却水通流空間に入り、つぎに横通水穴1lを通って水出穴1iに入りそして水流管16bに流れ、そしてトーチ外部に流出する。   FIG. 3 shows a cross section orthogonal to the cross section of FIG. The water receiving hole 1h of the chip base 1 communicates with the water flow pipe 16a, and the water outlet hole 1i communicates with the water flow pipe 16b. Referring also to FIG. 4 (c), the cooling water injected into the water flow pipe 16a enters the water receiving hole 1h of the chip base 1 through the electrode base 10a, the insulating body 7 and the water flow path of the chip base 5, and has a hole. It reaches the bottom, and then enters the cooling water flow space between the water circulation hole 1f and the outer peripheral surface of the trunk portion 22a through the horizontal water flow hole 1k, and then passes through the horizontal water flow hole 1j and passes through the water circulation hole 1g. Enters the cooling water flow space between the main portion 22b and the outer peripheral surface of the trunk portion 22b, then enters the water outlet hole 1i through the lateral water passage hole 11 and flows to the water flow pipe 16b and flows out of the torch.

冷却水が、水循環穴1fと幹部22aの外周面との間の冷却水通流空間と、水循環穴1gと幹部22bの外周面との間の冷却水通流空間を流れている間に、ノズル部材20a,20bの幹部22a,22bが効果的に冷却され、しかも冷却水が、水受穴1h,横通水穴1k,水循環穴1f,横通水穴1j,水循環穴1g,横通水穴1lおよび水出孔1iを流れている間に、チップ基体1が効果的に冷却されるので、インサートチップの冷却能力が高い。溶接時にはノズル部材20a,20bが最も加熱されるが、その外周面が直接に冷却水に触れて冷却されるので、ノズル部材20a,20bの使用寿命が長い。   While the cooling water flows through the cooling water flow space between the water circulation hole 1f and the outer peripheral surface of the trunk portion 22a and the cooling water flow space between the water circulation hole 1g and the outer peripheral surface of the trunk portion 22b, the nozzle The trunk portions 22a and 22b of the members 20a and 20b are effectively cooled, and the cooling water is supplied to the water receiving hole 1h, the lateral water passage hole 1k, the water circulation hole 1f, the lateral water passage hole 1j, the water circulation hole 1g, and the lateral water passage hole. Since the chip base 1 is effectively cooled while it flows through 11 and the water outlet hole 1i, the cooling capacity of the insert chip is high. The nozzle members 20a and 20b are most heated during welding, but the outer peripheral surfaces of the nozzle members 20a and 20b are cooled by direct contact with cooling water, so that the service life of the nozzle members 20a and 20b is long.

再度図2を参照すると、パイロットガスは、パイロットガス管15a,15bおよび電極挿入空間を通って電極配置空間2a,2bに入り、電極先端部でプラズマアークとなってノズル3a,3bを通ってトーチの先端面から噴出する。シールドガスは、シールドガス管17を通って、インナーキャップ7とシールドキャップ8との間の円筒状の空間に入り、そしてトーチの先端から溶接対象材である溶接片31a,31bに向けて噴出する。   Referring to FIG. 2 again, the pilot gas enters the electrode arrangement spaces 2a and 2b through the pilot gas pipes 15a and 15b and the electrode insertion space, becomes a plasma arc at the electrode tip, and passes through the nozzles 3a and 3b. Erupts from the tip of The shield gas enters the cylindrical space between the inner cap 7 and the shield cap 8 through the shield gas pipe 17, and is ejected from the tip of the torch toward the welding pieces 31a and 31b which are the welding target materials. .

図2に示すように、電極12a,12bとチップ20との間にパイロットアークを発生させるパイロット電源34a,34b、および、電極12a,12bと溶接片31a,31bの間に、電極側が負で溶接片側が正のプラズマアーク電流を流すプラズマアーク電源33a,33bがある。パイロット電源34a,34bおよびプラズマアーク電源33a,33bは、溶接電流・ガス供給装置32a,32bにあり、プラズマアーク電源33a,33bはいずれも、予熱,キーホール溶接(本溶接)およびなめ付けの溶接条件を設定できるものであり、2電極12a,12bのいずれを溶接方向で先行する先行極とするか、また、先行極と後行極の何れをキーホール溶接に設定し、他の極が先行極となる場合はそれを予熱に後行極となる場合はそれをなめ付けに設定し各プラズマアーク電流を設定することができる。図2は、先行極12bを予熱に、後行極12aをキーホール溶接に設定した溶接態様を示している。プラズマアーク19aと19bは、お互いの磁気干渉で引き合う力が働き、アークが図の様に多少曲がったアークとなる。   As shown in FIG. 2, the pilot power sources 34 a and 34 b that generate a pilot arc between the electrodes 12 a and 12 b and the tip 20, and the electrodes 12 a and 12 b and the welding pieces 31 a and 31 b are welded with a negative electrode side. There are plasma arc power supplies 33a and 33b that flow a positive plasma arc current on one side. Pilot power sources 34a and 34b and plasma arc power sources 33a and 33b are in welding current / gas supply devices 32a and 32b. Plasma arc power sources 33a and 33b are all preheated, keyhole welding (main welding), and tanning welding. The condition can be set, which one of the two electrodes 12a and 12b is set as the leading electrode leading in the welding direction, and which of the leading electrode and the trailing electrode is set to keyhole welding, and the other electrode is leading If it becomes a pole, it can be preheated and if it becomes a trailing electrode, it can be set to tanning and each plasma arc current can be set. FIG. 2 shows a welding mode in which the leading electrode 12b is set to preheating and the trailing electrode 12a is set to keyhole welding. The plasma arcs 19a and 19b act to attract each other due to magnetic interference, and the arcs are slightly bent as shown in the figure.

各パイロット電源34a,34bにより各電極12a,12bとチップ1との間にパイロットアークを発生させて、電極12a,12bと溶接片31a,31bとの間に、電極側が負で母材側が正のプラズマアーク電流を流す、溶接方向で先行の電極12bに給電するプラズマアーク電源33bおよび溶接方向で後行の電極12aに給電するプラズマアーク電源33aにより、溶接アーク(プラズマアーク)を発生させると、プラズマアーク電流が各電極12a,12bと溶接片31a,31bの間に流れて、1プール2アーク溶接が実現する。図2は、先行極12bで予熱し、後行極12aでキーホール溶接(本溶接)する態様を示すが、先行極12bでキーホール溶接し、後行極12aでなめ付け溶接(平滑化溶接)する態様も実施できる。すなわち、先行する電極12bのキーホール溶接で生成した溶融プールに後行する電極12aのなめ付けのプラズマアークが当たって、例えば高速でのキーホール溶接で発生する表ビードの深いアンダーカットを後行のなめ付け溶接が均す。これにより、高速でも、アンダーカットの少ない溶接ビードが得られる。   A pilot arc is generated between each electrode 12a, 12b and the tip 1 by each pilot power source 34a, 34b, and the electrode side is negative and the base metal side is positive between the electrodes 12a, 12b and the weld pieces 31a, 31b. When a welding arc (plasma arc) is generated by a plasma arc power source 33b that feeds a plasma arc current and feeds the preceding electrode 12b in the welding direction and a plasma arc power source 33a that feeds the subsequent electrode 12a in the welding direction, The arc current flows between the electrodes 12a and 12b and the weld pieces 31a and 31b, thereby realizing 1 pool 2 arc welding. FIG. 2 shows an embodiment in which preheating is performed at the leading electrode 12b and keyhole welding (main welding) is performed at the trailing electrode 12a. Keyhole welding is performed at the leading electrode 12b and tanning welding (smoothing welding) is performed at the trailing electrode 12a. ) Can also be implemented. That is, the plasma pool of the subsequent electrode 12a hits the molten pool generated by the keyhole welding of the preceding electrode 12b, and the deep undercut of the surface bead generated by, for example, the high-speed keyhole welding is followed. The tanning welding is leveled. As a result, a weld bead with less undercut can be obtained even at high speed.

