JP2013092385A - Distance measurement apparatus - Google Patents

Distance measurement apparatus Download PDF

Info

Publication number
JP2013092385A
JP2013092385A JP2011232812A JP2011232812A JP2013092385A JP 2013092385 A JP2013092385 A JP 2013092385A JP 2011232812 A JP2011232812 A JP 2011232812A JP 2011232812 A JP2011232812 A JP 2011232812A JP 2013092385 A JP2013092385 A JP 2013092385A
Authority
JP
Japan
Prior art keywords
light
temperature
light emitting
emitting element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011232812A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mori
康洋 森
Junpei Endo
淳平 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011232812A priority Critical patent/JP2013092385A/en
Publication of JP2013092385A publication Critical patent/JP2013092385A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distance measurement apparatus capable of preventing changes in measurement accuracy due to temperature change of a light emitting element.SOLUTION: A light projection means 1 comprises a light emitting element 11 that projects a light beam into a target space. A light receiving means 2 comprises a light receiving element 21 that receives the light from the target space. A control means 3 provides a modulation signal to the light projection means 1 to cause the light emitting element 11 to emit a modulation light, the brightness of which changes as the time passes, and provides a demodulation signal, which is synchronous with the modulation signal, to the light receiving means 2 to extract components of the modulation light from the output of the light receiving element 21. A calculation means 4 measures the time from a point when the modulation light is emitted by the light projection means 1 into the target space up to a point when the same is received by the light receiving means 2 to calculate the distance to an object in the target space. A temperature measurement means 6 measures the temperature of the light emitting element 11. An accuracy maintaining means 7 controls the drive current to the light emitting element 11 so as to be larger in proportion to the temperature measured by the temperature measurement means 6; to thereby prevent the modulation light received by the light receiving element 21 from changing irrespective of the temperature change of the light emitting element 11.

Description

本発明は、投光から受光までの時間を用いて光を反射した物体までの距離を計測する距離計測装置に関するものである。   The present invention relates to a distance measuring device that measures the distance to an object that reflects light using the time from light projection to light reception.

従来から、投光から受光までの時間を計測し、投光された光を反射した物体までの距離を計測するアクティブ型の距離計測装置が知られている。この距離計測装置は、光の飛行時間(Time Of Flight)を距離に換算する。投光から受光までの時間を計測するには、受光した光が投光された時刻を知る必要があるが、数m程度の近距離であると、数十ns程度の短時間の計測が必要になるから、距離計測の精度を高めることが困難である。   2. Description of the Related Art Conventionally, an active type distance measuring device that measures the time from light projection to light reception and measures the distance to an object that reflects the projected light is known. This distance measuring device converts a time of flight of light into a distance. In order to measure the time from light projection to light reception, it is necessary to know the time when the received light was projected. However, if it is a short distance of about several meters, a short time measurement of about several tens of ns is required. Therefore, it is difficult to improve the accuracy of distance measurement.

そこで、飛行時間を用いて距離測定を行う際に、投光から受光までの時間を精度よく計測するために、強度を変調した光を投光し、受光した光の強度変化を検出する技術が提案されている(たとえば、特許文献1参照)。特許文献1に記載された技術では、一定周期で正弦波状に強度が変化する変調光を投光するとともに、変調光に同期する複数のタイミングで受光強度を検出することにより、受光した変調光の投光した変調光に対する位相遅れを算出している。   Therefore, when performing distance measurement using time of flight, in order to accurately measure the time from light projection to light reception, there is a technology that projects light with modulated intensity and detects the intensity change of the received light. It has been proposed (see, for example, Patent Document 1). In the technique described in Patent Document 1, modulated light whose intensity changes in a sine wave shape at a fixed period is projected, and the received light intensity is detected at a plurality of timings synchronized with the modulated light, whereby the received modulated light The phase delay with respect to the projected modulated light is calculated.

すなわち、変調光の位相の90度間隔のタイミングで受光強度が求められ、各タイミングにおける受光強度の既知の関係を用いて位相遅れを算出している。具体的には、変調光の0度、90度、180度、270度の4位相にそれぞれ同期したタイミングで得られる受光強度を、A0,A1,A2,A3とすると、位相差φは、φ=tan−1{(A0−A2)/(A1−A3)}という関係式で求められる。ここに、符号は無視している。 That is, the received light intensity is obtained at the timing of 90 ° intervals of the phase of the modulated light, and the phase delay is calculated using the known relationship of the received light intensity at each timing. Specifically, when the received light intensities obtained at timings synchronized with the four phases of modulated light of 0 degree, 90 degrees, 180 degrees, and 270 degrees are A0, A1, A2, and A3, the phase difference φ is φ = Tan −1 {(A0−A2) / (A1−A3)}. Here, the sign is ignored.

上述のようにして位相差φが求められると、光束c[m/s]および変調光の周波数f[Hz]を用いることによって、物体までの距離L[m]が求められる。すなわち、位相差をφ[rad]とすれば、L=(φ/2π)(c/f)/2になる。   When the phase difference φ is obtained as described above, the distance L [m] to the object is obtained by using the light beam c [m / s] and the frequency f [Hz] of the modulated light. That is, if the phase difference is φ [rad], L = (φ / 2π) (c / f) / 2.

特開2004−45304号公報JP 2004-45304 A

ところで、上述した関係式は、変調光が正弦波であることを前提にしており、受光強度を検出するタイミングが正確であっても、受光した変調光の波形に歪みがあると、位相差φを正確に求めることができない。すなわち、受光した変調光の波形が歪んでいると、距離を正確に計測することができない。   By the way, the relational expression described above assumes that the modulated light is a sine wave. Even if the timing of detecting the received light intensity is accurate, if the received modulated light waveform is distorted, the phase difference φ Cannot be determined accurately. That is, if the waveform of the received modulated light is distorted, the distance cannot be measured accurately.

受光した変調光の波形が歪む主な原因は、環境光の影響と、変調光を投光する発光素子の特性であると考えられる。とくに、屋外で使用する場合には、環境光である太陽光の影響が大きくなるから、太陽光を除去して受光することが必要である。   It is considered that the main causes of the distortion of the received modulated light waveform are the influence of ambient light and the characteristics of the light emitting element that projects the modulated light. In particular, when used outdoors, the influence of sunlight, which is ambient light, increases, so it is necessary to remove sunlight and receive light.

したがって、太陽光の影響を軽減するために、変調光の波長付近の光のみを透過させる帯域通過フィルタが用いられている。また、屋外で使用する用途では、屋内用よりも光出力の大きい発光素子を採用している。これらの対策により、太陽光の影響による計測精度の低下が抑制される。   Therefore, in order to reduce the influence of sunlight, a band pass filter that transmits only light near the wavelength of the modulated light is used. For outdoor use, a light emitting element having a larger light output than that for indoor use is employed. By these measures, a decrease in measurement accuracy due to the influence of sunlight is suppressed.

