JP2013093632A - Gaas semiconductor substrate and manufacturing method therefor - Google Patents

Gaas semiconductor substrate and manufacturing method therefor Download PDF

Info

Publication number
JP2013093632A
JP2013093632A JP2013031625A JP2013031625A JP2013093632A JP 2013093632 A JP2013093632 A JP 2013093632A JP 2013031625 A JP2013031625 A JP 2013031625A JP 2013031625 A JP2013031625 A JP 2013031625A JP 2013093632 A JP2013093632 A JP 2013093632A
Authority
JP
Japan
Prior art keywords
gaas semiconductor
atoms
acid
semiconductor substrate
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013031625A
Other languages
Japanese (ja)
Inventor
Takayuki Nishiura
隆幸 西浦
Yoshio Mesaki
義雄 目崎
Yusuke Horie
裕介 堀江
Yasuaki Higuchi
恭明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013031625A priority Critical patent/JP2013093632A/en
Publication of JP2013093632A publication Critical patent/JP2013093632A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a GaAs semiconductor substrate having a surface clean enough to remove impurities and oxides on the surface by at least thermal cleaning of a substrate.SOLUTION: In a GaAs semiconductor substrate 10, the constituent atom ratio Ga/As of all Ga atoms to all As atoms in the surface layer 10a of a GaAs semiconductor substrate 10, calculated by X-ray photoelectron spectroscopy by using the 3d electron spectrum of a Ga atom and an As atom measured under conditions that the photoelectron extraction angle θ is 10°, is 0.5-0.9, the ratio of As atoms bonded to O atoms to all Ga atoms and all As atoms (As-O)/{(Ga)+(As)} in the surface layer 10a is 0.15-0.35, and the ratio of Ga atoms bonded to O atoms to all Ga atoms and all As atoms (Ga-O)/{(Ga)+(As)} in the surface layer 10a is 0.15-0.35.

Description

本発明は、発光デバイス、電子デバイス、半導体センサなどの各種半導体デバイスの基板として好適に用いられる、表面が清浄なGaAs半導体基板およびその製造方法に関する。   The present invention relates to a GaAs semiconductor substrate having a clean surface, which is suitably used as a substrate for various semiconductor devices such as light emitting devices, electronic devices, and semiconductor sensors, and a method for manufacturing the same.

発光デバイス、電子デバイス、半導体センサなどの各種半導体デバイスの基板として好適に用いられるGaAs半導体基板は、その表面には未結合手(ダングリングボンド)が存在するため、表面に不純物が付着したり酸化物が形成されて、その表面が変質する。表面に不純物の付着または酸化物の形成があるGaAs半導体基板上にGaAs半導体基板上に半導体層を成長させて半導体デバイスを作製すると、不純物または酸化物がその半導体デバイス内に取り込まれ、そのデバイスの特性を低下させる。   A GaAs semiconductor substrate suitably used as a substrate for various semiconductor devices such as light-emitting devices, electronic devices, and semiconductor sensors has dangling bonds on its surface, so that impurities may adhere to the surface or oxidation may occur. An object is formed and its surface is altered. When a semiconductor device is fabricated by growing a semiconductor layer on a GaAs semiconductor substrate having impurities attached or oxides formed on the surface, the impurity or oxide is taken into the semiconductor device, and the device Degrading properties.

このため、GaAs半導体基板上に半導体層を成長させる場合には、その前に、GaAs半導体基板の表面に付着していた不純物および形成されていた酸化物を除去するために、GaAs半導体基板を500〜600℃程度に加熱すること(GaAs半導体基板の表面の熱洗浄(サーマルクリーニング))が行なわれている。しかし、GaAs半導体基板の表面は、きわめて酸化され易く、上記表面の熱洗浄によっても除去されない酸化物が形成され得る。特に、Gaの酸化物であるGa23は融点が1795℃と極めて高く、500〜600℃程度の通常の熱洗浄によっては、除去することができない。 Therefore, before the semiconductor layer is grown on the GaAs semiconductor substrate, the GaAs semiconductor substrate is formed on the surface of the GaAs semiconductor substrate in order to remove impurities adhering to the surface of the GaAs semiconductor substrate and the formed oxide. Heating to about ˜600 ° C. (thermal cleaning of the surface of the GaAs semiconductor substrate (thermal cleaning)) is performed. However, the surface of the GaAs semiconductor substrate is very easily oxidized, and an oxide that cannot be removed by thermal cleaning of the surface can be formed. In particular, Ga 2 O 3, which is an oxide of Ga, has an extremely high melting point of 1795 ° C. and cannot be removed by ordinary thermal cleaning at about 500 to 600 ° C.

したがって、不純物の付着および酸化物の形成がない清浄な表面を有するGaAs半導体基板を提供する試みがされている。たとえば、特開平07−201689号公報(以下、特許文献1という)は、GaAsウエハ表面にラングミュア・プロジェット膜を形成しその上に高分子膜を被膜した保護膜付半導体ウエハを開示する。しかし、特許文献1の保護膜付半導体ウエハは、高分子の炭化水素化合物からなる界面活性剤が用いられているため、半導体層の成長前に熱洗浄を行なっても、半導体ウエハの表面に上記界面活性剤から由来する炭素原子および/または酸素原子が残留し、半導体デバイスの特性を低減させる問題がある。   Attempts have therefore been made to provide a GaAs semiconductor substrate having a clean surface free of impurities and oxide formation. For example, Japanese Patent Application Laid-Open No. 07-201689 (hereinafter referred to as Patent Document 1) discloses a semiconductor wafer with a protective film in which a Langmuir / Projet film is formed on the surface of a GaAs wafer and a polymer film is coated thereon. However, since the semiconductor wafer with a protective film of Patent Document 1 uses a surfactant made of a high molecular weight hydrocarbon compound, the surface of the semiconductor wafer is not affected by thermal cleaning before the growth of the semiconductor layer. There is a problem that carbon atoms and / or oxygen atoms derived from the surfactant remain, and the characteristics of the semiconductor device are reduced.

また、特開平04−048074号公報(以下、特許文献2という)は、基板表面から10nm以内のガリウムと砒素の原子数比(Ga/As)と、(110)劈開面のガリウムと砒素の原子数比(Ga/As)Cとの差が±0.2以下の最終研磨済みGaAs化合物半導体基板を開示する。しかし、(Ga/As)を(Ga/As)Cすなわち化学量論的組成比に近づけても、基板の表面にGaが多く存在すると、その酸化によって、非常に融点の高いGa23(融点が1795℃)が形成され、500〜600℃程度の通常の熱洗浄によっては除去することができない。 Japanese Laid-Open Patent Publication No. 04-048074 (hereinafter referred to as Patent Document 2) describes the atomic ratio (Ga / As) of gallium and arsenic within 10 nm from the substrate surface and the gallium and arsenic atoms on the (110) cleavage plane. A final polished GaAs compound semiconductor substrate having a difference from the number ratio (Ga / As) C of ± 0.2 or less is disclosed. However, even if (Ga / As) is brought close to (Ga / As) 2 C, that is, the stoichiometric composition ratio, if a large amount of Ga is present on the surface of the substrate, the oxidation causes Ga 2 O 3 ( The melting point is 1795 ° C.) and cannot be removed by ordinary thermal cleaning at about 500 to 600 ° C.

特開平07−201689号公報Japanese Patent Application Laid-Open No. 07-201689 特開平04−048074号公報Japanese Patent Laid-Open No. 04-048074

本発明は、少なくとも基板の熱洗浄によって表面の不純物および酸化物の除去が可能な程度に表面が清浄なGaAs半導体基板を提供することを目的とする。   An object of the present invention is to provide a GaAs semiconductor substrate having a clean surface to the extent that impurities and oxides on the surface can be removed at least by thermal cleaning of the substrate.

本発明は、X線光電子分光法により、光電子取り出し角が10°の条件で測定されるGa原子およびAs原子の3d電子スペクトルを用いて算出される、GaAs半導体基板の表面層における全As原子に対する全Ga原子の構成原子比(Ga)/(As)が0.5以上0.9以下であり、表面層における全Ga原子および全As原子に対するO原子と結合しているAs原子の比(As−O)/{(Ga)+(As)}が0.15以上0.35以下であり、表面層における全Ga原子および全As原子に対するO原子と結合しているGa原子の比(Ga−O)/{(Ga)+(As)}が0.15以上0.35以下であることを特徴とするGaAs半導体基板である。   The present invention relates to all As atoms in the surface layer of a GaAs semiconductor substrate, calculated by X-ray photoelectron spectroscopy using a 3d electron spectrum of Ga atoms and As atoms measured at a photoelectron extraction angle of 10 °. The constituent atomic ratio (Ga) / (As) of all Ga atoms is 0.5 or more and 0.9 or less, and the ratio of As atoms bonded to O atoms to all Ga atoms and all As atoms in the surface layer (As -O) / {(Ga) + (As)} is 0.15 or more and 0.35 or less, and the ratio of Ga atoms bonded to O atoms to all Ga atoms and all As atoms in the surface layer (Ga--) O) / {(Ga) + (As)} is 0.15 or more and 0.35 or less.

本発明にかかるGaAs半導体基板において、表面の面粗さRMSを0.3nm以下とすることができる。また、表面に付着しているアルカリ物質の濃度を0.4ng/cm2以下とすることができる。 In the GaAs semiconductor substrate according to the present invention, the surface roughness RMS can be 0.3 nm or less. Further, the concentration of the alkaline substance adhering to the surface can be set to 0.4 ng / cm 2 or less.

また、本発明は、GaAs半導体ウエハの表面を研磨する工程と、研磨された表面をアルカリ洗浄液で洗浄する少なくとも1回のアルカリ洗浄工程と、アルカリ洗浄された表面を0.3ppm〜0.5質量%の酸を含む酸洗浄液で洗浄する酸洗浄工程とを含むGaAs半導体基板の製造方法である。   The present invention also includes a step of polishing the surface of a GaAs semiconductor wafer, at least one alkali cleaning step of cleaning the polished surface with an alkali cleaning liquid, and 0.3 ppm to 0.5 mass of the alkali cleaned surface. And an acid cleaning step of cleaning with an acid cleaning solution containing 1% acid.

本発明にかかるGaAs半導体基板の製造方法において、アルカリ洗浄液は有機アルカリ化合物を含むことができる。また、酸洗浄液は、酸として、フッ酸、塩酸、硝酸および炭酸からなる群から選ばれる少なくとも1種類を含むことができる。また、酸洗浄工程の後に、酸洗浄された表面を乾燥させる乾燥工程をさらに含み、乾燥工程は、GaAs半導体ウエハを回転させることにより表面に残留している酸洗浄液を飛散させることにより行なうことができる。また、酸洗浄工程の後に、酸洗浄された表面を溶存酸素濃度が100ppb以下の純水で洗浄する純水洗浄工程をさらに含むことができる。さらに、純水洗浄工程の後に、純水洗浄された前記表面を乾燥させる乾燥工程をさらに含み、乾燥工程は、GaAs半導体ウエハを大気中で回転させることにより表面に残留している純水を飛散させることにより行なうことができる。   In the method for manufacturing a GaAs semiconductor substrate according to the present invention, the alkali cleaning liquid may contain an organic alkali compound. Moreover, the acid cleaning liquid can contain at least one selected from the group consisting of hydrofluoric acid, hydrochloric acid, nitric acid, and carbonic acid. Further, after the acid cleaning step, a drying step of drying the acid cleaned surface is further included, and the drying step can be performed by scattering the acid cleaning liquid remaining on the surface by rotating the GaAs semiconductor wafer. it can. Further, after the acid cleaning step, a pure water cleaning step of cleaning the acid cleaned surface with pure water having a dissolved oxygen concentration of 100 ppb or less can be further included. Furthermore, after the pure water cleaning step, the method further includes a drying step of drying the surface that has been cleaned with pure water, and the drying step scatters the pure water remaining on the surface by rotating the GaAs semiconductor wafer in the atmosphere. This can be done.

