JP2013092301A - Indoor heat exchanger - Google Patents

Indoor heat exchanger Download PDF

Info

Publication number
JP2013092301A
JP2013092301A JP2011234530A JP2011234530A JP2013092301A JP 2013092301 A JP2013092301 A JP 2013092301A JP 2011234530 A JP2011234530 A JP 2011234530A JP 2011234530 A JP2011234530 A JP 2011234530A JP 2013092301 A JP2013092301 A JP 2013092301A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
indoor heat
header
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011234530A
Other languages
Japanese (ja)
Inventor
Takashi Yabe
隆 矢部
Masaki Ishikawa
正樹 石川
Osamu Kamoshita
理 鴨志田
Sumitaka Watanabe
純孝 渡辺
Shingo Suzuki
新吾 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2011234530A priority Critical patent/JP2013092301A/en
Publication of JP2013092301A publication Critical patent/JP2013092301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an indoor heat exchanger which makes a discharge air temperature uniform when used for heat pump refrigeration cycles.SOLUTION: The indoor heat exchanger 7 used for heat pump refrigeration cycles includes a leeward side header part 21 and a windward side header part 22 which are disposed with a space therebetween and a refrigerant circulation path 23 which connects both the headers 21 and 22. A refrigerant inlet 24 is arranged at one end of the leeward side header 21, while a refrigerant outlet 25 is arranged at the same side end as for the refrigerant inlet 24 at the windward side header part 22. The refrigerant circulation path 23 is formed in a substantially inverted U shape when viewed from outside in the longitudinal directions of both header parts 21 and 22, and is composed of a pair of vertical parts 26 and 27 which are upward extensions from the header parts 21 and 22 and a connecting part 28 which mutually connects the upper ends of both the longitudinal parts 26 and 27.

Description

この発明は、ヒートポンプ式冷凍サイクルに用いられる室内熱交換器に関する。   The present invention relates to an indoor heat exchanger used in a heat pump refrigeration cycle.

ハイブリッド自動車や、電気自動車などの比較的廃熱の少ない車両の車両用空調装置に用いられるヒートポンプ式冷凍サイクルとして、圧縮機、車室外に配置され、かつ冷房時に圧縮機で圧縮された冷媒から熱を放熱して凝縮させるとともに暖房時に減圧された冷媒に受熱させて蒸発させる室外熱交換器、冷房時に室外熱交換器を通過した冷媒を減圧する第1減圧器、車室内に配置されかつ冷房時に第1減圧器で減圧された冷媒に受熱させて蒸発させるエバポレータ、車室内に配置されかつ暖房時に圧縮機で圧縮された冷媒から熱を放熱して冷媒を凝縮させる室内熱交換器、ならびに暖房時に室内熱交換器を通過した冷媒を減圧する第2減圧器を有し、室外熱交換器が暖房時に第2減圧器で減圧された冷媒を蒸発させるようになされ、室内熱交換器が暖房時に空気に熱を与える発熱源となっているものが知られている(特許文献1参照)。   As a heat pump refrigeration cycle used in vehicle air conditioners for vehicles with relatively little waste heat, such as hybrid vehicles and electric vehicles, heat is generated from the compressor, the refrigerant placed outside the passenger compartment, and compressed by the compressor during cooling. An outdoor heat exchanger that heats and condenses and evaporates the refrigerant depressurized during heating, a first decompressor that depressurizes the refrigerant that has passed through the outdoor heat exchanger during cooling, and is disposed in the passenger compartment and during cooling An evaporator that receives and evaporates the refrigerant decompressed by the first decompressor, an indoor heat exchanger that is disposed in the vehicle interior and dissipates heat from the refrigerant compressed by the compressor during heating and condenses the refrigerant, and during heating A second decompressor for decompressing the refrigerant that has passed through the indoor heat exchanger, and the outdoor heat exchanger is configured to evaporate the refrigerant decompressed by the second decompressor during heating, Exchanger those has a heat source providing heat to the air is known at the time of heating (see Patent Document 1).

ヒートポンプ式冷凍サイクルの全ての機器は、冷房時に、冷媒を圧縮機、室内熱交換器、室外熱交換器、第1減圧器およびエバポレータの間で循環させる冷房用配管と、暖房時に、冷媒を圧縮機、室内熱交換器、第2減圧器および室外熱交換器の間で循環させる暖房用配管と、除湿時に、冷媒を圧縮機、室内熱交換器、第2減圧器およびエバポレータの間で循環させる除湿用配管とによって接続されている。   All equipment in the heat pump refrigeration cycle compresses refrigerant during cooling, cooling piping that circulates refrigerant between the compressor, indoor heat exchanger, outdoor heat exchanger, first decompressor and evaporator, and heating. A heating pipe that circulates between the compressor, the indoor heat exchanger, the second pressure reducer, and the outdoor heat exchanger, and at the time of dehumidification, the refrigerant is circulated among the compressor, the indoor heat exchanger, the second pressure reducer, and the evaporator. It is connected by dehumidification piping.

