JP2013091863A - Heat treatment furnace of fiber sheet - Google Patents

Heat treatment furnace of fiber sheet Download PDF

Info

Publication number
JP2013091863A
JP2013091863A JP2011232971A JP2011232971A JP2013091863A JP 2013091863 A JP2013091863 A JP 2013091863A JP 2011232971 A JP2011232971 A JP 2011232971A JP 2011232971 A JP2011232971 A JP 2011232971A JP 2013091863 A JP2013091863 A JP 2013091863A
Authority
JP
Japan
Prior art keywords
heat treatment
hot air
gas
treatment chamber
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011232971A
Other languages
Japanese (ja)
Inventor
Risa Arai
理沙 荒井
Akira Kachi
暁 加地
Atsushi Kawamura
篤志 川村
Masashi Shimabara
将志 島原
Hiroyuki Nishi
啓之 西
Takafumi Tanaka
崇文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011232971A priority Critical patent/JP2013091863A/en
Publication of JP2013091863A publication Critical patent/JP2013091863A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat treatment furnace of fiber sheet capable of uniforming the temperature distribution in a sheet width direction of a heat treatment chamber and enabling the reduction in cost necessary for uniforming the temperature distribution.SOLUTION: A heat treatment furnace comprises a heat treatment chamber of continuous fiber sheet in a hot air circulation path arranged in a horizontal space; and a heating device 18 of processing gas and a circulation fan arranged in the hot air circulation path outside the heat treatment chamber in this order in a flowing direction of hot air. In the heat treatment chamber, there is a fiber running path on which one or more pair of fiber sheets are running horizontally in parallel one above the other. The heating device 18 comprises: a gas heating region composing a processing gas heating surface 18a; and a gas non-heated region between the gas heating region and a frame 18b of the gas heating surface. At a position adjacent to the heating device 18, provided is a wind direction controlling member 20 for directing the flow of the processing gas, which passes through the gas non-heated region between a gas heating region edge on at least a floor side and the frame 18b, to the gas heating region.

Description

本発明は、繊維シートに各種の熱処理を連続的に行うための加熱処理炉に関し、特に炭素繊維製造工程における前駆体繊維の耐炎化炉に好適に適用され得る繊維シートの加熱処理炉に関する。   The present invention relates to a heat treatment furnace for continuously performing various heat treatments on a fiber sheet, and particularly to a heat treatment furnace for a fiber sheet that can be suitably applied to a precursor fiber flameproofing furnace in a carbon fiber production process.

炭素繊維は、比強度、比弾性率、耐火性、耐熱性、耐久性などに優れることから、その適用分野はますます広がってきている。炭素繊維は前駆体繊維を焼成して製造され、その工程は耐炎化工程、前炭素化工程、炭素化工程がある。耐炎化工程では、前駆体繊維を酸化性雰囲気下で熱処理を行い、前駆体繊維に熱的安定性を付与する。この耐炎化工程は炭素繊維製造工程において最も時間を要する工程であり、炭素繊維性能の発現に大きく関与している。現在、稼動中の炭素繊維製造工場では耐炎化炉内で幅方向に温度斑があることから、炭素繊維に焼成斑が生じている。炭素繊維の品質の均一化、歩留の向上といった観点から、耐炎化炉内の温度分布を均一化することが求められている。   Since carbon fibers are excellent in specific strength, specific elastic modulus, fire resistance, heat resistance, durability and the like, their application fields are expanding. The carbon fiber is manufactured by firing the precursor fiber, and the process includes a flame resistance process, a pre-carbonization process, and a carbonization process. In the flameproofing step, the precursor fiber is heat-treated in an oxidizing atmosphere to impart thermal stability to the precursor fiber. This flameproofing process is the most time-consuming process in the carbon fiber manufacturing process, and is greatly involved in the development of carbon fiber performance. Currently, there are temperature spots in the width direction in a flameproofing furnace in a carbon fiber manufacturing factory that is in operation, and thus there are firing spots on the carbon fibers. From the viewpoint of uniforming the quality of carbon fiber and improving yield, it is required to make the temperature distribution in the flameproofing furnace uniform.

この耐炎化炉内の温度分布を均一化して、温度斑を解消するための具体的提案が、例えば特開2000−088464号公報(特許文献1)や特開2001−288623号公報(特許文献2)、特開2003−155629号公報(特許文献3)、特開2008−138325号公報(特許文献4)、特開2008−280640号公報(特許文献5)などにより多数なされている。その他にも、耐炎化炉内の風速及び温度分布を均一化する提案が、例えば、特開2007−247130号公報(特許文献6)及び特開2008−267794号公報(特許文献7)によりなされている。   Specific proposals for equalizing the temperature distribution in the flameproofing furnace and eliminating temperature spots are disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-088464 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2001-288623 (Patent Document 2). ), JP-A-2003-155629 (Patent Document 3), JP-A-2008-138325 (Patent Document 4), JP-A-2008-280640 (Patent Document 5), and the like. In addition, proposals for uniforming the wind speed and temperature distribution in the flameproofing furnace have been made by, for example, Japanese Unexamined Patent Application Publication No. 2007-247130 (Patent Document 6) and Japanese Unexamined Patent Application Publication No. 2008-267794 (Patent Document 7). Yes.

具体的には、特許文献1では加熱処理室内の繊維導出入部近傍に、断熱材で覆われた熱風吹き出しノズルを設けて放熱を防ぎ、同時にノズル内に加熱手段や温度制御センサーを設けて奪われた放熱分を補給している。特許文献2では、加熱処理室外の対流加熱型熱風循環路に熱風撹拌装置であるスタティックミキサーを設け、このスタティックミキサーを通過する際の圧力損失が3Pa以上として、熱風循環路の加熱処理室内の、特に温度分布及びガス濃度分布を均一にし、耐炎化工程における処理斑をなくすことにより、得られる連続繊維束の物性の均一化を図ると同時に生産効率を向上させている。   Specifically, in Patent Document 1, a hot air blowing nozzle covered with a heat insulating material is provided in the vicinity of the fiber lead-in / out section in the heat treatment chamber to prevent heat dissipation, and at the same time, a heating means and a temperature control sensor are provided in the nozzle to be taken away. Replenishes the heat released. In patent document 2, the static mixer which is a hot air stirring apparatus is provided in the convection heating type hot air circulation path outside the heat treatment chamber, the pressure loss when passing through the static mixer is 3 Pa or more, In particular, by making the temperature distribution and gas concentration distribution uniform and eliminating the processing spots in the flameproofing process, the physical properties of the resulting continuous fiber bundle are made uniform and the production efficiency is improved.

また上記特許文献3によれば、耐炎化炉の炉壁を二重構造として炉壁の放熱による処理室内の温度斑を防ぐと共に、二重構造の内壁から糸条走行方向に向けて突出する風向転換用のフィンを設けて、処理室内温度の均一化と生産効率の増加を図っている。特許文献4では、耐炎化炉の前駆体繊維束の出入口近傍の外気温度を制御して、炉内の温度変動を3℃以下に抑えている。   According to Patent Document 3, the furnace wall of the flameproofing furnace has a double structure to prevent temperature spots in the processing chamber due to heat dissipation of the furnace wall, and the wind direction protrudes from the double structure inner wall toward the yarn running direction. Conversion fins are provided to achieve uniform processing chamber temperature and increase production efficiency. In Patent Document 4, the temperature fluctuation in the furnace is suppressed to 3 ° C. or less by controlling the outside air temperature in the vicinity of the entrance / exit of the precursor fiber bundle of the flameproofing furnace.