本発明によれば、少なくとも基板の熱洗浄によって表面の不純物および酸化物の除去が可能な程度に表面が清浄なGaAs半導体基板を提供することができる。   According to the present invention, it is possible to provide a GaAs semiconductor substrate having a clean surface to the extent that impurities and oxides on the surface can be removed at least by thermal cleaning of the substrate.

GaAs半導体基板に適用されるX線光電子分光法を説明する概略断面図である。It is a schematic sectional drawing explaining the X-ray photoelectron spectroscopy applied to a GaAs semiconductor substrate. X線光電子分光法により測定されるGaAs半導体基板の表面層におけるAs原子の3d電子スペクトルの一例を示す概略図である。It is the schematic which shows an example of the 3d electron spectrum of As atom in the surface layer of the GaAs semiconductor substrate measured by X-ray photoelectron spectroscopy. X線光電子分光法により測定されるGaAs半導体基板の表面層におけるGa原子の3d電子スペクトルの一例を示す概略図である。It is the schematic which shows an example of the 3d electron spectrum of Ga atom in the surface layer of the GaAs semiconductor substrate measured by X-ray photoelectron spectroscopy. 本発明にかかるGaAs半導体基板の製造方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the manufacturing method of the GaAs semiconductor substrate concerning this invention. 本発明にかかるGaAs半導体基板の製造方法の他の実施形態を示す概略図である。ここで、(a)はアルカリ洗浄工程を示し、(b)は第1の純水洗浄工程を示し、(c)は酸洗浄工程を示し、(d)は第2の洗浄工程を示し、(e)は乾燥工程を示す。It is the schematic which shows other embodiment of the manufacturing method of the GaAs semiconductor substrate concerning this invention. Here, (a) shows an alkali cleaning step, (b) shows a first pure water cleaning step, (c) shows an acid cleaning step, (d) shows a second cleaning step, ( e) shows a drying process. 基板の表面層におけるGa/As比と、エピタキシャル層成長後のヘイズ強度との関係を示す概略図である。It is the schematic which shows the relationship between Ga / As ratio in the surface layer of a board | substrate, and the haze intensity | strength after epitaxial layer growth. 基板の表面層におけるGa/As比と、基板とエピタキシャル層との間の界面酸素濃度との関係を示す概略図である。It is the schematic which shows the relationship between Ga / As ratio in the surface layer of a board | substrate, and the interface oxygen concentration between a board | substrate and an epitaxial layer. 基板の洗浄直後の表面アンモニア濃度と、基板とエピタキシャル層との間の界面酸素濃度との関係を示す概略図である。It is the schematic which shows the relationship between the surface ammonia density | concentration immediately after washing | cleaning of a board | substrate, and the interface oxygen density | concentration between a board | substrate and an epitaxial layer.

(実施形態1)
本発明にかかるGaAs半導体基板の一実施形態は、図1〜図3を参照して、X線光電子分光法(XPS)により、光電子取り出し角θが10°の条件で測定されるGa原子およびAs原子の3d電子スペクトルを用いて算出される、GaAs半導体基板10の表面層10aにおける全As原子に対する全Ga原子の構成原子比(Ga)/(As)(以下、(Ga)/(As)比ともいう)が0.5以上0.9以下であり、表面層10aにおける全Ga原子および全As原子に対するO原子と結合しているAs原子の比(As−O)/{(Ga)+(As)}(以下、As−O)/{(Ga)+(As)}比ともいう)が0.15以上0.35以下であり、表面層10aにおける全Ga原子および全As原子に対するO原子と結合しているGa原子の比(Ga−O)/{(Ga)+(As)}(以下、(Ga−O)/{(Ga)+(As)}比ともいう)が0.15以上0.35以下であることを特徴とする。
(Embodiment 1)
One embodiment of a GaAs semiconductor substrate according to the present invention is described with reference to FIGS. 1 to 3. Ga atoms and As measured by X-ray photoelectron spectroscopy (XPS) with a photoelectron extraction angle θ of 10 °. The constituent atomic ratio (Ga) / (As) (hereinafter referred to as (Ga) / (As) ratio of all Ga atoms to all As atoms in the surface layer 10a of the GaAs semiconductor substrate 10 calculated using the 3d electron spectrum of atoms. The ratio of As atoms bonded to O atoms with respect to all Ga atoms and all As atoms in the surface layer 10a (As-O) / {(Ga) + ( As)} (hereinafter also referred to as As-O) / {(Ga) + (As)} ratio) is 0.15 or more and 0.35 or less, and O atoms relative to all Ga atoms and all As atoms in surface layer 10a Ga bonded to The atomic ratio (Ga-O) / {(Ga) + (As)} (hereinafter also referred to as (Ga-O) / {(Ga) + (As)} ratio) is 0.15 or more and 0.35 or less. It is characterized by being.

(Ga)/(As)比をその化学量論的組成比(すなわち、(Ga)/(As)=1/1)に比べて小さくすることにより、基板表面上に500〜600℃程度の通常の熱洗浄によっては除去できない酸化物が形成されるのを防止することができる。(Ga)/(As)比が0.5より小さいと、基板の表面の余剰の砒素が析出し、砒素酸化物または金属砒素が形成される。ここで、金属砒素は砒素酸化物よりも昇華しにくく熱洗浄による除去がより困難である。一方、Ga)/(As)比が0.9より大きいと、Gaの酸化物(Ga23などの高融点酸化物)が形成され易くなる。また、(As−O)/{(Ga)+(As)}比が、0.15より小さいとAs原子と不純物とが結合し易くなり、0.35より大きいと砒素酸化物が形成され易くなる。また、(Ga−O)/{(Ga)+(As)}比が、0.15より小さい基板の製造は困難であり、0.35より大きいとガリウム酸化物(たとえば、Ga23などの高融点酸化物)が形成され易くなる。 By making the (Ga) / (As) ratio smaller than its stoichiometric composition ratio (ie, (Ga) / (As) = 1/1), it is usually about 500 to 600 ° C. on the substrate surface. It is possible to prevent the formation of oxides that cannot be removed by thermal cleaning. When the (Ga) / (As) ratio is less than 0.5, excess arsenic on the surface of the substrate is deposited, and arsenic oxide or metal arsenic is formed. Here, metal arsenic is more difficult to sublimate than arsenic oxide and is more difficult to remove by thermal cleaning. On the other hand, when the Ga) / (As) ratio is larger than 0.9, an oxide of Ga (high melting point oxide such as Ga 2 O 3 ) is easily formed. Further, when the (As-O) / {(Ga) + (As)} ratio is smaller than 0.15, As atoms and impurities are easily bonded, and when it is larger than 0.35, arsenic oxide is easily formed. Become. Further, it is difficult to manufacture a substrate having a (Ga—O) / {(Ga) + (As)} ratio smaller than 0.15, and if it is larger than 0.35, a gallium oxide (for example, Ga 2 O 3 or the like). Refractory oxide) is easily formed.

したがって、GaAs半導体基板の表面層10aにおいて、(Ga)/(As)比が0.5以上0.9以下、(As−O)/{(Ga)+(As)}比が0.15以上0.35以下、かつ(Ga−O)/{(Ga)+(As)}比が0.15以上0.35以下とすることにより、表面に付着している不純物および表面に形成されている酸化物が少なく、かかる不純物および酸化物が500〜600℃程度の一般的な熱洗浄により除去可能な程度に表面が清浄なGaAs半導体基板が得られる。   Therefore, in the surface layer 10a of the GaAs semiconductor substrate, the (Ga) / (As) ratio is 0.5 or more and 0.9 or less, and the (As-O) / {(Ga) + (As)} ratio is 0.15 or more. When the ratio is 0.35 or less and the (Ga—O) / {(Ga) + (As)} ratio is 0.15 or more and 0.35 or less, impurities attached to the surface and the surface are formed. A GaAs semiconductor substrate having a small amount of oxide and having a surface clean enough to remove such impurities and oxides by general thermal cleaning at about 500 to 600 ° C. can be obtained.

ここで、上記の(Ga)/(As)比、(As−O)/{(Ga)+(As)}比および(Ga−O)/{(Ga)+(As)}比は、いずれも、X線光電子分光法により、光電子取り出し角θが10°の条件で測定されるGa原子およびAs原子の3d電子スペクトルを用いて算出される。以下、X線光電子分光法ならびに(Ga)/(As)比、(As−O)/{(Ga)+(As)}比および(Ga−O)/{(Ga)+(As)}比の算出方法について説明する。   Here, the (Ga) / (As) ratio, (As-O) / {(Ga) + (As)} ratio, and (Ga-O) / {(Ga) + (As)} ratio described above are Is also calculated by X-ray photoelectron spectroscopy using the 3d electron spectra of Ga atoms and As atoms measured under conditions where the photoelectron take-off angle θ is 10 °. Hereinafter, X-ray photoelectron spectroscopy and (Ga) / (As) ratio, (As-O) / {(Ga) + (As)} ratio and (Ga-O) / {(Ga) + (As)} ratio The calculation method of will be described.

図1を参照して、X線光電子分光法(XPS)とは、固体試料(GaAs半導体基板10)の表面10sにX線1を照射したときに、そのX線1によって励起された原子の内殻電子が光電子5として放出される現象を利用して、固体試料(GaAs半導体基板10)の表面層10aにおける原子の種類および結合状態を分析する方法をいう。   Referring to FIG. 1, X-ray photoelectron spectroscopy (XPS) is a method in which atoms 10 excited by X-ray 1 are irradiated when X-ray 1 is irradiated on surface 10 s of a solid sample (GaAs semiconductor substrate 10). A method of analyzing the type and bonding state of atoms in the surface layer 10a of the solid sample (GaAs semiconductor substrate 10) using the phenomenon that shell electrons are emitted as photoelectrons 5.

ここで、図1を参照して、X線光電子分光法において、GaAs半導体基板10の表面10sにX線1が照射されると、そのX線1により励起されたGaAs半導体基板10を構成するGa原子およびAs原子の内殻電子たとえば3d電子は、基板の表面10sから光電子5として放出される。したがって、X線光電子分光法において分析可能な表面層10aの表面10sからの深さdは、励起された3d電子が非弾性散乱を受けてエネルギーを失ってしまうまでの深さによって決まる。この深さdは、電子の脱出深さdとも呼ばれ、あるエネルギーをもった電子がそのエネルギーを失うことなく進行できる固体(GaAs半導体基板10)中での距離と定義される。すなわち、GaAs半導体基板10において表面層10aよりも内側の内層10bにおけるGa原子およびAs原子は、X線により励起されてもその光電子が表面から放出されないため、分析することができない。X線光電子分光法におけるX線の線源は、特に制限はないが、Al原子のKα線、Mg原子のKα線が一般的に用いられる。   Here, referring to FIG. 1, in the X-ray photoelectron spectroscopy, when the surface 10 s of the GaAs semiconductor substrate 10 is irradiated with the X-ray 1, the Ga constituting the GaAs semiconductor substrate 10 excited by the X-ray 1 is formed. Inner-shell electrons of atoms and As atoms, for example, 3d electrons, are emitted as photoelectrons 5 from the surface 10s of the substrate. Accordingly, the depth d from the surface 10s of the surface layer 10a that can be analyzed in the X-ray photoelectron spectroscopy is determined by the depth until the excited 3d electrons are subjected to inelastic scattering and lose energy. This depth d is also called an electron escape depth d, and is defined as a distance in a solid (GaAs semiconductor substrate 10) in which an electron having a certain energy can travel without losing the energy. That is, Ga atoms and As atoms in the inner layer 10b inside the surface layer 10a in the GaAs semiconductor substrate 10 cannot be analyzed because their photoelectrons are not emitted from the surface even when excited by X-rays. The X-ray source in the X-ray photoelectron spectroscopy is not particularly limited, but Kα rays of Al atoms and Kα rays of Mg atoms are generally used.