一方、変調光を投光する発光素子は、応答性の要求から発光ダイオードもしくはレーザダイオードが用いられており、この種の発光素子は、光出力の大きさが温度に依存することが知られている。また、発光波長の波長域やピーク波長も温度の影響により変化する。さらに、発光素子への電気入力に対する光出力の応答も温度の影響を受ける。   On the other hand, light emitting diodes or laser diodes are used as light emitting elements for projecting modulated light because of the demand for responsiveness, and this type of light emitting element is known to depend on temperature for light output. Yes. In addition, the wavelength range and peak wavelength of the emission wavelength also change due to the influence of temperature. Further, the response of the light output to the electric input to the light emitting element is also affected by the temperature.

したがって、発光素子の温度が変化すると、変調光の強度に変化が生じるから、受光する変調光の波形に歪みが生じる可能性がある。また、上述のように、帯域通過フィルタを通して変調光を受光している場合に、波長域やピーク波長が変化すると、帯域通過フィルタに対する透過率が変化するから、受光する変調光の波形が歪む可能性がある。さらに、発光素子の応答特性が温度の影響を受けるから、発光素子への電気入力が正弦波であっても、変調光としての光出力が歪む場合がある。   Therefore, when the temperature of the light emitting element changes, the intensity of the modulated light changes, so that the waveform of the received modulated light may be distorted. In addition, as described above, when the modulated light is received through the band pass filter, if the wavelength band or the peak wavelength changes, the transmittance with respect to the band pass filter changes, so the waveform of the received modulated light may be distorted. There is sex. Furthermore, since the response characteristics of the light emitting element are affected by temperature, even if the electrical input to the light emitting element is a sine wave, the light output as modulated light may be distorted.

屋外で使用する場合、屋内で使用する場合に比較すると、発光素子の周囲温度の変化が大きく、しかも、比較的短い時間内で温度変化が生じると考えられるから、発光素子の周囲温度の変化に対する対策が必要である。   When using outdoors, compared to using indoors, the ambient temperature change of the light emitting element is large, and it is considered that the temperature change occurs within a relatively short time. Countermeasures are necessary.

本発明は上記事由に鑑みて為されたものであり、その目的は、発光素子の温度変化に対する計測精度の変化を抑制した距離計測装置を提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the distance measuring device which suppressed the change of the measurement precision with respect to the temperature change of a light emitting element.

本発明に係る距離計測装置は、対象空間に投光する発光素子を備えた投光手段と、前記対象空間からの光を受光する受光素子を備えた受光手段と、前記投光手段に変調信号を与えて前記発光素子から時間経過に伴って強度が変化する変調光を投光させ、前記変調信号に同期する復調信号を前記受光手段に与えて前記受光素子の出力から変調光の成分を抽出する制御手段と、前記投光手段から対象空間に投光された変調光が前記受光手段に受光されるまでの時間を計測する演算手段と、前記投光手段の温度を計測する温度測定手段と、
前記温度測定手段が計測した温度を用い前記受光素子に入射する変調光の変化を抑制する精度維持手段とを備えることを特徴とする。
A distance measuring apparatus according to the present invention includes a light projecting unit including a light emitting element that projects light into a target space, a light receiving unit including a light receiving element that receives light from the target space, and a modulation signal to the light projecting unit. The modulated light whose intensity changes with the passage of time is projected from the light emitting element, and the demodulated signal synchronized with the modulated signal is supplied to the light receiving means, and the component of the modulated light is extracted from the output of the light receiving element Control means for measuring, calculating means for measuring the time until modulated light projected from the light projecting means to the target space is received by the light receiving means, and temperature measuring means for measuring the temperature of the light projecting means; ,
And an accuracy maintaining unit that suppresses a change in the modulated light incident on the light receiving element using the temperature measured by the temperature measuring unit.

この距離計測装置において、前記精度維持手段は、前記温度測定手段で計測された温度が高いほど前記発光素子の駆動電流を大きくすることが好ましい。   In this distance measuring apparatus, it is preferable that the accuracy maintaining unit increases the driving current of the light emitting element as the temperature measured by the temperature measuring unit is higher.

この距離計測装置において、前記精度維持手段は、前記温度測定手段で計測された温度が高いほど発光素子を駆動するタイミングを遅延させることが好ましい。   In this distance measuring apparatus, it is preferable that the accuracy maintaining means delays the timing of driving the light emitting element as the temperature measured by the temperature measuring means is higher.

この距離計測装置において、前記精度維持手段は、前記受光素子に入射する光の波長を選択する波長選択フィルタを備え、前記温度測定手段で計測された温度が高いほど前記波長選択フィルタの透過特性を短波長側に変化させることが好ましい。   In this distance measuring apparatus, the accuracy maintaining unit includes a wavelength selection filter that selects a wavelength of light incident on the light receiving element, and the transmission characteristic of the wavelength selection filter increases as the temperature measured by the temperature measurement unit increases. It is preferable to change to the short wavelength side.

この距離計測装置において、前記投光手段は、発光波長が異なる複数種類の前記発光素子を備え、前記精度維持手段は、前記温度測定手段で計測された温度が高いほど発光波長の短い前記発光素子を用いて前記対象空間に投光することが好ましい。   In this distance measuring apparatus, the light projecting unit includes a plurality of types of the light emitting elements having different emission wavelengths, and the accuracy maintaining unit has a shorter emission wavelength as the temperature measured by the temperature measuring unit is higher. It is preferable to project to the target space using

この距離計測装置において、前記投光手段は、前記発光素子の温度を調節する温調装置を備え、前記精度維持手段は、前記温度測定手段で計測された温度が規定の目標温度になるように前記温調装置を制御することが好ましい。   In the distance measuring device, the light projecting unit includes a temperature adjusting device that adjusts the temperature of the light emitting element, and the accuracy maintaining unit is configured so that the temperature measured by the temperature measuring unit becomes a specified target temperature. It is preferable to control the temperature control device.

本発明の構成によれば、発光素子の温度変化に対する計測精度の変化が抑制されるという利点がある。   According to the configuration of the present invention, there is an advantage that a change in measurement accuracy with respect to a temperature change of the light emitting element is suppressed.

実施形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of embodiment. 同上に用いる発光ダイオードの温度特性を示す図である。It is a figure which shows the temperature characteristic of the light emitting diode used for the same as the above. 実施形態の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of embodiment. 実施形態のさらに他の構成例に用いる投光手段を示す正面図である。It is a front view which shows the light projection means used for the further another structural example of embodiment. 実施形態の別の構成例を示すブロック図である。It is a block diagram which shows another structural example of embodiment.

