JP2013092431A - Heat source position angle detection method - Google Patents

Heat source position angle detection method Download PDF

Info

Publication number
JP2013092431A
JP2013092431A JP2011234130A JP2011234130A JP2013092431A JP 2013092431 A JP2013092431 A JP 2013092431A JP 2011234130 A JP2011234130 A JP 2011234130A JP 2011234130 A JP2011234130 A JP 2011234130A JP 2013092431 A JP2013092431 A JP 2013092431A
Authority
JP
Japan
Prior art keywords
heat source
center
detection
pixels
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011234130A
Other languages
Japanese (ja)
Inventor
Hirobumi Morimoto
博文 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2011234130A priority Critical patent/JP2013092431A/en
Publication of JP2013092431A publication Critical patent/JP2013092431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely detect the position angle from an infrared camera to a heat source without increasing the number of pixels of the infrared camera even when the size of the heat source is much smaller than a detection range of one pixel of the infrared camera.SOLUTION: The angle of even a heat source which is the farthest away from the infrared camera in a detection range and much smaller than a detection range of one pixel is precisely detected by shifting the focus of the lens of the infrared camera, and making a large/small comparison of data that three pixels on which infrared light is incident output.

Description

本発明は赤外線カメラから得られるデータを元にカメラ視野中心から熱源中心までの位置角度を求める方法に関する。   The present invention relates to a method for obtaining a position angle from a camera visual field center to a heat source center based on data obtained from an infrared camera.

従来の赤外線カメラから得られるデータを用い熱源位置を求める方法では特開平10−241077公報の実施例に見られるように、赤外線カメラから得られる数画素データを元に熱源位置を求めている。   In the conventional method for obtaining the heat source position using the data obtained from the infrared camera, the heat source position is obtained based on several pixel data obtained from the infrared camera, as can be seen in the embodiment of JP-A-10-241077.

特開平10−241077JP 10-241077

上記の方法で熱源の位置を求めるためには少なくとも求める熱源の大きさに対し数画素以上の画素で熱源を検出する必要があり、赤外線カメラの有効画素数によって検出できる距離、検出できる熱源の大きさに制約があり、より、広範囲な条件で小さな熱源中心までの角度を精度良く検出するためには、より多くの画素を持った高価な赤外線カメラが必要になり、検出システムが高価になってしまう問題がある。もし数画素データではなく1画素データで検出を行おうとすると、1画素の検出範囲よりはるかに検出熱源が小さくなる場合、熱源が画素のどの位置にあるかわからないため、この場合でも検出角度精度が画素密度で決定されてしまうという問題があった。   In order to determine the position of the heat source by the above method, it is necessary to detect the heat source with at least several pixels for the size of the heat source to be obtained, the distance that can be detected by the number of effective pixels of the infrared camera, the size of the heat source that can be detected In order to accurately detect the angle to the center of a small heat source in a wider range of conditions, an expensive infrared camera with more pixels is required, and the detection system becomes expensive. There is a problem. If detection is performed with one pixel data instead of several pixel data, if the detection heat source is much smaller than the detection range of one pixel, it is not known where the heat source is in the pixel. There was a problem that it was determined by the pixel density.

上記の課題を解決するために本発明の熱源位置角度検出方法は、赤外線カメラの出力データよりカメラの視野中心から熱源中心までの位置角度を検出する方法であって、熱源の大きさが赤外線カメラの1画素の検出範囲より小さくなるような条件であっても、熱源から放射される赤外線が連続した横方向、縦方向各3の赤外線検出画素に入射するよう光学系を設定し3画素が出力する出力データの大小を比較し、カメラの視野中心から熱源中心までの角度を精度良く求める。精度よく求められない位置に熱源があると判断した場合、検出画素に対し精度良く角度が得られる位置に熱源から放射する赤外線が入射するように回転台でカメラを回転し、カメラの視野中心から熱源中心までの角度を精度良く求める。   In order to solve the above problems, the heat source position angle detection method of the present invention is a method for detecting a position angle from the center of the field of view of the camera to the center of the heat source from the output data of the infrared camera, and the size of the heat source is an infrared camera. Even if the condition is smaller than the detection range of one pixel, the optical system is set so that infrared rays emitted from the heat source are incident on three consecutive horizontal and vertical infrared detection pixels. Compare the size of the output data to be obtained, and obtain the angle from the center of the field of view of the camera to the center of the heat source with high accuracy. When it is determined that there is a heat source at a position that cannot be obtained accurately, the camera is rotated on a turntable so that infrared rays radiated from the heat source are incident at a position where an angle can be obtained with high accuracy with respect to the detection pixel. Find the angle to the center of the heat source with high accuracy.