図6の(b1)に、図2に示すノズル部材20aおよび又は20bに置換して用いる第1変形形態のノズル部材20cの縦断面を、図6の(b2)には該ノズル部材20cの底面(先端面)を示す。図2に示すノズル部材20a,20bのノズル3a,3bの中心軸は、ノズル部材の中心軸と同心である。しかし、ノズル部材20cのノズル3cは、ノズル部材20cの中心軸に対して傾斜しているので、このノズル部材20cをチップ基体1に装着すると、その切欠面26cがチップ基体1の先端突起1cに係合した状態で、ノズル3cの中心軸はチップ基体の中心軸(ノズル部材挿入穴の中間点)から離れる方向に傾斜したものとなる。すなわち、チップ基体1の中心軸に対して溶接方向(y)の前方側(先行ノズルとなる場合)又は後方側(後行ノズルとなる場合)に傾斜したものとなり、極間(前後溶接点間の距離)を広げた溶接が可能となる。   6 (b1) shows a longitudinal section of the nozzle member 20c of the first modified embodiment used in place of the nozzle member 20a and / or 20b shown in FIG. 2, and FIG. 6 (b2) shows the bottom surface of the nozzle member 20c. (Tip surface) is shown. The central axes of the nozzles 3a and 3b of the nozzle members 20a and 20b shown in FIG. 2 are concentric with the central axis of the nozzle member. However, since the nozzle 3c of the nozzle member 20c is inclined with respect to the central axis of the nozzle member 20c, when the nozzle member 20c is mounted on the chip base 1, the notch surface 26c is formed on the tip protrusion 1c of the chip base 1. In the engaged state, the central axis of the nozzle 3c is inclined in a direction away from the central axis of the chip base (the intermediate point of the nozzle member insertion hole). That is, it is inclined to the front side (in the case of a leading nozzle) or the rear side (in the case of a trailing nozzle) in the welding direction (y) with respect to the central axis of the chip base 1, and between the poles (between the front and rear welding points). Welding with a wider distance is possible.

図6の(c1)に、図2に示すノズル部材20aおよび又は20bに置換して用いる第2変形形態のノズル部材20dの縦断面を、図6の(c2)には該ノズル部材20dの底面(先端面)を示す。ノズル部材20dのノズル3dは、ノズル部材20dの中心軸に対してノズル3cとは逆方向に傾斜しているので、このノズル部材20dをチップ基体1に装着すると、その切欠面26dがチップ基体1の先端突起1cに係合した状態で、ノズル3dの中心軸はチップ基体1の中心軸(ノズル部材挿入穴の中間点)に近づく方向に傾斜したものとなる。すなわち、溶接方向(y)でチップ基体1の中心軸に近づくように傾斜したものとなり、後行極のプラズマアークは、溶接の進行方向に対して前進角となり、溶接が寄り安定した状態となる。   6 (c1) shows a longitudinal section of the nozzle member 20d of the second modified embodiment used in place of the nozzle member 20a and / or 20b shown in FIG. 2, and FIG. 6 (c2) shows the bottom surface of the nozzle member 20d. (Tip surface) is shown. Since the nozzle 3d of the nozzle member 20d is inclined in the direction opposite to the nozzle 3c with respect to the central axis of the nozzle member 20d, when the nozzle member 20d is attached to the chip base 1, the notch surface 26d becomes the chip base 1 The center axis of the nozzle 3d is inclined in a direction approaching the center axis of the chip base 1 (the middle point of the nozzle member insertion hole) in a state of being engaged with the tip protrusion 1c. That is, it is inclined so as to approach the central axis of the chip base 1 in the welding direction (y), and the plasma arc of the trailing electrode becomes an advancing angle with respect to the traveling direction of the welding, and the welding becomes stable due to the welding. .

なお、ノズル部材をチップ基体1に装着したインサートチップとしては、
(1)図2,図5に示す態様,
(2)図2に示すノズル部材20aをノズル部材20cに置換し、ノズル部材20cを溶接方向(y)で先行ノズルとする態様,
(3)図2に示すノズル部材20bをノズル部材20cに置換し、ノズル部材20cを後行ノズルとする態様,
(4)図2に示すノズル部材20a,20bを共にノズル部材20cの形態とする態様,
(5)図2に示すノズル部材20aをノズル部材20dに置換し、ノズル部材20dを先行ノズルとする態様,
(6)図2に示すノズル部材20bをノズル部材20dに置換し、ノズル部材20dを後行ノズルとする態様,
(7)図2に示すノズル部材20a,20bを共にノズル部材20dの形態とする態様,
(8)図2に示すノズル部材20a,20bをノズル部材20c,20dに置換し、ノズル部材20cを先行ノズルとする態様、および、
(9)図2に示すノズル部材20a,20bをノズル部材20c,20dに置換し、ノズル部材20dを先行ノズルとする態様、
がある。溶接対象板厚ならびに所望の溶接電流,溶接速度および溶接品質(例えば所望ビード形状)に対応して、上記(1)〜(9)の態様のいずれかを選択することができる。次に、2電極プラズマトーチを用いる本発明の溶接方法の実施例を示す。
In addition, as an insert chip in which the nozzle member is mounted on the chip base 1,
(1) The embodiment shown in FIGS.
(2) A mode in which the nozzle member 20a shown in FIG. 2 is replaced with a nozzle member 20c, and the nozzle member 20c is a leading nozzle in the welding direction (y),
(3) A mode in which the nozzle member 20b shown in FIG. 2 is replaced with a nozzle member 20c, and the nozzle member 20c is used as a subsequent nozzle,
(4) A mode in which the nozzle members 20a and 20b shown in FIG.
(5) A mode in which the nozzle member 20a shown in FIG. 2 is replaced with a nozzle member 20d, and the nozzle member 20d is a preceding nozzle,
(6) A mode in which the nozzle member 20b shown in FIG. 2 is replaced with a nozzle member 20d, and the nozzle member 20d is a subsequent nozzle,
(7) A mode in which the nozzle members 20a and 20b shown in FIG.
(8) A mode in which the nozzle members 20a and 20b shown in FIG. 2 are replaced with the nozzle members 20c and 20d, and the nozzle member 20c is a preceding nozzle, and
(9) A mode in which the nozzle members 20a and 20b shown in FIG. 2 are replaced with the nozzle members 20c and 20d, and the nozzle member 20d is a preceding nozzle,
There is. Any of the above aspects (1) to (9) can be selected in accordance with the thickness of the plate to be welded and the desired welding current, welding speed and welding quality (for example, the desired bead shape). Next, an example of the welding method of the present invention using a two-electrode plasma torch will be described.