上記特許文献5によれば、熱処理室の外側であって、熱処理室の幅方向の両側壁に、各々熱風送風手段を備えた第1及び第2熱風循環流路を設け、第1循環流路の一端を第1熱風供給ノズルに、第2熱風循環流路の一端を第2熱風供給ノズルに接続するとともに、第1熱風循環流路の他端を第1熱風吸込ノズルに、第2熱風循環流路の他端を第2熱風吸込ノズルに接続し、熱処理室の糸条移送方向に対する両側を第1及び第2循環流路により囲んで、熱処理室外への放熱を防ぐとともに、糸条の幅方向の両側において上下に多段に配し、段ごとに熱風を上下交互に吹き出すことによって糸条幅方向の熱風温度及び風速の分布を均一化している。   According to Patent Document 5, the first and second hot air circulation channels each provided with hot air blowing means are provided on both side walls in the width direction of the heat treatment chamber outside the heat treatment chamber. One end of the first hot air circulation nozzle is connected to one end of the second hot air circulation passage, and the other end of the first hot air circulation passage is connected to the first hot air suction nozzle. The other end of the flow path is connected to the second hot air suction nozzle, and both sides of the heat treatment chamber with respect to the yarn transfer direction are surrounded by the first and second circulation flow paths to prevent heat radiation to the outside of the heat treatment chamber and the width of the yarn. The distribution of the hot air temperature and the wind speed in the yarn width direction is made uniform by arranging the air in multiple stages on both sides in the direction and blowing the hot air alternately up and down for each stage.

特許文献2、3、4、6、7は、上記特許文献1、5と同様に、耐炎化路における熱処
理室内の温度分布を均一化させることを主な目的として提案されているものの、そのいずれも上下多段に移送する糸条シート面に対して熱風を直交させて通過させるため、その熱風を受けて糸条同士が絡まったり、糸切れや毛羽立ちなどの損傷を与えやすい。その点、特許文献1及び5の熱処理炉は熱処理内を走行する繊維シートの走行方向に平行に熱風を流しているため、繊維シートを安定して処理できる。
Patent Documents 2, 3, 4, 6, and 7 have been proposed with the main purpose of making the temperature distribution in the heat treatment chamber uniform in the flameproofing path, as in Patent Documents 1 and 5, but none of them. Since the hot air is passed perpendicularly to the surface of the yarn sheet that is transferred in multiple stages, the yarn is entangled with the hot air, and damage such as yarn breakage and fluffing is likely to occur. In that respect, since the heat treatment furnaces of Patent Documents 1 and 5 flow hot air parallel to the traveling direction of the fiber sheet traveling in the heat treatment, the fiber sheet can be stably processed.

特開2000−088464号公報JP 2000-088464 A 特開2001−288623号公報JP 2001-288623 A 特開2003−155629号公報JP 2003-155629 A 特開2008−138325号公報JP 2008-138325 A 特開2008−280640号公報JP 2008-280640 A 特開2007−247130号公報JP 2007-247130 A 特開2008−267794号公報JP 2008-267794 A

ところで、上述の特許文献1〜7により提案されている耐炎化炉は、そのいずれも炉内を流れる処理ガスの流路を熱処理室を含めた循環流路としており、前記熱処理室を除く循環流路の途中に加熱装置と循環ファンとを配している。そうした中で、特許文献2では加熱装置と循環ファンの間の循環流路に熱風撹拌装置としてのスタティックミキサーを設置している。しかるに、スタティックミキサーは流路を左右上下方向にねじることで混合を促すものであるが、その流路のねじれはミキシング板により区分けした隣の領域を入れ替える程度であり、流路全体の処理ガスを混合する作用を有するものではない。そのため、循環流路の路幅方向の熱処理室に近い内側領域とその外側領域とではガスの攪拌がなされず、それぞれの領域間でのガスの混合も殆どなされないままコースごとに流れることになる。   By the way, the flameproofing furnaces proposed by the above-mentioned Patent Documents 1 to 7 all have a processing gas flow path flowing in the furnace as a circulation flow path including a heat treatment chamber, and a circulation flow excluding the heat treatment chamber. A heating device and a circulation fan are arranged on the way. Under such circumstances, in Patent Document 2, a static mixer as a hot air stirring device is installed in a circulation channel between a heating device and a circulation fan. The static mixer, however, encourages mixing by twisting the channel in the horizontal and vertical directions, but the twist of the channel is such that the adjacent area separated by the mixing plate is replaced, and the processing gas in the entire channel is changed. It does not have a mixing effect. Therefore, gas is not stirred in the inner region near the heat treatment chamber in the width direction of the circulation channel and the outer region, and the gas flows between courses with little mixing of the gas between the respective regions. .

この傾向は、攪拌装置が配されず、循環ファンだけを配している場合にも同様であり、しかも処理ガスの循環流路の路幅方向の熱処理室側の内側領域とその外側領域とでは、外側領域を流れる処理ガスの温度が熱処理室側領域を流れる処理ガス温度よりも相対的に低いことが実証され、同時に熱処理室に導入される処理ガスの温度分布についても、熱処理室の高さ方向において下方よりも上方へと高温領域が拡がっていることも実証されている。図8に、熱風導入部から見たときの、整流ボックス流入断面における温度分布を示している。同図は、濃色部から淡色部に向かって高温から低温へと推移する状態を示している。図8から理解できるように、高温領域と低温領域とが、整流ボックス流入断面の右側上隅部と左下隅部とを結ぶ直線により斜めに2分する分布形態をとっている。すなわち、整流ボツクスの流入断面において、高温領域が左側上隅部から上端右方へと拡がるとともに、左側上隅部から左側端縁に沿って下方途中まで徐々に拡がり、右側の下隅部から左側に向けて低温領域が徐々に拡がる。この温度分布によって、上下に多段に走行する繊維シートの幅方向における処理斑につながっている。   This tendency is the same in the case where the stirring device is not provided and only the circulation fan is provided, and the inner region on the heat treatment chamber side in the width direction of the processing gas circulation channel and the outer region thereof. The temperature of the process gas flowing in the outer region is proved to be relatively lower than the temperature of the process gas flowing in the heat treatment chamber side region, and the temperature distribution of the process gas introduced into the heat treatment chamber at the same time is It has also been demonstrated that the high temperature region extends upward in the direction from below. FIG. 8 shows the temperature distribution in the rectification box inflow cross section when viewed from the hot air introduction section. The figure shows a state in which the transition from the high temperature to the low temperature is performed from the dark color portion to the light color portion. As can be understood from FIG. 8, the high temperature region and the low temperature region have a distribution form that is diagonally divided into two by a straight line connecting the upper right corner and the lower left corner of the rectification box inflow cross section. That is, in the inflow cross-section of the rectification box, the high temperature region extends from the upper left corner to the upper right side, gradually expands from the upper left corner to the lower half along the left edge, and from the lower right corner to the left. The low temperature region gradually expands. This temperature distribution leads to processing spots in the width direction of the fiber sheet traveling in multiple stages up and down.

本発明の目的は、こうした熱処理室内のシート幅方向における温度分布の均一化を図ると同時に、そのために要する費用の低廉化が実現できる繊維シートの加熱処理炉、特に炭素繊維製造工程における前駆体繊維の耐炎化工程に好適な加熱処理炉を提供することにある。   An object of the present invention is to achieve a uniform temperature distribution in the sheet width direction in such a heat treatment chamber, and at the same time, a heat treatment furnace for a fiber sheet capable of realizing a reduction in the cost required for it, particularly a precursor fiber in a carbon fiber production process. An object of the present invention is to provide a heat treatment furnace suitable for the flameproofing process.