上述した3つの配管は共有部分を有しており、冷房用配管、暖房用配管および除湿用配管における室内熱交換器よりも下流側の部分に冷媒の流れ方向を制御する三方弁が設けられ、冷房用配管における室外熱交換器の下流側とエバポレータとを接続する部分に冷媒を減圧する機能を有しかつ第1減圧器となる第1電磁弁が設けられ、暖房用配管における室外熱交換器の下流側と圧縮機とを接続する部分に第2電磁弁が設けられ、暖房用配管および除湿用配管における三方弁の下流側にレシーバが設けられ、暖房用配管および除湿用配管におけるレシーバよりも下流側に第2減圧器が設けられている。そして、三方弁および2つの電磁弁の働きによって、冷媒が、冷房用配管、暖房用配管および除湿用配管のいずれか1つに流れるように切り替えられる。冷房時には、冷媒は、圧縮機で圧縮された後、室内熱交換器を通過してから室外熱交換器で熱を放熱して凝縮し、ついで第1減圧器により減圧された後にエバポレータで熱を受熱して蒸発し、その後圧縮機に戻される。暖房時には、冷媒は、圧縮機で圧縮された後に室内熱交換器で熱を放熱して凝縮し、ついでレシーバで気液分離された後に第2減圧器により減圧され、ついで室外熱交換器で熱を奪って蒸発した後に、圧縮機に戻される。除湿時には、冷媒は、圧縮機で圧縮された後に室内熱交換器で熱を放熱して凝縮し、ついでレシーバで気液分離された後に第2減圧器により減圧され、その後エバポレータで熱を奪って蒸発し、圧縮機に戻される。そして、室内熱交換器を通過した空気が、暖気として車室内に送り込まれる。   The three pipes described above have a common part, and a three-way valve for controlling the flow direction of the refrigerant is provided in a part downstream of the indoor heat exchanger in the cooling pipe, the heating pipe and the dehumidifying pipe, The outdoor heat exchanger in the heating pipe is provided with a first solenoid valve having a function of reducing the pressure of the refrigerant at a portion connecting the downstream side of the outdoor heat exchanger and the evaporator in the cooling pipe to the first pressure reducer. The second solenoid valve is provided at the portion connecting the downstream side of the compressor and the compressor, the receiver is provided downstream of the three-way valve in the heating pipe and the dehumidifying pipe, and more than the receiver in the heating pipe and the dehumidifying pipe. A second pressure reducer is provided on the downstream side. The refrigerant is switched so as to flow into any one of the cooling pipe, the heating pipe, and the dehumidifying pipe by the action of the three-way valve and the two electromagnetic valves. During cooling, the refrigerant is compressed by the compressor, passes through the indoor heat exchanger, then dissipates heat in the outdoor heat exchanger, condenses, and then is depressurized by the first decompressor and then is heated by the evaporator. It receives heat and evaporates and is then returned to the compressor. During heating, the refrigerant is compressed by the compressor, then dissipates heat from the indoor heat exchanger, condenses, and after being separated by gas and liquid at the receiver, it is decompressed by the second decompressor, and then heated by the outdoor heat exchanger. After being taken away and evaporated, it is returned to the compressor. At the time of dehumidification, the refrigerant is compressed by the compressor, dissipates heat by the indoor heat exchanger, condenses, and after being gas-liquid separated by the receiver, the refrigerant is decompressed by the second decompressor, and then the heat is taken away by the evaporator. It is evaporated and returned to the compressor. And the air which passed the indoor heat exchanger is sent into a vehicle interior as warm air.

特許文献1記載のヒートポンプ式冷凍サイクルの場合、室内熱交換器は、暖房時に圧縮機で圧縮された冷媒から熱を放熱して冷媒を凝縮させる機能を有する。   In the case of the heat pump refrigeration cycle described in Patent Document 1, the indoor heat exchanger has a function of radiating heat from the refrigerant compressed by the compressor during heating to condense the refrigerant.

ところで、エンジンのみを駆動源とする車両の車両用空調装置には蒸気圧縮式冷凍サイクルが用いられているが、蒸気圧縮式冷凍サイクルにおいて、凝縮機能を有する熱交換器は、車室外に配置されかつ冷房時に圧縮機で圧縮された冷媒から放熱して凝縮させる凝縮器である。蒸気圧縮式冷凍サイクルに用いられる凝縮器は、周知のように、互いに間隔をおいて配置された上下方向にのびる1対のヘッダと、両ヘッダ間に上下方向に間隔をおいて水平状に配置されかつ両端部が両ヘッダにそれぞれ接続された複数の扁平状熱交換管と、隣接する熱交換管間に配置されたフィンとを備えており、上下に連続して並んだ複数の熱交換管からなる熱交換パスが上下に並んで3以上設けられ、各熱交換パスを構成する全ての熱交換管の冷媒流れ方向が同一となっているとともに、隣り合う2つの熱交換パスの熱交換管の冷媒流れ方向が異なっており、一方のヘッダの一端部に、その内部に冷媒を流入させる冷媒入口が形成されるとともに、他方のヘッダの他端部に、その内部から冷媒を流出させる冷媒出口が形成され、冷媒入口から一方のヘッダに流入した冷媒が、すべての熱交換パスを順次流れて他方のヘッダ部に入り、冷媒出口から流出するようになっている。   By the way, a vapor compression refrigeration cycle is used in a vehicle air conditioner for a vehicle that uses only an engine as a drive source. In the vapor compression refrigeration cycle, a heat exchanger having a condensing function is disposed outside the passenger compartment. In addition, it is a condenser that dissipates heat from the refrigerant compressed by the compressor during cooling. As is well known, a condenser used in a vapor compression refrigeration cycle is arranged in a horizontal manner with a pair of headers arranged in the vertical direction spaced apart from each other and in the vertical direction between the headers. A plurality of flat heat exchange tubes whose both ends are respectively connected to the headers, and fins disposed between adjacent heat exchange tubes, and a plurality of heat exchange tubes arranged continuously in the vertical direction. There are three or more heat exchange paths arranged vertically, and all the heat exchange tubes constituting each heat exchange path have the same refrigerant flow direction, and the heat exchange tubes of two adjacent heat exchange paths The refrigerant flow directions of the two headers are different, and a refrigerant inlet for allowing the refrigerant to flow into one of the headers is formed at one end of the header, and a refrigerant outlet for allowing the refrigerant to flow out of the other header at the other end of the other header Formed and the refrigerant entered The refrigerant flowing into one header from and all the heat exchange path sequentially flows entering the other header portion, and then flows out from the refrigerant outlet.