光電子はほぼ等方的に表面から放出されると考えてよいが、光電子取り出し角θによって、電子の脱出深さdが異なる。図1を参照して、電子の脱出深さdは、電子の平均自由工程λおよび光電子取り出し角θを用いて、次式(1)
d=λ×sinθ ・・・(1)
で表される。
It can be considered that photoelectrons are emitted from the surface almost isotropically, but the electron escape depth d differs depending on the photoelectron take-off angle θ. Referring to FIG. 1, the electron escape depth d is expressed by the following equation (1) using the electron mean free path λ and the photoelectron extraction angle θ.
d = λ × sin θ (1)
It is represented by

X線源としてAl原子のKα線を用いて、光電子の取り出し角θを10°として測定したGaAs半導体基板10の表面層10aにおけるAs原子およびGa原子の3d電子スペクトルを、それぞれ図2および図3に示す。   3d electron spectra of As atoms and Ga atoms in the surface layer 10a of the GaAs semiconductor substrate 10 measured using a Kα ray of Al atoms as an X-ray source and a photoelectron extraction angle θ of 10 ° are shown in FIGS. 2 and 3, respectively. Shown in

図2を参照して、As原子の3d電子スペクトルには、2つのピークを有する幅広い3d電子ピークP(As)が現れた。この3d電子ピークP(As)は、光電子の結合エネルギーの高い方から順にP(As−O)、P(As−1)およびP(As−2)の3つのピークに分けられる。ここで、3つのピークの光電子の結合エネルギーの違いは、As原子の結合状態の違いを示している。3つのピークのうち、P(As−O)ピークは、O原子と結合しているAs原子の3d電子ピークと考えられる。また、P(As)、P(As−O)、P(As−1)およびP(As−2)の各ピーク面積は、それぞれの結合状態にあるAs原子の量に比例する。   Referring to FIG. 2, a broad 3d electron peak P (As) having two peaks appeared in the 3d electron spectrum of the As atom. This 3d electron peak P (As) is divided into three peaks of P (As-O), P (As-1) and P (As-2) in order from the higher photoelectron binding energy. Here, the difference in the binding energy of the photoelectrons of the three peaks indicates the difference in the bonding state of As atoms. Of the three peaks, the P (As-O) peak is considered to be the 3d electron peak of the As atom bonded to the O atom. In addition, each peak area of P (As), P (As-O), P (As-1), and P (As-2) is proportional to the amount of As atoms in each bonded state.

図3を参照して、Ga原子の3d電子スペクトルには、幅広い3d電子ピークP(Ga)が現れた。この3d電子ピークP(Ga)は、光電子の結合エネルギーの高い方から順にP(Ga−O)および、P(Ga−1)の2つのピークに分けられる。ここで、2つのピークの光電子の結合エネルギーの違いは、As原子の結合状態の違いを示している。2つのピークのうち、P(Ga−O)ピークは、O原子と結合しているGa原子の3d電子ピークと考えられる。また、P(Ga)、P(Ga−O)およびP(Ga−1)の各ピーク面積は、それぞれの結合状態にあるGa原子の量に比例する。   Referring to FIG. 3, a wide 3d electron peak P (Ga) appeared in the 3d electron spectrum of Ga atoms. This 3d electron peak P (Ga) is divided into two peaks of P (Ga-O) and P (Ga-1) in order from the higher photoelectron binding energy. Here, the difference in the binding energy of the photoelectrons at the two peaks indicates the difference in the bonding state of As atoms. Of the two peaks, the P (Ga—O) peak is considered to be a 3d electron peak of a Ga atom bonded to an O atom. In addition, each peak area of P (Ga), P (Ga—O), and P (Ga−1) is proportional to the amount of Ga atoms in each bonded state.

ここで、X線光電子分光法においては、測定される各原子のピークは各原子間でその相対強度が異なり、また、各測定における測定感度が異なり得る。このため、異原子間で各ピーク面積を定量的に比較するために、測定チャートから求められる各ピーク面積を以下の式(2)
(P(M)のピーク面積)=(チャートから求められるP(M)
のピーク面積)×s(M)/f(M) ・・・(2)
により補正したピーク面積が用いられる。式(2)において、P(M)はM原子のピークを、f(M)はそのM原子の電子ピークの相対強度を、s(M)はそのM原子のピークを測定したときの測定感度を示す。ここで、Ga原子の3d電子ピークの相対強度f(Ga)は0.42、As原子の3d電子ピークf(As)は0.48である。また、測定感度s(M)は、各測定の際に装置の操作パネルより読み取る。本願においては、各原子の各ピーク面積とは、各原子の測定チャートから求められる各ピーク面積を式(2)により補正したものをいう。
Here, in the X-ray photoelectron spectroscopy, the peak of each atom to be measured has a different relative intensity between the atoms, and the measurement sensitivity in each measurement can be different. For this reason, in order to quantitatively compare each peak area between different atoms, each peak area obtained from the measurement chart is expressed by the following equation (2).
(Peak area of P (M)) = (P (M) determined from the chart)
Peak area) × s (M) / f (M) (2)
The peak area corrected by is used. In formula (2), P (M) is the peak of the M atom, f (M) is the relative intensity of the electron peak of the M atom, and s (M) is the measurement sensitivity when measuring the peak of the M atom. Indicates. Here, the relative intensity f (Ga) of the Ga atom 3d electron peak is 0.42, and the As atom 3d electron peak f (As) is 0.48. The measurement sensitivity s (M) is read from the operation panel of the apparatus at each measurement. In the present application, each peak area of each atom means a value obtained by correcting each peak area obtained from the measurement chart of each atom by the equation (2).

図1〜図3を参照して、GaAs半導体基板10の表面層10aにおける全As原子に対する全Ga原子の構成原子比((Ga)/(As)比)は、次式(3)
(Ga)/(As)=(P(Ga)のピーク面積)
/(P(As)のピーク面積) ・・・(3)
により算出される。
1 to 3, the constituent atomic ratio ((Ga) / (As) ratio) of all Ga atoms to all As atoms in the surface layer 10a of the GaAs semiconductor substrate 10 is expressed by the following equation (3).
(Ga) / (As) = (P (Ga) peak area)
/ (P (As) peak area) (3)
Is calculated by

また、図1および図2を参照して、GaAs半導体基板10の表面層10aにける全Ga原子および全As原子に対するO原子と結合しているAs原子の比(As−O)/{(Ga)+(As)}比)は、次式(4)
(As−O)/{(Ga)+(As)}=(P(As−O)のピーク面積)
/{(P(Ga)のピーク面積)+(P(As)のピーク面積)}
・・・(4)
により算出される。
1 and 2, the ratio of As atoms bonded to O atoms to all Ga atoms and all As atoms in surface layer 10a of GaAs semiconductor substrate 10 (As-O) / {(Ga ) + (As)} ratio) is given by the following formula (4)
(As-O) / {(Ga) + (As)} = (P (As-O) peak area)
/ {(P (Ga) peak area) + (P (As) peak area)}
... (4)
Is calculated by

また、図1および図3を参照して、GaAs半導体基板10の表面層10aにおける全Ga原子および全As原子に対するO原子と結合しているGa原子の比((Ga−O)/{(Ga)+(As)}比)は、次式(5)
(Ga−O)/{(Ga)+(As)}=(P(Ga−O)のピーク面積)
/{(P(Ga)のピーク面積)+(P(As)のピーク面積)}
・・・(5)
により算出される。
1 and 3, the ratio of Ga atoms bonded to O atoms with respect to all Ga atoms and all As atoms in the surface layer 10a of the GaAs semiconductor substrate 10 ((Ga-O) / {(Ga ) + (As)} ratio) is given by the following formula (5)
(Ga-O) / {(Ga) + (As)} = (P (Ga-O) peak area)
/ {(P (Ga) peak area) + (P (As) peak area)}
... (5)
Is calculated by

図1を参照して、本実施形態のGaAs半導体基板10においては、表面10sの面粗さRMSが0.3nm以下であることが好ましい。GaAs半導体基板表面の面粗さRMSが0.3nmより大きくなると、大気と接触する表面積が大きくなり、大気による汚染を受け易くなる。ここで、面粗さRMSとは、二乗平均粗さをいい、平均面から測定面までの距離の二乗を平均した値の平方根で表わされる。面粗さRMSは原子間力顕微鏡(AFM)などにより測定される。   Referring to FIG. 1, in the GaAs semiconductor substrate 10 of the present embodiment, the surface roughness RMS of the surface 10s is preferably 0.3 nm or less. When the surface roughness RMS of the surface of the GaAs semiconductor substrate is larger than 0.3 nm, the surface area in contact with the air becomes large and the air is easily contaminated. Here, the surface roughness RMS means the root mean square roughness, and is expressed by the square root of the value obtained by averaging the squares of the distances from the average surface to the measurement surface. The surface roughness RMS is measured by an atomic force microscope (AFM) or the like.

また、図1を参照して、本実施形態のGaAs半導体基板10においては、表面10に付着しているアルカリ物質の濃度が、0.4ng/cm2以下であることが好ましい。表面に付着しているアルカリ物質が0.4ng/cm2より多くなると、表面の酸化が促進され、基板と基板上に成長されるエピタキシャル層との界面のO原子が増大し、半導体デバイスの特性が低下する。 Referring to FIG. 1, in the GaAs semiconductor substrate 10 of the present embodiment, the concentration of the alkaline substance adhering to the surface 10 is preferably 0.4 ng / cm 2 or less. When the amount of the alkaline substance adhering to the surface is more than 0.4 ng / cm 2 , the oxidation of the surface is promoted, the number of O atoms at the interface between the substrate and the epitaxial layer grown on the substrate increases, and the characteristics of the semiconductor device Decreases.

(実施形態2)
本発明にかかるGaAs半導体基板の製造方法の一実施形態は、図4を参照して、GaAs半導体ウエハの表面を研磨する研磨工程S1と、研磨された表面をアルカリ洗浄液で洗浄する少なくとも1回のアルカリ洗浄工程S2と、アルカリ洗浄された表面を0.3ppm〜0.5質量%の酸を含む酸洗浄液で洗浄する酸洗浄工程S3とを含む。
(Embodiment 2)
Referring to FIG. 4, one embodiment of a method for manufacturing a GaAs semiconductor substrate according to the present invention is a polishing step S1 for polishing the surface of a GaAs semiconductor wafer, and at least one time for cleaning the polished surface with an alkaline cleaning liquid. It includes an alkali cleaning step S2 and an acid cleaning step S3 for cleaning the alkali cleaned surface with an acid cleaning solution containing 0.3 ppm to 0.5% by mass of acid.

研磨により半導体ウエハの表面に付着した研磨剤中の異物および/または不純物を少なくとも1回のアルカリ洗浄により除去することができる。また、アルカリ洗浄により半導体ウエハの表面に付着したアルカリ洗浄剤中の不純物を酸洗浄により除去することができる。酸洗浄液中の適切な濃度の酸により、表面上のGa原子とAs原子との比率が適正化され、余剰のガリウム酸化物の生成が抑制される。   Foreign matters and / or impurities in the polishing agent adhering to the surface of the semiconductor wafer by polishing can be removed by at least one alkali cleaning. In addition, impurities in the alkali cleaning agent attached to the surface of the semiconductor wafer by alkali cleaning can be removed by acid cleaning. An appropriate concentration of acid in the acid cleaning solution optimizes the ratio of Ga atoms to As atoms on the surface, and suppresses the formation of excess gallium oxide.

