JP2013093188A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2013093188A
JP2013093188A JP2011234068A JP2011234068A JP2013093188A JP 2013093188 A JP2013093188 A JP 2013093188A JP 2011234068 A JP2011234068 A JP 2011234068A JP 2011234068 A JP2011234068 A JP 2011234068A JP 2013093188 A JP2013093188 A JP 2013093188A
Authority
JP
Japan
Prior art keywords
sintered body
oxide sintered
solid electrolyte
oxide
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011234068A
Other languages
Japanese (ja)
Other versions
JP5738150B2 (en
Inventor
Fumito Kouchi
史人 古内
Takaaki Fukushima
孝明 福島
Fumiaki Sago
文昭 佐郷
Hiromitsu Mishima
洋光 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011234068A priority Critical patent/JP5738150B2/en
Publication of JP2013093188A publication Critical patent/JP2013093188A/en
Application granted granted Critical
Publication of JP5738150B2 publication Critical patent/JP5738150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery relaxing a stress due to volume variation of an electrode caused in charging/discharging a battery, even when a sintered body electrode is densified in order to improve capacity of the secondary battery, thereby suppressing deterioration in battery capacity due to breakage of an electrode and a solid electrolyte and destruction of a power generation element.SOLUTION: The secondary battery includes a power generation element including a pair of electrodes bonded via a solid electrolyte layer, and at least one of the pair of electrodes comprises an oxide sintered body. The oxide sintered body has a porosity of 2-10%, has cracks in an inside of the oxide sintered body, and relaxes a stress due to volume variation of an electrode caused in charging/discharging the battery.

Description

本発明は、固体電解質を用いた二次電池に関する。   The present invention relates to a secondary battery using a solid electrolyte.

近年、二次電池は、携帯電話やノートPCだけでなく、電気自動車用バッテリーとしてもその用途を広げている。   In recent years, secondary batteries have been used not only for mobile phones and notebook PCs but also as batteries for electric vehicles.

従来における二次電池の電解質としては、一般に非水系の電解液をセパレータと呼ばれる多孔質膜に含浸させた電解質が使用されていたが、近年、安全性の観点から固体電解質を用いた二次電池が提案されている。   Conventionally, an electrolyte obtained by impregnating a porous membrane called a separator with a non-aqueous electrolyte solution has been used as an electrolyte of a secondary battery. However, in recent years, a secondary battery using a solid electrolyte from the viewpoint of safety. Has been proposed.

固体電解質を用いた二次電池では、活物質と電解質とが固体同士の接触により電気的に接合されるため、活物質の充放電に伴う体積変動が小さい系が好ましいと考えられており、充放電による体積変動が小さい活物質であるLiTi12を、気孔率が10〜50%の焼結体として正極または負極に用い、固体電解質と組合せることが提案されている(特許文献1参照)。 In a secondary battery using a solid electrolyte, since the active material and the electrolyte are electrically joined by contact between the solids, it is considered that a system with a small volume fluctuation accompanying charging / discharging of the active material is preferable. It has been proposed to use Li 4 Ti 5 O 12 , which is an active material having a small volume fluctuation due to electric discharge, as a sintered body having a porosity of 10 to 50% for a positive electrode or a negative electrode and to be combined with a solid electrolyte (Patent Document). 1).

特開2005−340078号公報JP 2005-340078 A

しかしながら、特許文献1に記載の二次電池では、電池容量を向上するために焼結体電極の緻密化をさらに進めると、充放電に伴う電極の体積変動に起因する応力により、電極や固体電解質が破損して電池容量が低下したり、さらには正極と固体電解質と負極とを接合した発電要素が破壊するという課題があった。   However, in the secondary battery described in Patent Document 1, when the densification of the sintered body electrode is further advanced in order to improve the battery capacity, the electrode and the solid electrolyte are caused by the stress caused by the volume change of the electrode accompanying charge / discharge. Is damaged, resulting in a problem that the battery capacity is reduced, and further, the power generation element in which the positive electrode, the solid electrolyte, and the negative electrode are joined is destroyed.

本発明は、焼結体電極を緻密化しても、電池の充放電時に生じる電極の体積変動に起因する応力を緩和し、電極や固体電解質の破損による電池容量の低下や、発電要素の破壊を抑制することを目的とする。   Even if the sintered body electrode is densified, the present invention relieves the stress caused by the volume change of the electrode that occurs during charging and discharging of the battery, reduces the battery capacity due to the damage of the electrode and the solid electrolyte, and destroys the power generation element. The purpose is to suppress.

本発明の二次電池は、固体電解質層を介して一対の電極が接合された発電要素を備え、前記一対の電極のうち少なくともいずれか一方が酸化物焼結体からなり、該酸化物焼結体は気孔率が2〜10%であるとともに、クラックを前記酸化物焼結体の内部に有することを特徴とする。   The secondary battery of the present invention includes a power generation element in which a pair of electrodes are joined via a solid electrolyte layer, and at least one of the pair of electrodes is made of an oxide sintered body, and the oxide sintering The body has a porosity of 2 to 10%, and has cracks inside the oxide sintered body.

本発明によれば、焼結体電極を緻密化しても、電池の充放電時に生じる電極の体積変動に起因する応力をクラックにより緩和し、電極や固体電解質の破損による電池容量の低下や、発電要素の破壊を抑制することができる。   According to the present invention, even if the sintered body electrode is densified, the stress caused by the volume fluctuation of the electrode that occurs during charge and discharge of the battery is relaxed by the crack, the battery capacity is reduced due to the damage of the electrode and the solid electrolyte, and the power generation The destruction of elements can be suppressed.

本発明の一実施形態である二次電池の概略断面図である。It is a schematic sectional drawing of the secondary battery which is one Embodiment of this invention. クラックを導入した酸化物焼結体の表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the oxide sintered compact which introduce | transduced the crack. クラックの最大幅の測定法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of the maximum width of a crack.

図1は本発明の一実施形態である二次電池の概略断面図である。本実施形態の二次電池は、固体電解質層2の一方の主面に正極1を、固体電解質層2の他方の主面に負極3を一対の電極として形成した発電要素8が、正極側電池ケース5と負極側電池ケース7とによって形成された電池ケース内の空間に収納されている。正極側電池ケース5と負極側電池ケース7とはガスケット6を介してかしめられており、電池ケース内の空間が気密に保たれている。   FIG. 1 is a schematic sectional view of a secondary battery according to an embodiment of the present invention. In the secondary battery of this embodiment, the power generation element 8 in which the positive electrode 1 is formed on one main surface of the solid electrolyte layer 2 and the negative electrode 3 is formed on the other main surface of the solid electrolyte layer 2 as a pair of electrodes is a positive battery. The battery case is housed in a space formed by the case 5 and the negative battery case 7. The positive electrode side battery case 5 and the negative electrode side battery case 7 are caulked through a gasket 6 so that the space in the battery case is kept airtight.