しかしながら、蒸気圧縮式冷凍サイクルの凝縮器を、ヒートポンプ式冷凍サイクルの室内熱交換器として用いた場合、冷媒は、全熱交換パスを順次通過する間に徐々に凝縮するので、熱交換パス毎に通過する冷媒の温度が異なる。したがって、凝縮器を通過した空気の温度である吐気温が不均一になるという問題がある。   However, when a condenser of a vapor compression refrigeration cycle is used as an indoor heat exchanger of a heat pump refrigeration cycle, the refrigerant gradually condenses while sequentially passing through the entire heat exchange path, so that each heat exchange path The temperature of the refrigerant that passes is different. Therefore, there is a problem that the air discharge temperature, which is the temperature of the air that has passed through the condenser, becomes uneven.

特開2009−23564号公報JP 2009-23564 A

この発明の目的は、上記問題を解決し、ヒートポンプ式冷凍サイクルに用いた際に吐気温を均一化しうる室内熱交換器を提供することにある。   An object of the present invention is to provide an indoor heat exchanger that can solve the above-described problems and can make the air discharge temperature uniform when used in a heat pump refrigeration cycle.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)圧縮機、車室外に配置されかつ冷房時に冷媒から熱を放熱させるとともに暖房時に冷媒に熱を受熱させる室外熱交換器、冷房時に室外熱交換器を通過した冷媒を減圧する第1減圧器、車室内に配置されかつ冷房時に第1減圧器で減圧された冷媒を蒸発させるエバポレータ、車室内に配置されかつ暖房時に圧縮機で圧縮された冷媒から熱を放熱して冷媒を凝縮させる室内熱交換器、および暖房時に室内熱交換器を通過した冷媒を減圧する第2減圧器を有するヒートポンプ式冷凍サイクルに用いられる室内熱交換器において、
互いに間隔をおいて配置された風下側ヘッダ部および風上側ヘッダ部と、両ヘッダ部を通じさせる冷媒流通経路とを備えており、風下側ヘッダ部の一端に冷媒入口が設けられるとともに、風上側ヘッダ部における冷媒入口と同一端に冷媒出口が設けられ、冷媒流通経路が、両ヘッダ部の長さ方向外側から見て略逆U字状であって、両ヘッダ部から上方にのびる1対の縦向き部分、および両縦向き部分の上端部を相互に連結する連結部分とよりなる室内熱交換器。
1) A compressor, an outdoor heat exchanger that is disposed outside the passenger compartment and radiates heat from the refrigerant during cooling and receives heat from the refrigerant during heating, and a first decompressor that decompresses the refrigerant that has passed through the outdoor heat exchanger during cooling An evaporator that evaporates the refrigerant decompressed by the first decompressor during cooling and evaporates the refrigerant that is decompressed by the compressor during cooling, and indoor heat that dissipates heat from the refrigerant compressed by the compressor during heating and condenses the refrigerant In the indoor heat exchanger used for the heat pump refrigeration cycle having the exchanger and the second decompressor that decompresses the refrigerant that has passed through the indoor heat exchanger during heating,
The leeward header section and the leeward header section that are spaced apart from each other, and a refrigerant flow path that passes through both header sections, a refrigerant inlet is provided at one end of the leeward header section, and the leeward header A refrigerant outlet is provided at the same end as the refrigerant inlet in the section, and the refrigerant flow path has a substantially inverted U shape when viewed from the outside in the length direction of both header sections, and is a pair of vertical lines extending upward from both header sections. The indoor heat exchanger which consists of a connection part which connects the direction part and the upper end part of both vertical direction parts mutually.