本発明によれば、熱源の大きさが赤外線カメラ1画素の検出範囲よりはるかに小さな場合であっても、赤外線カメラの画素数を増やすことなくカメラから熱源までの位置角度を精度良く求めることができる。   According to the present invention, even if the size of the heat source is much smaller than the detection range of one pixel of the infrared camera, the position angle from the camera to the heat source can be obtained accurately without increasing the number of pixels of the infrared camera. it can.

本発明の実施例1に係る熱源位置角度検出方法の実施形態を示す図である。It is a figure which shows embodiment of the heat-source position angle detection method which concerns on Example 1 of this invention. 熱源が画素の検出範囲よりはるかに小さな状態を表している図である。It is a figure showing the state in which a heat source is much smaller than the detection range of a pixel. 熱源が検出画素の検出範囲よりはるかに小さな場合、熱源の検出角度に誤差が生じてしまうことを表した図である。It is a figure showing that an error will arise in the detection angle of a heat source when a heat source is much smaller than the detection range of a detection pixel. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の中心画素の中心に位置する場合を表した図である。It is a figure showing the case where it set so that infrared rays may inject into 3 continuous pixels by expanding a heat source with an optical system, and the center of a heat source is located in the center of the center pixel of 3 pixels. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の左2画素の間に位置する場合を表した図である。It is a figure showing the case where it set so that infrared rays may inject into three continuous pixels by expanding a heat source with an optical system, and a heat source center is located between two pixels on the left of three pixels. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の右2画素の間に位置する場合を表した図である。It is a figure showing the case where it sets so that infrared rays may inject into three continuous pixels by expanding a heat source with an optical system, and the heat source center is located between two right pixels of three pixels. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の中心画素にあり、画素中心より左に位置する場合を表した図である。It is a figure showing the case where the heat source is expanded by the optical system so that infrared rays are incident on three consecutive pixels, and the center of the heat source is at the center pixel of the three pixels and is located to the left of the pixel center. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の中心画素にあり、画素中心より右に位置する場合を表した図である。It is a figure showing the case where the heat source is expanded by the optical system and infrared rays are incident on three consecutive pixels, and the center of the heat source is at the center pixel of the three pixels and is located to the right of the pixel center. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の中心画素の中心に位置した場合の3画素の出力の大きさと、検出角度を表した図である。A diagram showing the output magnitude and detection angle of three pixels when the heat source is expanded by an optical system and infrared rays are incident on three consecutive pixels and the center of the heat source is located at the center of the center pixel of the three pixels. It is. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の左2画素の間に位置する場合の3画素の出力の大きさと、検出角度を表した図である。The heat source is expanded by the optical system and infrared rays are incident on three consecutive pixels, and the output size and detection angle of the three pixels when the heat source center is located between the two left pixels of the three pixels are represented. FIG. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の右2画素の間に位置する場合の3画素の出力の大きさと、検出角度を表した図である。The heat source is expanded by the optical system and infrared rays are incident on three consecutive pixels, and the output size and detection angle of the three pixels when the heat source center is located between the two right pixels of the three pixels are represented. FIG. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の中心画素にあり、画素中心より右に位置する場合の3画素の出力の大きさと、検出角度を表した図である。The heat source is expanded by the optical system so that infrared rays are incident on three consecutive pixels, the size of the output of the three pixels when the center of the heat source is at the center pixel of the three pixels and is located to the right of the pixel center, and detection It is a figure showing an angle. 光学系で熱源を膨張させ連続した3画素に赤外線が入射するように設定し、熱源中心が3画素の中心画素にあり、画素中心より左に位置する場合の3画素の出力の大きさと、検出角度を表した図である。The heat source is expanded by the optical system so that infrared rays are incident on three consecutive pixels, the size of the output of the three pixels when the heat source center is at the center pixel of the three pixels and is located to the left of the pixel center, and detection It is a figure showing an angle. 64×64画素を持ち、中心水平方100度の検出範囲を持つ向赤外線カメラで50mはなれた25Cm角火皿を計測し、出力データを画像化した図である。It is the figure which measured the 25Cm square fireplate which separated by 50m with the infrared ray camera which has a detection range of the center horizontal direction 100 degree | times which has 64x64 pixels, and imaged output data. 熱源水平方向64画素のデータをグラフ化した図である。It is the figure which plotted the data of the heat source horizontal direction 64 pixels. 熱源水平方向64画素のデータをグラフ化した図である。It is the figure which plotted the data of the heat source horizontal direction 64 pixels. 赤外線カメラの画素数での角度分解能を表した図である。It is a figure showing angle resolution in the number of pixels of an infrared camera.