以下に説明する距離計測装置は、図1に示すように、対象空間に投光する発光素子11として発光ダイオードが用いられた投光手段1を備え、対象空間からの光を受光する受光素子21としてCCD撮像素子が用いられた受光手段2を備える。   As shown in FIG. 1, the distance measuring device described below includes a light projecting unit 1 using a light emitting diode as a light emitting element 11 that projects light into a target space, and a light receiving element 21 that receives light from the target space. As a light receiving means 2 using a CCD image pickup device.

発光ダイオードは、順方向電流が1〜数Aの高輝度型であることが望ましく、投光手段1は、複数個の発光ダイオードを備えることが望ましい。投光手段1に用いる発光素子11は、目的に応じて100Hz〜1GHz程度の範囲の駆動信号で強度を変調することができればよく、用途によっては、発光ダイオードに代えてレーザダイオードなどを用いてもよい。また、発光素子11の発光波長は、赤外線領域を想定しているが、用途によっては、紫外線領域や可視光領域であってもよい。発光素子11が発光ダイオードである場合は、発光ダイオードは直列に接続され、MOSFETのような通電制御素子を通して通電電流が制御される。   The light emitting diode is preferably a high luminance type having a forward current of 1 to several A, and the light projecting means 1 preferably includes a plurality of light emitting diodes. The light emitting element 11 used in the light projecting unit 1 may be capable of modulating the intensity with a drive signal in the range of about 100 Hz to 1 GHz according to the purpose. Depending on the application, a laser diode or the like may be used instead of the light emitting diode. Good. Moreover, although the light emission wavelength of the light emitting element 11 assumes an infrared region, it may be an ultraviolet region or a visible light region depending on the application. In the case where the light emitting element 11 is a light emitting diode, the light emitting diodes are connected in series, and the energization current is controlled through an energization control element such as a MOSFET.

受光素子21としてはCCD撮像素子のほか、CMOS撮像素子、それらに準じた撮像素子を用いることができる。撮像素子は、複数個の光電変換部が縦横に格子状に配列されているから、受光素子21が撮像素子である場合、撮像素子の視野内において複数箇所の距離を個別に計測することが可能である。したがって、画素値を距離値とする距離画像が生成される。ただし、受光手段2が撮像素子を備えることは必須ではなく、実空間の特定部位までの距離を計測すればよい場合には、フォトダイオードのような受光素子21を用いて実空間の特定部位からの光を受光する構成を採用してもよい。   As the light receiving element 21, in addition to a CCD image pickup element, a CMOS image pickup element or an image pickup element based thereon can be used. Since the image sensor has a plurality of photoelectric conversion units arranged vertically and horizontally in a grid, when the light receiving element 21 is an image sensor, it is possible to individually measure the distances at a plurality of locations within the field of view of the image sensor. It is. Therefore, a distance image having a pixel value as a distance value is generated. However, it is not essential for the light receiving means 2 to include an image pickup device. When the distance to a specific part in the real space only needs to be measured, the light receiving element 21 such as a photodiode is used to start from the specific part in the real space. A configuration for receiving the light of may be adopted.

本実施形態は、太陽光が存在する屋外でも使用可能になることを目指しており、そのため、受光手段2は、入射光から変調光に相当する波長を光学的に選択する波長選択フィルタ22を備える。波長選択フィルタ22は、変調光のピーク波長を中心とする比較的狭い波長域の光のみを通過させる必要があるから、たとえば、薄膜を多層に積層した光学薄膜フィルタが用いられる。変調光に赤外線を用いる場合、波長選択フィルタ22は、赤外線を選択的に透過させるように設計される。   The present embodiment aims to be usable even outdoors where sunlight is present. Therefore, the light receiving means 2 includes a wavelength selection filter 22 that optically selects a wavelength corresponding to modulated light from incident light. . Since the wavelength selection filter 22 needs to pass only light in a relatively narrow wavelength region centered on the peak wavelength of the modulated light, for example, an optical thin film filter in which thin films are stacked in multiple layers is used. When infrared light is used for the modulated light, the wavelength selection filter 22 is designed to selectively transmit infrared light.

このような波長選択フィルタ22を用いることにより、太陽光のうち可視光領域、紫外線領域の透過が阻止され、また赤外線領域についても不要範囲の透過が阻止される。すなわち、受光手段2への太陽光の入射を大幅に低減させることになる。   By using such a wavelength selection filter 22, transmission of visible light region and ultraviolet region of sunlight is blocked, and transmission of unnecessary range is also blocked for infrared region. That is, the incidence of sunlight on the light receiving means 2 is greatly reduced.

投光手段1と受光手段2とは、制御手段3により制御される。制御手段3は、投光手段1から変調光が投光されるように、投光手段1に正弦波状の変調信号を与え、受光手段2には変調信号に同期して規定されるタイミングで変調光を受光するように復調信号を与える。投光手段1に与えられる変調信号は、正弦波でなくてもよく、一定周期で変化する矩形波、三角波、鋸歯状波などから選択される波形を採用してもよい。   The light projecting means 1 and the light receiving means 2 are controlled by the control means 3. The control means 3 gives a sinusoidal modulation signal to the light projecting means 1 so that the modulated light is projected from the light projecting means 1 and modulates the light receiving means 2 at a timing defined in synchronization with the modulation signal. A demodulated signal is given so as to receive light. The modulation signal supplied to the light projecting means 1 may not be a sine wave, but may be a waveform selected from a rectangular wave, a triangular wave, a sawtooth wave, etc. that change at a constant period.

受光手段2に与える復調信号は、変調信号の波形に対して規定されるタイミングの受光光量が得られるように、受光手段2に受光のタイミングを指示する。たとえば、変調信号の波形が正弦波である場合、変調信号において位相が90度間隔で異なるタイミングの復調信号を受光手段2に与えればよい。変調波形が他の波形である場合は、波形に応じて投光から受光までの時間差を求める関係式が適用できるように、適宜のタイミングの復調信号を受光手段2に与えればよい。変調信号の波形に応じて時間差を求める関係式を定めることは容易である。   The demodulated signal given to the light receiving means 2 instructs the light receiving means 2 to receive light so that the amount of received light at the timing specified for the waveform of the modulation signal can be obtained. For example, when the waveform of the modulation signal is a sine wave, the demodulated signals having different timings at 90-degree intervals in the modulation signal may be given to the light receiving means 2. When the modulation waveform is another waveform, a demodulated signal at an appropriate timing may be given to the light receiving means 2 so that a relational expression for obtaining a time difference from light projection to light reception can be applied according to the waveform. It is easy to determine a relational expression for obtaining a time difference according to the waveform of the modulation signal.