上記1)の室内熱交換器によれば、互いに間隔をおいて配置された風下側ヘッダ部および風上側ヘッダ部と、両ヘッダ部を通じさせる冷媒流通経路とを備えており、風下側ヘッダ部の一端に冷媒入口が設けられるとともに、風上側ヘッダ部における冷媒入口と同一端に冷媒出口が設けられ、冷媒流通経路が、両ヘッダ部の長さ方向外側から見て略逆U字状であって、両ヘッダ部から上方にのびる1対の縦向き部分、および両縦向き部分の上端部を相互に連結する連結部分とよりなるので、冷媒は冷媒入口から風下側ヘッダ部内に流入した後、冷媒流通経路内に流入し、冷媒流通経路を通って風上側ヘッダ部内に流入した後、冷媒出口から流出する。冷媒が冷媒入口から風下側ヘッダ部内に流入する際には、冷媒は慣性力により冷媒入口とは反対側に流れやすくなり、熱交換の初期の段階では、冷媒流通経路の風下側縦向き部分においては、冷媒入口とは反対側の部分に多くの冷媒が流れる。したがって、冷媒流通経路の風上側縦向き部分においても、冷媒入口、すなわち冷媒出口とは反対側の部分に多くの冷媒が流れる。しかしながら、室内熱交換器の冷媒流通経路を流れる冷媒と、室内熱交換器を通過する空気とが熱交換を始めて冷媒の熱が空気に放熱されると、冷媒は、風上側ヘッダ部の冷媒出口側に吸引されるので、冷媒流通経路の風上側縦向き部分の下部においては、冷媒出口側に向かって徐々に広がりかつ液相主体冷媒で満たされた過冷却部が生じ、冷媒出口側の部分に多くの冷媒が流れるようになり、風上側縦向き部分における冷媒出口側部分および冷媒出口とは反対側の部分を流れる冷媒量が均一化される。したがって、冷媒流通経路の風下側縦向き部分においても、冷媒入口側部分および冷媒入口とは反対側の部分を流れる冷媒量が均一化される。その結果、暖房時において、室内熱交換器を通過する空気の温度である吐気温も両ヘッダ部の長さ方向に均一化される。   According to the indoor heat exchanger of the above 1), the leeward header section and the leeward header section that are spaced apart from each other, and the refrigerant flow path that passes through both header sections, A refrigerant inlet is provided at one end, a refrigerant outlet is provided at the same end as the refrigerant inlet in the windward header portion, and the refrigerant flow path has a substantially inverted U shape when viewed from the outside in the length direction of both header portions. And a pair of vertically extending portions extending upward from both header portions, and a connecting portion that interconnects the upper end portions of both vertically extending portions, so that the refrigerant flows into the leeward header portion from the refrigerant inlet, After flowing into the flow path, flowing through the refrigerant flow path and into the windward header portion, it flows out from the refrigerant outlet. When the refrigerant flows into the leeward header portion from the refrigerant inlet, the refrigerant tends to flow to the opposite side of the refrigerant inlet due to inertial force, and in the initial stage of heat exchange, in the leeward vertical portion of the refrigerant flow path , A large amount of refrigerant flows in a portion opposite to the refrigerant inlet. Accordingly, a large amount of refrigerant flows through the refrigerant inlet, that is, the portion on the opposite side to the refrigerant outlet, also in the vertical direction of the refrigerant flow path. However, when the refrigerant flowing through the refrigerant flow path of the indoor heat exchanger and the air passing through the indoor heat exchanger start heat exchange and the heat of the refrigerant is radiated to the air, the refrigerant is discharged from the refrigerant outlet of the windward header section. At the lower part of the windward vertical portion of the refrigerant flow path, a supercooling portion that gradually expands toward the refrigerant outlet side and that is filled with the liquid-phase main refrigerant is generated. As a result, a large amount of refrigerant flows, and the amount of refrigerant flowing in the refrigerant outlet side portion and the portion on the opposite side of the refrigerant outlet in the vertical portion on the windward side is made uniform. Therefore, the amount of the refrigerant flowing through the refrigerant inlet side portion and the portion opposite to the refrigerant inlet is also made uniform in the leeward vertical portion of the refrigerant flow path. As a result, during heating, the temperature of air passing through the indoor heat exchanger is also made uniform in the length direction of both header portions.

この発明による室内熱交換器を用いた車両空調装置のヒートポンプ式冷凍サイクルを示す概略図である。It is the schematic which shows the heat pump type refrigeration cycle of the vehicle air conditioner using the indoor heat exchanger by this invention. この発明による室内熱交換器を概略的に示す斜視図である。1 is a perspective view schematically showing an indoor heat exchanger according to the present invention. この発明による室内熱交換器の作用を説明する図である。It is a figure explaining the effect | action of the indoor heat exchanger by this invention.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1はこの発明による車両空調装置のヒートポンプ式冷凍サイクルを示し、図2はこの発明による室内熱交換器を示す。   FIG. 1 shows a heat pump refrigeration cycle of a vehicle air conditioner according to the present invention, and FIG. 2 shows an indoor heat exchanger according to the present invention.

図1において、車両用空調装置のヒートポンプ式冷凍サイクル(1)は、圧縮機(3)、車室外に配置され、かつ冷房時に圧縮機(3)で圧縮された冷媒から熱を放熱して凝縮させるとともに暖房時に減圧された冷媒に受熱させて蒸発させる室外熱交換器(4)、車室内に配置されかつ冷房時に室外熱交換器(4)を通過した冷媒を減圧する第1減圧器(5)、冷房時に第1減圧器(5)で減圧された冷媒を蒸発させるエバポレータ(6)、車室内に配置されかつ暖房時に圧縮機(3)で圧縮された冷媒から熱を放熱して冷媒を凝縮させる室内熱交換器(7)、および暖房時に室内熱交換器(7)を通過した冷媒を減圧する第2減圧器としての膨張弁(9)を備えており、これらの機器が冷房用配管(11)と暖房用配管(12)と除湿用配管(13)とにより接続されている。室外熱交換器(4)は、暖房時に、膨張弁(9)で減圧された冷媒を蒸発させる。   In FIG. 1, a heat pump refrigeration cycle (1) of a vehicle air conditioner dissipates heat from a compressor (3), which is disposed outside the passenger compartment and compressed by the compressor (3) during cooling, and condenses. And an outdoor heat exchanger (4) for receiving and evaporating the refrigerant depressurized during heating, and a first depressurizer (5) for depressurizing the refrigerant disposed in the passenger compartment and passing through the outdoor heat exchanger (4) during cooling. ), An evaporator (6) for evaporating the refrigerant depressurized by the first pressure reducer (5) during cooling, and dissipating heat from the refrigerant disposed in the passenger compartment and compressed by the compressor (3) during heating It has an indoor heat exchanger (7) that condenses, and an expansion valve (9) as a second pressure reducer that depressurizes the refrigerant that has passed through the indoor heat exchanger (7) during heating. (11), a heating pipe (12), and a dehumidifying pipe (13). The outdoor heat exchanger (4) evaporates the refrigerant decompressed by the expansion valve (9) during heating.