また、正極側電池ケース5と負極側電池ケース7との接触を良好に行うために正極1の正極側電池ケース5と対峙する面には正極側集電層4Pが、負極3の負極側電池ケース7と対峙する面には負極側集電層4Nがそれぞれ形成されており、電池ケースと発電要素9との接触抵抗の低減を図っている。   Further, in order to make good contact between the positive electrode side battery case 5 and the negative electrode side battery case 7, the positive electrode side current collecting layer 4 </ b> P is provided on the surface of the positive electrode 1 facing the positive electrode side battery case 5, and the negative electrode side battery of the negative electrode 3. A negative current collecting layer 4N is formed on the surface facing the case 7 to reduce the contact resistance between the battery case and the power generation element 9.

本実施形態の二次電池に用いる電極は、正極1、負極3の少なくとも一方が酸化物焼結体からなり、その酸化物焼結体は、気孔率が2〜10%で、図2に示すようにクラックを酸化物焼結体の内部に有するものである。酸化物焼結体とは、実質的に酸化物系の活物質からなる焼結体である。このように電極を活物質からなる焼結体とすることで、発電に直接かかわらない導電助剤や結着材、固体電解質などを含有することによる容量低下を抑制できるだけでなく、活物質同士の接合面積を大幅に増加でき、活物質が持つ本来の電子伝導性やイオン伝導性を有効に活用することができ、高容量、高エネルギー密度で出力特性に優れた二次電池を得ることができる。また、充放電特性の向上や焼結性の向上のため、活物質の構成元素の一部を各種金属元素で置換したり、活物質に各種金属化合物を添加して焼結体を作製しても構わない。なお、実質的に酸化物系の活物質からなる焼結体とは、酸化物系の活物質以外は積極的に添加することなく作製された焼結体を意味し、原料や焼結体作製工程に起因する不純物を含んでいても構わない。   As for the electrode used for the secondary battery of this embodiment, at least one of the positive electrode 1 and the negative electrode 3 is made of an oxide sintered body, and the oxide sintered body has a porosity of 2 to 10% and is shown in FIG. Thus, it has a crack in an oxide sintered compact. The oxide sintered body is a sintered body substantially made of an oxide-based active material. Thus, by making the electrode into a sintered body made of an active material, not only can the capacity decrease due to inclusion of a conductive additive, binder, solid electrolyte, etc. not directly involved in power generation be suppressed, The junction area can be greatly increased, the original electron conductivity and ion conductivity of the active material can be effectively utilized, and a secondary battery with high capacity, high energy density and excellent output characteristics can be obtained. . In addition, in order to improve charge / discharge characteristics and sinterability, some of the constituent elements of the active material are replaced with various metal elements, or various metal compounds are added to the active material to produce a sintered body. It doesn't matter. Note that the sintered body substantially made of an oxide-based active material means a sintered body prepared without positively adding other than the oxide-based active material. Impurities resulting from the process may be included.

さらに、酸化物焼結体の内部にクラックを有することにより、酸化物焼結体を気孔率2〜10%に緻密化しても、電池の充放電時に生じる電極の体積変動に起因する応力をクラックにより緩和することができ、新たなクラックの発生やクラックの進展を抑制することができる。なお、クラックは、酸化物焼結体の結晶粒子内部および結晶粒界のいずれに形成されていてもよいし、酸化物焼結体の表面に開口していても構わない。また、クラックの最大幅は、2μm以下であることが好ましい。2μmを超えると、クラック近傍の粒子が脱落したり、酸化物焼結体の強度が低下する懸念がある。なお、クラックの最大幅が0.1μmよりも小さい場合は、電池の充放電時に生じる応力を充分緩和できず、新たなクラックが発生したりクラックが進展して電極や発電要素4が破壊に至る可能性がある。クラックの最大幅は、たとえば酸化物焼結体の平均粒径が5〜20μmの場合、0.3〜1μmとすることがより好ましい。   Furthermore, by having cracks inside the oxide sintered body, even if the oxide sintered body is densified to a porosity of 2 to 10%, the stress caused by the volume fluctuation of the electrode that occurs during charge / discharge of the battery is cracked. Therefore, the generation of new cracks and the progress of cracks can be suppressed. In addition, the crack may be formed in any of the inside of the crystal grain of an oxide sintered compact and a crystal grain boundary, and may be open to the surface of an oxide sintered compact. The maximum width of the crack is preferably 2 μm or less. When it exceeds 2 μm, there is a concern that particles near the crack may drop off or the strength of the oxide sintered body may be reduced. In addition, when the maximum width of the crack is smaller than 0.1 μm, the stress generated at the time of charging / discharging of the battery cannot be sufficiently relaxed, and a new crack is generated or the crack progresses, and the electrode and the power generation element 4 are destroyed. there is a possibility. For example, when the average particle diameter of the oxide sintered body is 5 to 20 μm, the maximum width of the crack is more preferably 0.3 to 1 μm.

酸化物焼結体の気孔率は、アルキメデス法により測定された酸化物焼結体の密度と、酸化物焼結体を構成する活物質の理論密度とから算出される相対密度をもとに得られるが、酸化物焼結体の断面の顕微鏡写真等から、断面における気孔の占める面積比率を用いて、周知の方法により算出することもできる。例えば、酸化物焼結体である電極の一部を切り出し、その断面を走査型電子顕微鏡(SEM)にて観察し、任意の5ヶ所について撮影した写真の30μm×30μmの領域について、画像解析により気孔の面積比率を算出し、周知の方法により気孔率に換算すればよい。なお、酸化物焼結体中の気孔の大きさは、直径が2μm以下であることが好ましい。   The porosity of the oxide sintered body is obtained based on the relative density calculated from the density of the oxide sintered body measured by the Archimedes method and the theoretical density of the active material constituting the oxide sintered body. However, it can also be calculated by a well-known method from the micrograph of the cross section of the oxide sintered body, using the area ratio of the pores in the cross section. For example, a part of an electrode that is an oxide sintered body is cut out, a cross section thereof is observed with a scanning electron microscope (SEM), and an image analysis is performed on a 30 μm × 30 μm region of a photograph taken at any five locations. The area ratio of the pores may be calculated and converted into the porosity by a known method. The pores in the oxide sintered body preferably have a diameter of 2 μm or less.