以下、本発明の実施の形態について説明する。
図2は検出熱源位置における検出画素の範囲を連続して横方向に並ぶ3画素A(検知範囲201)、B(検知範囲202)、C(検知範囲203)で表した図である。図2は画素Bの検出範囲202より熱源205がはるかに小さい場合を示している。例えば、水平方向の検出角度100度、赤外線カメラのコストを下げるため、水平方向の画素数を64画素とし、検出距離を50mとした場合、A,B,C画素の検出範囲の各1辺の長さは約186Cmとなる。この時、33Cm各のノルマルヘプタンの火炎を熱源とすれば炎の高さを60Cmとして、熱源の大きさは33×60Cmの大きさとなり、この熱源に対し光学系で焦点を合わせてしまえば1画素の検出範囲186×186Cmよりはるかに小さな熱源となってしまう。そして、このような赤外線カメラが出力するデータでは図3、図17で示すような検出角度の誤差約1.59度が発生する。
図3に於いて、画素A,B,Cについて表示している検出範囲面は角度平面に対し垂直であるが理解しやすいようにこのような表現としている。
Embodiments of the present invention will be described below.
FIG. 2 is a diagram showing the detection pixel range at the detection heat source position as three pixels A (detection range 201), B (detection range 202), and C (detection range 203) arranged in the horizontal direction. FIG. 2 shows a case where the heat source 205 is much smaller than the detection range 202 of the pixel B. For example, when the horizontal detection angle is 100 degrees and the cost of the infrared camera is reduced, the number of pixels in the horizontal direction is 64 pixels, and the detection distance is 50 m, each side of the detection range of A, B, C pixels The length is about 186 Cm. At this time, if a normal heptane flame of 33 Cm is used as a heat source, the height of the flame is set to 60 Cm and the size of the heat source is 33 × 60 Cm. The heat source is much smaller than the pixel detection range of 186 × 186 Cm. In the data output from such an infrared camera, a detection angle error of about 1.59 degrees as shown in FIGS. 3 and 17 occurs.
In FIG. 3, the detection range surfaces displayed for the pixels A, B, and C are perpendicular to the angle plane, but are expressed in this way for easy understanding.

本発明では図1で示すように赤外線カメラから遠くに位置する小さな熱源で、検出画素1画素の検出範囲より熱源の大きさが小さくなる場合でも、連続する検出画素縦、横各3画素に対して赤外線が入射するように光学系を調整する、具体的には光学系の焦点をずらし、熱源を光学的に膨張させる。実際に光学系の焦点を合わせた場合は図2で示すように検出画素Bの検出範囲202より熱源ははるかに小さくなっている。しかし、光学系の焦点をずらすことにより赤外線が入射する範囲が図2の205から図1の204のように広がり、画素A,Bにも赤外線が入射する。    In the present invention, as shown in FIG. 1, a small heat source located far from the infrared camera, and even when the size of the heat source is smaller than the detection range of one detection pixel, for three consecutive detection pixels in the vertical and horizontal directions. The optical system is adjusted so that infrared rays are incident, specifically, the focal point of the optical system is shifted, and the heat source is optically expanded. When the optical system is actually focused, the heat source is much smaller than the detection range 202 of the detection pixel B as shown in FIG. However, by shifting the focal point of the optical system, the range in which infrared rays are incident widens from 205 in FIG. 2 to 204 in FIG. 1, and infrared rays are also incident on the pixels A and B.