冷房用配管(11)は、冷房時に冷媒を圧縮機(3)、室内熱交換器(7)、室外熱交換器(4)、第1減圧器(5)およびエバポレータ(6)の間で循環させるものである。暖房用配管(12)は、暖房時に冷媒を圧縮機(3)、室内熱交換器(7)、膨張弁(9)および室外熱交換器(4)の間で循環させるものである。除湿用配管(13)は、除湿時に冷媒を圧縮機(3)、室内熱交換器(7)、膨張弁(9)およびエバポレータ(6)の間で循環させるものである。これらの配管(11)(12)(13)は共有部分を有しており、全配管(11)(12)(13)における室内熱交換器(7)よりも下流側の部分に冷媒の流れ方向を制御する三方弁(15)が設けられ、冷房用配管(11)における室外熱交換器(4)とエバポレータ(6)とを接続する配管部分(11a)に第1減圧器(5)が設けられ、暖房用配管(12)における三方弁(15)と室外熱交換器(4)とを接続する配管部分(12a)に気液分離器としてのレシーバ(16)および膨張弁(9)が、前者が三方弁(15)側に位置するように設けられている。また、暖房用配管(12)における室外熱交換器(4)と圧縮機(3)とを接続する配管部分(12b)に電磁弁(17)が設けられている。第1減圧器(5)は、冷媒を減圧する機能を有する電磁弁からなり、第1減圧器(5)、三方弁(15)および電磁弁(17)の働きによって、冷媒が、冷房用配管(11)、暖房用配管(12)および除湿用配管(13)のいずれか1つに流れるように切り替えられる。   The cooling pipe (11) circulates refrigerant between the compressor (3), the indoor heat exchanger (7), the outdoor heat exchanger (4), the first pressure reducer (5) and the evaporator (6) during cooling. It is something to be made. The heating pipe (12) circulates the refrigerant between the compressor (3), the indoor heat exchanger (7), the expansion valve (9), and the outdoor heat exchanger (4) during heating. The dehumidifying pipe (13) circulates the refrigerant between the compressor (3), the indoor heat exchanger (7), the expansion valve (9), and the evaporator (6) during dehumidification. These pipes (11), (12), and (13) have a shared part, and the refrigerant flows to the downstream side of the indoor heat exchanger (7) in all the pipes (11), (12), and (13). A three-way valve (15) for controlling the direction is provided, and a first pressure reducer (5) is provided in a pipe portion (11a) connecting the outdoor heat exchanger (4) and the evaporator (6) in the cooling pipe (11). A receiver (16) and an expansion valve (9) as a gas-liquid separator are provided in a pipe part (12a) that is provided and connects the three-way valve (15) and the outdoor heat exchanger (4) in the heating pipe (12). The former is provided on the three-way valve (15) side. In addition, a solenoid valve (17) is provided in a pipe portion (12b) connecting the outdoor heat exchanger (4) and the compressor (3) in the heating pipe (12). The first pressure reducer (5) is composed of an electromagnetic valve having a function of reducing the pressure of the refrigerant, and the refrigerant is cooled by the operation of the first pressure reducer (5), the three-way valve (15) and the electromagnetic valve (17). (11), switching to flow to any one of the heating pipe (12) and the dehumidifying pipe (13).

冷房時には、冷媒は、圧縮機(3)で圧縮された後に室内熱交換器(7)を通過し、ついで室外熱交換器(4)で熱を放熱して凝縮した後に第1減圧器(5)により減圧され、ついでエバポレータ(6)で熱を奪って蒸発した後圧縮機(3)に戻される。暖房時には、冷媒は、圧縮機(3)で圧縮された後に室内熱交換器(7)で熱を放熱して凝縮し、ついでレシーバ(16)で気液分離された後に膨張弁(9)により減圧され、ついで室外熱交換器(4)で熱を奪って蒸発した後に圧縮機(3)に戻される。除湿時には、冷媒は、圧縮機(3)で圧縮された後に室内熱交換器(7)で熱を放熱して凝縮し、ついでレシーバ(16)で気液分離された後に膨張弁(9)により減圧され、ついでエバポレータ(6)で熱を奪って蒸発した後圧縮機(3)に戻される。   During cooling, the refrigerant is compressed by the compressor (3), then passes through the indoor heat exchanger (7), then dissipates heat in the outdoor heat exchanger (4) and condenses, and then the first decompressor (5 ), And after evaporating by removing heat from the evaporator (6), it is returned to the compressor (3). During heating, the refrigerant is compressed by the compressor (3), dissipates heat in the indoor heat exchanger (7), condenses, and then gas-liquid is separated by the receiver (16), and then is expanded by the expansion valve (9). The pressure is reduced, and then the heat is removed by the outdoor heat exchanger (4) to evaporate and then returned to the compressor (3). During dehumidification, the refrigerant is compressed by the compressor (3), dissipates heat in the indoor heat exchanger (7), condenses, and then gas-liquid is separated by the receiver (16), and then is expanded by the expansion valve (9). The pressure is reduced, and then the evaporator (6) is deprived of heat and evaporated, and then returned to the compressor (3).