酸化物焼結体の内部に存在するクラックの最大幅は、酸化部焼結体の断面を走査型電子顕微鏡(SEM)等により観察することにより確認できる。たとえば酸化物焼結体である
電極の一部を切り出し、その断面の150μm×150μmの領域について、走査型電子顕微鏡(SEM)によりクラックの有無を確認する。次に、もっとも間隙が大きいクラックの間隙の幅を、例えば30μm×30μmの領域にて20ヵ所測定し、その最大値を電極内部に存在するクラックの最大幅W(図3を参照)とすればよい。なお、必要に応じて、電極の断面にイオンエッチング処理やクロスセクションポリッシング(CP)加工を施すことで、気孔やクラックの形状をより明確に観察することができる。
The maximum width of cracks existing inside the oxide sintered body can be confirmed by observing the cross section of the oxidized portion sintered body with a scanning electron microscope (SEM) or the like. For example, a part of an electrode which is an oxide sintered body is cut out, and the presence or absence of cracks is confirmed with a scanning electron microscope (SEM) in a 150 μm × 150 μm region of the cross section. Next, if the width of the crack having the largest gap is measured, for example, at 20 locations in an area of 30 μm × 30 μm, the maximum value is taken as the maximum width W of the crack existing inside the electrode (see FIG. 3). Good. If necessary, the shape of the pores and cracks can be more clearly observed by performing ion etching or cross section polishing (CP) on the cross section of the electrode.

電極に用いる活物質は、正極1または負極3のいずれかが酸化物焼結体であれば、特に限定されるものではない。正極1に用いる活物質としては、たとえば、リチウムチタン複合酸化物、リチウムコバルト複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムニッケルマンガン複合酸化物、リチウムバナジウム複合酸化物、酸化バナジウムなどが挙げられる。これらの活物質は、すべて酸化物焼結体を形成することができる。特にリチウムニッケルマンガン複合酸化物(LiNiMn[x=0.1〜0.5、y=1.5〜1.9])は、充放電電圧が高く、充放電容量も大きいことから二次電池の高容量化、高エネルギー密度化には特に適した活物質である。一方、電子伝導性の点からはリチウムコバルト複合酸化物が優れており急速充放電を要求される用途ではリチウムコバルト複合酸化物も好適に用いることができる。 The active material used for the electrode is not particularly limited as long as either the positive electrode 1 or the negative electrode 3 is an oxide sintered body. Examples of the active material used for the positive electrode 1 include lithium titanium composite oxide, lithium cobalt composite oxide, manganese dioxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium nickel manganese composite oxide, and lithium vanadium composite oxide. Products, vanadium oxide and the like. All of these active materials can form an oxide sintered body. In particular, lithium nickel manganese composite oxide (LiNi x Mn y O 4 [x = 0.1 to 0.5, y = 1.5 to 1.9]) has a high charge / discharge voltage and a large charge / discharge capacity. Therefore, it is an active material particularly suitable for increasing the capacity and energy density of secondary batteries. On the other hand, lithium cobalt composite oxide is excellent from the viewpoint of electron conductivity, and lithium cobalt composite oxide can also be suitably used in applications that require rapid charge / discharge.

負極3に用いる活物質としては、例えば、酸化チタン、酸化タングステン、酸化モリブデン、酸化ニオブ、酸化バナジウム、酸化鉄等およびこれら酸化物とリチウムからなるリチウム複合酸化物を用いることができる。これらの活物質は、すべて酸化物焼結体を形成することができる。特にリチウムチタン複合酸化物であるチタン酸リチウムは、酸化物の中では充放電電位が低く、充放電容量が大きいことから負極3の活物質として用いると電圧の高い二次電池を構成できる。   Examples of the active material used for the negative electrode 3 include titanium oxide, tungsten oxide, molybdenum oxide, niobium oxide, vanadium oxide, iron oxide, and the like, and lithium composite oxides composed of these oxides and lithium. All of these active materials can form an oxide sintered body. In particular, lithium titanate, which is a lithium-titanium composite oxide, has a low charge / discharge potential and a large charge / discharge capacity among the oxides. Therefore, when used as an active material for the negative electrode 3, a secondary battery having a high voltage can be formed.

これらの活物質を気孔率2〜10%の酸化物焼結体とし、たとえば前述の処理を施して内部にクラックを形成することで、正極1または負極3の充放電に伴う体積変動による応力を緩和することができる。   These active materials are made into an oxide sintered body having a porosity of 2 to 10%, and, for example, by applying the above-described treatment to form cracks inside, the stress due to volume fluctuation accompanying charging / discharging of the positive electrode 1 or the negative electrode 3 can be reduced. Can be relaxed.

このようにクラックの導入により応力を緩和する酸化物焼結体は、チタン酸リチウムの焼結体であることが好ましい。チタン酸リチウムは充放電に伴う体積変動が小さいため、クラックの導入により効果的に応力を緩和することができる。さらに、チタン酸リチウムの結晶構造は、ラムスデライト型であることが好ましい。高温相であるラムスデライト型結晶相は、焼成温度が高く、粒成長して結晶粒子の粒径がより大きくなるため、クラックによる応力緩和効果がより顕著となる。また、ラムスデライト型チタン酸リチウムは、サイクル特性に優れており、スピネル型化合物LiTi12などに比べてリチウムイオンの拡散性が良好である。なお、ラムスデライト型チタン酸リチウムの構成元素を各種金属元素で部分置換したものを用いてもよく、また、焼結助剤として各種金属元素を含む焼結体とすることもできる。酸化物焼結体の結晶相は、X線回折法(XRD)により得られる回折パターンを同定することにより確認できる。 Thus, the oxide sintered body that relieves stress by introducing cracks is preferably a lithium titanate sintered body. Since lithium titanate has a small volume fluctuation accompanying charging and discharging, stress can be effectively relieved by introducing cracks. Furthermore, the crystal structure of lithium titanate is preferably a ramsdellite type. The ramsdellite type crystal phase, which is a high-temperature phase, has a high firing temperature, and grain growth results in a larger crystal grain size. Therefore, the stress relaxation effect due to cracks becomes more prominent. In addition, ramsdellite type lithium titanate has excellent cycle characteristics, and lithium ion diffusibility is better than spinel type compounds Li 4 Ti 5 O 12 and the like. In addition, you may use what substituted the component element of the ramsdellite type lithium titanate by various metal elements, and can also be set as the sintered compact containing various metal elements as a sintering aid. The crystal phase of the oxide sintered body can be confirmed by identifying a diffraction pattern obtained by an X-ray diffraction method (XRD).

負極3としてチタン酸リチウム焼結体を用いる場合、正極1には前述のような活物質を用いればよい。この場合、負極3が気孔率2〜10%の内部にクラックを有する酸化物焼結体とすることで、高容量化と充放電時の応力緩和を実現できる。なお、正極1についても、気孔率2〜10%の内部にクラックを有していることが好ましいが、気孔率が10%を超え、内部にクラックを有していないものでも構わない。   When a lithium titanate sintered body is used as the negative electrode 3, the active material as described above may be used for the positive electrode 1. In this case, when the negative electrode 3 is an oxide sintered body having cracks in the porosity of 2 to 10%, it is possible to realize high capacity and stress relaxation during charge and discharge. In addition, although it is preferable that the positive electrode 1 also has a crack in the inside of porosity 2-10%, the porosity may exceed 10% and it may not have a crack inside.