本発明者等は循環流路内に配される設備を必要最小限に抑えると同時に、必要最小限の
設備にて上記目的を達成するには、如何なる手段を採用すべきかについて幾多の実験と検討とを繰り返した。その主な検討は、従来の典型的な繊維シート加熱処理炉としての対流加熱型熱風循環炉の基本構造を中心になされた。すなわち、炉内に熱風循環路を設け、その循環路内に熱処理室を配し、熱処理室の熱風導出部の循環流路下流側に加熱装置を配し、この加熱装置と熱処理室の熱風導入部との間の循環流路に循環ファンを配した対流加熱型熱風循環炉を検討の対象とした。
The inventors have conducted a number of experiments and examinations as to what means should be adopted in order to minimize the facilities arranged in the circulation flow path and at the same time achieve the above object with the minimum necessary facilities. And repeated. The main investigation was made mainly on the basic structure of a convection heating type hot air circulating furnace as a conventional typical fiber sheet heat treatment furnace. In other words, a hot air circulation path is provided in the furnace, a heat treatment chamber is arranged in the circulation path, a heating device is arranged downstream of the circulation flow path of the hot air derivation section of the heat treatment chamber, and hot air is introduced into the heating device and the heat treatment chamber. The convection heating type hot-air circulation furnace in which a circulation fan was arranged in the circulation channel between the two parts was examined.

その検討項目は、前記対流加熱型熱風循環炉にあって、熱処理室内における処理ガスの実際の温度分布の実証結果を踏まえ、その温度差の発生原因を解明することにあった。そのため、更なる実験を重ねた結果、繊維シート幅方向の前記温度差の発生原因は、既述したとおり、循環ファンには処理ガス循環流路に沿って送風する機能はあるものの、処理ガス循環流路の横断方向におけるガス混合機能はなく、シート幅方向における温度分布はガス循環流路の内回りと外回りでコースごとに異なり、各コースによって一回りするときもその温度分布に殆ど変化がないため、シート幅方向にコースごとに温度差が生じる。また、上下に多段に走行する繊維シートの上下方向における温度差の発生原因は、加熱装置の加熱面となるヒーターにより直接加熱される処理ガスと、ヒーターの取付枠と前記ヒーターとの間に形成される間隙を通り、ヒーターに触れないまま直接加熱されることがない処理ガスとが併存することと、これらの処理ガスが上下方向において混合する手段がないことによる。   The examination item was to elucidate the cause of the temperature difference in the convection heating type hot air circulating furnace based on the verification result of the actual temperature distribution of the processing gas in the heat treatment chamber. Therefore, as a result of repeated experiments, the cause of the temperature difference in the fiber sheet width direction is that the circulation fan has a function of blowing air along the treatment gas circulation flow path as described above, but the treatment gas circulation There is no gas mixing function in the transverse direction of the flow path, and the temperature distribution in the seat width direction differs for each course between the inner and outer circumferences of the gas circulation flow path, and there is almost no change in the temperature distribution even when going round by each course. A temperature difference is generated for each course in the sheet width direction. Also, the cause of the temperature difference in the vertical direction of the fiber sheet traveling in multiple stages up and down is formed between the processing gas directly heated by the heater that becomes the heating surface of the heating device, and the heater mounting frame and the heater This is because there is a processing gas that does not directly heat without touching the heater, and there is no means for mixing these processing gases in the vertical direction.

更に、加熱処理室内におけるシート幅方向及び処理室高さ方向の温度差が発生する他の原因としては、上記二つの原因に加えて、加熱処理室のガス循環流路上の床面への放熱と、高温ガスが上方へと流れやすいこととがある。しかし、この上下の温度差に関しては、シート幅方向における温度差が少なければ、熱処理室内を上下に多段で走行する一連のシートについてみれば、加熱処理時の各段ごとの温度分布を見るかぎり、同じ段を走行するシート部分に関しては処理温度に大きな差がなく、ただ所要の高温が得にくいという課題が残るに過ぎない。   Furthermore, as another cause of the temperature difference between the sheet width direction and the processing chamber height direction in the heat treatment chamber, in addition to the above two causes, heat radiation to the floor surface on the gas circulation flow path in the heat treatment chamber. In some cases, the hot gas tends to flow upward. However, regarding the temperature difference between the upper and lower sides, if the temperature difference in the sheet width direction is small, if you look at a series of sheets that run in multiple stages up and down in the heat treatment chamber, as long as you see the temperature distribution for each stage during the heat treatment, There is no significant difference in the processing temperatures for the sheet portions running on the same stage, and the problem remains that it is difficult to obtain the required high temperature.

このときの実験結果を図8に示している。同図は循環ファンの下流側にある、後述する整流ボックスの処理ガス入口を正面から見たときの加熱装置の処理ガス入口におけるガスの温度分布を示している。この図8において、図面の左上隅部中の濃色部が最も高温であって、右下隅部の向けて徐々に淡色となっており、この淡色が進むにつれて低温となる。同図から理解できるとおり、熱処理室側の内側上部が高温で、その下方に向かうにつれて低温となり、また熱処理室側の内側上部から外側上部に向かうにつれて低温となり、外側上部から下方に向かうにつれて低温となり、外側下端隅部が最も低温となっている。   The experimental results at this time are shown in FIG. This figure shows the temperature distribution of the gas at the processing gas inlet of the heating device when the processing gas inlet of the rectifying box, which will be described later, is seen from the front, on the downstream side of the circulation fan. In FIG. 8, the dark color portion in the upper left corner of the drawing is the highest temperature, and gradually becomes lighter toward the lower right corner, and becomes lower as this light color progresses. As can be understood from the figure, the inner upper part on the heat treatment chamber side is hot, the temperature decreases as it goes downward, the temperature decreases as it goes from the inner upper part to the outer upper part on the heat treatment chamber side, and the temperature decreases as it goes downward from the outer upper part. The outer bottom corner is the coldest.

本発明は、こうした実験と検討の結果、ようやく到達したものである。
すなわち、本発明の基本的な構成は、水平空間に配された熱風循環流路内に、熱風導入部と熱風導出部とを有する熱処理室を備え、当該熱処理室の室外にあって熱風導入部上流側の熱風循環流路内に処理ガスの加熱装置と循環ファンとが配されてなる連続繊維シートの加熱処理炉であって、繊維シートが、前記熱風導入部と熱風導出部との間の熱処理室内を、少なくとも上下に一段以上平行で水平に走行する繊維走行路を有し、前記加熱装置が処理ガス加熱面を構成するガス加熱領域と、そのガス加熱領域とガス加熱面の取付枠との間にガス非加熱領域とを有してなり、少なくとも床面側のガス加熱領域端と前記取付枠との間のガス非加熱領域を通過する処理ガスの流れを前記ガス加熱領域へと向ける風向制御部材が配されてなることである。
The present invention has finally been achieved as a result of such experiments and examinations.
That is, the basic configuration of the present invention is provided with a heat treatment chamber having a hot air introduction portion and a hot air derivation portion in a hot air circulation passage arranged in a horizontal space, and is located outside the heat treatment chamber and is located in the hot air introduction portion. A heat treatment furnace for a continuous fiber sheet in which a processing gas heating device and a circulation fan are arranged in an upstream hot air circulation channel, wherein the fiber sheet is interposed between the hot air introduction unit and the hot air deriving unit. The heat treatment chamber has a fiber travel path that travels horizontally in parallel at least one step up and down, a gas heating region in which the heating device constitutes a processing gas heating surface, a gas heating region and a mounting frame for the gas heating surface, A gas non-heating region is provided between the gas heating region at least between the end of the gas heating region on the floor surface side and the attachment frame, and the flow of the processing gas is directed to the gas heating region. It is that a wind direction control member is arranged.