図2に示すように、室内熱交換器(7)には、空気が矢印Xで示す方向に流れるようになっている。室内熱交換器(7)は、互いに間隔をおいて配置された風下側ヘッダ部(21)および風上側ヘッダ部(22)と、両ヘッダ部(21)(22)を通じさせる冷媒流通経路(23)とを備えている。風下側ヘッダ部(21)のヘッダ部の一端に冷媒入口(24)が設けられるとともに、風上側ヘッダ部(22)における冷媒入口(24)と同一端に冷媒出口(25)が設けられている。冷媒流通経路(23)は、両ヘッダ部(21)(22)の長さ方向外側から見て略逆U字状であって、風下側ヘッダ部(21)から上方に真っ直ぐにのびる風下側縦向き部分(26)と、風上側ヘッダ部(22)から上方に真っ直ぐにのびる風上側縦向き部分(27)と、両縦向き部分(26)(27)の上端部を相互に連結する円弧状の連結部分(28)とよりなる。図示は省略したが、冷媒流通経路(23)は、下端が風下側ヘッダ部(21)に接続されて上方にのびる第1縦向き部分、一端が風上側ヘッダ部(22)に接続されて上方にのびる第2縦向き部分および両縦向き部分の上端どうしを連結する連結部からなる略逆U字状状の複数の冷媒流通管を両ヘッダ部(21)(22)の長さ方向に間隔をおいて配置することにより形成され、冷媒流通経路(23)の隣り合う冷媒流通管どうしの間に通風間隙が設けられるとともに、通風間隙にはフィンが配置されている。   As shown in FIG. 2, air flows through the indoor heat exchanger (7) in the direction indicated by the arrow X. The indoor heat exchanger (7) includes a leeward header section (21) and an upwind header section (22) that are spaced apart from each other, and a refrigerant flow path (23) through the header sections (21) (22). ). A refrigerant inlet (24) is provided at one end of the header portion of the leeward header portion (21), and a refrigerant outlet (25) is provided at the same end as the refrigerant inlet (24) in the leeward header portion (22). . The refrigerant flow path (23) has a substantially inverted U shape when viewed from the outside in the length direction of both header portions (21) and (22), and extends straight down from the leeward header portion (21). An arcuate shape that connects the facing part (26), the windward vertical part (27) that extends straight up from the windward header part (22), and the upper ends of both vertical parts (26, 27). The connecting portion (28). Although not shown, the refrigerant flow path (23) has a lower end connected to the leeward header portion (21) and extends upward, and one end is connected to the leeward header portion (22). A plurality of substantially inverted U-shaped refrigerant flow pipes, each of which has a connecting portion that connects the second vertical portion and the upper ends of both vertical portions, are spaced apart in the length direction of both header portions (21, 22). A ventilation gap is provided between adjacent refrigerant circulation pipes in the refrigerant circulation path (23), and fins are arranged in the ventilation gap.

夏季などの冷房時には、冷媒は、圧縮機(3)で圧縮された後に、室内熱交換器(7)を通過し、室外熱交換器(4)において熱を放熱して凝縮させられる。ついで、冷媒は、減圧器(5)により減圧された後に、エバポレータ(6)において受熱させられて蒸発し、その後圧縮機(3)に戻される。エバポレータ(6)において熱を奪われた空気が車室内に吹き出される。   During cooling such as in summer, the refrigerant is compressed by the compressor (3), then passes through the indoor heat exchanger (7), and is radiated and condensed in the outdoor heat exchanger (4). Next, the refrigerant is decompressed by the decompressor (5), is then received by the evaporator (6) and evaporated, and then returned to the compressor (3). Air deprived of heat in the evaporator (6) is blown out into the passenger compartment.

冬季などの暖房時には、冷媒は、圧縮機(3)で圧縮された後に、室内熱交換器(7)において、図2に矢印Xで示す方向に流れる空気に放熱して凝縮させられるとともに、空気が加熱され、加熱された空気は車室内に吹き出される。室内熱交換器(7)において熱を放熱して凝縮させられた冷媒は、レシーバ(16)で気液分離された後に膨張弁(9)により減圧され、ついで室外熱交換器(4)で熱を奪って蒸発した後に圧縮機(3)に戻される。   At the time of heating in winter, the refrigerant is compressed by the compressor (3), and then is radiated and condensed in the indoor heat exchanger (7) by the air flowing in the direction indicated by the arrow X in FIG. Is heated, and the heated air is blown into the passenger compartment. The refrigerant condensed by releasing heat in the indoor heat exchanger (7) is gas-liquid separated by the receiver (16) and then decompressed by the expansion valve (9), and then heated by the outdoor heat exchanger (4). It is returned to the compressor (3) after evaporating.