以下、図4を参照して、各工程についてさらに具体的に説明する。研磨工程S1は、GaAs半導体ウエハの表面を研磨する工程である。研磨工程S1により、GaAs半導体ウエハの表面が鏡面化される。研磨工程S1における研磨方法には、特に制限はなく、機械的研磨、化学機械的研磨など各種の研磨方法が用いられる。   Hereinafter, with reference to FIG. 4, each process is demonstrated more concretely. The polishing step S1 is a step for polishing the surface of the GaAs semiconductor wafer. By the polishing step S1, the surface of the GaAs semiconductor wafer is mirror-finished. The polishing method in the polishing step S1 is not particularly limited, and various polishing methods such as mechanical polishing and chemical mechanical polishing are used.

アルカリ洗浄工程S2は、GaAs半導体ウエハの研磨された表面をアルカリ洗浄液を用いて少なくとも1回洗浄する工程である。アルカリ洗浄工程S2により、上記研磨工程S1によりGaAs半導体ウエハの表面に付着した異物および/または不純物が除去される。ここで、アルカリ洗浄剤には、特に制限はないが、電気特性に影響を与える金属元素を含まない有機アルカリ化合物、たとえばコリン、テトラメチルアンモニウムヒドロキシド(TMAH)などの第4級アンモニウム水酸化物、第4級ピリジニウム水酸化物などを0.1〜10質量%含む水溶液が好ましく用いられる。   The alkali cleaning step S2 is a step of cleaning the polished surface of the GaAs semiconductor wafer at least once using an alkali cleaning liquid. By the alkali cleaning step S2, foreign matters and / or impurities attached to the surface of the GaAs semiconductor wafer by the polishing step S1 are removed. Here, the alkali cleaning agent is not particularly limited, but is an organic alkali compound that does not contain a metal element that affects electrical characteristics, such as quaternary ammonium hydroxides such as choline and tetramethylammonium hydroxide (TMAH). An aqueous solution containing 0.1 to 10% by mass of quaternary pyridinium hydroxide or the like is preferably used.

酸洗浄工程S3は、GaAs半導体ウエハのアルカリ洗浄された表面を酸洗浄液を用いて洗浄する工程である。酸洗浄工程S3により、上記アルカリ洗浄工程により半導体ウエハの表面に付着した不純物が除去される。かかる酸洗浄工程3Sにおいて、0.3ppm〜0.5質量%の酸を含む酸洗浄液を用いることにより、表面層における(Ga)/(As)比が0.5以上0.9以下、(As−O)/{(Ga)+(As)}比が0.15以上0.35以下、(Ga−O)/{(Ga)+(As)}比が0.15以上0.35以下であるGaAs半導体基板が得られる。   The acid cleaning step S3 is a step for cleaning the alkali-cleaned surface of the GaAs semiconductor wafer using an acid cleaning liquid. By the acid cleaning step S3, impurities attached to the surface of the semiconductor wafer by the alkali cleaning step are removed. In the acid cleaning step 3S, by using an acid cleaning solution containing 0.3 ppm to 0.5% by mass of acid, the (Ga) / (As) ratio in the surface layer is 0.5 or more and 0.9 or less, (As -O) / {(Ga) + (As)} ratio is 0.15 or more and 0.35 or less, and (Ga-O) / {(Ga) + (As)} ratio is 0.15 or more and 0.35 or less. A GaAs semiconductor substrate is obtained.

ここで、酸洗浄液中の酸濃度が0.3ppmより小さいとウエハ表面の改質作用が小さくなり、大気雰囲気から酸洗浄液中に溶解した二酸化炭素(CO2)ガスの影響が大きくなり仕上がりのウエハ表面の化学組成がばらつく原因となる。一方、酸洗浄液の酸濃度が0.5質量%より大きいと、その酸によりウエハ面のストイキオメトリが大きくAsリッチとなるが、純水でのリンス時、乾燥時あるいは搬送時に、ウエハ表面の微量の純水が付着した部分は純水に溶解した微量の二酸化炭素ガスの存在によりその部分のストイキオメトリがGaリッチ側に変化し、その結果として純水リンス時の条件のバラツキにより、ウエハ面内およびウエハ間での化学組成のバラツキが大きくなる。特に、大気中でウエハ乾燥を実施する場合に顕著な影響を受ける。また、過剰なAsリッチの場合は、Ga−Asの結合が減ってしまうので、結果として、ウエハ表面の酸素が増加するという悪影響が生ずる。 Here, if the acid concentration in the acid cleaning solution is less than 0.3 ppm, the wafer surface modification action is reduced, and the influence of carbon dioxide (CO 2 ) gas dissolved in the acid cleaning solution from the atmospheric atmosphere is increased, resulting in a finished wafer. It causes the chemical composition of the surface to vary. On the other hand, if the acid concentration of the acid cleaning liquid is greater than 0.5% by mass, the stoichiometry of the wafer surface is greatly increased by the acid and becomes As rich. However, when rinsing with pure water, drying or transporting, In the portion where a small amount of pure water adheres, the stoichiometry of that portion changes to the Ga-rich side due to the presence of a small amount of carbon dioxide gas dissolved in the pure water, and as a result, due to variations in conditions during rinsing with pure water, the wafer Variation in chemical composition increases in-plane and between wafers. In particular, it is significantly affected when performing wafer drying in the atmosphere. Further, in the case of excessive As rich, Ga—As bonds are reduced, resulting in an adverse effect of increasing oxygen on the wafer surface.

酸洗浄液は、特に制限はないが、洗浄力が高く電気特性に影響を与える元素(たとえば、金属元素、イオウなど)を含まず、かつ、液滴が設備内に飛散した場合に、水分とともに酸成分も蒸発することで、深刻な二次汚染・設備劣化を生じさせにくいという観点から、フッ酸(HF)、塩酸(HCl)、硝酸(HNO3)および亜硝酸(HNO2)からなる群から選ばれる少なくとも1種類を含むことが好ましい。また、酢酸などの有機酸を含むことも好ましい。 The acid cleaning liquid is not particularly limited. However, the acid cleaning liquid does not contain elements that have high cleaning power and affect electrical characteristics (for example, metal elements, sulfur, etc.), and when liquid droplets are scattered in the equipment, the acid cleaning liquid contains acid. From the point of view that it is difficult to cause serious secondary pollution and equipment deterioration by evaporating components, from the group consisting of hydrofluoric acid (HF), hydrochloric acid (HCl), nitric acid (HNO 3 ) and nitrous acid (HNO 2 ). It is preferable to include at least one selected. It is also preferable to include an organic acid such as acetic acid.

また、上記酸洗浄液は、洗浄性が高い観点から、0.3ppm〜0.3質量%の過酸化水素(H22)を含むことがより好ましい。酸洗浄液中の過酸化水素(H22)の濃度が0.3ppmより小さいと、酸洗浄液中の溶存酸素の影響が大きくなりウエハ表面の不純物の除去促進効果が低減する。一方、酸洗浄液中のH22の濃度が0.3質量%より大きいと、ウエハ表面のエッチング速度が大きくなりすぎ、ウエハ表面にエッチング段差が発生するため洗浄に適さない。かかる観点から、H22の濃度は0.3ppm〜0.3質量%であることが好ましい。 Further, the acid cleaning liquid from a high detergency standpoint, more preferably contains 0.3ppm~0.3 mass% of hydrogen peroxide (H 2 O 2). If the concentration of hydrogen peroxide (H 2 O 2 ) in the acid cleaning solution is less than 0.3 ppm, the effect of dissolved oxygen in the acid cleaning solution increases and the effect of promoting the removal of impurities on the wafer surface decreases. On the other hand, if the concentration of H 2 O 2 in the acid cleaning solution is larger than 0.3% by mass, the etching rate on the wafer surface becomes too high and an etching step is generated on the wafer surface, which is not suitable for cleaning. From such a viewpoint, the concentration of H 2 O 2 is preferably 0.3 ppm to 0.3% by mass.

図4を参照して、本実施形態のGaAs半導体基板の製造方法において、酸洗浄工程S3は、GaAs半導体ウエハを、その主面が水平になるように保持して100〜800rpmで回転させながら、GaAs半導体ウエハの表面に酸洗浄液を供給することにより行なうことが好ましい。GaAs半導体ウエハを回転させながらその表面に酸洗浄液を供給することにより、その表面に酸洗浄液の膜を形成させて表面の酸化を抑制しながら、効率的に表面を酸洗浄することができる。GaAs半導体ウエハの回転数が、100rpmより低いと洗浄効率が高めることができず、800rpmより高いと表面上に洗浄液の膜を形成することができず表面が大気と接触し酸化されるおそれがある。   Referring to FIG. 4, in the method for manufacturing a GaAs semiconductor substrate of the present embodiment, the acid cleaning step S <b> 3 holds the GaAs semiconductor wafer so that its main surface is horizontal and rotates it at 100 to 800 rpm. It is preferable to carry out by supplying an acid cleaning liquid to the surface of the GaAs semiconductor wafer. By supplying the acid cleaning solution to the surface of the GaAs semiconductor wafer while rotating it, the surface of the surface can be efficiently cleaned with acid while forming a film of the acid cleaning solution on the surface and suppressing oxidation of the surface. If the rotational speed of the GaAs semiconductor wafer is lower than 100 rpm, the cleaning efficiency cannot be increased, and if it is higher than 800 rpm, the cleaning liquid film cannot be formed on the surface and the surface may be in contact with the atmosphere and oxidized. .

また、図4を参照して、本実施形態のGaAs半導体基板の製造方法において、酸洗浄工程S3の後に、好ましくは酸洗浄工程S3の直後に、GaAs半導体ウエハの酸洗浄された表面を純水を用いて洗浄する純水洗浄工程S4を含むことが好ましい。純水洗浄工程S4における洗浄方法には、特に制限はないが、GaAs半導体ウエハの酸洗浄された表面を溶存酸素濃度(DO)が100ppb以下の純水で5分間以下の時間で洗浄することが好ましい。100ppb以下の低溶存酸素濃度の純水を用いて5分間以下の短時間で洗浄することにより、表面の酸化を抑制することができる。ここで、純水の溶存酸素濃度は、より酸化性が低い観点から、50ppb以下であることがより好ましい。また、不純物が少ない観点から、純水の全有機炭素(TOC)は40ppb以下であることが好ましい。   Referring to FIG. 4, in the method for manufacturing a GaAs semiconductor substrate of the present embodiment, the acid-cleaned surface of the GaAs semiconductor wafer is treated with pure water after the acid cleaning step S3, preferably immediately after the acid cleaning step S3. It is preferable to include the pure water washing | cleaning process S4 wash | cleaned using. The cleaning method in the pure water cleaning step S4 is not particularly limited, but the acid-cleaned surface of the GaAs semiconductor wafer may be cleaned with pure water having a dissolved oxygen concentration (DO) of 100 ppb or less for 5 minutes or less. preferable. Oxidation of the surface can be suppressed by washing with pure water having a low dissolved oxygen concentration of 100 ppb or less in a short time of 5 minutes or less. Here, the dissolved oxygen concentration of pure water is more preferably 50 ppb or less from the viewpoint of lower oxidizability. From the viewpoint of few impurities, the total organic carbon (TOC) of pure water is preferably 40 ppb or less.