図4から図8に赤外線検出画素A,B,Cの検知範囲に対する熱源位置の違いによる熱源中心位置の例を示していて図中十字で示している部分が熱源中心である。図4は検出画素Bの検出範囲の中心に熱源の中心がある場合。検出画素Bの中心にあることさえわかれば熱源中心の赤外線カメラ視野中心からの角度はカメラの視野角及び画素数より計算で求めることができる。
図5は検出画素Bと検出画素Aの検出範囲の間に熱源の中心がある場合。検出画素Bと検出画素Aとの間にあることさえわかれば熱源中心の赤外線カメラ視野中心からの角度はカメラの視野角及び画素数より計算で求めることができる。
同様に図6は検出画素Bと検出画素Cの検出範囲の間に熱源の中心がある場合。検出画素Bと検出画素Cとの間にあることさえわかれば熱源中心の赤外線カメラ視野中心からの角度はカメラの視野角及び画素数より計算で求めることができる。
4 to 8 show examples of the heat source center position due to the difference in the heat source position with respect to the detection ranges of the infrared detection pixels A, B, and C, and the portion indicated by a cross in the figure is the heat source center. FIG. 4 shows the case where the center of the heat source is at the center of the detection range of the detection pixel B. As long as the center of the detection pixel B is known, the angle of the center of the heat source from the center of the infrared camera field of view can be calculated from the camera viewing angle and the number of pixels.
FIG. 5 shows a case where the center of the heat source is between the detection range of the detection pixel B and the detection pixel A. As long as it is known that it is between the detection pixel B and the detection pixel A, the angle from the center of the infrared camera field of view of the heat source center can be obtained by calculation from the camera viewing angle and the number of pixels.
Similarly, FIG. 6 shows the case where the center of the heat source is between the detection ranges of the detection pixel B and the detection pixel C. As long as it is known that it is between the detection pixel B and the detection pixel C, the angle from the center of the infrared camera field of view of the heat source center can be calculated from the camera viewing angle and the number of pixels.

図7は画素Bの検出範囲の中心より左側に検出熱源の中心がある場合で、この場合、左側にあることがわかっても正確な角度を計算で求めることができない。同様に図8のように画素Bの検出範囲の中心より右側に検出熱源の中心がある場合も正確な角度を計算で求めることができない。この場合後に説明する方法で正確な角度を求めることができる。    FIG. 7 shows the case where the center of the detection heat source is on the left side of the center of the detection range of the pixel B. In this case, an accurate angle cannot be obtained by calculation even if the center is found on the left side. Similarly, when the center of the detection heat source is on the right side of the center of the detection range of the pixel B as shown in FIG. 8, an accurate angle cannot be obtained by calculation. In this case, an accurate angle can be obtained by a method described later.

以下に赤外線カメラの画素の検出範囲と熱源の中心との関係を求める方法について説明する。図9は検出画素Bの検出範囲の中心に熱源中心がある場合を示している。図9右の図は各検出素子A,B,Cから出力する検出データの大きさを示している。検出画素Bが出力するデータは熱源が中心にあるため最も高い値を出力する。左右の検出画素A、Cからの出力は光学系で膨張させた赤外線の一部が均等に画素A,Cに入射するため、画素Bからの出力よりは低い値で B>(A≒C)の関係になる。このような関係がある場合熱源中心は検出画素Bの検出範囲の中心に位置していると判断でき、例えば、水平方向の検出角度100度、水平方向の画素数を64画素とし、図17で示すように視野中心から検出画素中心が約1.59度ごとに配置してある場合で、検出画素Bが視野中心から10番目の画素であるならば、熱源の位置角度101は視野中心から水平方向9*1.59+0.8≒15.1度の角度に位置していると計算できる。    A method for obtaining the relationship between the pixel detection range of the infrared camera and the center of the heat source will be described below. FIG. 9 shows a case where the center of the heat source is at the center of the detection range of the detection pixel B. The diagram on the right side of FIG. 9 shows the size of the detection data output from each detection element A, B, C. The data output from the detection pixel B outputs the highest value because the heat source is at the center. The outputs from the left and right detection pixels A and C are lower than the output from the pixel B because a part of the infrared rays expanded by the optical system are equally incident on the pixels A and C. B> (A≈C) It becomes a relationship. If there is such a relationship, it can be determined that the center of the heat source is located at the center of the detection range of the detection pixel B. For example, the horizontal detection angle is 100 degrees and the number of horizontal pixels is 64 pixels. As shown in the figure, when the detection pixel centers are arranged at intervals of about 1.59 degrees from the center of the visual field, and the detection pixel B is the tenth pixel from the visual field center, the position angle 101 of the heat source is horizontal from the visual field center. It can be calculated that the direction is 9 * 1.59 + 0.8≈15.1 degrees.