正極1としてチタン酸リチウム焼結体を用いる場合には、負極3の活物質として、例えば、黒鉛、ハードカーボン、ソフトカーボン等の炭素材料、LiおよびLiを挿入脱離可
能な合金等を用いることもできる。この場合においても、正極1が気孔率2〜10%の内部にクラックを有する酸化物焼結体であればよい。
When a lithium titanate sintered body is used as the positive electrode 1, for example, a carbon material such as graphite, hard carbon, and soft carbon, an alloy capable of inserting and removing Li and Li, and the like are used as the active material of the negative electrode 3. You can also. Also in this case, the positive electrode 1 may be an oxide sintered body having cracks inside with a porosity of 2 to 10%.

なお、正極1および負極3の厚さはそれぞれ20μm〜200μmとすることが好ましい。これにより、電池容量を得るために必要な活物質の絶対量が確保できるとともに、良好な充放電特性の二次電池が得られる。   In addition, it is preferable that the thickness of the positive electrode 1 and the negative electrode 3 shall be 20 micrometers-200 micrometers, respectively. Thereby, the absolute amount of the active material necessary for obtaining the battery capacity can be secured, and a secondary battery having good charge / discharge characteristics can be obtained.

固体電解質層2には、イオンを通し、正負極のショートを防止することが求められる。固体電解質層2の厚さは、イオンの通り道としてその移動距離を短くするために薄ければ薄いほどよく、具体的には、固体電解質層2全体の厚さを10μm以下とすることが好ましく、さらには3μm以下、より好ましくは1μm以下とするのがよい。固体電解質層2の厚さが薄いと固体電解質層2の内部抵抗が減少し、出力特性などの電池性能が向上する。また、固体電解質層2の厚さを薄くすることができれば、同一体積の二次電池と比較して活物質をより多く詰め込めるため、高容量化が進み、結果としてエネルギー密度の向上にも寄与する。ただし、短絡を防止するために、絶縁破壊やピンホールによる短絡を起こさない必要最低限の厚さを確保する必要がある。   The solid electrolyte layer 2 is required to pass ions and prevent positive and negative electrodes from being short-circuited. The thickness of the solid electrolyte layer 2 is preferably as thin as possible in order to shorten the moving distance as a path for ions, and specifically, the total thickness of the solid electrolyte layer 2 is preferably 10 μm or less, Furthermore, it is good to set it as 3 micrometers or less, More preferably, it is 1 micrometer or less. If the thickness of the solid electrolyte layer 2 is thin, the internal resistance of the solid electrolyte layer 2 is reduced, and battery performance such as output characteristics is improved. Further, if the thickness of the solid electrolyte layer 2 can be reduced, more active material can be packed as compared with the secondary battery having the same volume, so that the capacity is increased and as a result, the energy density is also improved. . However, in order to prevent a short circuit, it is necessary to ensure a minimum thickness that does not cause a short circuit due to dielectric breakdown or pinholes.

固体電解質層2としては、たとえば、高分子固体電解質や無機固体電解質を用いることができる。高分子固体電解質としては、たとえばポリエチレンオキシド、シロキサンポリマー、ホスファゼンポリマーのようなドライポリマー電解質が挙げられる。高分子固体電解質を用いる場合は、たとえば、セパレータにドライポリマー電解質の前駆体溶液を含浸させた後、加熱により前駆体溶液を硬化させて使用することができる。セパレータとしては、耐熱性の高い樹脂フィルム、あるいは、ガラスフィルター、セラミックスフィルターなどを用いればよい。   As the solid electrolyte layer 2, for example, a polymer solid electrolyte or an inorganic solid electrolyte can be used. Examples of the polymer solid electrolyte include dry polymer electrolytes such as polyethylene oxide, siloxane polymer, and phosphazene polymer. In the case of using a polymer solid electrolyte, for example, after impregnating a precursor solution of a dry polymer electrolyte in a separator, the precursor solution can be cured by heating and used. As the separator, a resin film with high heat resistance, a glass filter, a ceramic filter, or the like may be used.

無機固体電解質としては、イオン伝導パスがランダムに存在することで電極の体積変化に伴う界面の形態変化に追従し界面抵抗の増加を抑制することができると考えられる、リチウムを含むガラス系固体電解質が好ましく、例えばLi1+xZrSi3−x12、Li1+xZr2−x/3Si3−x12−2x/3(1.5<x<2.2)、Li1+xTi2−x(PO(M=Al、Sc、Y、またはLa、0<x<2)、Li0.5−3x0.5+xTiO(M=La、Pr、Nd、またはSm、0<x<1/6)、LiSO、LiSiO、LiPO、LiGeO、LiVO、LiMoO、LiZrO、LiCO、LiO、LiPON、SiO、ZrO、V、P、B、Al、TiO、ZnGeO、LiS、SiS、LiSe、SiSe、B、P、GeS、LiI、LiW、LiNbO等が挙げられる。なかでもリン酸リチウムオキシナイトライド(以下、LIPONともいう)は室温で1×10−6S/cm程度の高いイオン伝導度を持ち、電気化学的に広い電位範囲にわたって安定であることが知られており好適である。 As an inorganic solid electrolyte, a glass-based solid electrolyte containing lithium, which is thought to be able to suppress the increase in interfacial resistance by following the change in the shape of the interface accompanying the change in volume of the electrode by the presence of random ion conduction paths. For example, Li 1 + x Zr 2 Si x P 3-x O 12 , Li 1 + x Zr 2-x / 3 Si x P 3-x O 12-2x / 3 (1.5 <x <2.2), Li 1 + x M x Ti 2-x (PO 4 ) 3 (M = Al, Sc, Y, or La, 0 <x <2), Li 0.5-3x M 0.5 + x TiO 3 (M = La, Pr, Nd or Sm, 0 <x <1/6), Li 2 SO 4 , Li 4 SiO 4 , Li 3 PO 4 , Li 4 GeO 4 , Li 3 VO 4 , Li 2 MoO 4 , Li 4 ZrO 4 , Li 2 CO 3, Li O, LiPON, SiO 2, ZrO 2, V 2 O 5, P 2 O 5, B 2 O 3, Al 2 O 3, TiO 2, Zn 2 GeO 4, Li 2 S, SiS 2, Li 2 Se, SiSe 2 , B 2 S 3 , P 2 S 5 , GeS 2 , LiI, LiW 2 O 7 , LiNbO 3 and the like. Among them, lithium phosphate oxynitride (hereinafter also referred to as LIPON) has a high ionic conductivity of about 1 × 10 −6 S / cm at room temperature and is known to be electrochemically stable over a wide potential range. It is suitable.

無機固体電解質を用いる場合は、たとえば、正極1および負極3の表面にそれぞれ第1固体電解質層2Pおよび第2固体電解質層2Nを、液相合成法または気相合成法により形成し、2Pと2Nとが対向するように正極1と負極3とを重ね合わせ、接合することで発電要素8が得られる。   In the case of using an inorganic solid electrolyte, for example, the first solid electrolyte layer 2P and the second solid electrolyte layer 2N are formed on the surfaces of the positive electrode 1 and the negative electrode 3 by a liquid phase synthesis method or a gas phase synthesis method, respectively. The power generation element 8 is obtained by superimposing and joining the positive electrode 1 and the negative electrode 3 so as to face each other.