受光手段2は、復調信号が与えられると、復調信号が与えられたタイミングの受光強度に応じた電荷を光電変換部で生成する。復調信号は、所定時間の幅を有しており、受光手段2は当該時間において受光した受光量に応じた電荷を生成する。変調信号の位相を用いて復調信号の時間の幅を例として示すと、復調信号は、たとえば、0〜30度、90〜120度、180〜210度、270〜300度の各区間を指示し、受光手段2は、区間ごとの受光量に応じた電荷を生成する。また、区間ごとに生成された電荷は混合されることなく、区間ごとに取り出される。受光手段2での電荷の生成は、変調信号の複数周期(数百〜数万周期)に亘って行われ、周期毎に同区間に生成された電荷が蓄積される。   When receiving the demodulated signal, the light receiving means 2 generates an electric charge corresponding to the received light intensity at the timing when the demodulated signal is given by the photoelectric conversion unit. The demodulated signal has a predetermined time width, and the light receiving means 2 generates a charge corresponding to the amount of light received during that time. When the time width of the demodulated signal is shown as an example using the phase of the modulated signal, the demodulated signal indicates, for example, sections of 0 to 30 degrees, 90 to 120 degrees, 180 to 210 degrees, and 270 to 300 degrees. The light receiving means 2 generates a charge corresponding to the amount of light received for each section. Moreover, the electric charge produced | generated for every area is taken out for every area, without being mixed. Charge generation in the light receiving means 2 is performed over a plurality of cycles (hundreds to tens of thousands of cycles) of the modulation signal, and charges generated in the same section are accumulated for each cycle.

電荷を生成するタイミングを制御する技術は、電子シャッタと同様の原理を用いることが可能であるが、この場合は、区間ごとの電荷を蓄積するたびに受光手段2から電荷を読み出さなければならい。すなわち、距離の計測に4区間の電荷を用いるとすれば、4回の撮像によって距離が計測されることになる。   The technique for controlling the timing for generating the charge can use the same principle as the electronic shutter, but in this case, the charge must be read from the light receiving means 2 every time the charge for each section is accumulated. In other words, if charges in four sections are used for distance measurement, the distance is measured by four imaging operations.

なお、光電変換部を複数のグループに分けて電荷を生成するように設計された専用の撮像素子を用いることにより、距離を計測するための撮像回数を2回あるいは1回にすることが可能になる。また、フィールドトランスファ型のCCD撮像素子のように受光領域と蓄積領域(転送領域)とを設けた撮像素子であれば、変調信号の各区間ごとの電荷を受光領域で生成し、複数の区間の電荷を区別して蓄積可能となるように蓄積領域を構成してもよい。前者の構成を採用すれば、4回の撮像を行う場合と比較して距離の計測が可能になる電荷を生成するのに要する時間の短縮が可能になる。また、後者の構成を採用すれば、撮像素子からの電荷の読出を4回行う場合と比較して電荷の読出回数を低減させることが可能になる。これらの構成はすでに知られているからここでは詳述しない。   In addition, by using a dedicated imaging device designed to generate charges by dividing the photoelectric conversion units into a plurality of groups, the number of times of imaging for measuring the distance can be made twice or once. Become. Further, in the case of an image sensor having a light receiving area and an accumulation area (transfer area) such as a field transfer type CCD image sensor, a charge for each section of the modulation signal is generated in the light receiving area, The accumulation region may be configured so that charges can be distinguished and accumulated. If the former configuration is adopted, it is possible to shorten the time required to generate the electric charge that enables the distance to be measured as compared with the case where the imaging is performed four times. In addition, if the latter configuration is adopted, the number of charges read out can be reduced as compared with the case where charges are read out from the image sensor four times. These configurations are already known and will not be described in detail here.

上述した4区間の電荷は受光手段2から読み出されると演算手段4に入力され、演算手段4は受光手段2の出力を用いて距離を算出する。本実施形態では、受光手段2が撮像素子を備えることを想定しているから、撮像素子の視野内に規定した単位領域を画素として、画素ごとの距離が算出される。いま、変調信号の波形(変調光の強度の変化波形)が正弦波であって、変調信号の位相における90度間隔の4区間で電荷を生成している場合、各区間に生成された電荷量(受光手段2の出力値)をA0,A1,A2,A3と仮定する。この場合、投光した変調光と受光された変調光との位相差φと、電荷量A0,A1,A2,A3との関係は、理論的には、φ=tan−1{(A0−A2)/(A1−A3)}になる。 When the charges in the four sections described above are read from the light receiving means 2, they are input to the calculating means 4, and the calculating means 4 calculates the distance using the output of the light receiving means 2. In the present embodiment, since it is assumed that the light receiving unit 2 includes an image sensor, the distance for each pixel is calculated using the unit area defined in the field of view of the image sensor as a pixel. Now, when the waveform of the modulation signal (change waveform of the intensity of the modulated light) is a sine wave and charges are generated in four intervals of 90 degrees in the phase of the modulation signal, the amount of charge generated in each interval Assume that (the output value of the light receiving means 2) is A0, A1, A2, A3. In this case, the relationship between the phase difference φ between the projected modulated light and the received modulated light and the charge amounts A0, A1, A2, A3 is theoretically φ = tan −1 {(A0−A2 ) / (A1-A3)}.

演算手段4は、画素ごとに上述の演算を行うことにより、画素値を距離値に対応付けた距離画像を生成する。演算手段4が生成した距離画像は、出力手段5に設けた画像記憶部に記憶され利用に供される。制御手段3、演算手段4、出力手段5は、マイコン、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)などから選択されるプロセッサを備え、プロセッサは、適宜のプログラムに従って距離の演算を行う。   The calculation means 4 performs the above calculation for each pixel, thereby generating a distance image in which the pixel value is associated with the distance value. The distance image generated by the calculation unit 4 is stored in an image storage unit provided in the output unit 5 and is used. The control means 3, the calculation means 4, and the output means 5 include a processor selected from a microcomputer, a DSP (Digital Signal Processor), an FPGA (Field-Programmable Gate Array), and the processor calculates the distance according to an appropriate program. Do.