好適な態様によれば、前記風向制御部材が前記ガス非加熱領域に隣接する熱風循環流路内に配されている。前記風向制御部材はSUS板から構成することが好ましく、前記繊維シートの幅方向の全長にわたり配されているとよい。また、前記風向制御部材は、前記ガ
ス非加熱領域を閉塞する部位に設置されてもよく、前記風向制御部材が熱風循環流路の床面を中心に、その全体を前後に傾動固定可能に設置することもできる。前記風向制御部材の床面からの高さは150〜250mmであることが好ましい。
According to a preferred aspect, the wind direction control member is arranged in a hot air circulation channel adjacent to the gas non-heating region. The wind direction control member is preferably made of a SUS plate, and may be disposed over the entire length in the width direction of the fiber sheet. In addition, the wind direction control member may be installed in a portion that closes the gas non-heated region, and the wind direction control member is installed so that the whole can be tilted and fixed around the floor of the hot air circulation channel. You can also The height of the wind direction control member from the floor surface is preferably 150 to 250 mm.

望ましくは、前記熱処理室の熱風導入部と熱風導出部とがそれぞれ熱風吹込みノズルと熱風吸出しノズルとを有しており、前記熱風吹込みノズルの上流側と前記熱風吸出しノズルの下流側とに隣接する各熱風循環流路にそれぞれ第1及び第2整流ボックスを有する。さらに、前記熱風導入部側の整流ボックスの熱風入口に第2加熱装置を配することもできる。   Desirably, the hot air introduction part and the hot air outlet part of the heat treatment chamber each have a hot air blowing nozzle and a hot air sucking nozzle, respectively, upstream of the hot air blowing nozzle and downstream of the hot air sucking nozzle. Each adjacent hot air circulation channel has first and second rectification boxes. Furthermore, a 2nd heating apparatus can also be distribute | arranged to the hot air inlet_port | entrance of the rectification | straightening box by the side of the said hot air introduction part.

以上の構成を備えた本発明によれば、次のような特有の効果を奏する。
(1) 温度分布の均一性
処理ガスが加熱装置を通過する際、処理ガス加熱面を構成するガス加熱領域と、そのガス加熱領域と前記ガス加熱面の取付枠との間のガス非加熱領域とを通過するが、このときガス非加熱領域を通過する処理ガスは、ガス加熱領域を通過する処理ガスと較べると加熱装置による加熱がなされず、そのまま低温状態を維持して熱処理室へと導入される。これらのガス非加熱領域を通った処理ガスのうち、床面に沿って流れる処理ガスは、床面への放熱効果により更なる低温流となり、混合されないまま処理室内へと導入されるため、床面から上方に向けて1〜2段のシート走行路(下部パス)付近を流れる処理ガス温度は、それより上段のシート走行路(上部パス)と比較して低温となる。このことは、既述したとおり繊維シート幅方向の温度分布が異なることに加えて、熱処理室の上下方向の温度分布にも差異が生じることを意味している。
According to the present invention having the above configuration, the following specific effects are obtained.
(1) Uniformity of temperature distribution When the processing gas passes through the heating device, a gas heating region constituting the processing gas heating surface, and a gas non-heating region between the gas heating region and the mounting frame of the gas heating surface At this time, the processing gas that passes through the gas non-heating region is not heated by the heating device as compared with the processing gas that passes through the gas heating region, and is introduced into the heat treatment chamber while maintaining a low temperature state. Is done. Among the processing gases that pass through these non-heated regions, the processing gas that flows along the floor surface becomes a further low-temperature flow due to the heat dissipation effect on the floor surface, and is introduced into the processing chamber without being mixed. The temperature of the processing gas flowing in the vicinity of the first or second-stage seat travel path (lower path) from the surface to the upper side is lower than that of the upper-stage seat travel path (upper path). This means that in addition to the difference in temperature distribution in the fiber sheet width direction as described above, there is also a difference in the temperature distribution in the vertical direction of the heat treatment chamber.

これに対して、本発明によれば、上述のとおり、少なくとも床面側のガス加熱領域端と前記取付枠との間のガス非加熱領域を通過する処理ガスの流れを、前記ガス加熱領域へと向ける風向制御部材を配するため、床面側の前記ガス非加熱領域を通過する処理ガスをガス加熱領域へ向けて流し、強制的に加熱したのち熱処理室へと導入することができる。その結果、制御部材を設置した高さに値するパスにおいて熱処理室内の繊維シート幅方向の温度分布を均一化でき、繊維シートに対する熱処理も均等化され、均質で高品質の製品が得られる。   On the other hand, according to the present invention, as described above, the flow of the processing gas that passes through the gas non-heating region at least between the gas heating region end on the floor surface side and the mounting frame is transferred to the gas heating region. Therefore, the processing gas passing through the gas non-heating region on the floor side can be flowed toward the gas heating region, forcibly heated, and then introduced into the heat treatment chamber. As a result, the temperature distribution in the width direction of the fiber sheet in the heat treatment chamber can be made uniform in the path worth the height at which the control member is installed, the heat treatment on the fiber sheet is also made uniform, and a uniform and high-quality product can be obtained.

この風向制御部材は、温度低下が懸念される領域にだけ近接して設置することができるため、熱処理室内の特有の温度分布に対応してきめ細かく温度分布の均一化を図ることができる。たとえば、天井面による放熱が大きく、上部パスの熱風温度低下が顕著な場合には、天井側の非加熱領域に風向制御板を配することで対応できる。また、風向制御部材による循環流路における断面積は、せいぜい一割程度であるため圧力損失が少なく、風速の低下はほとんど生じない。   Since this wind direction control member can be installed close to only a region where temperature drop is a concern, it is possible to finely equalize the temperature distribution corresponding to the specific temperature distribution in the heat treatment chamber. For example, when the heat radiation by the ceiling surface is large and the hot air temperature drop in the upper path is remarkable, it can be dealt with by arranging a wind direction control plate in the non-heating area on the ceiling side. Further, since the cross-sectional area in the circulation flow path by the wind direction control member is at most about 10%, there is little pressure loss, and the wind speed hardly decreases.

(2) コストの優位性
風向制御部材が単なる板材のような簡易的な構造であるため、製作、取り付け、取り外しが容易であり、原材コスト、製造コスト、設置にかかる工事費用などが極めて安価となる。
(2) Cost advantage Since the wind direction control member is a simple structure like a simple plate, it is easy to manufacture, attach and detach, and the raw material cost, manufacturing cost, installation cost, etc. are extremely low. It becomes.