また、第1固体電解質2Pと第2固体電解質2Nとは、同じ固体電解質材料から形成されていても、異なる固体電解質材料で形成されていてもよいが、両者を強固に接合する観点から第1固体電解質2Pと第2固体電解質2Nとは、同じ固体電解質材料にて形成されていることが好ましい。   In addition, the first solid electrolyte 2P and the second solid electrolyte 2N may be formed of the same solid electrolyte material or different solid electrolyte materials. However, the first solid electrolyte 2P and the second solid electrolyte 2N may be formed from the viewpoint of firmly bonding the two. The solid electrolyte 2P and the second solid electrolyte 2N are preferably formed of the same solid electrolyte material.

正極側集電層4Pおよび負極側集電層4Nには、カーボン材料をフィラーとした導電性カーボンインクや、アルミニウム、金、白金などをフィラーとした導電性金属インク、ITOガラス、酸化スズなどの酸化物をフィラーとした導電性酸化物インクなどを塗布し、乾燥させたものを用いることができる。また、白金やアルミニウム、チタンなどの金属を蒸着して形成したものを用いることもできる。   The positive current collecting layer 4P and the negative current collecting layer 4N are made of conductive carbon ink using a carbon material as a filler, conductive metal ink using a filler such as aluminum, gold, or platinum, ITO glass, tin oxide, etc. A conductive oxide ink using an oxide as a filler can be applied and dried. Moreover, what formed by vapor-depositing metals, such as platinum, aluminum, and titanium, can also be used.

以上、本実施形態の二次電池について説明したが、本発明は本実施形態に限定されるものではなく、本発明を逸脱しない範囲で種々変更したものにも適用することができる。   The secondary battery of the present embodiment has been described above, but the present invention is not limited to the present embodiment, and can be applied to various modifications without departing from the present invention.

本実施形態の二次電池を製造する方法について説明する。   A method for manufacturing the secondary battery of this embodiment will be described.

まず、正極1および負極3を作製する。酸化物焼結体は、例えば市販の酸化物粉末や、それらを混合して仮焼した仮焼粉末を、ボールミル等の周知の粉砕方法により平均粒径0.01〜10μm程度に粉砕し、粉砕した原料粉末とブチラール等のバインダとを、必要に応じて分散剤、可塑剤を加えた水、またはトルエン等の有機溶剤を溶媒として周知の方法でそれぞれ混合し、スラリーを作製する。このスラリーをポリエチレンテレフタレート(PET)製フィルム等の基材フィルム上に周知の方法で塗工、乾燥して所望の厚さのグリーンシートを作製する。このとき、スラリーを乾燥造粒し、ロールプレスによりグリーンシートを作製したり、所望の形状にプレス成形してもよい。   First, the positive electrode 1 and the negative electrode 3 are produced. The oxide sintered body is, for example, a commercially available oxide powder or a calcined powder obtained by mixing and calcining them to a mean particle size of about 0.01 to 10 μm by a well-known crushing method such as a ball mill. The raw material powder and a binder such as butyral are mixed by a known method using a dispersant, water added with a plasticizer, or an organic solvent such as toluene as a solvent, if necessary, to prepare a slurry. The slurry is coated on a base film such as a polyethylene terephthalate (PET) film by a known method and dried to produce a green sheet having a desired thickness. At this time, the slurry may be dried and granulated, and a green sheet may be produced by roll pressing, or may be press-formed into a desired shape.

得られたグリーンシートを所望の形状に打ち抜き、必要に応じて脱脂処理を行った後、焼成することで、正極1および負極3となる酸化物焼結体が得られる。焼成温度は原料粉末である酸化物の焼結性に応じて適宜選択すればよく、例えばLi−Mn−O系酸化物では700〜1100℃、Li−Co−O系酸化物では700〜1200℃、Li−Ti−O系酸化物では800〜1250℃とすることで、気孔率2〜20%の酸化物焼結体を得ることができる。   The obtained green sheet is punched into a desired shape, degreased as necessary, and then fired to obtain an oxide sintered body that becomes the positive electrode 1 and the negative electrode 3. The firing temperature may be appropriately selected according to the sinterability of the oxide that is the raw material powder, for example, 700 to 1100 ° C. for Li—Mn—O-based oxide, and 700 to 1200 ° C. for Li—Co—O-based oxide. In the case of Li-Ti-O-based oxides, an oxide sintered body having a porosity of 2 to 20% can be obtained by adjusting the temperature to 800 to 1250 ° C.

さらに、気孔率2〜10%の酸化物焼結体を得るには、平均粒径0.1〜5μmに粉砕した原料粉末を用いて、焼成温度をたとえばLi−Mn−O系酸化物では950〜1100℃、Li−Co−O系酸化物では950〜1200℃、Li−Ti−O系酸化物では1000〜1250℃とすればよい。さらに、グリーンシートや成形体に、必要に応じてたとえば0.5〜3ton/cmの圧力で加圧処理を施したり、焼成後の酸化物焼結体表面に研磨等の加工を施してもよい。 Furthermore, in order to obtain an oxide sintered body having a porosity of 2 to 10%, a raw material powder pulverized to an average particle diameter of 0.1 to 5 μm is used, and a firing temperature is set to 950 for Li-Mn—O-based oxides, for example. ˜1100 ° C., 950 to 1200 ° C. for Li—Co—O based oxide, and 1000 to 1250 ° C. for Li—Ti—O based oxide. Further, the green sheet or the molded body may be subjected to pressure treatment at a pressure of 0.5 to 3 ton / cm 2 as necessary, or the surface of the sintered oxide body after polishing may be subjected to processing such as polishing. Good.

次に、気孔率2〜10%の酸化物焼結体にクラックを導入する。例えば、酸化物焼結体の平均粒径が5〜20μmの場合、800μA/cm以下の電流値で公称容量の20%以上充電した後、放電する、低速大深度充電処理を行う。このとき、酸化物焼結体の面積に対して電流値が大きすぎたり、充電深度が大きすぎると、導入したクラックの最大幅が大きくなり、クラック近傍の粒子が脱落したり酸化物焼結体の強度が低下する懸念があり、電流値が小さすぎたり、充電深度が小さすぎると、クラックが形成されないため応力緩和効果が得られない。なお、平均粒径が大きい酸化物焼結体にクラックを導入する場合は電流値をより大きく調整し、平均粒径が小さい酸化物焼結体の場合は電流値をより小さく調整することで、所望のクラックを導入できる。このような低速大深度充電処理は、酸化物焼結体と電解液とLi金属箔とを用いて、簡易的な電池を構成して行えばよいが、二次電池形成後に行ってもよい。また、酸化物焼結体へのクラックの導入は、酸化物焼結体に例えば700℃以上の熱処理を行った後、急冷することでも可能である。 Next, cracks are introduced into the oxide sintered body having a porosity of 2 to 10%. For example, when the average particle diameter of the oxide sintered body is 5 to 20 μm, a low-speed large-depth charging process is performed in which the battery is discharged after charging 20% or more of the nominal capacity at a current value of 800 μA / cm 2 or less. At this time, if the current value is too large or the charging depth is too large with respect to the area of the oxide sintered body, the maximum width of the introduced crack increases, and particles near the crack fall off or the oxide sintered body If the current value is too small or the charging depth is too small, cracks are not formed, and the stress relaxation effect cannot be obtained. In addition, when introducing cracks in the oxide sintered body having a large average particle diameter, the current value is adjusted to be larger, and in the case of an oxide sintered body having a small average particle diameter, the current value is adjusted to be smaller. Desired cracks can be introduced. Such a low-speed, large-depth charging process may be performed by forming a simple battery using an oxide sintered body, an electrolytic solution, and a Li metal foil, but may be performed after forming a secondary battery. In addition, cracks can be introduced into the oxide sintered body by, for example, subjecting the oxide sintered body to heat treatment at 700 ° C. or higher and then rapidly cooling it.