以下では、投光手段1の温度変化に伴う距離の計測精度の変化を抑制する構成について説明する。投光手段1は、発光素子11として備えており、距離の計測精度は発光素子11の温度変化に依存する。したがって、発光素子11の温度を計測するサーミスタなどの温度センサを備えた温度測定手段6が設けられる。温度測定手段6で計測された温度は制御手段3に与えられる。制御手段3は、温度測定手段6で計測された温度に応じて、温度の変化に対して距離の測定結果が変化しないように、以下に説明する精度維持手段7を制御する。精度維持手段7は、以下に具体例で説明するように、制御手段3の動作のみで追加する構成を用いずに実現される場合と、投光手段1や受光手段2に追加された構成を制御手段3が制御することにより実現される場合とがある。   Below, the structure which suppresses the change of the measurement precision of the distance accompanying the temperature change of the light projection means 1 is demonstrated. The light projecting means 1 is provided as the light emitting element 11, and the distance measurement accuracy depends on the temperature change of the light emitting element 11. Therefore, temperature measuring means 6 including a temperature sensor such as a thermistor for measuring the temperature of the light emitting element 11 is provided. The temperature measured by the temperature measuring means 6 is given to the control means 3. The control unit 3 controls the accuracy maintaining unit 7 described below so that the distance measurement result does not change with respect to the temperature change according to the temperature measured by the temperature measuring unit 6. As will be described below in a specific example, the accuracy maintaining unit 7 is realized without using the configuration added only by the operation of the control unit 3, and the configuration added to the light projecting unit 1 and the light receiving unit 2. It may be realized by the control of the control means 3.

温度測定手段6で計測された投光手段1の温度に応じて距離の計測精度の変化を抑制する精度維持手段7を実現するために、本実施形態は、以下の5種類の構成を単独または適宜に組み合わせて用いる。
(1)発光素子11の駆動電流を調節する。
(2)発光素子11を駆動するタイミングを調節する。
(3)受光手段2に入射する波長域を調節する。
(4)発光素子11の発光波長を調節する。
(5)発光素子11の温度変化を抑制する。
In order to realize the accuracy maintaining unit 7 that suppresses the change in the measurement accuracy of the distance according to the temperature of the light projecting unit 1 measured by the temperature measuring unit 6, the present embodiment has the following five types of configurations alone or Use in combination as appropriate.
(1) The drive current of the light emitting element 11 is adjusted.
(2) The timing for driving the light emitting element 11 is adjusted.
(3) The wavelength range incident on the light receiving means 2 is adjusted.
(4) Adjust the emission wavelength of the light emitting element 11.
(5) The temperature change of the light emitting element 11 is suppressed.

構成(1)は、発光素子11の光出力(輝度)と温度との関係に基づいて、光出力が温度によって変化しないように、発光素子11の駆動電流を調節することを意味する。すなわち、駆動電流が一定であれば、温度が高いほど発光素子11の光出力が低下することが知られているから、温度検出部6で検出された温度が高いほど、発光素子11の駆動電流を大きくするのである。温度と駆動電流との関係を適宜に設定すれば、投光手段1の温度にかかわらず光出力をほぼ一定に保つことが可能になる。なお、駆動電流を増加させると、発光素子11の発熱量が増加し、また駆動電流には上限があるから、構成(1)は、温度変化に対して光出力の微調整を行うために採用することが望ましい。構成(1)を採用した場合、投光手段1が制御手段3とともに精度維持手段として機能する。   Configuration (1) means that the drive current of the light emitting element 11 is adjusted based on the relationship between the light output (luminance) of the light emitting element 11 and the temperature so that the light output does not change with temperature. That is, if the drive current is constant, it is known that the light output of the light emitting element 11 decreases as the temperature increases. Therefore, the drive current of the light emitting element 11 increases as the temperature detected by the temperature detection unit 6 increases. Is made larger. If the relationship between the temperature and the drive current is appropriately set, the light output can be kept substantially constant regardless of the temperature of the light projecting means 1. Note that when the drive current is increased, the amount of heat generated by the light emitting element 11 is increased, and the drive current has an upper limit. Therefore, the configuration (1) is employed for fine adjustment of the light output with respect to the temperature change. It is desirable to do. When the configuration (1) is adopted, the light projecting unit 1 functions as the accuracy maintaining unit together with the control unit 3.

構成(2)は、温度測定手段6で計測された温度に応じて発光素子11を駆動するタイミングを調節することを意味する。すなわち、復調信号は変調信号に同期して生成されるから、発光素子11を駆動するタイミングを変調信号に対して遅延させる構成を採用し、遅延させる時間を温度測定手段6で測定された温度に応じて調節する構成を採用する。構成(2)を採用すれば、投光手段1の温度による距離値の変動分を考慮して距離を補正することになる。構成(2)を採用した場合、投光手段1が制御手段3とともに精度維持手段7として機能する。   Configuration (2) means that the timing for driving the light emitting element 11 is adjusted according to the temperature measured by the temperature measuring means 6. That is, since the demodulated signal is generated in synchronization with the modulation signal, a configuration in which the timing for driving the light emitting element 11 is delayed with respect to the modulation signal is adopted, and the delay time is set to the temperature measured by the temperature measuring means 6. A configuration that adjusts accordingly is adopted. If the configuration (2) is adopted, the distance is corrected in consideration of the variation of the distance value due to the temperature of the light projecting means 1. When the configuration (2) is employed, the light projecting unit 1 functions as the accuracy maintaining unit 7 together with the control unit 3.

構成(3)は、受光手段2に設けた波長選択フィルタ22の透過特性を、温度測定手段6で測定された温度に応じて調節することを意味する。すなわち、発光素子11に用いる発光ダイオードの発光波長には温度依存性があるから、発光素子11の温度に応じて波長選択フィルタ22の透過特性を調節することにより、発光波長の変化に伴う受光手段2の出力への影響を抑制することが要求される。具体的には、発光素子11として用いる発光ダイオードは、図2に示すように、温度が高いほど光出力が低下するだけではなく、ピーク波長が長波長側に変化する。図2では、特性X1が−15℃、特性X2が25℃、特性X3が55℃にそれぞれ対応する発光波長を示している。   The configuration (3) means that the transmission characteristic of the wavelength selection filter 22 provided in the light receiving unit 2 is adjusted according to the temperature measured by the temperature measuring unit 6. That is, since the light emission wavelength of the light emitting diode used for the light emitting element 11 has temperature dependency, the light receiving means according to the change in the light emission wavelength can be obtained by adjusting the transmission characteristics of the wavelength selection filter 22 according to the temperature of the light emitting element 11. 2 is required to suppress the influence on the output. Specifically, as shown in FIG. 2, in the light emitting diode used as the light emitting element 11, not only the light output decreases as the temperature increases, but also the peak wavelength changes to the long wavelength side. FIG. 2 shows emission wavelengths corresponding to the characteristic X1 of −15 ° C., the characteristic X2 of 25 ° C., and the characteristic X3 of 55 ° C., respectively.