−第1実施例−
1.後行キーホールモード(先行極,後行極同時着火)−図7,図8,表1−
2個の電極配置空間2a,2bと各電極配置空間にそれぞれが連通する2個のノズル3a,3bとを有するインサートチップ1を備えた2電極プラズマトーチ30を用いて、前記2個のノズルの並び方向を溶接線と平行にして、該トーチ30を溶接片31a,31bに対して溶接線に沿う方向に走行駆動しつつ、各電極配置空間にある各電極12a,12bでプラズマアークを発生して溶接線を溶接する。
-1st Example-
1. Subsequent keyhole mode (simultaneous ignition of leading electrode and trailing electrode)-FIG. 7, FIG. 8, Table 1
Using a two-electrode plasma torch 30 having an insert tip 1 having two electrode arrangement spaces 2a, 2b and two nozzles 3a, 3b communicating with each electrode arrangement space, the two nozzle arrangement spaces A plasma arc is generated at each electrode 12a, 12b in each electrode arrangement space while driving the torch 30 in a direction along the weld line with respect to the weld pieces 31a, 31b with the arrangement direction parallel to the weld line. Weld the welding line.

先行極は予熱プラズマアークに、後行極はキーホールプラズマアークに設定して、図7のタイミング(1)に示すように、後行極(ノズル部材20a)が溶接片31a,31bの始端にあるときに、先行極(ノズル部材20b)および後行極のプラズマアークを同時に起動し、この起動と同時に2電極プラズマトーチ30の走行駆動を低速で開始する。   The leading electrode is set to the preheating plasma arc, the trailing electrode is set to the keyhole plasma arc, and the trailing electrode (nozzle member 20a) is placed at the beginning of the weld pieces 31a and 31b as shown in the timing (1) of FIG. At a certain time, the plasma electrode of the leading electrode (nozzle member 20b) and the trailing electrode is activated at the same time, and simultaneously, the traveling drive of the two-electrode plasma torch 30 is started at a low speed.

図7のタイミング(2)に示すように後行極が、先行極がプラズマアークを起動した位置に到達すると、トーチ30の走行駆動を高速に、かつ後行極のプラズマアーク電流および後行極のプラズマガス流量を高く切換える。そして、タイミング(3)に示すように先行極が溶接片31a,31bの後端に達する直前に先行極のプラズマアーク電流を下げて、溶接片31a,31bの後端で先行極のプラズマアークを停止し、タイミング(4)に示すように後行極が該後端に達すると前記走行駆動の速度を下げ、かつ後行極のプラズマアーク電流を下げ、後行極によるクレータ処理期間後に、後行極のプラズマアークを停止する。   As shown in the timing (2) of FIG. 7, when the trailing electrode reaches the position where the leading electrode starts the plasma arc, the driving drive of the torch 30 is performed at high speed, and the plasma arc current and the trailing electrode of the trailing electrode The plasma gas flow rate is switched high. Then, as shown in the timing (3), immediately before the leading electrode reaches the rear end of the welding pieces 31a and 31b, the plasma arc current of the leading electrode is lowered, and the plasma arc of the leading electrode is generated at the rear end of the welding pieces 31a and 31b. When the trailing electrode reaches the trailing end as shown in the timing (4), the speed of the traveling drive is decreased and the plasma arc current of the trailing electrode is decreased, and after the crater treatment period by the trailing electrode, Stop the plasma arc at the electrode.

図8には、各タイミングでの溶接電流,プラズマガス流量および溶接速度の切換えの基本パターンを示し、表1に、第1実施例で採用した溶接条件値を示す。これは、溶接片31a,31bを板厚3.6mm(厚板),長さ262mmの軟鋼として、溶接シーケンスプログラムに、溶接開始(STEP1)から溶接終了(STEP12)まで12ステップの各ステップにつき溶接条件値を設定したものである。ステップ間では先行ステップの溶接条件値が継続して維持される。なお、ノズル傾斜角20°前進角とは、ノズルが溶接方向yの前方方向に20°傾斜したものであり、図2に示す先行極12bが進入するノズル部材20bを図6の(b1)〜(b3)に示すノズル部材20cに交換し、後行極12aが進入するノズル部材20aを、図6の(c1)〜(c3)に示すノズル部材20dに交換することによってノズル傾斜角20°前進角を実現した。   FIG. 8 shows a basic pattern for switching the welding current, plasma gas flow rate and welding speed at each timing, and Table 1 shows the welding condition values employed in the first embodiment. The welding pieces 31a and 31b are made of mild steel having a plate thickness of 3.6 mm (thick plate) and a length of 262 mm, and welding is performed for each of the 12 steps from the start of welding (STEP 1) to the end of welding (STEP 12). A condition value is set. Between the steps, the welding condition value of the preceding step is continuously maintained. The nozzle inclination angle 20 ° advancing angle means that the nozzle is inclined 20 ° in the forward direction of the welding direction y, and the nozzle member 20b into which the leading electrode 12b shown in FIG. The nozzle member 20c shown in (b3) is replaced, and the nozzle member 20a into which the trailing electrode 12a enters is replaced with the nozzle member 20d shown in (c1) to (c3) of FIG. Realized the corner.

Figure 2013094849
Figure 2013094849

第1実施例によれば、溶接対象材である溶接片31a,31bの先端より溶接片領域に入り込んだ予熱用の先行極と溶接片の先端にあるキーホール用の後行極が同時にプラズマアークを起動するので、先行極/後行極間距離相当の予熱タイムラグ(図16の(b))を生ずるが、走行駆動の速度が低いので、溶接片先端での裏波形成不良が少ない。予熱タイムラグ区間を過ぎると走行駆動速度を上げるので、溶接の生産性は高い。溶接片31a,31bの後端は低速,低電流のクレータ処理により、後端表面の窪みが平坦に修正され、後端不良が少ない。これらにより、溶接片31a,31bの先端,後端の素材の歩留りがよくなる。   According to the first embodiment, the preheating leading electrode that has entered the welding piece region from the tip of the welding pieces 31a and 31b, which are materials to be welded, and the trailing electrode for the keyhole at the tip of the welding piece are simultaneously plasma arc. Therefore, although a preheating time lag corresponding to the distance between the leading electrode and the trailing electrode is generated ((b) in FIG. 16), the traveling drive speed is low, so that the back-wave formation failure at the tip of the welded piece is small. Since the traveling drive speed is increased after the preheating time lag section, the welding productivity is high. The rear ends of the weld pieces 31a and 31b are corrected to be flat at the rear end surface by low-speed, low-current crater treatment, and there are few rear end defects. By these, the yield of the raw material of the front-end | tip of a welding piece 31a, 31b and a rear end becomes good.