本発明の繊維シート加熱処理炉の内部構造例を示す平面図である。It is a top view which shows the example of an internal structure of the fiber sheet heat processing furnace of this invention. 本発明における風向制御部材の設置部を模式的に拡大して示す側面図である。It is a side view which expands and shows typically the installation part of the wind direction control member in this invention. 本実施形態における加熱装置を処理ガス下流側から見た一部を省略して示す正面図である。It is a front view which abbreviate | omits and shows a part which looked at the heating apparatus in this embodiment from the process gas downstream. 風向制御部材を設置した場合と、設置しない場合の上端から1段目のシート走行路における幅方向温度分布のデータを比較して示すグラフである。It is a graph which compares and shows the data of the temperature distribution of the width direction in the sheet | seat travel path of the 1st step | paragraph from the upper end when not installing the wind direction control member. 同じく上端から2段目のシート走行路における幅方向温度分布のデータを比較して示すグラフである。It is a graph which compares and shows the data of the width direction temperature distribution in the sheet | seat driving path of the 2nd step | paragraph similarly from an upper end. 同じく上端から3段目のシート走行路における幅方向温度分布のデータを比較して示すグラフである。It is a graph which compares and shows the data of the temperature distribution of the width direction in the sheet | seat driving path of the 3rd step | paragraph similarly from an upper end. 同じく上端から4段目のシート走行路における幅方向温度分布のデータを比較して示すグラフである。It is a graph which compares and shows the data of the temperature distribution in the width direction in the 4th sheet | seat driving path similarly from an upper end. 風向制御部材を設置しないときの整流ボックスの処理ガス入口における上下左右の温度分布図である。It is a temperature distribution figure of the up-and-down and right-and-left in the process gas inlet_port | entrance of the rectification | straightening box when not installing a wind direction control member.

以下、本発明の代表的な実施形態を図面を参照しつつさらに具体的に説明する。
図1は本発明の連続繊維シート加熱処理炉の内部を上方から見た概略平断面図であり、図2は本発明における風向制御部材の設置部を模式的に拡大して示す側面図である。図3は本実施形態における加熱装置を処理ガス下流側から見た一部を省略して示す正面図である。本実施形態に係る連続繊維シート加熱処理炉は、炭素繊維の製造工程の耐炎化工程に配される耐炎化炉を例としているが、必ずしも耐炎化炉に限るものではない。また、この実施形態では、ガス循環流路の一部に配される熱処理室内を一方向に走行する連続繊維シートの走行方向と平行に加熱処理ガスを流す循環型平行流加熱処理炉を使われている。
Hereinafter, representative embodiments of the present invention will be described more specifically with reference to the drawings.
FIG. 1 is a schematic plan sectional view of the inside of a continuous fiber sheet heat treatment furnace of the present invention as viewed from above, and FIG. 2 is a side view schematically showing an installation portion of a wind direction control member in the present invention. . FIG. 3 is a front view showing a part of the heating device according to the present embodiment as seen from the downstream side of the processing gas. The continuous fiber sheet heat treatment furnace according to this embodiment is exemplified by a flameproofing furnace disposed in the flameproofing process of the carbon fiber manufacturing process, but is not necessarily limited to the flameproofing furnace. In this embodiment, a circulating parallel flow heat treatment furnace is used in which the heat treatment gas flows in parallel to the traveling direction of the continuous fiber sheet that travels in one direction in the heat treatment chamber disposed in a part of the gas circulation flow path. ing.

本発明の連続繊維シート加熱処理炉10は、図1に示すように、平面視で矩形枠状の炉壁11を備え、その内部の水平空間を利用して処理ガスの熱風循環流路12が形成されている。この熱風循環流路12の一部直線領域に連続繊維シートTSを加熱処理する熱処理室13が配されている。当該熱処理室13内には連続繊維シートTSを上下多段に走行させるシート処理空間13aを有している。連続繊維シートTSを上下多段に走行させるため、熱処理室13の繊維シート走行方向両端部の室外上下方向にシート幅方向に延びる複数本の図示せぬ折り返しローラーが配され、熱処理室13の一端に形成された繊維シート供給口から導入される連続繊維シートTSは、熱処理室13の内部を走行して一段目の繊維シート出口に配された図示せぬ折り返しローラーにより折り返され、熱処理室13の内部を逆方向に走行して熱処理室13の他端に形成された繊維シート出口に配された2段目の折り返しローラーにより折り返され、熱処理室13の内部を逆方向に走行する。これを所要の段数繰り返し、所定の熱処理がなされると連続繊維シートTSの最終出口から次行工程へと送り出される。前述の熱処理は、熱風循環流路12を循環する所定温度まで昇温された処理ガスによって連続してなされる。本実施形態によれば、処理ガスとして加熱された空気が使われており、熱処理室13内における雰囲気温度は略200〜300℃に設定される。また、本実施形態に使われる連続繊維シートTSの原料繊維には、炭素繊維の代表的な前駆体繊維となるアクリロニトリル系の長繊維が使われ、ここで繊維シートとは多数本の単繊維を束ねた複数本の長繊維束を平行に並べて一枚のシート状にしたものをいう。   As shown in FIG. 1, the continuous fiber sheet heat treatment furnace 10 of the present invention includes a furnace wall 11 having a rectangular frame shape in plan view, and a hot air circulation flow path 12 for process gas is formed using a horizontal space inside the furnace wall 11. Is formed. A heat treatment chamber 13 for heat-treating the continuous fiber sheet TS is disposed in a partial straight region of the hot air circulation channel 12. In the heat treatment chamber 13, there is a sheet processing space 13 a in which the continuous fiber sheet TS travels in multiple stages. In order to run the continuous fiber sheet TS in multiple stages in the vertical direction, a plurality of folding rollers (not shown) extending in the sheet width direction are arranged in the outdoor vertical direction at both ends of the fiber sheet running direction of the heat treatment chamber 13. The continuous fiber sheet TS introduced from the formed fiber sheet supply port travels inside the heat treatment chamber 13 and is folded by a not-shown folding roller disposed at the first-stage fiber sheet outlet. Is reversed by a second-stage folding roller disposed at the fiber sheet outlet formed at the other end of the heat treatment chamber 13 and travels in the reverse direction inside the heat treatment chamber 13. This is repeated for the required number of stages, and when a predetermined heat treatment is performed, the continuous fiber sheet TS is sent out to the next line process. The aforementioned heat treatment is continuously performed by the processing gas heated to a predetermined temperature circulating through the hot air circulation passage 12. According to this embodiment, heated air is used as the processing gas, and the atmospheric temperature in the heat treatment chamber 13 is set to approximately 200 to 300 ° C. Further, the raw fiber of the continuous fiber sheet TS used in the present embodiment is an acrylonitrile-based long fiber that is a typical precursor fiber of carbon fiber. Here, the fiber sheet is a large number of single fibers. A bundle of a plurality of long fiber bundles arranged in parallel to form a single sheet.

前記熱処理室13には、前記連続繊維シートTSの出入口、同シート出入口に配される複数の折り返しローラーの他に、同熱処理室13のシート出入口に隣接して、それぞれの熱風循環流路12に沿って配される第1及び第2整流ボックス14,15が付設されている。この第1及び第2整流ボックス14,15は、本発明における高温の熱風導入部及び熱風導出部に相当する。前記第1及び第2整流ボックス14,15と前記熱処理室13との各接続部には、それぞれ熱処理室13の室内に新鮮な熱風の吹込みノズル16と、熱処理室13から熱風を熱風循環流路12へと処理済みの熱風の吸出しノズル17とが介装されている。   In the heat treatment chamber 13, in addition to the entrance and exit of the continuous fiber sheet TS and a plurality of folding rollers arranged at the sheet entrance and exit, adjacent to the sheet entrance and exit of the heat treatment chamber 13, each hot air circulation channel 12 is provided. The 1st and 2nd rectification | straightening boxes 14 and 15 distribute | arranged along are attached. The first and second rectifying boxes 14 and 15 correspond to the hot air introduction section and the hot air extraction section in the present invention. At each connection portion between the first and second rectifying boxes 14 and 15 and the heat treatment chamber 13, fresh hot air blowing nozzles 16 into the heat treatment chamber 13 and hot air from the heat treatment chamber 13 are circulated. A treated hot air suction nozzle 17 is interposed in the path 12.