温度変化に伴って発光素子11の発光波長に変化が生じたとしても、受光手段2の出力に影響しないようにするには、透過する波長域が広い波長選択フィルタ22を用いることが考えられる。しかしながら、波長選択フィルタ22を透過する波長域が広いと、太陽光の影響を除去する効果が低減されるという問題が生じる。したがって、波長選択フィルタ22を透過する波長域はできるだけ狭くすることが要求される。そのため、温度測定手段6で測定された温度に応じて波長選択フィルタ22の透過特性を調節することが必要になる。波長選択フィルタ22の透過特性を調節するには、波長選択フィルタ22の配置を変更するか、透過特性の異なる複数の波長選択フィルタ22を交換して用いる。   In order not to affect the output of the light receiving means 2 even if the light emission wavelength of the light emitting element 11 is changed due to the temperature change, it is conceivable to use the wavelength selection filter 22 having a wide transmission wavelength range. However, if the wavelength range that transmits the wavelength selection filter 22 is wide, there arises a problem that the effect of removing the influence of sunlight is reduced. Therefore, it is required to make the wavelength range that transmits the wavelength selection filter 22 as narrow as possible. Therefore, it is necessary to adjust the transmission characteristics of the wavelength selection filter 22 according to the temperature measured by the temperature measuring means 6. In order to adjust the transmission characteristics of the wavelength selection filter 22, the arrangement of the wavelength selection filters 22 is changed, or a plurality of wavelength selection filters 22 having different transmission characteristics are used.

波長選択フィルタ22の配置を変更する場合、受光手段2の受光面に対する波長選択フィルタ22の角度を、温度測定手段6で測定した温度に応じて変化させる。すなわち、波長選択フィルタ22として、光学薄膜フィルタ(とくに、干渉フィルタ)を用いると、光の入射角度に応じて透過する波長域に変化が生じることが知られているから、この特性を利用するのである。この構成を採用する場合、図3に示すように、波長選択フィルタ22の向きを変化させるアクチュエータ23を受光手段2に付加する必要がある。アクチュエータ23は、波長選択フィルタ22の向きを微小角度(数度以下)で調節することが可能になるように構成されたギアードモータや超音波モータ、ピエゾ素子などを備え加えた電圧に応じて変位量が変化する電歪素子などが用いられる。   When the arrangement of the wavelength selection filter 22 is changed, the angle of the wavelength selection filter 22 with respect to the light receiving surface of the light receiving unit 2 is changed according to the temperature measured by the temperature measuring unit 6. That is, when an optical thin film filter (especially an interference filter) is used as the wavelength selection filter 22, it is known that a change occurs in the wavelength range of transmission depending on the incident angle of light. is there. When this configuration is employed, an actuator 23 that changes the direction of the wavelength selection filter 22 needs to be added to the light receiving means 2 as shown in FIG. The actuator 23 is displaced in accordance with a voltage provided with a geared motor, an ultrasonic motor, a piezo element, or the like configured to be able to adjust the direction of the wavelength selection filter 22 by a minute angle (several degrees or less). An electrostrictive element whose amount changes is used.

一方、透過特性の異なる波長選択フィルタ22を交換して用いる場合には、透過特性の異なる複数種類の波長選択フィルタ22を受光手段2に設けておき、温度測定手段6が計測した温度に応じて、適宜の波長選択フィルタ22を選択する。この構成に用いる波長選択フィルタ22は、波長域の幅をほぼ等しくし、透過させる波長の範囲を異ならせておく。また、波長選択フィルタ22の交換は、図3に示す構成と同様に、アクチュエータ23を用いて行う。この構成に用いるアクチュエータ23は、たとえば複数個の波長選択フィルタ22を取り付けた回転式のタレットを駆動して、波長選択フィルタ22を選択できるように構成しておけばよい。構成(3)を採用する場合、波長選択フィルタ22およびアクチュエータ23を備える受光手段2が、制御手段3とともに精度維持手段7として機能する。   On the other hand, when the wavelength selection filter 22 having different transmission characteristics is used by being exchanged, a plurality of types of wavelength selection filters 22 having different transmission characteristics are provided in the light receiving means 2 according to the temperature measured by the temperature measurement means 6. An appropriate wavelength selection filter 22 is selected. The wavelength selection filter 22 used in this configuration has substantially the same wavelength band width and different wavelength ranges for transmission. Further, the wavelength selection filter 22 is exchanged by using the actuator 23 as in the configuration shown in FIG. The actuator 23 used in this configuration may be configured such that the wavelength selection filter 22 can be selected by driving a rotary turret having a plurality of wavelength selection filters 22 attached thereto, for example. When the configuration (3) is adopted, the light receiving unit 2 including the wavelength selection filter 22 and the actuator 23 functions as the accuracy maintaining unit 7 together with the control unit 3.

構成(4)は、発光素子11である発光ダイオードの発光波長が温度により変化することを利用し、同温度のときに異なる発光波長である複数種類の発光ダイオードを用い、温度測定手段6で計測した温度に応じて1種類の発光ダイオードを選択することを意味する。たとえば、図4に示すように、常温において発光波長が異なる2種類の発光ダイオード111,112を並べておき、低温側では発光波長が長波長である発光ダイオード111を用い、高温側では発光波長が短波長である発光ダイオード112を用いる。発光ダイオード111のピーク波長は、たとえば850nm(at25℃)とし、発光ダイオード112のピーク波長は、たとえば820nm(at25℃)とすればよい。また、たとえば、−15〜25℃において発光ダイオード111を用い、たとえば、25〜55℃において発光ダイオード112を用いる。構成(4)を採用した場合、投光手段1が制御手段3とともに精度維持手段7として機能する。   The configuration (4) uses the fact that the light emission wavelength of the light-emitting diode that is the light-emitting element 11 varies depending on the temperature. It means that one kind of light emitting diode is selected according to the temperature. For example, as shown in FIG. 4, two types of light emitting diodes 111 and 112 having different emission wavelengths at room temperature are arranged, the light emitting diode 111 having a long emission wavelength is used on the low temperature side, and the emission wavelength is short on the high temperature side. A light emitting diode 112 having a wavelength is used. The peak wavelength of the light emitting diode 111 may be, for example, 850 nm (at 25 ° C.), and the peak wavelength of the light emitting diode 112 may be, for example, 820 nm (at 25 ° C.). For example, the light emitting diode 111 is used at -15 to 25 ° C., and the light emitting diode 112 is used at 25 to 55 ° C., for example. When the configuration (4) is employed, the light projecting unit 1 functions as the accuracy maintaining unit 7 together with the control unit 3.