暖房時において、冷媒は、室内熱交換器(7)の冷媒入口(24)から風下側ヘッダ部(21)内に流入する。風下側ヘッダ部(21)内に流入した冷媒は、冷媒流通経路(23)の全冷媒流通管に分かれて流入し、冷媒流通管を通って風上側ヘッダ部(22)内に流入した後、冷媒出口(25)から流出する。冷媒が冷媒入口(24)から風下側ヘッダ部(21)内に流入する際には、冷媒は慣性力により冷媒入口(24)とは反対側に流れやすくなり、熱交換の初期の段階では、冷媒流通経路(23)の風下側縦向き部分(26)においては、冷媒入口(24)とは反対側の冷媒流通管の第1縦向き部分に多くの冷媒が流れる(図3(a)参照)。したがって、冷媒流通経路(23)の風上側縦向き部分(27)においても、冷媒入口(24)、すなわち冷媒出口(25)とは反対側の部分に多くの冷媒が流れる。しかしながら、室内熱交換器(7)の冷媒流通経路(23)を流れる冷媒と、室内熱交換器(7)を通過する空気とが熱交換を始めて冷媒の熱が空気に放熱されると、冷媒は、風上側ヘッダ部(22)の冷媒出口(25)側に吸引されるので、冷媒流通経路(23)の風上側縦向き部分(27)の下部においては、冷媒出口(25)側に向かって徐々に広がりかつ液相主体冷媒で満たされた過冷却部(S)が生じ、冷媒出口(25)側の部分に多くの冷媒が流れるようになり、風上側縦向き部分(27)における冷媒出口(25)側部分および冷媒出口(25)とは反対側の部分を流れる冷媒量が均一化される(図3(b)参照)。したがって、冷媒流通経路(23)の風下側縦向き部分(26)においても、冷媒入口(24)側部分および冷媒入口(24)とは反対側の部分を流れる冷媒量が均一化される。その結果、室内熱交換器(7)を通過する空気の温度である吐気温も両ヘッダ部(21)(22)の長さ方向に均一化される。なお、図3の矢印の幅は、両縦向き部分(26)(27)を流れる冷媒の量を表す。   During heating, the refrigerant flows into the leeward header (21) from the refrigerant inlet (24) of the indoor heat exchanger (7). The refrigerant that has flowed into the leeward header section (21) is divided into all the refrigerant distribution pipes of the refrigerant distribution path (23) and flows into the leeward header section (22) through the refrigerant distribution pipe, It flows out from the refrigerant outlet (25). When the refrigerant flows into the leeward header portion (21) from the refrigerant inlet (24), the refrigerant easily flows to the side opposite to the refrigerant inlet (24) due to inertial force, and in the initial stage of heat exchange, In the leeward vertical portion (26) of the refrigerant flow path (23), a large amount of refrigerant flows through the first vertical portion of the refrigerant flow pipe opposite to the refrigerant inlet (24) (see FIG. 3 (a)). ). Accordingly, a large amount of refrigerant flows through the refrigerant inlet (24), that is, the portion on the opposite side of the refrigerant outlet (25), also in the windward vertical portion (27) of the refrigerant flow path (23). However, when the refrigerant flowing through the refrigerant flow path (23) of the indoor heat exchanger (7) and the air passing through the indoor heat exchanger (7) start heat exchange and the heat of the refrigerant is radiated to the air, the refrigerant Is sucked to the refrigerant outlet (25) side of the windward header section (22), so that the lower part of the windward vertical portion (27) of the refrigerant flow path (23) is directed to the refrigerant outlet (25) side. The subcooling section (S) that gradually spreads and is filled with the liquid phase main refrigerant is generated, so that a large amount of refrigerant flows through the refrigerant outlet (25) side, and the refrigerant in the windward vertical section (27) The amount of refrigerant flowing through the outlet (25) side portion and the portion on the opposite side of the refrigerant outlet (25) is made uniform (see FIG. 3 (b)). Therefore, also in the leeward vertical portion (26) of the refrigerant flow path (23), the amount of refrigerant flowing through the refrigerant inlet (24) side portion and the portion opposite to the refrigerant inlet (24) is made uniform. As a result, the air discharge temperature, which is the temperature of the air passing through the indoor heat exchanger (7), is also made uniform in the length direction of both header portions (21) and (22). In addition, the width of the arrow in FIG.

除湿時には、冷媒は、圧縮機(3)で圧縮された後に、室内熱交換器(7)において放熱して凝縮させられる。室内熱交換器(7)において凝縮させられた冷媒は、レシーバ(16)で気液分離された後に膨張弁(9)により減圧され、ついでエバポレータ(6)において受熱して蒸発し、その後圧縮機(3)に戻される。エバポレータ(6)により熱を奪われた空気は、室内熱交換器(7)から放熱される熱により加熱された後に車室内に吹き出される。   During dehumidification, the refrigerant is compressed by the compressor (3) and then dissipated in the indoor heat exchanger (7) to be condensed. The refrigerant condensed in the indoor heat exchanger (7) is gas-liquid separated by the receiver (16), then depressurized by the expansion valve (9), then received by the evaporator (6) to evaporate, and then the compressor Returned to (3). The air deprived of heat by the evaporator (6) is heated by the heat radiated from the indoor heat exchanger (7) and then blown into the vehicle interior.

上記実施形態において、室外熱交換器(4)は、冷房時に冷媒から熱を放熱して凝縮させるとともに、暖房時に冷媒から熱を奪って蒸発させるようになっているが、これに限定されるものではなく、冷房時に冷媒から熱を放熱して凝縮させる第1の室外熱交換器と、暖房時に冷媒から熱を奪って蒸発させる第2の室外熱交換器とが別々に設けられていてもよい。   In the above embodiment, the outdoor heat exchanger (4) is configured to dissipate heat from the refrigerant during cooling and condense it, and to deprive heat from the refrigerant during heating to evaporate, but is not limited thereto. Instead, a first outdoor heat exchanger that dissipates heat from the refrigerant during cooling and a second outdoor heat exchanger that evaporates by removing heat from the refrigerant during heating may be provided separately. .

この発明による室内熱交換器を用いたヒートポンプ式冷凍サイクルを備えた車両空調装置は、比較的廃熱の少ないハイブリッド自動車や電気自動車に好適に用いられる。   The vehicle air conditioner equipped with the heat pump refrigeration cycle using the indoor heat exchanger according to the present invention is suitably used for hybrid vehicles and electric vehicles with relatively little waste heat.