−第2実施例−
2.後行キーホールモード(先行極先行着火)−図9,図10,表2−
2個の電極配置空間2a,2bと各電極配置空間にそれぞれが連通する2個のノズル3a,3bとを有するインサートチップ1を備えた2電極プラズマトーチ30を用いて、前記2個のノズルの並び方向を溶接線と平行にして、該トーチ30を溶接片31a,31bに対して溶接線に沿う方向に走行駆動しつつ、各電極配置空間にある各電極12a,12bでプラズマアークを発生して溶接線を溶接する。
-Second Example-
2. Subsequent keyhole mode (preceding lead preceding ignition)-FIG. 9, FIG. 10, Table 2-
Using a two-electrode plasma torch 30 having an insert tip 1 having two electrode arrangement spaces 2a, 2b and two nozzles 3a, 3b communicating with each electrode arrangement space, the two nozzle arrangement spaces A plasma arc is generated at each electrode 12a, 12b in each electrode arrangement space while driving the torch 30 in a direction along the weld line with respect to the weld pieces 31a, 31b with the arrangement direction parallel to the weld line. Weld the welding line.

先行極は予熱プラズマアークに、後行極はキーホールプラズマアークに設定して、図9のタイミング(1)に示すように、先行極(ノズル部材20b)が溶接片31a,31bの始端にあるときに、先行極のプラズマアークを起動し、この起動と同時に2電極プラズマトーチ30の走行駆動を低速で開始する。後行極が溶接片31a,31bの始端に達すると後行極のプラズマアークを起動し、後行極によりキーホールが形成されるときに、走行駆動を高速に、かつ後行極のプラズマアーク電流および後行極のプラズマガス流量を高く切換える。タイミング(3)に示すように先行極が溶接片31a,31bの後端に達する直前で、先行極のプラズマアーク電流を下げて後端で先行極のプラズマアークを停止し、タイミング(4)に示すように後行極が該後端に達すると走行駆動の速度を下げ、かつ後行極のプラズマアーク電流および後行極のプラズマガス流量を下げ、後行極によるクレータ処理期間後に、後行極のプラズマアークを停止する。   The leading electrode is set to the preheating plasma arc, the trailing electrode is set to the keyhole plasma arc, and the leading electrode (nozzle member 20b) is at the beginning of the welding pieces 31a and 31b as shown in the timing (1) of FIG. Sometimes the leading electrode plasma arc is activated, and simultaneously with this activation, the traveling drive of the two-electrode plasma torch 30 is started at a low speed. When the trailing electrode reaches the beginning of the weld pieces 31a and 31b, the plasma electrode of the trailing electrode is activated, and when the keyhole is formed by the trailing electrode, the traveling drive is performed at high speed and the plasma arc of the trailing electrode The current and the plasma gas flow rate of the trailing electrode are switched high. As shown in the timing (3), immediately before the leading electrode reaches the rear ends of the weld pieces 31a and 31b, the plasma arc current of the leading electrode is lowered to stop the plasma arc of the leading electrode at the rear end, and at the timing (4). As shown in the figure, when the trailing electrode reaches the trailing edge, the traveling drive speed is reduced, and the plasma arc current of the trailing electrode and the plasma gas flow rate of the trailing electrode are decreased. Stop the polar plasma arc.

図10には、各タイミングでの溶接電流,プラズマガス流量および溶接速度の切換えの基本パターンを示し、表2に、第1実施例で採用した溶接条件値を示す。これは、溶接片31a,31bを板厚2.3mm(薄板),長さ182mmの軟鋼として、溶接シーケンスプログラムに、溶接開始(STEP1)から溶接終了(STEP17)まで17ステップの各ステップにつき溶接条件値を設定したものである。ステップ間では先行ステップの溶接条件値が継続して維持される。   FIG. 10 shows a basic pattern for switching the welding current, plasma gas flow rate, and welding speed at each timing, and Table 2 shows the welding condition values employed in the first embodiment. This is because welding pieces 31a and 31b are made of mild steel having a plate thickness of 2.3 mm (thin plate) and a length of 182 mm, and welding conditions are set for each of the 17 steps from welding start (STEP 1) to welding end (STEP 17). A value is set. Between the steps, the welding condition value of the preceding step is continuously maintained.

Figure 2013094849
Figure 2013094849

第2実施例によれば、先行極(予熱用)が溶接片31a,31bの先端にあるときに先行極(予熱用)がプラズマアーク(予熱)を起動するので、先行極/後行極間距離相当の予熱タイムラグ(図16の(b))による溶接片31a,31bの先端での裏波形成不良を生じない。後行極によりキーホールが形成されると走行駆動速度を上げるので、溶接の生産性は高い。の後端は低速,低電流のクレータ処理により、後端表面の窪みが平坦に修正され、後端不良が少ない。これらにより、溶接片31a,31bの先端,後端の素材の歩留りがよくなる。   According to the second embodiment, since the leading electrode (for preheating) activates the plasma arc (preheating) when the leading electrode (for preheating) is at the tip of the welded pieces 31a and 31b, between the leading electrode and the trailing electrode. A back wave formation defect does not occur at the tips of the welded pieces 31a and 31b due to the preheating time lag corresponding to the distance ((b) of FIG. 16). When the keyhole is formed by the trailing electrode, the traveling drive speed is increased, so that the welding productivity is high. The rear end has a low-speed, low-current crater treatment that corrects the recess on the surface of the rear end to be flat, resulting in fewer rear end defects. By these, the yield of the raw material of the front-end | tip of a welding piece 31a, 31b and a rear end becomes good.

−第3実施例−
3.先行キーホールモード(先行極先行着火)−図11,図12−
2個の電極配置空間2a,2bと各電極配置空間にそれぞれが連通する2個のノズル3a,3bとを有するインサートチップ1を備えた2電極プラズマトーチ30を用いて、前記2個のノズルの並び方向を溶接線と平行にして、該トーチ30を溶接片31a,31bに対して溶接線に沿う方向に走行駆動しつつ、各電極配置空間にある各電極12a,12bでプラズマアークを発生して溶接線を溶接する。
-Third Example-
3. Leading keyhole mode (leading lead preceding ignition)-Fig. 11 and Fig. 12-
Using a two-electrode plasma torch 30 having an insert tip 1 having two electrode arrangement spaces 2a, 2b and two nozzles 3a, 3b communicating with each electrode arrangement space, the two nozzle arrangement spaces A plasma arc is generated at each electrode 12a, 12b in each electrode arrangement space while driving the torch 30 in a direction along the weld line with respect to the weld pieces 31a, 31b with the arrangement direction parallel to the weld line. Weld the welding line.