次に、正極1および負極3の一方の表面に、例えばLiPOをターゲットとして、窒素雰囲気下で高周波マグネトロンスパッタ法により、リン酸リチウムオキシナイトライドガラスからなる第1固体電解質層2P、第2固体電解質層2Nをそれぞれ形成する。 Next, the first solid electrolyte layer 2P made of lithium phosphate oxynitride glass is formed on one surface of the positive electrode 1 and the negative electrode 3 by a high frequency magnetron sputtering method using, for example, Li 3 PO 4 as a target in a nitrogen atmosphere. Two solid electrolyte layers 2N are respectively formed.

さらに、第1固体電解質層2P、第2固体電解質層2Nが対向するように正極1および負極3を重ね合わせ、非酸化雰囲気中にて300〜800℃で接合することで、発電要素8が得られる。なお、気孔率2〜10%の酸化物焼結体である正極1または負極3上に形成された固体電解質層2の表面に、対向電極として、例えば金属リチウムを真空蒸着法により形成し、発電要素8としても構わない。   Furthermore, the power generation element 8 is obtained by stacking the positive electrode 1 and the negative electrode 3 so that the first solid electrolyte layer 2P and the second solid electrolyte layer 2N face each other and joining them at 300 to 800 ° C. in a non-oxidizing atmosphere. It is done. In addition, as a counter electrode, for example, metallic lithium is formed on the surface of the solid electrolyte layer 2 formed on the positive electrode 1 or the negative electrode 3 which is an oxide sintered body having a porosity of 2 to 10% by a vacuum evaporation method to generate power. Element 8 may be used.

このようにして形成された発電要素8は、収納容器内に収容されて使用される。収納容器は、ラミネート型リチウムイオン電池や、従来のコイン電池などで使用されている外装体および集電体がいずれも適用可能である。なお、本発明のリチウム二次電池の形状は角型、円筒型、ボタン型、コイン型、扁平型などに限定されるものではなく、また、正極端子および負極端子を備える絶縁性の容器を用いてもよい。   The power generation element 8 formed in this way is used by being accommodated in a storage container. As the storage container, any of an outer package and a current collector used in a laminated lithium ion battery or a conventional coin battery can be applied. The shape of the lithium secondary battery of the present invention is not limited to a square shape, a cylindrical shape, a button shape, a coin shape, a flat shape, etc., and an insulating container having a positive electrode terminal and a negative electrode terminal is used. May be.

(1)電極用酸化物焼結体の作製工程
電極用活物質として、LiNi0.5Mn1.5、LiTiおよびLiTi12の粉末を準備した。LiTiおよびLiTi12の粉末は、平均粒径5μmのLiCOと平均粒径1μmのTiOを所定の比率で混合し、700℃にて仮焼した後、振動ミルにて平均粒径1μmに粉砕したものを用いた。LiNi0.5Mn1.5としては、市販の平均粒径17μmの粉末を、振動ミルにて平均粒径1μmに粉砕して用いた。これらの原料粉末を、トルエンを溶媒として、バインダであるブチラールとともにボールミルでそれぞれ混合し、スラリーを調整した。得られたスラリーをポリエリレンテレフタレート(PET)フィルム上に塗工した後、乾燥させて、厚さが125μmのグリーンシートを作製した。得られたグリーンシートを、冷間静水圧プレスにて1ton/cmで加圧処理した後、直径18mmに打ち抜き、表1に示す焼成温度で焼成して、直径15mm、厚さ100μmの円板状の酸化物焼結体A〜Gを作製した。なお、LiNi0.5Mn1.5焼結体については、焼成後に700℃で10時間の熱処理を施した。
(1) Production process of oxide sintered body for electrode As the electrode active material, powders of LiNi 0.5 Mn 1.5 O 4 , Li 2 Ti 3 O 7 and Li 4 Ti 5 O 12 were prepared. The powders of Li 2 Ti 3 O 7 and Li 4 Ti 5 O 12 were prepared by mixing LiCO 3 with an average particle diameter of 5 μm and TiO 2 with an average particle diameter of 1 μm at a predetermined ratio, calcining at 700 ° C., and vibration. What was grind | pulverized to the average particle diameter of 1 micrometer with the mill was used. As LiNi 0.5 Mn 1.5 O 4 , a commercially available powder having an average particle diameter of 17 μm was pulverized to an average particle diameter of 1 μm with a vibration mill. These raw material powders were mixed by a ball mill together with butyral as a binder using toluene as a solvent to prepare a slurry. The obtained slurry was coated on a polyerylene terephthalate (PET) film and then dried to produce a green sheet having a thickness of 125 μm. The obtained green sheet was pressed at 1 ton / cm 2 with a cold isostatic press, then punched out to a diameter of 18 mm and fired at the firing temperature shown in Table 1 to obtain a disk having a diameter of 15 mm and a thickness of 100 μm. Oxide sintered bodies A to G were produced. The LiNi 0.5 Mn 1.5 O 4 sintered body was subjected to a heat treatment at 700 ° C. for 10 hours after firing.

得られた酸化物焼結体の気孔率、平均粒径を表1に示す。酸化物焼結体の気孔率は、イオンエッチング加工した断面を走査型電子顕微鏡(SEM)にて観察し、任意の5ヶ所について撮影した写真の30μm×30μmの領域について、画像解析により気孔の面積比率を算出し、気孔率に換算した。酸化物焼結体の平均粒径も同様に、断面写真の画像解析により算出した。   Table 1 shows the porosity and average particle diameter of the obtained oxide sintered body. The porosity of the oxide sintered body is determined by observing the ion-etched cross-section with a scanning electron microscope (SEM) and analyzing the area of the pores by image analysis for 30 μm × 30 μm regions of photographs taken at any five locations. The ratio was calculated and converted to porosity. Similarly, the average particle size of the oxide sintered body was calculated by image analysis of a cross-sectional photograph.