発光ダイオード111,112の発光波長は高温側では低温側よりも長波長になるから、高温側で短波長の発光ダイオード112を用いると、発光波長が長波長の発光ダイオード111の波長に近付くことになる。逆に、低温側で長波長の発光ダイオード111を用いると、発光波長が短波長の発光ダイオード112に近付くことになる。すなわち、温度変化に伴う投光手段1の発光波長の変化を抑制することができる。   Since the light emission wavelengths of the light emitting diodes 111 and 112 are longer on the high temperature side than on the low temperature side, if the light emitting diode 112 having a short wavelength is used on the high temperature side, the light emission wavelength approaches the wavelength of the light emitting diode 111 having a long wavelength. Become. On the other hand, when the light emitting diode 111 having a long wavelength is used on the low temperature side, the light emitting wavelength approaches the light emitting diode 112 having a short wavelength. That is, it is possible to suppress a change in the emission wavelength of the light projecting unit 1 due to a temperature change.

上述した例では、発光波長の異なる2種類の発光ダイオード111,112を用いているが、3種類以上の発光ダイオードを用いることも可能である。さらに、上述した構成例では、発光波長の異なる複数種類の発光ダイオード111,112を選択的に用いているが、すべての発光ダイオード111,112を点灯させてもよい。この場合、発光ダイオード111,112に流す電流を調節して都合のよい波長の発光ダイオード111,112を主に用いるようにすればよい。また、構成(4)を用いる場合、投光手段1の温度変化に対する受光手段2の受光波長の変化が抑制されているから、構成(3)のように波長選択フィルタ22の透過特性を変化させなくてもよい。つまり、構成(3)と構成(4)とは一方を選択して用いればよい。   In the above-described example, two types of light emitting diodes 111 and 112 having different emission wavelengths are used, but three or more types of light emitting diodes may be used. Furthermore, in the configuration example described above, a plurality of types of light emitting diodes 111 and 112 having different emission wavelengths are selectively used, but all the light emitting diodes 111 and 112 may be lit. In this case, the currents flowing through the light emitting diodes 111 and 112 may be adjusted so that the light emitting diodes 111 and 112 having convenient wavelengths are mainly used. Further, when the configuration (4) is used, since the change in the light receiving wavelength of the light receiving unit 2 with respect to the temperature change of the light projecting unit 1 is suppressed, the transmission characteristic of the wavelength selection filter 22 is changed as in the configuration (3). It does not have to be. That is, one of the configuration (3) and the configuration (4) may be selected and used.

構成(5)では、図5に示すように、発光素子11の温度変化を抑制する温調装置12を設ける。温調装置12は、吸熱と発熱との制御が可能であって、かつ小型である構成が望ましい。したがって、温調装置12にはペルチェ素子が用いられる。この構成では、制御手段3は、温度測定手段6が計測した温度が規定の目標温度に保たれるように、温調装置12の吸熱量あるいは発熱量を制御する。したがって、発光素子11の温度は周囲温度とは無関係にほぼ一定温度に保たれることになる。したがって、温度変化に伴う発光素子11の光出力および発光波長の変化が抑制され、結果的に、周囲で温度変化が生じても計測精度を維持することが可能になる。構成(5)を採用した場合、温調装置12を備える投光手段1が制御手段3とともに精度維持手段7として機能する。   In the configuration (5), as shown in FIG. 5, a temperature adjustment device 12 that suppresses a temperature change of the light emitting element 11 is provided. The temperature control device 12 is preferably configured to be capable of controlling heat absorption and heat generation and being small in size. Therefore, a Peltier element is used for the temperature control device 12. In this configuration, the control unit 3 controls the heat absorption amount or the heat generation amount of the temperature adjustment device 12 so that the temperature measured by the temperature measurement unit 6 is maintained at a specified target temperature. Therefore, the temperature of the light emitting element 11 is maintained at a substantially constant temperature regardless of the ambient temperature. Therefore, changes in the light output and emission wavelength of the light emitting element 11 due to temperature changes are suppressed, and as a result, measurement accuracy can be maintained even if there are temperature changes in the surroundings. When the configuration (5) is adopted, the light projecting unit 1 including the temperature control device 12 functions as the accuracy maintaining unit 7 together with the control unit 3.

構成(5)を採用する場合は、構成(1)〜(4)を採用する必要はない。すなわち、構成(5)を採用しない場合、構成(3)と構成(4)との一方と、構成(1)と、構成(2)とは適宜に組み合わせて用いることができる。   When employing the configuration (5), it is not necessary to employ the configurations (1) to (4). That is, when the configuration (5) is not adopted, one of the configuration (3) and the configuration (4), the configuration (1), and the configuration (2) can be used in appropriate combination.

上述したように、構成(1)〜(5)を適宜に用いることによって、周囲温度の変化に伴う距離の計測精度の変化を抑制することになり、温度環境が変化しても、校正を行うことなく精度よく距離を計測することが可能になる。   As described above, by appropriately using the configurations (1) to (5), the change in the distance measurement accuracy due to the change in the ambient temperature is suppressed, and the calibration is performed even if the temperature environment changes. It is possible to measure the distance accurately without any problem.

1 投光手段
2 受光手段
3 制御手段
4 演算手段
5 出力手段
6 温度測定手段
7 精度維持手段
11 発光素子
12 温調装置
21 受光素子
22 波長選択フィルタ
23 アクチュエータ
111 発光ダイオード
112 発光ダイオード
DESCRIPTION OF SYMBOLS 1 Light projection means 2 Light reception means 3 Control means 4 Calculation means 5 Output means 6 Temperature measurement means 7 Accuracy maintenance means 11 Light emitting element 12 Temperature control device 21 Light receiving element 22 Wavelength selection filter 23 Actuator 111 Light emitting diode 112 Light emitting diode

Claims (6)