先行極はキーホールプラズマアークに、後行極はなめ付けプラズマアークに設定して、図11のタイミング(1)に示すように、先行極(ノズル部材20b)が溶接片31a,31bの始端にあるときに、先行極のプラズマアーク(キーホール溶接)を起動すると同時に前記走行駆動を低速で開始し、タイミング(2)に示すように後行極が溶接片31a,31bの始端に達すると後行極のプラズマアーク(なめ付け)を起動し、走行駆動を高速に、かつ先行極のプラズマアーク電流および先行極のプラズマガス流量を高く切換え、タイミング(3)に示すように先行極が溶接片31a,31bの後端に達する直前に、先行極のプラズマアーク電流およびプラズマガス流量を下げ走行駆動を低速に切換えて後端で先行極のプラズマアークを停止し、タイミング(4)に示すように後行極が該後端に達すると後行極のプラズマアーク電流を下げ、後行極によるクレータ処理期間後に、後行極のプラズマアークを停止する。図12には、各タイミングでの溶接電流,プラズマガス流量および溶接速度の切換えの基本パターンを示す。   The leading electrode is set to a keyhole plasma arc and the trailing electrode is set to a tanned plasma arc. As shown in timing (1) of FIG. 11, the leading electrode (nozzle member 20b) is placed at the beginning of the weld pieces 31a and 31b. At a certain time, when the leading electrode plasma arc (keyhole welding) is started, the traveling drive is started at a low speed, and when the trailing electrode reaches the beginning of the welded pieces 31a and 31b as shown in the timing (2), Start the plasma electrode (tanning) of the row electrode, switch the driving speed at high speed and switch the plasma arc current of the leading electrode and the plasma gas flow rate of the leading electrode to high, and the leading electrode is welded as shown in the timing (3). Immediately before reaching the rear ends of 31a and 31b, the plasma arc current and plasma gas flow rate of the leading electrode are lowered to switch the traveling drive to a low speed, and the leading electrode plasma arc is stopped at the trailing end. And, the trailing electrode, as shown in the timing (4) lowers the plasma arc current of the trailing electrode to reach rear end, after crater treatment period by the trailing electrode, stopping the plasma arc of the trailing electrode. FIG. 12 shows a basic pattern for switching the welding current, plasma gas flow rate, and welding speed at each timing.

第3実施例によれば、溶接片31a,31bの先端から後端に渡って、後行極のプラズマによって溶接表面がなめ付けされて、高速溶接でも、アンダーカットの少ない表面ビードが得られる。溶接の生産性が高い。後行極が溶接片31a,31bの先端に達すると先行極のプラズマアーク電流を高く切換え同時に走行駆動速度を上げるので、溶接の生産性が高い。   According to the third embodiment, the weld surface is tanned by the plasma of the trailing electrode from the front end to the rear end of the weld pieces 31a and 31b, and a surface bead with less undercut is obtained even in high-speed welding. High welding productivity. When the trailing electrode reaches the tips of the welded pieces 31a and 31b, the plasma arc current of the leading electrode is switched high, and the traveling drive speed is increased at the same time, so that the welding productivity is high.

−第3実施例の変形−
2電極プラズマトーチ30を用いて、溶接方向y(溶接線が延びる方向)で先行して溶接線に作用する先行極が発生するプラズマアークで溶接線をキーホール溶接し、後行極が発生するプラズマアークで溶接線を加熱(なめ付け)する態様、例えば第3実施例では、先行極/後行極間距離が短いので、溶接条件によっては、図15の(a)に示すように、先行のキーホール溶接で生成した溶融プールの溶融金属が後行のなめ付けプラズマアーク直下に吸い込まれて、キーホール溶接部となめ付け溶接部との間Aで先行極側から後行極側への溶融金属の流動があり、溶接線の終端部では減肉状態で溶接が終わることがある。これは厚板であるほどまた粘性が低い金属ほど顕著になる。
-Modification of the third embodiment-
Using the two-electrode plasma torch 30, the welding line is keyhole welded with a plasma arc in which a leading electrode acting on the welding line precedes in the welding direction y (direction in which the welding line extends), and a trailing electrode is generated. In a mode in which the welding line is heated (tanned) with a plasma arc, for example, in the third embodiment, the distance between the leading electrode and the trailing electrode is short. Therefore, depending on the welding conditions, as shown in FIG. The molten metal in the molten pool generated by the keyhole welding is sucked directly under the subsequent tanning plasma arc, and from the leading electrode side to the trailing electrode side A between the keyhole welding portion and the butt welding portion. There is a flow of molten metal, and welding may end in a thinned state at the end of the weld line. This becomes more prominent with thicker plates and with lower viscosity metals.

これを回避するために、溶接片31a,31bを溶接の始端よりも終端が低くなる姿勢に傾けて、2電極プラズマトーチ30を溶接片31a,31bの表面に対して垂直姿勢としてその走行駆動を溶接線と平行な方向とする。この他は上述の第3実施例と同様である。   In order to avoid this, the welding pieces 31a and 31b are tilted to a posture in which the end is lower than the starting end of welding, and the two-electrode plasma torch 30 is placed in a vertical posture with respect to the surfaces of the welding pieces 31a and 31b and the traveling drive is performed. The direction is parallel to the weld line. Other than this, the third embodiment is the same as the third embodiment.

このように、溶接片を傾けると、重力によりプールの溶融金属に溶接方向に向かう力が加わって上記吸い込みが抑制され、後端部ビードの減肉が低減し後端部のビード表面が平坦になる。2電極プラズマトーチ30が溶接片31a,31bの表面に対して垂直姿勢であるので、先行極のキーホール溶接条件および後行極のなめ付け溶接条件の設定又は調整が容易である。   In this way, when the weld piece is tilted, gravity is applied to the molten metal of the pool in the welding direction to suppress the suction, reducing the thinning of the rear end bead and flattening the rear end bead surface. Become. Since the two-electrode plasma torch 30 is perpendicular to the surfaces of the welding pieces 31a and 31b, it is easy to set or adjust the leading electrode keyhole welding conditions and the trailing electrode tanning welding conditions.

−第4実施例−
4.後行キーホールモード(タブ材使用;先行極,後行極同時着火)
図13の(1)に示すように、溶接片31a,31bの始端および終端に、溶接線に連なるスリットがある先端および後端水冷銅タブ38a,38b/39a,39bを、溶接片31a,31bと連続に当接し、2個の電極配置空間2a,2bと各電極配置空間にそれぞれが連通する2個のノズル3a,3bとを有するインサートチップ1を備えた2電極プラズマトーチ30を用いて、前記2個のノズルの並び方向を溶接線と平行にして、該トーチ30を溶接片31a,31bに対して溶接線に沿う方向に走行駆動しつつ、各電極配置空間にある各電極12a,12bでプラズマアークを発生して溶接線を溶接する。
-Fourth embodiment-
4). Subsequent keyhole mode (using tab material; simultaneous ignition of leading and trailing electrodes)
As shown in (1) of FIG. 13, the front and rear end water-cooled copper tabs 38a, 38b / 39a, 39b having slits connected to the weld line at the start and end of the weld pieces 31a, 31b are connected to the weld pieces 31a, 31b. A two-electrode plasma torch 30 provided with an insert tip 1 having two electrode arrangement spaces 2a, 2b and two nozzles 3a, 3b respectively communicating with each electrode arrangement space. The two nozzles are arranged in parallel with the weld line, and the torch 30 is driven to run along the weld line with respect to the weld pieces 31a and 31b, and the electrodes 12a and 12b in the electrode arrangement spaces are driven. A plasma arc is generated in order to weld the weld line.