また、図4を参照して、本実施形態のGaAs半導体基板の製造方法において、純水洗浄工程S4は、GaAs半導体ウエハを、その主面が水平になるように保持して100〜800rpmで回転させながら、GaAs半導体ウエハの表面に純水を供給することにより行なうことが好ましい。GaAs半導体ウエハを回転させながらその表面に純水を供給することにより、その表面に純水の膜を形成させて表面の酸化を抑制しながら、効率的に表面を酸洗浄することができる。GaAs半導体ウエハの回転数が、100rpmより低いと洗浄効率が高めることができず、800rpmより高いと表面上に純水の膜を形成することができず表面と大気との接触が直接かつ激しくなり、酸化が促進される。   Referring to FIG. 4, in the method for manufacturing a GaAs semiconductor substrate according to this embodiment, the pure water cleaning step S4 holds the GaAs semiconductor wafer so that its main surface is horizontal and rotates at 100 to 800 rpm. However, it is preferable to carry out by supplying pure water to the surface of the GaAs semiconductor wafer. By supplying pure water to the surface of the GaAs semiconductor wafer while rotating it, the surface can be efficiently cleaned with acid while forming a pure water film on the surface and suppressing surface oxidation. If the rotational speed of the GaAs semiconductor wafer is lower than 100 rpm, the cleaning efficiency cannot be increased. If the rotational speed is higher than 800 rpm, a pure water film cannot be formed on the surface, and the contact between the surface and the atmosphere becomes direct and intense. , Oxidation is promoted.

また、図4を参照して、本実施形態のGaAs半導体基板の製造方法において、酸洗浄工程S3または純水洗浄工程4の後に、好ましくは酸洗浄工程S3または純水洗浄工程S4の直後に、GaAs半導体ウエハの表面を乾燥させる乾燥工程S5をさらに含み、乾燥工程S5は、GaAs半導体ウエハを2000rpm以上で回転させることにより表面に残留している酸洗浄液または純水を飛散させることにより行なうことが好ましい。GaAs半導体ウエハを2000rpm以上の高速回転をさせてその表面上の酸洗浄液または純水を飛散させることにより、ウエハ表面を均一に効率的に乾燥させることができる。 Further, referring to FIG. 4, in the manufacturing method of the GaAs semiconductor substrate of the present embodiment, after the acid washing step S3 or pure water washing step S 4, preferably immediately after the acid washing step S3 or pure water cleaning step S4 The method further includes a drying step S5 for drying the surface of the GaAs semiconductor wafer, and the drying step S5 is performed by scattering the acid cleaning solution or pure water remaining on the surface by rotating the GaAs semiconductor wafer at 2000 rpm or more. Is preferred. The wafer surface can be uniformly and efficiently dried by rotating the GaAs semiconductor wafer at a high speed of 2000 rpm or more to disperse the acid cleaning solution or pure water on the surface.

(実施形態3)
本発明にかかるGaAs半導体基板の製造方法の他の実施形態は、図5を参照して、GaAs半導体ウエハ11の研磨された表面を、まずアルコールなどの有機溶媒で洗浄した後、アルカリ洗浄液21で洗浄する少なくとも1回のアルカリ洗浄工程(図5(a))と、アルカリ洗浄された表面を0.3ppm〜0.5質量%の酸を含む酸洗浄液23で洗浄する酸洗浄工程(図5(c))とを含む。本実施形態は、GaAs半導体ウエハ11をバッチ式で洗浄する形態であり、アルカリ洗浄工程と酸洗浄工程との間にアルカリ洗浄された表面を純水25で洗浄する第1の純水洗浄工程(図5(b))と、酸洗浄工程後に酸洗浄された表面を純水で洗浄する第2の純水洗浄工程(図5(d))と、第2の純水洗浄工程後に純水洗浄された表面に残留している純水を乾燥する工程(図5(e))とをさらに含む。
(Embodiment 3)
In another embodiment of the method for manufacturing a GaAs semiconductor substrate according to the present invention, referring to FIG. 5, the polished surface of the GaAs semiconductor wafer 11 is first cleaned with an organic solvent such as alcohol and then washed with an alkaline cleaning solution 21. At least one alkali cleaning step (FIG. 5A) for cleaning, and an acid cleaning step for cleaning the alkali cleaned surface with an acid cleaning solution 23 containing 0.3 ppm to 0.5% by mass of acid (FIG. 5 ( c)). The present embodiment is a mode in which the GaAs semiconductor wafer 11 is cleaned in a batch manner, and a first pure water cleaning step (in which the surface cleaned with alkali between the alkali cleaning step and the acid cleaning step is cleaned with pure water 25 ( 5 (b)), a second pure water cleaning step (FIG. 5 (d)) for cleaning the acid cleaned surface after the acid cleaning step with pure water, and pure water cleaning after the second pure water cleaning step. And a step of drying pure water remaining on the formed surface (FIG. 5E).

ここで、乾燥工程(図5(e))は、GaAs半導体ウエハ11を遠心機30内のウエハホルダ31に固定して高速回転させることにより、GaAs半導体ウエハの表面に残留している純水を飛散させることにより行なうことが好ましい。また、アルカリ洗浄に用いられるアルカリ洗浄液、酸洗浄に用いられる酸洗浄液、純水洗浄に用いられる純水については、実施形態2と同様である。   Here, in the drying step (FIG. 5E), the pure water remaining on the surface of the GaAs semiconductor wafer is scattered by fixing the GaAs semiconductor wafer 11 to the wafer holder 31 in the centrifuge 30 and rotating it at a high speed. It is preferable to carry out by carrying out. Further, the alkali cleaning liquid used for the alkali cleaning, the acid cleaning liquid used for the acid cleaning, and the pure water used for the pure water cleaning are the same as in the second embodiment.

ここで、酸洗浄液の酸としては、洗浄力が高く電気特性に影響を与える元素(たとえば、金属元素、イオウなど)を含まない観点から、フッ酸、塩酸、硝酸、亜硝酸などの無機酸、酢酸、クエン酸、リンゴ酸などの有機酸が好ましく用いられる。また、これらの酸の2種類以上の組み合わせ、たとえば塩酸および硝酸の組み合わせが好ましく用いられる。また、これらの酸濃度は、実施形態2の場合と同様に0.3ppm〜0.5質量%であることが好ましい。   Here, as the acid of the acid cleaning solution, an inorganic acid such as hydrofluoric acid, hydrochloric acid, nitric acid, nitrous acid, etc. from the viewpoint of having a high detergency and not including an element (for example, metal element, sulfur, etc.) that affects electrical characteristics Organic acids such as acetic acid, citric acid and malic acid are preferably used. A combination of two or more of these acids, for example, a combination of hydrochloric acid and nitric acid is preferably used. Moreover, it is preferable that these acid concentrations are 0.3 ppm-0.5 mass% similarly to the case of Embodiment 2.

また、これらの酸の添加方法は、高濃度の酸水溶液を希釈する方法の他に、塩化水素(HCl)ガス、二酸化炭素(CO2)ガス、窒素酸化物(NOx)ガスなどの酸性ガスを純水に溶解させる方法により行うことができる。 In addition to the method of diluting a high-concentration acid aqueous solution, these acid addition methods include acidic gases such as hydrogen chloride (HCl) gas, carbon dioxide (CO 2 ) gas, and nitrogen oxide (NO x ) gas. Can be carried out by a method of dissolving in water.

(実施例A)
1.GaAs半導体基板の製造
(1)GaAs半導体ウエハの作製(ウエハ作製工程)
垂直ブリッジマン(VB)法で成長されたGaAs半導体結晶を、ワイヤーソーでスライスし、そのエッジ部を研削して外形を整えて、3つのGaAs半導体ウエハを作製した。さらに、ワイヤーソーで生じたソーマークを除去するために、平面研削機でウエハの主表面を研削したのち、外周の面取り部を、ゴム砥石で研磨した。
(Example A)
1. Production of GaAs semiconductor substrate (1) Production of GaAs semiconductor wafer (wafer production process)
Three GaAs semiconductor wafers were fabricated by slicing a GaAs semiconductor crystal grown by the vertical Bridgman (VB) method with a wire saw and grinding its edge to adjust its outer shape. Further, in order to remove the saw mark generated by the wire saw, the main surface of the wafer was ground with a surface grinder, and the outer peripheral chamfered portion was polished with a rubber grindstone.

(2)GaAs半導体ウエハ表面の研磨(研磨工程)
次に、クリーンルーム内で、各GaAs半導体ウエハの表面を、塩素系研磨剤とシリカパウダーの混合物で硬質研磨布により研磨した。次いで、各GaAs半導体ウエハの表面を、INSEC NIB研磨剤(フジミ研磨剤社製)で研磨して、鏡面化した。この鏡面化された各GaAs半導体ウエハの表面には、研磨布屑、研磨剤中の異物等が付着していた。
(2) Polishing of GaAs semiconductor wafer surface (polishing process)
Next, in a clean room, the surface of each GaAs semiconductor wafer was polished with a hard polishing cloth with a mixture of a chlorine-based abrasive and silica powder. Next, the surface of each GaAs semiconductor wafer was polished with INSEC NIB abrasive (manufactured by Fujimi Abrasive Co., Ltd.) to make a mirror surface. On the surface of each mirror-finished GaAs semiconductor wafer, polishing cloth waste, foreign matter in the abrasive, and the like were attached.

(3)GaAs半導体ウエハ表面のアルカリ洗浄(アルカリ洗浄工程)
次に、表面に異物が付着した各GaAs半導体ウエハを0.1〜10質量%のコリン水溶液中に浸漬し、0.9〜1.5MHzの超音波を水溶液中に3〜12分間印加して、その表面をアルカリ洗浄した。次いで、各GaAs半導体ウエハの表面を純水洗浄した後、スピンドライヤーで乾燥させた。得られたGaAS半導体ウエハの表面の面粗さRMSは、AFMにより0.5μm×0.5μmの範囲内で測定したところ、0.08〜0.15nmであった。
(3) GaAs semiconductor wafer surface alkali cleaning (alkali cleaning process)
Next, each GaAs semiconductor wafer having foreign matter attached to the surface is immersed in a 0.1 to 10% by mass choline aqueous solution, and an ultrasonic wave of 0.9 to 1.5 MHz is applied to the aqueous solution for 3 to 12 minutes. The surface was washed with alkali. Next, the surface of each GaAs semiconductor wafer was washed with pure water and then dried with a spin dryer. The surface roughness RMS of the surface of the obtained GaAS semiconductor wafer was 0.08 to 0.15 nm as measured by AFM within a range of 0.5 μm × 0.5 μm.

(4)GaAs半導体ウエハ表面の酸洗浄(酸洗浄工程)
次に、各GaAs半導体ウエハを、その主面が水平になるように回転保持できる機構を有する洗浄装置内に配置した。このとき、各GaAs半導体ウエハは洗浄装置内に配置されている遠心力式チャックで保持された。この遠心力式チャックは、ポリアミド樹脂、ポリエーテルエーテルケトン樹脂などの低発塵樹脂で形成されている。
(4) Acid cleaning of GaAs semiconductor wafer surface (acid cleaning process)
Next, each GaAs semiconductor wafer was placed in a cleaning apparatus having a mechanism capable of rotating and holding so that its main surface is horizontal. At this time, each GaAs semiconductor wafer was held by a centrifugal chuck disposed in the cleaning apparatus. The centrifugal chuck is formed of a low dust generation resin such as polyamide resin or polyether ether ketone resin.

各GaAs半導体ウエハを300〜600rpmで回転させながら、その表面に、酸洗浄液として0.1〜0.6質量%のHFおよび0.05〜0.3質量%のH22を含む水溶液を供給して、6〜20秒間酸洗浄をした。 While rotating each GaAs semiconductor wafer at 300 to 600 rpm, an aqueous solution containing 0.1 to 0.6% by mass of HF and 0.05 to 0.3% by mass of H 2 O 2 as an acid cleaning solution is formed on the surface thereof. Feed and acid wash for 6-20 seconds.