対象空間に投光する発光素子を備えた投光手段と、
前記対象空間からの光を受光する受光素子を備えた受光手段と、
前記投光手段に変調信号を与えて前記発光素子から時間経過に伴って強度が変化する変調光を投光させ、前記変調信号に同期する復調信号を前記受光手段に与えて前記受光素子の出力から変調光の成分を抽出する制御手段と、
前記投光手段から対象空間に投光された変調光が前記受光手段に受光されるまでの時間を計測する演算手段と、
前記投光手段の温度を計測する温度測定手段と、
前記温度測定手段が計測した温度を用い前記受光素子に入射する変調光の変化を抑制する精度維持手段と
を備えることを特徴とする距離計測装置。
A light projecting means including a light emitting element that projects light into a target space;
A light receiving means including a light receiving element for receiving light from the target space;
A modulation signal is given to the light projecting means to emit modulated light whose intensity changes with time, and a demodulated signal synchronized with the modulation signal is given to the light receiving means to output the light receiving element. Control means for extracting the component of the modulated light from
Arithmetic means for measuring time until modulated light projected from the light projecting means to the target space is received by the light receiving means;
Temperature measuring means for measuring the temperature of the light projecting means;
A distance measuring apparatus comprising: an accuracy maintaining unit that suppresses a change in modulated light incident on the light receiving element using the temperature measured by the temperature measuring unit.
前記精度維持手段は、前記温度測定手段で計測された温度が高いほど前記発光素子の駆動電流を大きくする
ことを特徴とする請求項1記載の距離計測装置。
The distance measuring apparatus according to claim 1, wherein the accuracy maintaining unit increases the drive current of the light emitting element as the temperature measured by the temperature measuring unit increases.
前記精度維持手段は、前記温度測定手段で計測された温度が高いほど発光素子を駆動するタイミングを遅延させる
ことを特徴とする請求項1記載の距離計測装置。
The distance measuring apparatus according to claim 1, wherein the accuracy maintaining unit delays the timing of driving the light emitting element as the temperature measured by the temperature measuring unit is higher.
前記精度維持手段は、前記受光素子に入射する光の波長を選択する波長選択フィルタを備え、
前記温度測定手段で計測された温度が高いほど前記波長選択フィルタの透過特性を短波長側に変化させる
ことを特徴とする請求項1記載の距離計測装置。
The accuracy maintaining means includes a wavelength selection filter that selects a wavelength of light incident on the light receiving element,
The distance measuring apparatus according to claim 1, wherein the transmission characteristic of the wavelength selection filter is changed to a shorter wavelength side as the temperature measured by the temperature measuring unit is higher.
前記投光手段は、発光波長が異なる複数種類の前記発光素子を備え、
前記精度維持手段は、前記温度測定手段で計測された温度が高いほど発光波長の短い前記発光素子を用いて前記対象空間に投光する
ことを特徴とする請求項1記載の距離計測装置。
The light projecting means includes a plurality of types of the light emitting elements having different emission wavelengths,
The distance measuring apparatus according to claim 1, wherein the accuracy maintaining unit projects the light into the target space using the light emitting element having a shorter emission wavelength as the temperature measured by the temperature measuring unit is higher.
前記投光手段は、前記発光素子の温度を調節する温調装置を備え、
前記精度維持手段は、前記温度測定手段で計測された温度が規定の目標温度になるように前記温調装置を制御する
ことを特徴とする請求項1記載の距離計測装置。
The light projecting means includes a temperature control device that adjusts the temperature of the light emitting element,
The distance measuring device according to claim 1, wherein the accuracy maintaining unit controls the temperature adjusting device so that the temperature measured by the temperature measuring unit becomes a specified target temperature.
JP2011232812A 2011-10-24 2011-10-24 Distance measurement apparatus Pending JP2013092385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232812A JP2013092385A (en) 2011-10-24 2011-10-24 Distance measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232812A JP2013092385A (en) 2011-10-24 2011-10-24 Distance measurement apparatus

Publications (1)

Publication Number Publication Date
JP2013092385A true JP2013092385A (en) 2013-05-16

Family

ID=48615619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232812A Pending JP2013092385A (en) 2011-10-24 2011-10-24 Distance measurement apparatus

Country Status (1)

Country Link
JP (1) JP2013092385A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525097A (en) * 2016-12-12 2017-03-22 大连艾科科技开发有限公司 Tunable laser wavelength detection method and device
KR20200062729A (en) * 2018-11-27 2020-06-04 현대오트론 주식회사 LIDAR apparatus and its signal processing method
CN111868556A (en) * 2018-02-13 2020-10-30 感应光子公司 Method and system for high resolution remote flash LIDAR
JP2022547662A (en) * 2019-08-26 2022-11-15 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Active optical sensor system with temperature regulation
US11978754B2 (en) 2018-02-13 2024-05-07 Sense Photonics, Inc. High quantum efficiency Geiger-mode avalanche diodes including high sensitivity photon mixing structures and arrays thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525097A (en) * 2016-12-12 2017-03-22 大连艾科科技开发有限公司 Tunable laser wavelength detection method and device
CN106525097B (en) * 2016-12-12 2019-08-13 大连艾科科技开发有限公司 A kind of tunable laser wavelength detecting method and device
CN111868556A (en) * 2018-02-13 2020-10-30 感应光子公司 Method and system for high resolution remote flash LIDAR
JP2021513087A (en) * 2018-02-13 2021-05-20 センス・フォトニクス, インコーポレイテッドSense Photonics, Inc. Methods and systems for high resolution long range flash LIDAR
US11978754B2 (en) 2018-02-13 2024-05-07 Sense Photonics, Inc. High quantum efficiency Geiger-mode avalanche diodes including high sensitivity photon mixing structures and arrays thereof
KR20200062729A (en) * 2018-11-27 2020-06-04 현대오트론 주식회사 LIDAR apparatus and its signal processing method
KR102283233B1 (en) * 2018-11-27 2021-07-29 현대모비스 주식회사 LIDAR apparatus and its signal processing method
JP2022547662A (en) * 2019-08-26 2022-11-15 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Active optical sensor system with temperature regulation
JP7407274B2 (en) 2019-08-26 2023-12-28 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Active optical sensor system with temperature regulation

Similar Documents

Publication Publication Date Title
AU2019268121B2 (en) LiDAR scanner calibration
WO2021128587A1 (en) Adjustable depth measuring device and measuring method
US9418425B2 (en) 3D image acquisition apparatus and method of calculating depth information in the 3D image acquisition apparatus
KR101741324B1 (en) Time of flight apparatuses and an illumination source
CN111025318B (en) Depth measuring device and measuring method
JP6230420B2 (en) System and method for receiving a light beam and computer program
JP7028878B2 (en) A system for measuring the distance to an object
JP2021107832A (en) Distance measuring device
JP2019529958A (en) System and method for determining distance to an object
KR20160032014A (en) A method for driving a time-of-flight system
JP2013092385A (en) Distance measurement apparatus
JP2019052981A5 (en)
JP2014160057A5 (en)
CN111025321B (en) Variable-focus depth measuring device and measuring method
EP2914973B1 (en) Device and method for measuring distance values and distance images
US20160349370A1 (en) Camera device
KR20160092137A (en) Controlling method in distance measuring device using TOF
JP2011228457A (en) Image display apparatus and laser light source apparatus
CN111025319B (en) Depth measuring device and measuring method
TW202127635A (en) Time of flight sensing system and image sensor used therein
KR20170076477A (en) Method and device for acquiring distance information
KR102500863B1 (en) Apparatus for extracting depth information and optical apparatus
JP5215547B2 (en) Spatial information detection device
KR101654665B1 (en) Method of measuring distance based on optical signals having different wavelength and apparatus thereof
US10509113B2 (en) Techniques for performing time of flight measurements