図10は検出画素Bと検出画素Aの検出範囲の間に熱源中心がある場合を示している。図10右の図は各検出素子A,B,Cから出力する検出データの大きさを示している。検出画素A,Bが出力するデータは熱源中心が検出画素A,Bの間にあるため高い値を出力しながらA≒Bの関係があり。検出画素Cからの出力は光学系で膨張させた赤外線がほとんど入射しないため、画素A,Bからの出力よりは低い値で(A≒B)>>Cの関係になる。このような関係がある場合熱源中心は検出画素A、Bの検出範囲の間に位置していると判断でき、例えば、水平方向の検出角度100度、水平方向の画素数を64画素とし、視野中心から検出画素中心が1.59度ごとに配置してある場合で、検出画素Bが視野中心から10番目の画素であるならば、熱源の位置角度102は視野中心から水平方向15.1+0.8≒15.9度の角度に位置していると計算できる。    FIG. 10 shows a case where the heat source center is between the detection range of the detection pixel B and the detection pixel A. The diagram on the right side of FIG. 10 shows the size of the detection data output from each detection element A, B, C. The data output from the detection pixels A and B has a relationship of A≈B while outputting a high value because the center of the heat source is between the detection pixels A and B. Since the output from the detection pixel C hardly receives the infrared rays expanded by the optical system, the output is lower than the outputs from the pixels A and B (A≈B) >> C. In such a relationship, it can be determined that the center of the heat source is located between the detection ranges of the detection pixels A and B. For example, the horizontal detection angle is 100 degrees, the number of horizontal pixels is 64 pixels, If the detection pixel centers are arranged at 1.59 degrees from the center and the detection pixel B is the tenth pixel from the center of the field of view, the position angle 102 of the heat source is 15.1 + 0. It can be calculated that it is located at an angle of 8≈15.9 degrees.

図11は検出画素Bと検出画素Cの検出範囲の間に熱源中心がある場合を示している。図11右の図は各検出素子A,B,Cから出力する検出データの大きさを示している。検出画素B,Cが出力するデータは熱源中心が検出画素A,Bの間にあるため高い値を出力しながらB≒Cの関係があり。検出画素Aからの出力は光学系で膨張させた赤外線がほとんど入射しないため、画素B、Cからの出力よりは低い値で(B≒C)>>Aの関係になる。このような関係がある場合熱源中心は検出画素B、Cの検出範囲の間に位置していると判断でき、例えば、水平方向の検出角度100度、水平方向の画素数を64画素とし、視野中心から検出画素中心が1.59度ごとに配置してある場合で、検出画素Bが視野中心から10番目の画素であるならば、熱源の位置角度103は視野中心から水平方向15.1−0.8≒14.3度の角度に位置していると計算できる。    FIG. 11 shows a case where the center of the heat source is between the detection ranges of the detection pixel B and the detection pixel C. The diagram on the right side of FIG. 11 shows the size of the detection data output from each detection element A, B, C. The data output from the detection pixels B and C has a relationship of B≈C while outputting a high value because the center of the heat source is between the detection pixels A and B. Since the output from the detection pixel A hardly receives the infrared rays expanded by the optical system, the output is lower than the outputs from the pixels B and C (B≈C) >> A. In such a relationship, it can be determined that the center of the heat source is located between the detection ranges of the detection pixels B and C. For example, the horizontal detection angle is 100 degrees, the number of horizontal pixels is 64 pixels, If the detection pixel centers are arranged at intervals of 1.59 degrees from the center, and the detection pixel B is the tenth pixel from the field center, the position angle 103 of the heat source is 15.1 in the horizontal direction from the field center. It can be calculated that it is located at an angle of 0.8≈14.3 degrees.