(5)GaAs半導体ウエハ表面の純水洗浄(純水洗浄工程)
次に、各GaAs半導体ウエハを300〜600rpmで回転させながら、その表面に、溶存酸素濃度0.1〜50ppbで全有機炭素1〜40ppbの純水を供給して、15〜30秒間純水洗浄した。次いで、0.5〜2.5MHzの超音波が印加された上記純水を、ノズルの先端がウエハから0.5〜2.5cmの距離にありウエハの半径方向に揺動する純水ノズルからウエハに供給して、その表面を上記純水で8〜20秒間超音波洗浄した。
(5) Pure water cleaning of GaAs semiconductor wafer surface (pure water cleaning process)
Next, while rotating the respective GaAs semiconductor wafer in 300~600Rp m, on its surface, by supplying pure water total organic carbon 1~40ppb in dissolved oxygen concentration 0.1~50Ppb, 15 to 30 seconds pure water Washed. Next, the pure water to which an ultrasonic wave of 0.5 to 2.5 MHz is applied is removed from the pure water nozzle whose tip is at a distance of 0.5 to 2.5 cm from the wafer and swings in the radial direction of the wafer. The wafer was supplied to the wafer, and the surface was ultrasonically cleaned with the pure water for 8 to 20 seconds.

(6)GaAs半導体ウエハ表面の乾燥(乾燥工程)
次いで、純水の供給を停止して、GaAs半導体ウエハを2500rpmで15〜30秒間回転させることにより、GaAs半導体ウエハの表面を乾燥させて、3つのGaAs半導体基板を得た。
(6) Drying of GaAs semiconductor wafer surface (drying process)
Next, the supply of pure water was stopped, and the surface of the GaAs semiconductor wafer was dried by rotating the GaAs semiconductor wafer at 2500 rpm for 15 to 30 seconds to obtain three GaAs semiconductor substrates.

2.GaAs半導体基板の表面層の分析
図1を参照して、X線光電子分光装置(PHI社ESCA5400MC)を用いて、X線源としてAl原子のKα線を使用し、光電子取り出し角度θを10°として、得られた各GaAs半導体基板10の表面層10aにおけるAs原子およびGa原子の3d電子のスペクトルを測定した。
2. 1. Analysis of surface layer of GaAs semiconductor substrate Referring to FIG. 1, an X-ray photoelectron spectrometer (PHI ESCA5400MC) is used, an Al atom Kα ray is used as an X-ray source, and a photoelectron extraction angle θ is set to 10 °. Then, the spectrum of 3d electrons of As atoms and Ga atoms in the surface layer 10a of each obtained GaAs semiconductor substrate 10 was measured.

図2および図3を参照して、各GaAs半導体基板におけるAs原子の3d電子スペクトルに現れたピークP(As)およびP(As−O)、ならびにGa原子の3d電子スペクトルに現れたピークP(Ga)およびP(Ga−O)に基づいて、上式(2)〜(5)を用いて、各GaAs半導体基板におけるGa/As比、(As−O)/{(Ga)+(As)}比および(Ga−O)/{(Ga)+(As)}比を算出した。各GaAs半導体基板のいずれについても、Ga/As比は0.5〜0.9、(As−O)/{(Ga)+(As)}比は0.15〜0.35、(Ga−O)/{(Ga)+(As)}比は0.15〜0.35の範囲内にあった。   2 and 3, peaks P (As) and P (As-O) appearing in the 3d electron spectrum of As atoms in each GaAs semiconductor substrate, and peak P (appearing in the 3d electron spectrum of Ga atoms, Based on Ga) and P (Ga—O), using the above formulas (2) to (5), the Ga / As ratio in each GaAs semiconductor substrate, (As—O) / {(Ga) + (As) } Ratio and (Ga-O) / {(Ga) + (As)} ratio were calculated. For each of the GaAs semiconductor substrates, the Ga / As ratio is 0.5 to 0.9, the (As—O) / {(Ga) + (As)} ratio is 0.15 to 0.35, (Ga− The O) / {(Ga) + (As)} ratio was in the range of 0.15 to 0.35.

3.GaAs半導体基板上へのエピタキシャル層の成長
上記3つのGaAs半導体基板のそれぞれの上に、有機金属化学気相堆積(MOCVD)法により、エピタキシャル層として厚さ1μmのAlxGa1-xN(x=0.2)半導体層を成長させて、3つのエピタキシャル層付GaAs半導体基板を得た。
3. Growth of Epitaxial Layer on GaAs Semiconductor Substrate On each of the above three GaAs semiconductor substrates, Al x Ga 1-x N (x = 0.2) Three semiconductor layers were grown to obtain three epitaxial layer-attached GaAs semiconductor substrates.

4.エピタキシャル層付GaAs半導体基板の物性評価
図6を参照して、上記各エピタキシャル層付GaAs半導体基板(図6における実施例Aの3点)について、エピタキシャル層成長後の表面にArレーザを照射して乱反射により得られる光を集光して得られるヘイズ強度(エピタキシャル層成長後のヘイズ強度)は1.1〜4.0ppmと非常に低く、良好な平面が得られた。すなわち、Ga/As比が0.9以下のGaAs半導体基板上に形成されたエピタキシャル層の表面は良好であることがわかった。
4). Evaluation of physical properties of GaAs semiconductor substrate with epitaxial layer Referring to FIG. 6, the surface of each GaAs semiconductor substrate with an epitaxial layer (three points of Example A in FIG. 6) was irradiated with Ar laser after the growth of the epitaxial layer. The haze strength (haze strength after growth of the epitaxial layer) obtained by condensing the light obtained by irregular reflection was as very low as 1.1 to 4.0 ppm, and a good plane was obtained. That is, it was found that the surface of the epitaxial layer formed on the GaAs semiconductor substrate having a Ga / As ratio of 0.9 or less was good.

また、図7を参照して、各エピタキシャル層付GaAs半導体基板(図7における実施例Aの3点)についてGaAs半導体基板とエキタキシャル層との界面部分における酸素濃度(界面酸素濃度)は、2次イオン質量分析法(SIMS)により測定したところ、1×1018cm-3以下と非常に低濃度であった。すなわち、Ga/As比が0.9以下のGaAs半導体基板とその上に形成されたエピタキシャル層との間の界面酸素濃度は、非常に低濃度であることがわかった。 Further, referring to FIG. 7, for each GaAs semiconductor substrate with an epitaxial layer (three points of Example A in FIG. 7), the oxygen concentration (interface oxygen concentration) at the interface portion between the GaAs semiconductor substrate and the epitaxial layer is 2 When measured by secondary ion mass spectrometry (SIMS), the concentration was as low as 1 × 10 18 cm −3 or less. That is, it was found that the interface oxygen concentration between the GaAs semiconductor substrate having a Ga / As ratio of 0.9 or less and the epitaxial layer formed thereon was very low.

さらに、酸洗浄工程における酸洗浄液として0.05質量%のHFと0.1質量%のH22を含む水溶液を用いたこと以外は、実施例Aと同様にして、表面のアンモニア濃度が0.2ng/cm2、0.4ng/cm2、0.5ng/cm2および1ng/cm2の4種類のGaAs半導体基板を各3枚ずつ得た。その内の1枚は表面のアンモニア濃度の定量に用いた。ここで、基板表面のアンモニア濃度は、この基板を純水中に浸漬した後、この純水のアンモニア濃度をイオンクロマトグラフ法で測定することにより定量した。1枚は上記酸洗浄工程、純水洗浄工程および乾燥工程の直後に、実施例Aと同様にして基板上にエピタキシャル層を成長させた。1枚は、上記酸洗浄工程、純水洗浄工程および乾燥工程後、20μg/m3のアンモニア雰囲気中22〜25℃で2時間放置した後、実施例Aと同様にして基板上にエピタキシャル層を成長させた。 Further, the ammonia concentration on the surface was adjusted in the same manner as in Example A except that an aqueous solution containing 0.05% by mass of HF and 0.1% by mass of H 2 O 2 was used as the acid cleaning solution in the acid cleaning step. Three GaAs semiconductor substrates of four types of 0.2 ng / cm 2 , 0.4 ng / cm 2 , 0.5 ng / cm 2 and 1 ng / cm 2 were obtained. One of them was used for quantitative determination of the ammonia concentration on the surface. Here, the ammonia concentration on the surface of the substrate was quantified by immersing the substrate in pure water and then measuring the ammonia concentration of the pure water by ion chromatography. In one sheet, an epitaxial layer was grown on the substrate in the same manner as in Example A immediately after the acid cleaning step, the pure water cleaning step, and the drying step. One sheet was left for 2 hours at 22-25 ° C. in an ammonia atmosphere of 20 μg / m 3 after the acid cleaning step, the pure water cleaning step and the drying step, and then an epitaxial layer was formed on the substrate in the same manner as in Example A. Grown up.

図8を参照して、基板の上記洗浄直後の表面アンモニア濃度が低くても、アンモニアを含有する雰囲気中(たとえば、大気中など)に放置することにより、基板と放置後に形成されたエピタキシャル層との間の界面酸素濃度は、基板と洗浄直後に形成されたエピタキシャル層との間の界面酸素濃度に比べて大きくなった。これは、雰囲気中のアンモニアなどのアルカリ物質が基板表面上のF原子とが反応して塩を生成し、基板表面の酸化を促進するためと考えられる。   Referring to FIG. 8, even when the surface ammonia concentration immediately after the cleaning of the substrate is low, the substrate and the epitaxial layer formed after the substrate are left by being left in an atmosphere containing ammonia (for example, in the air). The interfacial oxygen concentration between the substrates was higher than the interfacial oxygen concentration between the substrate and the epitaxial layer formed immediately after cleaning. This is presumably because an alkaline substance such as ammonia in the atmosphere reacts with F atoms on the substrate surface to generate a salt and promotes oxidation of the substrate surface.

さらに、図8について考察すると、基板の初期の表面アンモニア濃度が0.4ng/cm2以下であれば、その基板が2時間放置された後にピタキシャル層が形成されても、基板とエピタキシャル層との間の界面酸素濃度は1.0×1018cm-3以下と低濃度に抑制できることがわかった。このことから、GaAs半導体基板の表面に付着しているアルカリ物質の濃度は0.4ng/cm-2以下が好ましいことがわかる。 Further, considering FIG. 8, if the initial surface ammonia concentration of the substrate is 0.4 ng / cm 2 or less, even if the substrate is left to stand for 2 hours and the epitaxial layer is formed, It has been found that the interfacial oxygen concentration can be suppressed to a low concentration of 1.0 × 10 18 cm −3 or less. This shows that the concentration of the alkaline substance adhering to the surface of the GaAs semiconductor substrate is preferably 0.4 ng / cm −2 or less.

(比較例RA)
1.GaAs半導体基板の作製
酸洗浄工程を行なわなかったこと以外は、実施例Aと同様にして4つのGaAs半導体基板を作製した。
(Comparative Example RA)
1. Production of GaAs semiconductor substrates Four GaAs semiconductor substrates were produced in the same manner as in Example A except that the acid cleaning step was not performed.