前記熱処理室を除く熱風循環流路12にあって、前記熱処理室13の熱風導入部である第1整流ボックス14の上流側と熱処理室13の熱風導出部である第2整流ボックス15の下流側との間の循環流路上に、熱風方向の上流側から下流側に向けて、加熱装置18と循環ファン19とが順次設置されている。すなわち、熱処理室13の室内で連続繊維シートTSの熱処理を終えて温度が低下した処理済みの熱風は、前記吸出しノズル17を介して第2整流ボックス15内に吸い出されて、途中の循環流路にて一部新鮮な空気と入れ換えられて、熱交換がなされたのち、加熱装置18を通過して所要の温度まで加熱される。このとき、循環流路を流れる流路幅方向の熱風の温度は、内回りの熱風の方が外回りの熱風よりも低い。従来であれば、このときの温度分布は、図8に示すように、熱処理室13の内部を流れるときも変わらない。   In the hot air circulation flow path 12 excluding the heat treatment chamber, the upstream side of the first rectification box 14 that is the hot air introduction portion of the heat treatment chamber 13 and the downstream side of the second rectification box 15 that is the hot air derivation portion of the heat treatment chamber 13. The heating device 18 and the circulation fan 19 are sequentially installed from the upstream side to the downstream side in the hot air direction on the circulation channel between the two. That is, the treated hot air whose temperature has been lowered after the heat treatment of the continuous fiber sheet TS in the heat treatment chamber 13 is sucked into the second rectifying box 15 through the suction nozzle 17 and is circulated in the middle. After being exchanged for fresh air in the road and exchanging heat, it passes through the heating device 18 and is heated to a required temperature. At this time, the temperature of the hot air in the channel width direction flowing through the circulation channel is lower in the inner hot air than in the outer hot air. Conventionally, the temperature distribution at this time does not change even when flowing inside the heat treatment chamber 13, as shown in FIG.

ところで、循環流路上に配設される、従来の加熱装置は、一部を除いて図2に概要を示すように、平面状の加熱面をもつ複数のコイル製の電気ヒーター(平板状ヒーター)18aをガスの流れ方向に多段に配して、これらの平板状ヒーター18aが、その加熱面を熱風の流れ方向に向けて、多段に配された平板状ヒーター18aの周囲を矩形状の枠体18bに取り付け、これを循環流路の床面に垂直に設置する。前記枠体18bに平板状ヒーター18aを取り付けると、必然的に平板状ヒーター18aと枠体18bとの間に枠状の間隙が発生する。そのため、熱風が加熱装置18を通過するとき、その上下左右の端部を通過する熱風は平板状ヒーター18aと枠体18bとの間の間隙を単に通過するだけで、ヒーターの加熱面に直接接触して加熱されずに下流側に配された循環ファン19により熱処理室13に送り込まれてしまう。このとき、既述したとおり、熱処理室13に送り込まれる熱風の温度分布は循環流路幅方向のコースごとに殆ど変動がないが、熱処理室13の内部では、特にその床面の近傍を流れる熱風温度が、天井付近を流れる熱風の温度よりも相対的に低くなる。   By the way, the conventional heating device disposed on the circulation flow path is, as shown in FIG. 2, except for a part, a plurality of coil-made electric heaters (flat heaters) having a flat heating surface. 18a is arranged in multiple stages in the gas flow direction, and these flat heaters 18a have a rectangular frame surrounding the flat heaters 18a arranged in multiple stages with their heating surfaces directed in the hot air flow direction. It is attached to 18b and installed vertically on the floor surface of the circulation channel. When the flat heater 18a is attached to the frame 18b, a frame-like gap is inevitably generated between the flat heater 18a and the frame 18b. Therefore, when hot air passes through the heating device 18, the hot air passing through the upper, lower, left and right ends simply passes through the gap between the flat heater 18a and the frame 18b, and directly contacts the heating surface of the heater. Then, it is sent to the heat treatment chamber 13 by the circulation fan 19 arranged on the downstream side without being heated. At this time, as described above, the temperature distribution of the hot air sent into the heat treatment chamber 13 has almost no fluctuation for each course in the width direction of the circulation flow path, but in the heat treatment chamber 13, the hot air flowing in the vicinity of the floor surface in particular. The temperature is relatively lower than the temperature of the hot air flowing near the ceiling.

本発明が、こうした熱処理室13の内部における温度分布の変動を防ぐものである。そのため、図示実施形態では、図1〜図3に示すように、上記加熱装置18の循環ファン19側の前面下端部に、本発明における特徴部を構成する、風向制御部材20を前駆体繊維シートの全幅にわたって配している。この実施形態によれば、前記風向制御部材20として平板状のSUS板材を採用しており、その横幅を加熱装置18の左右枠部端の間の寸法である1135mm、床面からの高さを加熱面の最も下端に配されたニクロム線ヒーターを完全にカバーする高さである250mmに設定している。   The present invention prevents such fluctuations in the temperature distribution inside the heat treatment chamber 13. Therefore, in the illustrated embodiment, as shown in FIG. 1 to FIG. 3, the wind direction control member 20 constituting the characteristic part of the present invention is formed on the lower end portion of the front surface on the circulating fan 19 side of the heating device 18 as a precursor fiber sheet. It is arranged over the entire width of the. According to this embodiment, a flat SUS plate material is adopted as the wind direction control member 20, and its horizontal width is 1135 mm, which is the dimension between the left and right frame ends of the heating device 18, and the height from the floor surface. The height is set to 250 mm, which is a height that completely covers the nichrome wire heater disposed at the lowermost end of the heating surface.

ここで、これらの値は限定的でなく、またその高さや配置幅、配置位置も図示例に限るものではなく、必要に応じて任意に変更できる。風向制御部材20の形状に関しても、平板状以外に断面が直角三角形や熱風との対向面を上下に突出する湾曲面とすることもできる。本実施形態にあっては、前記加熱装置18の上部枠部と平板状ヒーター18aとの間の間隙部には風向制御部材を配していない。これは熱風の性質として上下に温度差があるとき、高温の熱風が上方へと集まるため、前記間隙部を通る熱風の温度には殆ど温度低下のないことによる。このことは、前記加熱装置18の左右枠部と平板状ヒーター18aとの間の間隙部についても同じことが言えるため、上記平板状の板材を配することで十分であるがためである。   Here, these values are not limited, and the height, the arrangement width, and the arrangement position are not limited to the illustrated examples, and can be arbitrarily changed as necessary. Regarding the shape of the wind direction control member 20, in addition to the flat plate shape, the cross section may be a right-angled triangle or a curved surface projecting up and down with the surface facing the hot air. In the present embodiment, no wind direction control member is disposed in the gap between the upper frame portion of the heating device 18 and the flat heater 18a. This is because, when there is a temperature difference between the upper and lower sides as a property of hot air, hot hot air gathers upward, so that there is almost no temperature drop in the temperature of hot air passing through the gap. This is because the same can be said for the gap between the left and right frame portions of the heating device 18 and the flat plate heater 18a, and therefore it is sufficient to arrange the flat plate material.

更に本実施形態にあっては、図1に仮想線で示すように、熱処理室13に導入される熱風にシート幅方向の温度分布をより均一化するため、上記第1整流ボックス14の熱風入口の手前に第2ヒーター21を配置することもできる。   Further, in the present embodiment, as indicated by phantom lines in FIG. 1, in order to make the temperature distribution in the sheet width direction more uniform with the hot air introduced into the heat treatment chamber 13, the hot air inlet of the first rectifying box 14 is used. The 2nd heater 21 can also be arrange | positioned before this.