図12は検出画素Bの検出範囲の中心より左に熱源中心がある場合を示している。図12右の図は各検出素子A,B,Cから出力する検出データの大きさを示している。検出画素Bが出力するデータは熱源中心がBの検出範囲内にあるため最も高い値を出力する。左右の検出画素A、Cからの出力は光学系で膨張させた赤外線の一部がA>Cの関係で入射するため、画素Bからの出力よりは低い値で B>A>Cの関係になる。このような関係がある場合熱源中心は検出画素Bの検出範囲の中心より左に位置していると判断できるが中心からどの程度離れているかはわからない。そこでカメラを固定している回転台を熱源中心が画素Bの検出範囲の中心になるように左方向に回転させる。検出範囲の中心に来たかどうかは各画素A,B,Cからの出力が図9のようにB>>(A≒C)の関係になったかどうかで判断できる。回転角度が水平方向0.5度であったとするならば、視野中心からの水平角度104は15.6度と求めることができる。    FIG. 12 shows a case where the heat source center is on the left side of the center of the detection range of the detection pixel B. The diagram on the right side of FIG. 12 shows the size of the detection data output from each of the detection elements A, B, and C. The data output from the detection pixel B outputs the highest value because the center of the heat source is within the B detection range. The output from the left and right detection pixels A and C is a value lower than the output from the pixel B because a part of the infrared rays expanded by the optical system is incident in the relationship of A> C, and the relationship of B> A> C is satisfied. Become. In such a relationship, it can be determined that the center of the heat source is located to the left of the center of the detection range of the detection pixel B, but it is not known how far away from the center. Therefore, the turntable on which the camera is fixed is rotated leftward so that the center of the heat source becomes the center of the detection range of the pixel B. Whether or not the center of the detection range has been reached can be determined based on whether or not the output from each pixel A, B, and C has a relationship of B >> (A≈C) as shown in FIG. If the rotation angle is 0.5 degrees in the horizontal direction, the horizontal angle 104 from the center of the visual field can be obtained as 15.6 degrees.

図13は検出画素Bの検出範囲の中心より右に熱源中心がある場合を示している。図13右の図は各検出素子A,B,Cから出力する検出データの大きさを示している。検出画素Bが出力するデータは熱源中心が検出範囲内にあるため最も高い値を出力する。左右の検出画素A、Cからの出力は光学系で膨張させた赤外線の一部がA<Cの関係で入射するため、画素Bからの出力よりは低い値で B>C>Aの関係になる。このような関係がある場合熱源中心は検出画素Bの検出範囲の中心より右に位置していると判断できるが中心からどの程度離れているかはわからない。そこでカメラを固定している回転台を熱源中心が画素Bの検出範囲の中心になるように右方向に回転させる。検出範囲の中心に来たかどうかは各画素A,B,Cからの出力が図9のようにB>>(A≒C)の関係になったかどうかで判断できる。回転角度が水平右方向0.5度であったとするならば、視野中心からの水平角度105は14.6度と求めることができる。    FIG. 13 shows a case where the center of the heat source is on the right side of the center of the detection range of the detection pixel B. The diagram on the right side of FIG. 13 shows the size of the detection data output from each detection element A, B, C. The data output from the detection pixel B outputs the highest value because the center of the heat source is within the detection range. The outputs from the left and right detection pixels A and C are partly less than the output from the pixel B because a part of the infrared rays expanded by the optical system are incident in the relationship of A <C, and the relationship of B> C> A is satisfied. Become. In such a relationship, it can be determined that the center of the heat source is located to the right of the center of the detection range of the detection pixel B, but it is not known how far away from the center. Therefore, the turntable on which the camera is fixed is rotated rightward so that the center of the heat source becomes the center of the detection range of the pixel B. Whether or not the center of the detection range has been reached can be determined based on whether or not the output from each pixel A, B, and C has a relationship of B >> (A≈C) as shown in FIG. If the rotation angle is 0.5 degrees in the horizontal right direction, the horizontal angle 105 from the center of the visual field can be obtained as 14.6 degrees.