先行極は予熱プラズマアークに、後行極はキーホールプラズマアークに、設定する。タイミング(1)に示すように、先行極および後行極が前記先端水冷銅タブ38a,38bのスリットに対向する位置で先行極,後行極のプラズマアークを起動して2電極プラズマトーチ30の走行駆動を開始し、タイミング(2)に示すように各極が溶接片31a,31bの後端を通過した後に、各極のプラズマアークを停止する。図14には、各タイミングでの溶接電流,プラズマガス流量および溶接速度の切換えの基本パターンを示す。   The leading electrode is set to a preheated plasma arc, and the trailing electrode is set to a keyhole plasma arc. As shown in the timing (1), the leading electrode and the trailing electrode are activated at the positions where the leading electrode and the trailing electrode face the slits of the tip water-cooled copper tabs 38a, 38b, and the plasma arc of the two-electrode plasma torch 30 is started. The traveling drive is started, and after each pole passes the rear ends of the weld pieces 31a and 31b as shown in the timing (2), the plasma arc of each pole is stopped. FIG. 14 shows a basic pattern for switching the welding current, plasma gas flow rate, and welding speed at each timing.

第4実施例によれば、溶接片31a,31bの始端,終端の外側でプラズマアークの起動と停止が行われるので、始端,終端に溶接不良を生じない。溶接片31a,31bの先端,後端の素材の歩留りがよくなる。   According to the fourth embodiment, since the plasma arc is started and stopped outside the start and end of the weld pieces 31a and 31b, no welding failure occurs at the start and end. The yield of the material of the front and rear ends of the welded pieces 31a and 31b is improved.

なお、先行極と後行極は同時着火,同時停止とするばかりでなく、各極が先端タブ材の領域にあるときに別々に着火してもよく、また、各極が後端タブ材の領域にあるときに別々に停止してもよい。図13に示すようにタブ材を使用する態様では、先行極をキーホール溶接に後行極をなめ付けに設定することもできる。また、後端で後行極のクレータ処理を行うこともできる。材質,板厚によっては、後端のクレータ処理を行っても表ビードの減肉が多い場合、後端部へワイヤを送給し余盛することもできる。以上には、平板同士の溶接を実施態様として示したが、本発明はこれに限らず、筒状に曲げた一枚板の両端部の突合せ溶接やパイプ同士の突合せ溶接,重ね隅肉溶接等の円周溶接にも適応できる。   In addition, the leading electrode and the trailing electrode are not only simultaneously ignited and stopped simultaneously, but may be ignited separately when each electrode is in the region of the tip tab material. You may stop separately when in the area. In the aspect using a tab material as shown in FIG. 13, the leading electrode can be set to keyhole welding and the trailing electrode can be set to tanning. Further, crater processing of the trailing electrode can be performed at the rear end. Depending on the material and plate thickness, even if the crater treatment at the rear end is performed, if the thickness of the front bead is large, the wire can be fed to the rear end portion for surfacing. In the above, welding between flat plates has been shown as an embodiment, but the present invention is not limited to this, but butt welding of both ends of a single plate bent into a cylindrical shape, butt welding of pipes, lap fillet welding, etc. It can also be applied to circumferential welding.

1:チップ基体
1a,1b:傾斜面
1c:先端突起
1d,1e:先端平面
1f,1g:水循環穴
1h:水受穴
1i:水出穴
1j,1k,1l:横通水穴
2a〜2d:電極配置空間
3a〜3d:ノズル
5:チップ台
6:インナーキャップ
7:絶縁本体
8:シールドキャップ
9a,9b:センタリングストーン
10a,10b:電極台
11:絶縁スペーサ
12a,12b:電極
13a,13b:押さえねじ
14:外筒
15a,15b:パイロットガス管
16a,16b:水流管
17:シールドガス管
18a,18b:ノズル部材挿入穴
19a,19b:プラズマアーク
20a〜20d:ノズル部材
21a〜21d:笠部
22a〜22d:幹部
23a〜23d:Oリング
24a〜24d:雄ねじ部
25a,25b:ナット
26a〜26d:切欠面
30:トーチ
31a,31b:溶接片
31p:プール
32a,32b:溶接電流・ガス供給装置
33a,33b:溶接電源
34a,34b:パイロット電源
35:並行運転制御盤
36:トーチ走行モータ
37:ワーク走行モータ
38a,38b,39a,39b:水冷銅タブ
1: Chip base 1a, 1b: Inclined surface 1c: Tip protrusion 1d, 1e: Tip flat surface 1f, 1g: Water circulation hole 1h: Water receiving hole 1i: Water outlet hole 1j, 1k, 11: Transverse water holes 2a to 2d: Electrode arrangement spaces 3a to 3d: Nozzle 5: Tip base 6: Inner cap 7: Insulating body 8: Shield cap 9a, 9b: Centering stone 10a, 10b: Electrode base 11: Insulating spacers 12a, 12b: Electrodes 13a, 13b: Pressers Screw 14: Outer cylinder 15a, 15b: Pilot gas pipes 16a, 16b: Water flow pipe 17: Shield gas pipes 18a, 18b: Nozzle member insertion holes 19a, 19b: Plasma arcs 20a-20d: Nozzle members 21a-21d: Caps 22a -22d: trunk portions 23a-23d: O-rings 24a-24d: male screw portions 25a, 25b: nuts 26a-26d: notch surface 3 : Torch 31a, 31b: Weld piece 31p: Pool 32a, 32b: Welding current / gas supply device 33a, 33b: Welding power supply 34a, 34b: Pilot power supply 35: Parallel operation control panel 36: Torch travel motor 37: Work travel motor 38a , 38b, 39a, 39b: Water-cooled copper tab

Claims (8)