以下、本発明を実施例及び比較例を基にして、更に具体的に説明する。   Hereinafter, the present invention will be described more specifically based on examples and comparative examples.

(実施例1)
図1及び図2に示す構成を備えた熱処理炉にあって、風向制御部材を設置した場合と設置しない場合について、1〜4段目(パス)の繊維シート走行路に繊維シートを通さずに、図示せぬ折り返しローラーの上下間に形成された4パスを使用して、各パスごとに熱処理室内の各走行路の長手方向中央部における路幅方向温度を5点で測定し、その路幅方向及び高さ方向における温度分布を調べた。このときの熱処理炉内の平均温度は240℃であった。なお、風向制御部材は、熱処理炉の循環流路上に配された加熱装置の下流側に隣接して、床面から183mmの高さまでの熱風流域を遮るように矩形平板状のSUS板を熱風の流れ方向に対し垂直に設置した。このときの加熱装置における加熱領域と非加熱領域とを合わせた合計高さは1436mmである。
Example 1
In the heat treatment furnace having the configuration shown in FIGS. 1 and 2, the case where the wind direction control member is installed and the case where the wind direction control member is not installed are not passed through the fiber sheet traveling path of the first to fourth stages (pass). Using four paths formed between the upper and lower sides of the folding roller (not shown), the path width direction temperature at the center in the longitudinal direction of each traveling path in the heat treatment chamber is measured at five points for each path. The temperature distribution in the direction and height direction was investigated. The average temperature in the heat treatment furnace at this time was 240 ° C. The wind direction control member is a rectangular flat SUS plate adjacent to the downstream side of the heating device arranged on the circulation flow path of the heat treatment furnace so as to block the hot air flow area from the floor to a height of 183 mm. Installed perpendicular to the flow direction. The total height of the heating area and the non-heating area in the heating device at this time is 1436 mm.

熱処理炉内を熱風が循環している最中に、熱処理室の長手方向中央部で各パスの幅方向5点の温度を、それぞれ炉内に設置した温度センサーを用いて測定し、その5点間の温度差を記録した。その結果を、図4〜図7に示し、両端の温度差、すなわち内回り側の温度から外回り側の温度を除した値を表1にまとめた。図4〜図7において、実線は風向制御部材を設置した場合、破線は風向制御部材を設置しない場合を示しており、符号Lは外回り側のコース、Rは内回り側のコースを示す。表1に示すように、第1段目〜第4段目のパスにおける風向制御部材の設置前及び設置後の、熱風の外回りと内回りとの間では、熱風の外回りの方が内回りよりも相対的に低温であり、風向制御部材を設置したときの各パスにおける内回りと外回りの温度差は1.9℃、2.4℃、2.7℃、3.3℃であって、下部パスにおいて風向制御部材の設置後における温度差が顕著に低減していることが理解できる。   While hot air circulates in the heat treatment furnace, the temperature at 5 points in the width direction of each pass is measured at the center in the longitudinal direction of the heat treatment chamber using temperature sensors installed in the furnace. The temperature difference between was recorded. The results are shown in FIG. 4 to FIG. 7, and the temperature difference between both ends, that is, the values obtained by dividing the inner side temperature by the outer side temperature are summarized in Table 1. 4 to 7, the solid line indicates the case where the wind direction control member is installed, the broken line indicates the case where the wind direction control member is not installed, the symbol L indicates the outer course, and R indicates the inner course. As shown in Table 1, the outer direction of the hot air is more relative to the inner direction than the inner direction before and after the installation of the airflow direction control member in the first to fourth pass. The temperature difference is 1.9 ° C, 2.4 ° C, 2.7 ° C, 3.3 ° C in each pass when the airflow direction control member is installed. It can be understood that the temperature difference after installation of the wind direction control member is significantly reduced.

(実施例2)
上記4パスで構成された熱処理炉内の循環流路にアクリロニトリル系の前駆体繊維シートを通した以外は、上記実施例1と同じ条件で実験を行った。その結果を表2に示した。表2により示されているとおり、平均240℃の炉内において各パスの幅方向温度差は上段から2.2℃、3.1℃、4.2℃、3.9℃となった。
(Example 2)
The experiment was performed under the same conditions as in Example 1 except that the acrylonitrile-based precursor fiber sheet was passed through the circulation flow path in the heat treatment furnace constituted by the four passes. The results are shown in Table 2. As shown in Table 2, the temperature difference in the width direction of each pass was 2.2 ° C., 3.1 ° C., 4.2 ° C., and 3.9 ° C. from the upper stage in the furnace having an average of 240 ° C.

(比較例1)
4パスで構成された熱処理炉内の循環流路に設置された加熱装置の下流側に風向制御部
材を設置せず、熱処理室の処理空間に繊維シートを通さずに、炉内熱風循環中に熱処理室長手方向中央で各パスの幅方向5点の温度を測定したところ、平均240℃の炉内において各パスの幅方向温度差は、表1に示すとおり、上段から1.7℃、2.7℃、6.3℃、6.3℃であった。この結果から理解できるように、従来の熱処理室内の温度分布は、循環流路の幅方向では内回りの温度が外回りの温度よりも極めて高く、その温度差が大きい。また循環流路の高さ方向における温度も、特に外回りでは床面に向かうにつれて低温となり、その温度差も大きい。
(Comparative Example 1)
During the hot air circulation in the furnace, no wind direction control member is installed on the downstream side of the heating device installed in the circulation flow path in the heat treatment furnace constituted by four passes, and the fiber sheet is not passed through the treatment space of the heat treatment chamber. When the temperature at the five points in the width direction of each pass was measured at the center in the longitudinal direction of the heat treatment chamber, the temperature difference in the width direction of each pass in the furnace at an average of 240 ° C. was 1.7 ° C., 2 ° C. from the top as shown in Table 1. 7 ° C, 6.3 ° C, and 6.3 ° C. As can be understood from this result, in the temperature distribution in the conventional heat treatment chamber, the inner temperature is extremely higher than the outer temperature in the width direction of the circulation flow path, and the temperature difference is large. Also, the temperature in the height direction of the circulation flow path becomes lower as it goes toward the floor surface, particularly in the outer direction, and the temperature difference is large.

(比較例2)
4パスで構成された熱処理炉内の循環流路の加熱装置下流側に、加熱部流路に何も設置しない状態で、炉内熱風循環中にPAN 系プレカーサーを導糸し、処理室長手方向中央で各パスの幅方向5点の温度を測定したところ、平均240℃の炉内において各パスの幅方向温度差は、表2に示すとおり、上段から2.0℃、2.8℃、6.6℃、7.9℃であった。この結果から、従来の熱処理室内の温度分布は、繊維シートを通した場合には、循環流路の幅方向では内回りの温度が外回りの温度よりも相対的に高く、その温度差も繊維シートを通さない場合と比較しても、差があることを理解できる。
(Comparative Example 2)
A PAN precursor is introduced during the hot air circulation in the furnace with nothing installed in the heating unit flow path downstream of the heating device of the circulation flow path in the heat treatment furnace constituted by four passes, and the longitudinal direction of the processing chamber When the temperature at the five points in the width direction of each pass was measured at the center, the temperature difference in the width direction of each pass in the furnace at an average of 240 ° C. was 2.0 ° C., 2.8 ° C. from the upper stage as shown in Table 2. It was 6.6 ° C. and 7.9 ° C. From this result, when the fiber sheet is passed through the temperature distribution in the conventional heat treatment chamber, the inner temperature is relatively higher than the outer temperature in the width direction of the circulation flow path, and the temperature difference is also greater than the fiber sheet. It can be understood that there is a difference even when compared with the case of not passing through.