2.GaAs半導体基板の表面層の分析
各GaAs半導体基板におけるGa/As比、(As−O)/{(Ga)+(As)}比および(Ga−O)/{(Ga)+(As)}比を、実施例Aと同様にして、算出した。各GaAs半導体基板のいずれについても、Ga/As比は0.90〜1.52、(As−O)/{(Ga)+(As)}比は0.40〜0.65、(Ga−O)/{(Ga)+(As)}比は0.30〜0.70の範囲内にあった。
2. Analysis of surface layer of GaAs semiconductor substrate Ga / As ratio, (As-O) / {(Ga) + (As)} ratio and (Ga-O) / {(Ga) + (As)} in each GaAs semiconductor substrate The ratio was calculated as in Example A. For each of the GaAs semiconductor substrates, the Ga / As ratio is 0.90 to 1.52, the (As—O) / {(Ga) + (As)} ratio is 0.40 to 0.65, (Ga− The O) / {(Ga) + (As)} ratio was in the range of 0.30 to 0.70.

3.GaAs半導体基板上へのエピタキシャル層の成長
上記4つのGaAs半導体基板のそれぞれの上に、実施例Aと同様にしてエピタキシャル層を成長させて、4つのエピタキシャル層付GaAs半導体基板を得た。
3. Growth of Epitaxial Layer on GaAs Semiconductor Substrate An epitaxial layer was grown on each of the four GaAs semiconductor substrates in the same manner as in Example A to obtain four GaAs semiconductor substrates with epitaxial layers.

4.エピタキシャル層付GaAs半導体基板の物性評価
図6を参照して、上記各エピタキシャル層付GaAs半導体基板(図6における比較例RAの4点)について、実施例Aと同様にして得られるエピタキシャル層成長後のヘイズ強度は、21〜1870ppmと実施例Aに比べて高く、良好な平面は得られなかった。
4). Evaluation of Physical Properties of GaAs Semiconductor Substrate with Epitaxial Layer Referring to FIG. 6, after the growth of the epitaxial layer obtained in the same manner as Example A for each of the GaAs semiconductor substrates with an epitaxial layer (four points of comparative example RA in FIG. 6) Haze strength of 21 to 1870 ppm was higher than that of Example A, and a good flat surface was not obtained.

また、図7を参照して、各エピタキシャル層付GaAs半導体基板(図7における比較例RAの4点)について、実施例Aと同様にして測定される界面酸素濃度は、1×1018cm-3よりも高濃度であった。 Referring to FIG. 7, the interface oxygen concentration measured for each GaAs semiconductor substrate with an epitaxial layer (four points of comparative example RA in FIG. 7) in the same manner as in Example A is 1 × 10 18 cm −. Concentration higher than 3 .

(実施例B1)
1.GaAs半導体基板の製造
実施例Aと同様にして、GaAs半導体ウエハの作製およびその表面の研磨を行なった。次に、図5(a)を参照して、表面を研磨したGaAs半導体ウエハを0.5質量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液に浸漬して、950kHzの超音波を水溶液中に10分間印加して、その表面をアルカリ洗浄した。次に、図5(b)を参照して、GaAs半導体ウエハの表面を実施例Aと同様にして純水洗浄した。次に、図5(c)を参照して、GaAs半導体ウエハを0.3ppmの塩酸(HCl)水溶液に浸漬して、950kHzの超音波を水溶液中に2分間印加して、その表面を酸洗浄した。次に、図5(d)を参照して、GaAs半導体ウエハの表面を実施例Aと同様にして純水洗浄した。次に、図5(e)を参照して、GaAs半導体ウエハ11を遠心機30内のウエハホルダ31に固定して2500rpmで30秒間高速回転させることにより、GaAs半導体ウエハの表面に残留している純水を飛散させることによりウエハの表面を乾燥させて、GaAs半導体基板を得た。
(Example B1)
1. Production of GaAs semiconductor substrate In the same manner as in Example A, a GaAs semiconductor wafer was produced and its surface was polished. Next, referring to FIG. 5A, the polished GaAs semiconductor wafer is immersed in an aqueous solution of 0.5% by mass of tetramethylammonium hydroxide (TMAH), and an ultrasonic wave of 950 kHz is applied to the aqueous solution. The surface was washed with alkali for a minute. Next, referring to FIG. 5B, the surface of the GaAs semiconductor wafer was washed with pure water in the same manner as in Example A. Next, referring to FIG. 5C, a GaAs semiconductor wafer is immersed in a 0.3 ppm hydrochloric acid (HCl) aqueous solution, and 950 kHz ultrasonic waves are applied to the aqueous solution for 2 minutes to acid-clean the surface. did. Next, referring to FIG. 5D, the surface of the GaAs semiconductor wafer was washed with pure water in the same manner as in Example A. Next, referring to FIG. 5E, the GaAs semiconductor wafer 11 is fixed to the wafer holder 31 in the centrifuge 30 and is rotated at a high speed of 2500 rpm for 30 seconds, whereby the residual GaAs semiconductor wafer 11 remains on the surface of the GaAs semiconductor wafer. The surface of the wafer was dried by scattering water to obtain a GaAs semiconductor substrate.

2.GaAs半導体基板の表面層の分析
実施例Aと同様にして、得られたGaAs半導体基板の表面層におけるAs原子およびGa原子の3d電子のスペクトルを測定した。実施例B1のGaAs半導体基板について、Ga/As比は0.80、(As−O)/{(Ga)+(As)}比は0.27、(Ga−O)/{(Ga)+(As)}比は0.15であった。
2. Analysis of surface layer of GaAs semiconductor substrate In the same manner as in Example A, the spectrum of 3d electrons of As atoms and Ga atoms in the surface layer of the obtained GaAs semiconductor substrate was measured. For the GaAs semiconductor substrate of Example B1, the Ga / As ratio was 0.80, the (As—O) / {(Ga) + (As)} ratio was 0.27, and (Ga—O) / {(Ga) + The (As)} ratio was 0.15.

3.GaAs半導体基板上へのエピタキシャル層の成長
上記GaAs半導体基板上に、実施例Aと同様にしてエピタキシャル層を成長させて、エピタキシャル層付GaAs半導体基板を得た。このエピタキシャル層付GaAs半導体基板について、実施例Aと同様にして得られるエピタキシャル層成長後のヘイズ強度は、2.1ppmであり、実施例Aと同等に小さく、良好な平面が得られた。なお、ヘイズ強度は、KLA−Tencor社製Surfscan6220で測定した。
3. Growth of Epitaxial Layer on GaAs Semiconductor Substrate An epitaxial layer was grown on the GaAs semiconductor substrate in the same manner as in Example A to obtain a GaAs semiconductor substrate with an epitaxial layer. With respect to this GaAs semiconductor substrate with an epitaxial layer, the haze strength after epitaxial layer growth obtained in the same manner as in Example A was 2.1 ppm, which was as small as Example A and a good flat surface was obtained. The haze strength was measured with Surfscan 6220 manufactured by KLA-Tencor.

(実施例B2)
酸洗浄水溶液として0.6ppmの硝酸(HNO3)水溶液を用いたこと以外は、実施例B1と同様にして、GaAs半導体基板を得た。得られたGaAs半導体基板について、Ga/As比は0.85、(As−O)/{(Ga)+(As)}比は0.28、(Ga−O)/{(Ga)+(As)}比は0.22であった。また、実施例B1と同様にして、GaN半導体基板上にエピタキシャル層を成長させて、エピタキシャル層付GaAs半導体基板を得た。エピタキシャル層成長後のヘイズ強度は、1.5ppmであり、実施例B1と同等に小さく、良好な平面が得られた。
(Example B2)
A GaAs semiconductor substrate was obtained in the same manner as in Example B1, except that a 0.6 ppm nitric acid (HNO 3 ) aqueous solution was used as the acid cleaning aqueous solution. About the obtained GaAs semiconductor substrate, Ga / As ratio is 0.85, (As-O) / {(Ga) + (As)} ratio is 0.28, (Ga-O) / {(Ga) + ( As)} ratio was 0.22. Further, in the same manner as in Example B1, an epitaxial layer was grown on the GaN semiconductor substrate to obtain a GaAs semiconductor substrate with an epitaxial layer. The haze strength after the growth of the epitaxial layer was 1.5 ppm, which was as small as Example B1, and a good flat surface was obtained.

(実施例B3)
酸洗浄水溶液として0.3ppmの塩酸および1.2ppmの硝酸を含む水溶液を用いたこと以外は、実施例B1と同様にして、GaAs半導体基板を得た。なお、この水溶液中では、塩酸と硝酸との反応により、硝酸から0.6ppm程度の亜硝酸が生成した。得られたGaAs半導体基板について、Ga/As比は0.84、(As−O)/{(Ga)+(As)}比は0.29、(Ga−O)/{(Ga)+(As)}比は0.21であった。また、実施例B1と同様にして、GaN半導体基板上にエピタキシャル層を成長させて、エピタキシャル層付GaAs半導体基板を得た。エピタキシャル層成長後のヘイズ強度は、2.2ppmであり、実施例B1と同等に小さく、良好な平面が得られた。
(Example B3)
A GaAs semiconductor substrate was obtained in the same manner as in Example B1, except that an aqueous solution containing 0.3 ppm hydrochloric acid and 1.2 ppm nitric acid was used as the acid cleaning aqueous solution. In this aqueous solution, about 0.6 ppm of nitrous acid was produced from nitric acid by the reaction of hydrochloric acid and nitric acid. About the obtained GaAs semiconductor substrate, Ga / As ratio is 0.84, (As-O) / {(Ga) + (As)} ratio is 0.29, (Ga-O) / {(Ga) + ( As)} ratio was 0.21. Further, in the same manner as in Example B1, an epitaxial layer was grown on the GaN semiconductor substrate to obtain a GaAs semiconductor substrate with an epitaxial layer. The haze strength after the epitaxial layer growth was 2.2 ppm, which was as small as Example B1 and a good flat surface was obtained.

(比較例RB1)
GaAs半導体ウエハの酸洗浄を行なわなかったこと以外は、実施例B1と同様にして、GaAs半導体基板を得た。得られたGaAs半導体基板について、Ga/As比は1.03、(As−O)/{(Ga)+(As)}比は0.17、(Ga−O)/{(Ga)+(As)}比は0.19であった。また、実施例B1と同様にして、GaN半導体基板上にエピタキシャル層を成長させて、エピタキシャル層付GaAs半導体基板を得た。エピタキシャル層成長後のヘイズ強度は、140.0ppmであり、実施例A、実施例B 1〜B3に比べて非常に大きく、良好な平面が得られなかった。
(Comparative Example RB1)
A GaAs semiconductor substrate was obtained in the same manner as in Example B1, except that the GaAs semiconductor wafer was not subjected to acid cleaning. About the obtained GaAs semiconductor substrate, Ga / As ratio is 1.03, (As-O) / {(Ga) + (As)} ratio is 0.17, (Ga-O) / {(Ga) + ( As)} ratio was 0.19. Further, in the same manner as in Example B1, an epitaxial layer was grown on the GaN semiconductor substrate to obtain a GaAs semiconductor substrate with an epitaxial layer. The haze strength after the growth of the epitaxial layer was 140.0 ppm, which was very large as compared with Example A and Examples B1 to B3, and a good plane was not obtained.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 X線、5 光電子、10 GaAs半導体基板、10a 表面層、10b 内層、10s 表面、11 GaAs半導体ウエハ、21 アルカリ洗浄液、23 酸洗浄液、25 純水、30 遠心機、31 ウエハホルダ。   1 X-ray, 5 photoelectrons, 10 GaAs semiconductor substrate, 10a surface layer, 10b inner layer, 10s surface, 11 GaAs semiconductor wafer, 21 alkaline cleaning solution, 23 acid cleaning solution, 25 pure water, 30 centrifuge, 31 wafer holder.