酸化物焼結体の結晶相は、得られた酸化物焼結体を粉砕して、X線回折法(XRD)により回折パターンを測定することで確認した。特にチタン酸リチウムの焼結体については、ラムスデライト型結晶相の(110)回折ピーク強度およびスピネル型結晶相の(111)回折ピーク強度を用いて、ラムスデライト型結晶相の体積比率を算出し、表1に記載した。   The crystal phase of the oxide sintered body was confirmed by pulverizing the obtained oxide sintered body and measuring a diffraction pattern by an X-ray diffraction method (XRD). In particular, for lithium titanate sintered bodies, the volume ratio of the ramsdellite-type crystal phase was calculated using the (110) diffraction peak intensity of the ramsdelite-type crystal phase and the (111) diffraction peak intensity of the spinel-type crystal phase. The results are shown in Table 1.

(2)酸化物焼結体へのクラック導入処理
B〜Gの酸化物焼結体にクラックを導入するため、以下の処理を行った。B〜Gの酸化物焼結体を一方の電極とし、Li金属箔を対極として、電解液を含浸したセパレータを介して対向させ、酸化物焼結体のセパレータと接している面の面積に対して、200μA/cmで180分間(条件1)の定電流充電を行った。電解液には、1mol/LのLiPFを含むエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合溶液を、EC:DMCの体積比率を7:3として用いた。
(2) Crack Introducing Treatment to Oxide Sintered Body In order to introduce cracks into the B to G oxide sintered bodies, the following treatment was performed. B to G oxide sintered body as one electrode, Li metal foil as a counter electrode, facing each other through a separator impregnated with an electrolyte, and with respect to the area of the surface of the oxide sintered body in contact with the separator Then, constant current charging was performed at 200 μA / cm 2 for 180 minutes (condition 1). As the electrolytic solution, a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) containing 1 mol / L LiPF 6 was used at a volume ratio of EC: DMC of 7: 3.

クラックを導入した酸化物焼結体について、クラックの有無と、その最大幅を以下のよ
うな方法で確認した。クラック導入処理後の酸化物焼結体の断面をイオンエッチング加工し、150μm×150μmの領域について、走査型電子顕微鏡(SEM)によりクラックの有無を確認した。確認したクラックのうち、もっとも間隙の幅が大きいクラックの間隙幅を、30μm×30μmの領域にて20ヵ所測定し、その最大値を電極内部に存在するクラックの最大幅として表2に示した。
About the oxide sintered compact which introduce | transduced the crack, the presence or absence of a crack and the maximum width were confirmed by the following methods. The cross section of the oxide sintered body after the crack introduction treatment was subjected to ion etching processing, and the presence of cracks was confirmed with a scanning electron microscope (SEM) in a region of 150 μm × 150 μm. Among the confirmed cracks, the gap width of the crack having the largest gap width was measured at 20 locations in a 30 μm × 30 μm region, and the maximum value was shown in Table 2 as the maximum width of cracks existing inside the electrode.

条件1でクラック導入処理を行った場合は、クラックの最大幅は2μm以下で、組織の脱落などは観察されなかった。   When the crack introduction treatment was performed under the condition 1, the maximum width of the crack was 2 μm or less, and no drop of the structure was observed.

(3)電極への固体電解質層の形成工程
酸化物焼結体Aおよびクラック導入処理を行った酸化物焼結体B〜Gの一方の表面に、高周波マグネトロンスパッタ装置を用いて、厚み0.5μmの固体電解質層をそれぞれ形成した。ターゲットにはリン酸リチウム焼結体を用い、圧力5mtorrの窒素雰囲気中で、成膜時間は5時間であった。
(3) Step of forming solid electrolyte layer on electrode On the surface of oxide sintered body A and oxide sintered bodies B to G subjected to crack introduction treatment, a thickness of 0. Each 5 μm solid electrolyte layer was formed. A lithium phosphate sintered body was used as a target, and the film formation time was 5 hours in a nitrogen atmosphere at a pressure of 5 mtorr.

(4)発電要素の作製工程
固体電解質層を形成した各酸化物焼結体を、表2に示すように正極および負極として組合せ、正極側の固体電解質層と負極側の固体電解質層とが向かい合うようにホットプレス装置にセットし、0.1MPaの窒素雰囲気下、温度800℃、圧力10MPaで固体電解質同士を加熱接合して発電要素を作製した(試料No.1〜6、8)。試料No.7については、固体電解質層を形成したチタン酸リチウム焼結体の固体電解質層上に、ステンレス製マスクを用いてLi金属を蒸着して負極とし、発電要素を作製した。また、試料No.8に用いた電極は、いずれもクラック導入処理を行わなかった。
(4) Production process of power generation element Each oxide sintered body on which the solid electrolyte layer is formed is combined as a positive electrode and a negative electrode as shown in Table 2, and the solid electrolyte layer on the positive electrode side faces the solid electrolyte layer on the negative electrode side. Thus, a power generation element was produced by heating and joining the solid electrolytes at a temperature of 800 ° C. and a pressure of 10 MPa in a nitrogen atmosphere of 0.1 MPa (Sample Nos. 1 to 6, 8). Sample No. For No. 7, a lithium metal titanate sintered solid electrolyte layer on which a solid electrolyte layer was formed was vapor-deposited with Li metal using a stainless steel mask to produce a power generation element. Sample No. None of the electrodes used in No. 8 was subjected to crack introduction treatment.

(5)正負極集電層の形成工程
得られた発電要素の正極および負極表面に、ステンレス製マスクを用いて直径14mmの白金を蒸着し、集電層を形成した。
(5) Step of forming positive and negative current collecting layers Platinum having a diameter of 14 mm was vapor-deposited on the positive electrode and negative electrode surfaces of the obtained power generation element using a stainless steel mask to form a current collecting layer.

(6)電池組立工程
ステンレス製の正極側電池ケースと負極側電池ケースとの間に、集電層を形成した発電要素を収納し、両電池ケースの周囲をガスケットを介してかしめ、直径20mm、厚み1.6mmのコイン型の二次電池を製作した。
(6) Battery assembly process A power generation element in which a current collecting layer is formed is housed between a stainless steel positive battery case and a negative battery case, and the circumference of both battery cases is caulked through a gasket, with a diameter of 20 mm, A coin-type secondary battery having a thickness of 1.6 mm was manufactured.

(7)二次電池の評価試験
(1)〜(6)の工程によって得られた二次電池の性能を、充放電試験により確認した。試験条件は以下の通りとした。ただし、試料No.3については、充放電電圧の上限を4.7Vとして試験を行った。
(7) Evaluation test of secondary battery The performance of the secondary battery obtained by the steps (1) to (6) was confirmed by a charge / discharge test. The test conditions were as follows. However, Sample No. For No. 3, the test was conducted with the upper limit of the charge / discharge voltage set to 4.7V.