2個の電極配置空間と各電極配置空間にそれぞれが連通する2個のノズルとを有するインサートチップを備えた2電極プラズマトーチを用いて、前記2個のノズルの並び方向を溶接線と平行にして、該トーチと溶接対象材の少なくとも一方を溶接線に沿う方向に走行駆動しつつ、各電極配置空間にある各電極でプラズマアークを発生して溶接線を溶接する、2電極プラズマトーチによる溶接方法において、
前記各電極の一方を、溶接線の延びる方向で先行する電極すなわち先行極として溶接対象材を予熱するプラズマアークに設定し、他方を、後行する電極すなわち後行極として裏波形成溶接のプラズマアークに設定し、
裏波形成溶接に設定した後行極が溶接対象材の始端以前にあるときに、該後行極による裏波形成溶接のプラズマアークを起動し、
前記先行極のプラズマアークは、裏波形成溶接のプラズマアークの起動と同時又はその前に起動し、先行の又は同時のプラズマアークの起動と同時又は該起動の後に前記走行駆動を開始し、
前記先行極および後行極のプラズマアークは、各極が溶接対象材の終端以降にあるときに停止する、
ことを特徴とする2電極プラズマトーチによる溶接方法。
Using a two-electrode plasma torch having an insert tip having two electrode arrangement spaces and two nozzles communicating with each electrode arrangement space, the arrangement direction of the two nozzles is made parallel to the weld line. Welding by a two-electrode plasma torch that welds the welding line by generating a plasma arc at each electrode in each electrode arrangement space while driving at least one of the torch and the material to be welded in a direction along the welding line In the method
One of the electrodes is set to a plasma arc that preheats the material to be welded as an electrode that precedes in the direction in which the welding line extends, that is, a leading electrode, and the other electrode is a plasma for back wave forming welding that serves as a following electrode or a trailing electrode. Set to arc,
When the trailing electrode set for reverse wave forming welding is before the beginning of the material to be welded, the plasma arc of the reverse wave forming welding by the trailing electrode is started,
The leading electrode plasma arc is activated simultaneously with or before the activation of the plasma arc of the back wave forming welding, and starts the traveling drive simultaneously with or after the activation of the preceding or simultaneous plasma arc,
The plasma arc of the leading electrode and the trailing electrode is stopped when each pole is after the end of the material to be welded,
A welding method using a two-electrode plasma torch.
2個の電極配置空間と各電極配置空間にそれぞれが連通する2個のノズルとを有するインサートチップを備えた2電極プラズマトーチを用いて、前記2個のノズルの並び方向を溶接線と平行にして、該トーチと溶接対象材の少なくとも一方を溶接線に沿う方向に走行駆動しつつ、各電極配置空間にある各電極でプラズマアークを発生して溶接線を溶接する、2電極プラズマトーチによる溶接方法において、
前記各電極の一方を、溶接線の延びる方向で先行する電極すなわち先行極として裏波形成溶接のプラズマアークに設定し、他方を、後行する電極すなわち後行極として溶接線をなめ付けするプラズマアークに設定し、
裏波形成溶接に設定した先行極が溶接対象材の始端以前にあるときに、該先行極による裏波形成溶接のプラズマアークを起動し、
前記後行極のプラズマアークは、裏波形成溶接のプラズマアークの起動と同時又は溶接対象材の始端にあるときに起動し、先行の又は同時のプラズマアークの起動と同時又は該起動の後に前記走行駆動を開始し、
前記先行極および後行極のプラズマアークは、各極が溶接対象材の終端以降にあるときに停止する、
ことを特徴とする2電極プラズマトーチによる溶接方法。
Using a two-electrode plasma torch having an insert tip having two electrode arrangement spaces and two nozzles communicating with each electrode arrangement space, the arrangement direction of the two nozzles is made parallel to the weld line. Welding by a two-electrode plasma torch that welds the welding line by generating a plasma arc at each electrode in each electrode arrangement space while driving at least one of the torch and the material to be welded in a direction along the welding line In the method
Plasma in which one of the electrodes is set to a plasma arc of back wave forming welding as the preceding electrode or leading electrode in the direction in which the welding line extends, and the other is the plasma that tans the welding line as the following electrode or trailing electrode Set to arc,
When the leading electrode set for back wave forming welding is before the beginning of the material to be welded, a plasma arc of back wave forming welding with the leading electrode is started,
The plasma arc of the trailing electrode is activated simultaneously with the activation of the plasma arc of the back wave forming welding or when it is at the beginning of the material to be welded, and simultaneously with the activation of the preceding or simultaneous plasma arc or after the activation. Start driving,
The plasma arc of the leading electrode and the trailing electrode is stopped when each pole is after the end of the material to be welded,
A welding method using a two-electrode plasma torch.
前記後行極が溶接対象材の始端にあるときに、前記先行極および後行極のプラズマアークを同時に起動し、この起動と同時に前記走行駆動を低速で開始し、
前記先行極がプラズマアークを起動した位置に前記後行極が到達すると、前記走行駆動を高速に、かつ後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を高く切換え、
前記先行極が溶接対象材の後端に達する直前に先行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げて後端でプラズマアークを停止し、後行極が該後端に達すると前記走行駆動の速度を下げ、かつ後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げ、後行極によるクレータ処理期間後に、後行極のプラズマアークを停止する、請求項1に記載の2電極プラズマトーチによる溶接方法。
When the trailing electrode is at the beginning of the material to be welded, simultaneously start the plasma arc of the leading electrode and the trailing electrode, and simultaneously start the traveling drive at a low speed,
When the trailing electrode reaches the position where the leading electrode has started the plasma arc, the traveling drive is switched at a high speed and both or one of the plasma arc current and the plasma gas flow rate of the trailing electrode are switched high.
Immediately before the leading electrode reaches the rear end of the material to be welded, the plasma arc is stopped at the rear end by decreasing both or one of the plasma arc current and plasma gas flow rate of the leading electrode, and the trailing electrode reaches the rear end. 2. The plasma arc of the trailing electrode is stopped after the crater treatment period by the trailing electrode by decreasing the speed of the traveling drive and decreasing both or one of the plasma arc current and the plasma gas flow rate of the trailing electrode. A welding method using the two-electrode plasma torch as described.
前記先行極が溶接対象材の始端にあるときに、先行極のプラズマアークを起動すると同時に前記走行駆動を低速で開始し、前記後行極が溶接対象材の始端に達すると後行極のプラズマアークを起動し、
前記後行極により裏波形成が形成されるときに、前記走行駆動を高速に、かつ後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を高く切換え、
前記先行極が溶接対象材の後端に達する直前に先行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げて後端でプラズマアークを停止し、後行極が該後端に達すると前記走行駆動の速度を下げ、かつ後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げ、後行極によるクレータ処理期間後に、後行極のプラズマアークを停止する、請求項1に記載の2電極プラズマトーチによる溶接方法。
When the leading electrode is at the starting end of the material to be welded, the plasma arc of the leading electrode is started and at the same time the traveling drive is started at a low speed, and when the trailing electrode reaches the starting end of the material to be welded, the plasma of the trailing electrode Start the arc and
When back wave formation is formed by the trailing electrode, the traveling drive is switched at a high speed and both or one or both of the plasma arc current and the plasma gas flow rate of the trailing electrode are switched high,
Immediately before the leading electrode reaches the rear end of the material to be welded, the plasma arc is stopped at the rear end by decreasing both or one of the plasma arc current and plasma gas flow rate of the leading electrode, and the trailing electrode reaches the rear end. 2. The plasma arc of the trailing electrode is stopped after the crater treatment period by the trailing electrode by decreasing the speed of the traveling drive and decreasing both or one of the plasma arc current and the plasma gas flow rate of the trailing electrode. A welding method using the two-electrode plasma torch as described.
前記先行極が溶接対象材の始端にあるときに、先行極のプラズマアークを起動すると同時に前記走行駆動を低速で開始し、前記後行極が溶接対象材の始端に達すると後行極のプラズマアークを起動し、
前記後行極が溶接対象材の先端に達すると前記走行駆動を高速に、かつ先行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を高く切換え、
前記先行極が溶接対象材の後端に達する直前に先行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げ前記走行駆動を低速に切換えて後端で先行極のプラズマアークを停止し、後行極が該後端に達すると前記後行極のプラズマアーク電流およびプラズマガス流量の両方又は片方を下げ、後行極によるクレータ処理期間後に、後行極のプラズマアークを停止する、請求項2に記載の2電極プラズマトーチによる溶接方法。
When the leading electrode is at the starting end of the material to be welded, the plasma arc of the leading electrode is started and at the same time the traveling drive is started at a low speed, and when the trailing electrode reaches the starting end of the material to be welded, the plasma of the trailing electrode Start the arc and
When the trailing electrode reaches the tip of the material to be welded, the traveling drive is switched at high speed, and the plasma arc current and the plasma gas flow rate of the leading electrode are switched to high or both,
Immediately before the leading electrode reaches the rear end of the material to be welded, both or one of the plasma arc current and plasma gas flow rate of the leading electrode is lowered and the traveling drive is switched to low speed to stop the plasma arc of the leading electrode at the rear end. When the trailing electrode reaches the trailing end, both or one of the plasma arc current and the plasma gas flow rate of the trailing electrode is decreased, and the plasma arc of the trailing electrode is stopped after a crater treatment period by the trailing electrode. 3. A welding method using the two-electrode plasma torch according to 2.
前記溶接対象材を溶接の始端よりも終端が低くなる姿勢に傾けて、前記走行駆動を溶接線と平行な方向とする、請求項1,3,4又は5に記載の2電極プラズマトーチによる溶接方法。   The welding by a two-electrode plasma torch according to claim 1, 3, 4 or 5, wherein the welding target material is tilted to a posture in which a terminal end is lower than a starting end of welding, and the traveling drive is set in a direction parallel to a welding line. Method. 前記2電極プラズマトーチは、溶接対象材の表面に対して垂直姿勢である、請求項6に記載の2電極プラズマトーチによる溶接方法。   The welding method using a two-electrode plasma torch according to claim 6, wherein the two-electrode plasma torch is in a vertical posture with respect to a surface of a material to be welded. 溶接対象材の始端および終端に、溶接線に連なる先端および終端水冷タブを、溶接対象材と連続に当接し、
前記先行極および後行極が、前記先端水冷タブに対向する位置で先行極,後行極のプラズマアークを起動して前記走行駆動を開始し、
前記先行極および後行極のプラズマアークを、各電極が溶接対象材の後端を通過した後に停止する、請求項1,2又は6に記載の2電極プラズマトーチによる溶接方法。
At the start and end of the material to be welded, the tip and end water cooling tabs that are connected to the weld line are in continuous contact with the material to be welded,
The leading electrode and the trailing electrode start the traveling drive by starting the plasma arc of the leading electrode and the trailing electrode at a position facing the tip water cooling tab,
The welding method by a two-electrode plasma torch according to claim 1, 2 or 6, wherein the plasma arc of the leading electrode and the trailing electrode is stopped after each electrode passes through the rear end of the material to be welded.
JP2011243218A 2011-11-07 2011-11-07 Welding method with two-electrode plasma torch Active JP5787403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243218A JP5787403B2 (en) 2011-11-07 2011-11-07 Welding method with two-electrode plasma torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243218A JP5787403B2 (en) 2011-11-07 2011-11-07 Welding method with two-electrode plasma torch