本発明は、X線光電子分光法により、光電子取り出し角が10°の条件で測定されるGa原子およびAs原子の3d電子スペクトルを用いて算出される、GaAs半導体基板の表面層における全As原子に対する全Ga原子の構成原子比(Ga)/(As)が0.5以上0.9以下であり、表面層における全Ga原子および全As原子に対するO原子と結合しているAs原子の比(As−O)/{(Ga)+(As)}が0.15以上0.35以下であり、表面層における全Ga原子および全As原子に対するO原子と結合しているGa原子の比(Ga−O)/{(Ga)+(As)}が0.15以上0.35以下であり、表面の面粗さRMSが0.3nm以下であることを特徴とするGaAs半導体基板である。 The present invention relates to all As atoms in the surface layer of a GaAs semiconductor substrate, calculated by X-ray photoelectron spectroscopy using a 3d electron spectrum of Ga atoms and As atoms measured at a photoelectron extraction angle of 10 °. The constituent atomic ratio (Ga) / (As) of all Ga atoms is 0.5 or more and 0.9 or less, and the ratio of As atoms bonded to O atoms to all Ga atoms and all As atoms in the surface layer (As -O) / {(Ga) + (As)} is 0.15 or more and 0.35 or less, and the ratio of Ga atoms bonded to O atoms to all Ga atoms and all As atoms in the surface layer (Ga--) O) / {(Ga) + (as)} is Ri der 0.15 or 0.35 or less, a GaAs semiconductor substrate surface roughness RMS of the surface, characterized in der Rukoto below 0.3 nm.

本発明にかかるGaAs半導体基板において表面に付着しているアルカリ物質(アンモニア)の濃度を0.4ng/cm以下とすることができる。 In the GaAs semiconductor substrate according to the present invention, the concentration of the alkaline substance (ammonia) adhering to the surface can be 0.4 ng / cm 2 or less.

Claims (9)

X線光電子分光法により、光電子取り出し角θが10°の条件で測定されるGa原子およびAs原子の3d電子スペクトルを用いて算出される、GaAs半導体基板の表面層における全As原子に対する全Ga原子の構成原子比(Ga)/(As)が0.5以上0.9以下であり、前記表面層における全Ga原子および全As原子に対するO原子と結合しているAs原子の比(As−O)/{(Ga)+(As)}が0.15以上0.35以下であり、前記表面層における全Ga原子および全As原子に対するO原子と結合しているGa原子の比(Ga−O)/{(Ga)+(As)}が0.15以上0.35以下であることを特徴とするGaAs半導体基板。   All Ga atoms relative to all As atoms in the surface layer of the GaAs semiconductor substrate, calculated by X-ray photoelectron spectroscopy, using a 3d electron spectrum of Ga atoms and As atoms measured at a photoelectron extraction angle θ of 10 ° The atomic ratio (Ga) / (As) of A is 0.5 or more and 0.9 or less, and the ratio of As atoms bonded to O atoms with respect to all Ga atoms and all As atoms in the surface layer (As-O ) / {(Ga) + (As)} is 0.15 or more and 0.35 or less, and the ratio of Ga atoms bonded to O atoms with respect to all Ga atoms and all As atoms in the surface layer (Ga-O) ) / {(Ga) + (As)} is 0.15 or more and 0.35 or less. 表面の面粗さRMSを0.3nm以下であることを特徴とする請求項1に記載のGaAs半導体基板。   2. The GaAs semiconductor substrate according to claim 1, wherein the surface roughness RMS is 0.3 nm or less. 表面に付着しているアルカリ物質の濃度が、0.4ng/cm2以下であることを特徴とする請求項1または請求項2に記載のGaAs半導体基板。 3. The GaAs semiconductor substrate according to claim 1, wherein the concentration of the alkaline substance adhering to the surface is 0.4 ng / cm 2 or less. GaAs半導体ウエハの表面を研磨する工程と、研磨された前記表面をアルカリ洗浄液で洗浄する少なくとも1回のアルカリ洗浄工程と、アルカリ洗浄された前記表面を0.3ppm〜0.5質量%の酸を含む酸洗浄液で洗浄する酸洗浄工程とを含むGaAs半導体基板の製造方法。   A step of polishing the surface of the GaAs semiconductor wafer, at least one alkali cleaning step of cleaning the polished surface with an alkali cleaning solution, and an acid of 0.3 ppm to 0.5 mass% on the alkali cleaned surface. A method of manufacturing a GaAs semiconductor substrate, comprising: an acid cleaning step of cleaning with an acid cleaning solution. 前記アルカリ洗浄液は有機アルカリ化合物を含む請求項4に記載のGaAs半導体基板の製造方法。   The method for manufacturing a GaAs semiconductor substrate according to claim 4, wherein the alkali cleaning liquid contains an organic alkali compound. 前記酸洗浄液は、前記酸として、フッ酸、塩酸、硝酸および亜硝酸からなる群から選ばれる少なくとも1種類を含む請求項4に記載のGaAs半導体基板の製造方法。   5. The method of manufacturing a GaAs semiconductor substrate according to claim 4, wherein the acid cleaning liquid includes at least one selected from the group consisting of hydrofluoric acid, hydrochloric acid, nitric acid, and nitrous acid as the acid. 前記酸洗浄工程の後に、酸洗浄された前記表面を乾燥させる乾燥工程をさらに含み、
前記乾燥工程は、GaAs半導体ウエハを回転させることにより前記表面に残留している前記酸洗浄液を飛散させることにより行なうことを特徴とする請求項4に記載のGaAs半導体基板の製造方法。
After the acid cleaning step, further comprising a drying step of drying the acid cleaned surface,
5. The method of manufacturing a GaAs semiconductor substrate according to claim 4, wherein the drying step is performed by scattering the acid cleaning liquid remaining on the surface by rotating the GaAs semiconductor wafer.
前記酸洗浄工程の後に、酸洗浄された前記表面を溶存酸素濃度が100ppb以下の純水で洗浄する純水洗浄工程をさらに含む請求項4に記載のGaAs半導体基板の製造方法。   The method for producing a GaAs semiconductor substrate according to claim 4, further comprising a pure water cleaning step of cleaning the acid cleaned surface with pure water having a dissolved oxygen concentration of 100 ppb or less after the acid cleaning step. 前記純水洗浄工程の後に、純水洗浄された前記表面を乾燥させる乾燥工程をさらに含み、前記乾燥工程は、GaAs半導体ウエハを大気中で回転させることにより前記表面に残留している前記純水を飛散させることにより行なうことを特徴とする請求項8に記載のGaAs半導体基板の製造方法。   After the pure water cleaning step, the method further includes a drying step of drying the surface that has been cleaned with pure water, and the drying step includes the pure water remaining on the surface by rotating a GaAs semiconductor wafer in the atmosphere. The method for producing a GaAs semiconductor substrate according to claim 8, wherein the method is carried out by scattering.
JP2013031625A 2013-02-21 2013-02-21 Gaas semiconductor substrate and manufacturing method therefor Pending JP2013093632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031625A JP2013093632A (en) 2013-02-21 2013-02-21 Gaas semiconductor substrate and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031625A JP2013093632A (en) 2013-02-21 2013-02-21 Gaas semiconductor substrate and manufacturing method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007147336A Division JP5276281B2 (en) 2007-06-01 2007-06-01 GaAs semiconductor substrate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2013093632A true JP2013093632A (en) 2013-05-16

Family

ID=48616452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031625A Pending JP2013093632A (en) 2013-02-21 2013-02-21 Gaas semiconductor substrate and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013093632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177970A (en) * 2019-04-16 2020-10-29 住友電気工業株式会社 Gallium arsenide substrate, epitaxial substrate, manufacturing method of gallium arsenide substrate, and manufacturing method of epitaxial substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296792A (en) * 1989-05-12 1990-12-07 Mitsubishi Electric Corp Surface treatment of semiconductor
JPH05291231A (en) * 1992-04-06 1993-11-05 Japan Energy Corp Manufacture of compound semiconductor wafer
JPH0653201A (en) * 1992-07-27 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Surface formation method of compound semiconductor substrate
JPH06177102A (en) * 1990-09-17 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Method and equipment for cleaning surface of compound semiconductor
JP2005158813A (en) * 2003-11-20 2005-06-16 Toshiba Ceramics Co Ltd Manufacturing method of bonded semiconductor
WO2006001117A1 (en) * 2004-06-28 2006-01-05 Sumitomo Electric Industries, Ltd. GaAs SUBSTRATE CLEANING METHOD, GaAs SUBSTRATE MANUFACTURING METHOD, EPITAXIAL SUBSTRATE MANUFACTURING METHOD AND GaAs WAFER

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296792A (en) * 1989-05-12 1990-12-07 Mitsubishi Electric Corp Surface treatment of semiconductor
JPH06177102A (en) * 1990-09-17 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> Method and equipment for cleaning surface of compound semiconductor
JPH05291231A (en) * 1992-04-06 1993-11-05 Japan Energy Corp Manufacture of compound semiconductor wafer
JPH0653201A (en) * 1992-07-27 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Surface formation method of compound semiconductor substrate
JP2005158813A (en) * 2003-11-20 2005-06-16 Toshiba Ceramics Co Ltd Manufacturing method of bonded semiconductor
WO2006001117A1 (en) * 2004-06-28 2006-01-05 Sumitomo Electric Industries, Ltd. GaAs SUBSTRATE CLEANING METHOD, GaAs SUBSTRATE MANUFACTURING METHOD, EPITAXIAL SUBSTRATE MANUFACTURING METHOD AND GaAs WAFER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177970A (en) * 2019-04-16 2020-10-29 住友電気工業株式会社 Gallium arsenide substrate, epitaxial substrate, manufacturing method of gallium arsenide substrate, and manufacturing method of epitaxial substrate
JP7268461B2 (en) 2019-04-16 2023-05-08 住友電気工業株式会社 Gallium arsenide substrate, epitaxial substrate, gallium arsenide substrate manufacturing method, and epitaxial substrate manufacturing method

Similar Documents

Publication Publication Date Title
JP5276281B2 (en) GaAs semiconductor substrate and manufacturing method thereof
JP7060060B2 (en) Manufacturing method of compound semiconductor substrate for epitaxial growth, epitaxial growth method on compound semiconductor substrate and compound semiconductor substrate
EP2629319B1 (en) Process for cleaning compound semiconductor wafer
TWI520203B (en) Inspection method of compound semiconductor substrate, compound semiconductor substrate, surface treatment method of compound semiconductor substrate, and method of producing compound semiconductor crystal
TWI462165B (en) Production method of indium phosphide substrate, manufacturing method of epitaxial wafer, indium phosphide substrate and epitaxial wafer
KR19980703246A (en) Single-etch Stop Process for Fabrication of Silicon Insulator Wafers
JP2007234952A (en) Manufacturing method of compound semiconductor, surface treatment method of compound semiconductor substrate, compound semiconductor substrate, and semiconductor wafer
JP2007299979A (en) Surface treatment method of group iii nitride crystal and group iii nitride crystal substrate
TWI753114B (en) GaAs substrate and manufacturing method thereof
JP2013093632A (en) Gaas semiconductor substrate and manufacturing method therefor
JP4091014B2 (en) Semiconductor device cleaning method and semiconductor device manufacturing apparatus cleaning method and cleaning device
CN111379027B (en) Gallium arsenide wafer and preparation method thereof
JP2021082828A (en) Method for reducing metallic contamination on surface of substrate
JP7279753B2 (en) Silicon wafer cleaning method and manufacturing method
DE10212657A1 (en) Wet chemical cleaning of a silicon wafer comprises initially contacting a hydrophobic surface partially covered with polishing agent, and contacting with an aqueous solution containing an oxidant
WO2024057533A1 (en) Gallium arsenide single crystal substrate and method for producing same
JP2008021924A (en) Method for removing impurity on silicon wafer surface

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805