充放電電圧範囲:上限3.7V、下限1.5V
充放電電流値:10μA(定電流充放電)
測定温度:30℃
初期充電容量と初期放電容量を表2に示す。
Charge / discharge voltage range: upper limit 3.7V, lower limit 1.5V
Charge / discharge current value: 10 μA (constant current charge / discharge)
Measurement temperature: 30 ° C
Table 2 shows the initial charge capacity and the initial discharge capacity.

充放電試験の結果、試料No.1〜7は、充放電が繰り返し可能であることを確認した。一方、気孔率が7%でクラックのない酸化物焼結体を負極として用いた試料No.8では、初期の充放電後、起電力が得られなくなった。   As a result of the charge / discharge test, Sample No. 1-7 confirmed that charging / discharging could be repeated. On the other hand, sample No. 1 using a sintered oxide having a porosity of 7% and no crack as a negative electrode. In No. 8, no electromotive force was obtained after the initial charge / discharge.

1・・・正極
2・・・固体電解質層
3・・・負極
4P・・正極側集電層
4N・・負極側集電層
5・・・正極側電池ケース
6・・・ガスケット
7・・・負極側電池ケース
8・・・発電要素
9・・・クラック
W・・・クラックの最大幅
DESCRIPTION OF SYMBOLS 1 ... Positive electrode 2 ... Solid electrolyte layer 3 ... Negative electrode 4P .. Positive electrode side current collection layer 4N ... Negative electrode side current collection layer 5 ... Positive electrode side battery case 6 ... Gasket 7 ... Negative side battery case 8 ... Power generation element 9 ... Crack W ... Maximum width of crack

Claims (4)

固体電解質層を介して一対の電極が接合された発電要素を備え、前記一対の電極のうち少なくともいずれか一方が酸化物焼結体からなり、該酸化物焼結体は気孔率が2〜10%であるとともに、クラックを前記酸化物焼結体の内部に有することを特徴とする二次電池。   A power generation element having a pair of electrodes joined via a solid electrolyte layer, at least one of the pair of electrodes is made of an oxide sintered body, and the oxide sintered body has a porosity of 2 to 10 %, And has a crack inside the oxide sintered body. 前記クラックの最大幅が、2μm以下であることを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein a maximum width of the crack is 2 μm or less. 前記酸化物焼結体が、チタン酸リチウムの焼結体であることを特徴とする請求項1または2に記載の二次電池。   The secondary battery according to claim 1, wherein the oxide sintered body is a sintered body of lithium titanate. 前記チタン酸リチウムの結晶構造が、ラムスデライト型であることを特徴とする請求項3に記載の二次電池。   The secondary battery according to claim 3, wherein the crystal structure of the lithium titanate is a ramsdellite type.
JP2011234068A 2011-10-25 2011-10-25 Secondary battery Active JP5738150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234068A JP5738150B2 (en) 2011-10-25 2011-10-25 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234068A JP5738150B2 (en) 2011-10-25 2011-10-25 Secondary battery

Publications (2)

Publication Number Publication Date
JP2013093188A true JP2013093188A (en) 2013-05-16
JP5738150B2 JP5738150B2 (en) 2015-06-17

Family

ID=48616171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234068A Active JP5738150B2 (en) 2011-10-25 2011-10-25 Secondary battery

Country Status (1)

Country Link
JP (1) JP5738150B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037270A1 (en) * 2013-09-13 2015-03-19 株式会社日立製作所 Solid electrolyte, and all-solid ion secondary battery using same
JP2015185337A (en) * 2014-03-24 2015-10-22 日本碍子株式会社 All-solid battery
JP2018116939A (en) * 2018-04-16 2018-07-26 日本碍子株式会社 All-solid battery
EP3767711A4 (en) * 2018-03-15 2022-06-08 SK Innovation Co., Ltd. Secondary battery electrode, and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283624A (en) * 1998-03-31 1999-10-15 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture thereof
JP2006261008A (en) * 2005-03-18 2006-09-28 Toshiba Corp Inorganic solid electrolyte battery and manufacturing method of the same
JP2010177024A (en) * 2009-01-29 2010-08-12 Sumitomo Electric Ind Ltd Positive electrode for nonaqueous electrolyte battery, method for manufacturing the same, and nonaqueous electrolyte battery
JP2010212161A (en) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283624A (en) * 1998-03-31 1999-10-15 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture thereof
JP2006261008A (en) * 2005-03-18 2006-09-28 Toshiba Corp Inorganic solid electrolyte battery and manufacturing method of the same
JP2010177024A (en) * 2009-01-29 2010-08-12 Sumitomo Electric Ind Ltd Positive electrode for nonaqueous electrolyte battery, method for manufacturing the same, and nonaqueous electrolyte battery
JP2010212161A (en) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037270A1 (en) * 2013-09-13 2015-03-19 株式会社日立製作所 Solid electrolyte, and all-solid ion secondary battery using same
JP2015185337A (en) * 2014-03-24 2015-10-22 日本碍子株式会社 All-solid battery
EP3767711A4 (en) * 2018-03-15 2022-06-08 SK Innovation Co., Ltd. Secondary battery electrode, and method for producing same
US11996539B2 (en) 2018-03-15 2024-05-28 Sk On Co., Ltd. Secondary battery electrode, and method for producing same
JP2018116939A (en) * 2018-04-16 2018-07-26 日本碍子株式会社 All-solid battery

Also Published As

Publication number Publication date
JP5738150B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP7009390B2 (en) Lithium-ion battery and its manufacturing method
US9368828B2 (en) All-solid battery and manufacturing method therefor
WO2013137224A1 (en) All solid state cell and method for producing same
JP2008059843A (en) Solid electrolytic layer and its manufacturing method
KR20130055644A (en) Lithium rechargeable battery
JP5811191B2 (en) All-solid battery and method for manufacturing the same
JP2016169142A (en) Garnet-type lithium ion-conducting oxide and all solid lithium ion secondary battery
JP2018166020A (en) All-solid battery and manufacturing method thereof
JP2016051539A (en) Solid electrolytic material, and all-solid battery
JP5738150B2 (en) Secondary battery
CN113056835A (en) All-solid-state battery
JP7189163B2 (en) lithium secondary battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2018212038A1 (en) Lithium titanate sintered plate
JP6801778B2 (en) All solid state battery
JP2013012338A (en) Lithium secondary battery
JP7104148B2 (en) Lithium secondary battery
CN113228375A (en) All-solid-state battery
JP6392493B1 (en) Lithium titanate sintered plate
JP5902579B2 (en) Secondary battery and manufacturing method thereof
JP2019057495A (en) Solid electrolyte sheet, method for producing same and all-solid-state secondary battery
CN112074987B (en) Lithium secondary battery
CN112088459B (en) Lithium secondary battery
JP7022207B2 (en) Lithium secondary battery
KR101627848B1 (en) Solid electrolyte for all solid state rechargeable lithium battery, method for preparing the same, and all solid state rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5738150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150