Publications (2)

Publication Number Publication Date
JP2013094849A true JP2013094849A (en) 2013-05-20
JP5787403B2 JP5787403B2 (en) 2015-09-30

Family

ID=48617365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243218A Active JP5787403B2 (en) 2011-11-07 2011-11-07 Welding method with two-electrode plasma torch

Country Status (1)

Country Link
JP (1) JP5787403B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1425526A (en) * 1973-03-21 1976-02-18 V N I Pk I T I Elektrosvarochn Method of plasma arc welding
US4143260A (en) * 1973-10-26 1979-03-06 Fagersta Aktiebolag Multi electrode torch
JPH10211578A (en) * 1997-01-29 1998-08-11 Nippon Steel Weld Prod & Eng Co Ltd Two-electrode submerged arc welding method for square joint
JP2009233680A (en) * 2008-03-26 2009-10-15 Panasonic Corp Welding apparatus
JP2011050982A (en) * 2009-09-01 2011-03-17 Nippon Steel & Sumikin Welding Co Ltd Insert chip, plasma torch, and plasma machining apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1425526A (en) * 1973-03-21 1976-02-18 V N I Pk I T I Elektrosvarochn Method of plasma arc welding
US4143260A (en) * 1973-10-26 1979-03-06 Fagersta Aktiebolag Multi electrode torch
JPH10211578A (en) * 1997-01-29 1998-08-11 Nippon Steel Weld Prod & Eng Co Ltd Two-electrode submerged arc welding method for square joint
JP2009233680A (en) * 2008-03-26 2009-10-15 Panasonic Corp Welding apparatus
JP2011050982A (en) * 2009-09-01 2011-03-17 Nippon Steel & Sumikin Welding Co Ltd Insert chip, plasma torch, and plasma machining apparatus

Also Published As

Publication number Publication date
JP5787403B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
CN108907414B (en) High-deposition-efficiency high-welding-speed double-tungsten-electrode TIG (tungsten inert gas) narrow-gap welding method
JP4844564B2 (en) Arc welding control method
JP6216111B2 (en) Welding system, welding process and welded article
CN107584195A (en) Alternating electric arc fuse argon tungsten-arc welding system and method for Welded
EP0584643B1 (en) Welding method and welding robot
WO2014140763A2 (en) System and method of welding stainless steel to copper
CN110052712A (en) A kind of non-axis symmetry rotation tungsten electrode GTAW and pulse laser complex welding method
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
JP5791109B2 (en) Welding method with two-electrode plasma torch
US6828526B1 (en) Gas metal buried arc welding of lap-penetration joints
JP5787403B2 (en) Welding method with two-electrode plasma torch
KR100643847B1 (en) Two-electrode electro gas welding apparatus for changing polarity
CN113427131A (en) Pulse wire feeding method for laser-GMA electric arc composite heat source wire filling welding
JP2009233680A (en) Welding apparatus
CN112809138B (en) Large and thick plate welding method and system based on double strip-shaped welding wires
CN111604597B (en) Double-electric-arc preheating laser swing welding method for K-shaped connector
KR101478883B1 (en) Welding by the use of two electrodes plasma torch
CN110732756B (en) MAG welding method and process for PC (polycarbonate) position weldment with HV (high voltage) structure
EP1753580B1 (en) Gas metal buried arc welding of lap-penetration joints
CN104942387B (en) A kind of plasma wire cutting method and cutter sweep
CN111112810A (en) Process method for carrying out plasma cutting on bridge steel plate
CN109365958A (en) A kind of hollow tungsten electrode TOPTIG welding method of gas-magnetic combined regulating
CN115383264B (en) Barrel welding method
JP2010052007A (en) Laser brazing method
RU2268122C1 (en) Process for electric arc surfacing by means of non-consumable electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150724

R150 Certificate of patent or registration of utility model

Ref document number: 5787403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250