(1):ヒートポンプ式冷凍サイクル
(3):圧縮機
(4):室外熱交換器
(5):第1減圧器
(6):エバポレータ
(7):室内熱交換器
(9):膨張弁(第2減圧器)
(21):風下側ヘッダ部
(22):風上側ヘッダ部
(23):冷媒流通経路
(24):冷媒入口
(25):冷媒出口
(26):風下側縦向き部分
(27):風上側縦向き部分
(28):連結部分
(1): Heat pump refrigeration cycle
(3): Compressor
(4): Outdoor heat exchanger
(5): First decompressor
(6): Evaporator
(7): Indoor heat exchanger
(9): Expansion valve (second pressure reducer)
(21): leeward header
(22): Upwind header
(23): Refrigerant distribution channel
(24): Refrigerant inlet
(25): Refrigerant outlet
(26): Downward vertical part
(27): Upward vertical part
(28): Linked part

Claims (1)

圧縮機、車室外に配置されかつ冷房時に冷媒から熱を放熱させるとともに暖房時に冷媒に熱を受熱させる室外熱交換器、冷房時に室外熱交換器を通過した冷媒を減圧する第1減圧器、車室内に配置されかつ冷房時に第1減圧器で減圧された冷媒を蒸発させるエバポレータ、車室内に配置されかつ暖房時に圧縮機で圧縮された冷媒から熱を放熱して冷媒を凝縮させる室内熱交換器、および暖房時に室内熱交換器を通過した冷媒を減圧する第2減圧器を有するヒートポンプ式冷凍サイクルに用いられる室内熱交換器において、
互いに間隔をおいて配置された風下側ヘッダ部および風上側ヘッダ部と、両ヘッダ部を通じさせる冷媒流通経路とを備えており、風下側ヘッダ部の一端に冷媒入口が設けられるとともに、風上側ヘッダ部における冷媒入口と同一端に冷媒出口が設けられ、冷媒流通経路が、両ヘッダ部の長さ方向外側から見て略逆U字状であって、両ヘッダ部から上方にのびる1対の縦向き部分、および両縦向き部分の上端部を相互に連結する連結部分とよりなる室内熱交換器。
A compressor, an outdoor heat exchanger that is disposed outside the passenger compartment and dissipates heat from the refrigerant during cooling and receives heat from the refrigerant during heating; a first decompressor that decompresses the refrigerant that has passed through the outdoor heat exchanger during cooling; An evaporator that evaporates the refrigerant decompressed by the first decompressor during cooling and an indoor heat exchanger that dissipates heat from the refrigerant that is disposed in the passenger compartment and compressed by the compressor during heating to condense the refrigerant And an indoor heat exchanger used in a heat pump refrigeration cycle having a second decompressor that decompresses the refrigerant that has passed through the indoor heat exchanger during heating.
The leeward header section and the leeward header section that are spaced apart from each other, and a refrigerant flow path that passes through both header sections, a refrigerant inlet is provided at one end of the leeward header section, and the leeward header A refrigerant outlet is provided at the same end as the refrigerant inlet in the section, and the refrigerant flow path has a substantially inverted U shape when viewed from the outside in the length direction of both header sections, and is a pair of vertical lines extending upward from both header sections. The indoor heat exchanger which consists of a connection part which connects the direction part and the upper end part of both vertical direction parts mutually.
JP2011234530A 2011-10-26 2011-10-26 Indoor heat exchanger Pending JP2013092301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234530A JP2013092301A (en) 2011-10-26 2011-10-26 Indoor heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234530A JP2013092301A (en) 2011-10-26 2011-10-26 Indoor heat exchanger

Publications (1)

Publication Number Publication Date
JP2013092301A true JP2013092301A (en) 2013-05-16

Family

ID=48615562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234530A Pending JP2013092301A (en) 2011-10-26 2011-10-26 Indoor heat exchanger

Country Status (1)

Country Link
JP (1) JP2013092301A (en)

Similar Documents

Publication Publication Date Title
JP4692295B2 (en) Evaporator unit and ejector refrigeration cycle
US10414244B2 (en) Refrigeration system, and in-vehicle refrigeration system
WO2016056064A1 (en) Heat exchanger and air conditioning device
JP2009085569A (en) Evaporator unit
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
US20140352352A1 (en) Outdoor heat exchanger and air conditioner
KR101894440B1 (en) External heat exchanger of heat pump system for vehicle
CN103512255A (en) Climate control system for motor vehicle and method of operating the climate control system
JP6368205B2 (en) Heat pump system
KR102092568B1 (en) Air conditioner system for vehicle
WO2014199484A1 (en) Coolant distribution unit and air conditioning device using same
JP5887102B2 (en) Air conditioner for vehicles
JP4209881B2 (en) Air conditioner
JP2011189824A (en) Air-conditioning system for vehicle
WO2014203500A1 (en) Air conditioner
JP6537928B2 (en) Heat exchanger and heat pump system
JP2014114979A (en) Outdoor heat exchanger for heat pump refrigeration cycle
JP4086011B2 (en) Refrigeration equipment
JP2013092301A (en) Indoor heat exchanger
JPH09126592A (en) Outdoor heat exchanger for heat pump type refrigerating cycle
JP2021032428A (en) Outdoor heat exchanger for heat pump type refrigeration cycle
JP2021000933A (en) Vehicular air conditioner
JP6673148B2 (en) Condenser unit and refrigeration cycle device
JP2020199955A (en) Vehicular air-conditioner
JP2022011597A (en) Heat exchanger and heat pump type refrigeration cycle using the same