図14は本発明の実施例1で説明した64×64画素を持ち、中心部の水平方向の検知角度100度の赤外線カメラを使用し、50m離れた位置で25Cm角の火皿から放射される赤外線データを取得し、データを画像化したものである。
図15はこのデータのうち水平方向64画素分のデータをグラフ化したものである。このデータにおいて中心部から左方向25番目の画素データが最も高く実施例説明のBの画素に相当する。このデータではB>C>Aの関係があり図13で示した場合に相当する。
Bの画素の角度は24*1.59*0.8≒39度でその位置から0.8度の範囲に熱源があると推定できる。そこで、出力データが図16で示す関係になるまで回転台を右方向に最大で0.8度回転し、その回転角度を39度から減算すると正確な熱源の角度を求めることができる。
説明では水平方向のみについて説明したが垂直方向の視野中心からの角度も同様の方法で求めることができる。
また、光学系の歪等の影響で計算値よりずれる場合は各画素に対する角度補正値を実測で求め記憶しておいても良い。
FIG. 14 shows an infrared ray emitted from a 25 cm square fire plate at a position 50 m away using the infrared camera having the 64 × 64 pixels described in the first embodiment of the present invention and having a horizontal detection angle of 100 degrees in the center. Data is acquired and the data is converted into an image.
FIG. 15 is a graph of 64 pixels of data in the horizontal direction. In this data, the 25th pixel data in the left direction from the center is the highest and corresponds to the B pixel in the description of the embodiment. This data has a relationship of B>C> A and corresponds to the case shown in FIG.
The angle of the B pixel is 24 * 1.59 * 0.8≈39 degrees, and it can be estimated that the heat source is in the range of 0.8 degrees from the position. Therefore, when the turntable is rotated by a maximum of 0.8 degrees in the right direction until the output data has the relationship shown in FIG. 16, and the rotation angle is subtracted from 39 degrees, an accurate heat source angle can be obtained.
In the description, only the horizontal direction has been described, but the angle from the visual field center in the vertical direction can also be obtained in the same manner.
If the calculated value is deviated from the calculated value due to the distortion of the optical system, the angle correction value for each pixel may be obtained by actual measurement and stored.

本発明によれば赤外線カメラの画素数の少ない低価格な赤外線カメラを使用した場合でも、遠距離にある熱源、火炎の位置角度を回転台と組み合わせることによりわずかな回転台の回転角度で早く精度良く求めることができ、いち早く消化装置に正確な位置角度情報を提供できるようになる。    According to the present invention, even when a low-priced infrared camera with a small number of pixels is used, a heat source at a long distance and the position angle of the flame are combined with the turntable so that the rotation angle of the turntable is fast and accurate. It can be obtained well, and accurate position angle information can be quickly provided to the digester.

101 熱源中心が検出画素Bの検出範囲の中心にある場合に於ける視野中心からの水平角度。
102 熱源中心が検出画素A,Bの検出範囲の間にある場合に於ける視野中心からの水平角度。
103 熱源中心が検出画素B,Cの検出範囲の間にある場合に於ける視野中心からの水平角度。
104 熱源中心が検出画素Bの検出範囲中心より左にある場合に於ける視野中心からの水平角度。
105 熱源中心が検出画素Bの検出範囲中心より右にある場合に於ける視野中心からの水平角度。
201 検出画素Aの検出範囲
202 検出画素Bの検出範囲
203 検出画素Cの検出範囲
205 検出熱源
101 Horizontal angle from the center of the visual field when the center of the heat source is at the center of the detection range of the detection pixel B.
102 Horizontal angle from the center of the visual field when the center of the heat source is between the detection ranges of the detection pixels A and B.
103 Horizontal angle from the visual field center when the heat source center is between the detection ranges of the detection pixels B and C.
104 Horizontal angle from the center of the visual field when the heat source center is on the left side of the detection range center of the detection pixel B.
105 Horizontal angle from the center of the visual field when the center of the heat source is on the right side of the detection range center of the detection pixel B.
201 Detection range of detection pixel A 202 Detection range of detection pixel B 203 Detection range of detection pixel C 205 Detection heat source

Claims (3)

赤外線カメラからの出力データを用い熱源方向を検出する方法に於いて、連続する横方向各3画素の出力データの大小関係を調べることでカメラ中心から熱源中心までの横方向角度を求め、連続する縦方向各3画素の出力データの大小関係を調べることでカメラ中心から熱源中心までの縦方向角度を求めることを特徴とする熱源位置角度検出方法。   In the method of detecting the heat source direction using the output data from the infrared camera, the lateral direction angle from the camera center to the heat source center is obtained by examining the magnitude relation of the output data of each successive 3 pixels in the horizontal direction, and continuous. A heat source position angle detection method characterized in that a vertical angle from a camera center to a heat source center is obtained by examining a magnitude relationship between output data of three pixels in the vertical direction. 検出したい熱源の大きさが赤外線カメラ検出画素1画素の検出面積より小さな場合、連続する横方向、縦方向各3画素に検出熱源から放射される赤外線が入射するように、光学系を設定することを特徴とする熱源位置角度検出方法。   When the size of the heat source to be detected is smaller than the detection area of one infrared camera detection pixel, the optical system should be set so that the infrared rays emitted from the detection heat source are incident on three consecutive horizontal and vertical pixels. The heat source position angle detection method characterized by these. 赤外線カメラを左右及び上下に回転させる回転台を備え、連続する横方向3画素、縦方向3画素の検出画素の関係が設定条件となるまで、カメラを回転させ、その回転角度で正確な赤外線カメラ中心と熱源との角度を求めたことを特徴とする熱源位置角度検出方法。   An infrared camera equipped with a turntable that rotates the infrared camera left and right and up and down, and is rotated until the relationship between the detection pixels of 3 pixels in the horizontal direction and 3 pixels in the vertical direction is the setting condition, and the infrared camera is accurate at that rotation angle. A heat source position angle detection method characterized in that an angle between a center and a heat source is obtained.
JP2011234130A 2011-10-25 2011-10-25 Heat source position angle detection method Pending JP2013092431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234130A JP2013092431A (en) 2011-10-25 2011-10-25 Heat source position angle detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234130A JP2013092431A (en) 2011-10-25 2011-10-25 Heat source position angle detection method

Publications (1)

Publication Number Publication Date
JP2013092431A true JP2013092431A (en) 2013-05-16

Family

ID=48615657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234130A Pending JP2013092431A (en) 2011-10-25 2011-10-25 Heat source position angle detection method

Country Status (1)

Country Link
JP (1) JP2013092431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107993397A (en) * 2017-12-11 2018-05-04 北京艾恩斯网络科技有限公司 A kind of forest fire preventing monitor system and method based on wireless mesh network
CN110634259A (en) * 2019-09-25 2019-12-31 云南电网有限责任公司电力科学研究院 Forest fire detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241415A (en) * 1987-03-30 1988-10-06 Toshiba Corp Star sensor
US4979221A (en) * 1987-12-23 1990-12-18 Agence Spatiale Europeene Method and apparatus for sub-pixel centroiding of a photon event
JP2006106910A (en) * 2004-09-30 2006-04-20 Toshiba Corp Gimbal device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241415A (en) * 1987-03-30 1988-10-06 Toshiba Corp Star sensor
US4979221A (en) * 1987-12-23 1990-12-18 Agence Spatiale Europeene Method and apparatus for sub-pixel centroiding of a photon event
JP2006106910A (en) * 2004-09-30 2006-04-20 Toshiba Corp Gimbal device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107993397A (en) * 2017-12-11 2018-05-04 北京艾恩斯网络科技有限公司 A kind of forest fire preventing monitor system and method based on wireless mesh network
CN110634259A (en) * 2019-09-25 2019-12-31 云南电网有限责任公司电力科学研究院 Forest fire detection method

Similar Documents

Publication Publication Date Title
US10277887B2 (en) Calibration method and measurement tool
US8593536B2 (en) Image pickup apparatus with calibration function
JP6618965B2 (en) Method and system for determining misalignment of imaging device and non-transitory computer readable medium
JP2009217252A5 (en)
US8982101B2 (en) Optical touch system and optical touch-position detection method
JP2014137508A5 (en) Imaging apparatus and focus detection method
JP2015018205A5 (en)
US20130240710A1 (en) Imaging apparatus and image sensor thereof
KR20160068461A (en) Device and Method for displaying heatmap on the floor plan
US8718460B2 (en) Range finding device, range finding method, image capturing device, and image capturing method
JP2017049351A (en) Focus position detection device, focus position detection method and focus position detection computer program
JP5493900B2 (en) Imaging device
JP2010200196A5 (en)
JP2013092431A (en) Heat source position angle detection method
KR20200097865A (en) Image processing system for measurging depth and operating method of the same
JP2015108582A (en) Three-dimensional measurement method and device
JP2010181247A (en) Shape measurement apparatus and shape measurement method
JP2013198053A (en) Manufacturing method of camera module
JP5802541B2 (en) Radiation measurement equipment
JP2010243212A (en) Tilt detection method and device of the same
US20130241882A1 (en) Optical touch system and optical touch position detecting method
JP6568722B2 (en) Image processing system, image processing method, and program
KR20120137050A (en) Method of image calibration for mobile projector
JP2005150818A (en) Projector system provided with computer including distortion correction means
US9293492B2 (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301