以上の実施例及び比較例では、温度測定を既述した炉内に固定設置している温度センサーにより表示された値を比較したが、炉内の吹込みノズル直近、吸出しノズル直近の各位置幅方向に熱電対を設置し、温度検出器から得たデータを比較しても同様の結果となった。   In the above examples and comparative examples, the values displayed by the temperature sensor fixedly installed in the furnace in which the temperature measurement has already been described were compared, but each position width in the vicinity of the blowing nozzle and the suction nozzle in the furnace. Similar results were obtained when a thermocouple was installed in the direction and the data obtained from the temperature detector were compared.

このように、加熱部下流側に床面に沿って流れる熱風が加熱装置の非加熱領域をすり抜けて、過熱装置の加熱面によって直接加熱されないことを避けるため、風向制御部材を設置し、床面放熱により冷却された風を強制的に加熱し、下段パスの幅方向温度差を小さくすることができた。一方で、上段パスの温度差は変わらなかったため、上部の流線挙動には影響を与えずに、下部の熱風温度分布のみを改善することで、全体的な温度分布をも改善することができた。   Thus, in order to avoid the hot air flowing along the floor surface downstream of the heating unit from passing through the non-heating area of the heating device and not being directly heated by the heating surface of the superheater, the wind direction control member is installed and the floor surface The wind cooled by heat dissipation was forcibly heated, and the temperature difference in the width direction of the lower pass could be reduced. On the other hand, the temperature difference in the upper path did not change, so the overall temperature distribution could be improved by improving only the hot air temperature distribution in the lower part without affecting the upper streamline behavior. It was.

10 (連続)繊維シート加熱処理炉
11 炉壁
12 熱風循環流路
13 熱処理室
13a シート処理空間
14 第1整流ボックス
15 第2整流ボックス
16 吹込みノズル
17 吸出しノズル
18 加熱装置
18a 加熱面(平板状ヒーター)
18b 枠体
19 循環ファン
20 風向制御部材(SUS板)
21 ヒーター(加熱装置)
10 (continuous) fiber sheet heat treatment furnace 11 furnace wall 12 hot air circulation flow path 13 heat treatment chamber 13a sheet treatment space 14 first rectification box 15 second rectification box 16 blowing nozzle 17 suction nozzle 18 heating device 18a heating surface (flat plate shape) heater)
18b Frame 19 Circulating fan 20 Air direction control member (SUS plate)
21 Heater (heating device)

Claims (8)

水平空間に配された熱風循環流路内に、熱風導入部と熱風導出部とを有する熱処理室を備え、当該熱処理室の室外にあって熱風導入部上流側の熱風循環流路内に処理ガスの加熱装置と循環ファンとが順次配されてなる連続繊維シートの加熱処理炉であって、
前記繊維シートが、前記熱風導入部と熱風導出部との間の熱処理室内を、少なくとも上下に一段以上平行で水平に走行する繊維走行路を有し、
前記加熱装置が、処理ガス加熱面を構成するガス加熱領域と、そのガス加熱領域と前記ガス加熱面の取付枠との間のガス非加熱領域とを有してなり、
少なくとも床面側のガス加熱領域端とガス加熱面の前記取付枠との間のガス非加熱領域を通過する処理ガスの流れを前記ガス加熱領域へと向ける風向制御部材が配されてなる、連続繊維シートの加熱処理炉。
A heat treatment chamber having a hot air introduction section and a hot air deriving section is provided in a hot air circulation passage arranged in a horizontal space, and a processing gas is provided outside the heat treatment chamber and in the hot air circulation passage upstream of the hot air introduction section. A continuous fiber sheet heat treatment furnace in which a heating device and a circulation fan are sequentially arranged,
The fiber sheet has a fiber travel path that travels horizontally in parallel at least one step up and down in the heat treatment chamber between the hot air introduction section and the hot air extraction section,
The heating device has a gas heating region constituting a processing gas heating surface, and a gas non-heating region between the gas heating region and a mounting frame of the gas heating surface,
At least a wind direction control member that directs the flow of the processing gas that passes through the gas non-heating region between the gas heating region end on the floor surface side and the mounting frame of the gas heating surface to the gas heating region is disposed. Heat treatment furnace for fiber sheets.
前記風向制御部材が前記ガス非加熱領域に近接する熱風循環流路内に配されてなる、請求項1記載の加熱処理炉。   The heat treatment furnace according to claim 1, wherein the wind direction control member is disposed in a hot air circulation channel adjacent to the gas non-heating region. 前記風向制御部材がSUS板からなり、前記繊維シートの幅方向の全長にわたり配されてなる、請求項1又は2に記載の加熱処理炉。   The heat treatment furnace according to claim 1 or 2, wherein the wind direction control member is made of a SUS plate and is disposed over the entire length in the width direction of the fiber sheet. 前記風向制御部材が、前記ガス非加熱領域を閉塞する部位に設置されてなる、請求項1〜3のいずれかに記載の加熱処理炉。   The heat treatment furnace according to any one of claims 1 to 3, wherein the wind direction control member is installed at a portion that closes the gas non-heating region. 前記風向制御部材が熱風循環流路の床面を中心に、その全体を前後に傾動固定可能に設置されてなる、請求項1〜3のいずれかに記載の加熱処理炉。   The heat treatment furnace according to any one of claims 1 to 3, wherein the wind direction control member is installed so as to be tiltable and fixable around the floor surface of the hot air circulation channel. 前記風向制御部材の床面からの高さが150〜250mmである、請求項1〜5のいずれかに記載の加熱処理炉。   The heat processing furnace in any one of Claims 1-5 whose height from the floor surface of the said wind direction control member is 150-250 mm. 前記熱処理室の熱風導入部と熱風導出部とが、それぞれ熱風吹込みノズルと熱風吸出しノズルとを有してなる、請求項1記載の加熱処理炉。   The heat treatment furnace according to claim 1, wherein the hot air introduction part and the hot air lead-out part of the heat treatment chamber each have a hot air blowing nozzle and a hot air sucking nozzle. 整流ボックスの熱風入口に加熱装置が配されてなる、請求項1記載の加熱処理炉。   The heat treatment furnace according to claim 1, wherein a heating device is arranged at a hot air inlet of the rectifying box.
JP2011232971A 2011-10-24 2011-10-24 Heat treatment furnace of fiber sheet Pending JP2013091863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232971A JP2013091863A (en) 2011-10-24 2011-10-24 Heat treatment furnace of fiber sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232971A JP2013091863A (en) 2011-10-24 2011-10-24 Heat treatment furnace of fiber sheet

Publications (1)

Publication Number Publication Date
JP2013091863A true JP2013091863A (en) 2013-05-16

Family

ID=48615211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232971A Pending JP2013091863A (en) 2011-10-24 2011-10-24 Heat treatment furnace of fiber sheet

Country Status (1)

Country Link
JP (1) JP2013091863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007169A1 (en) * 2012-07-02 2014-01-09 三菱レイヨン株式会社 Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007169A1 (en) * 2012-07-02 2014-01-09 三菱レイヨン株式会社 Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle

Similar Documents

Publication Publication Date Title
US9464844B2 (en) End seal for oxidation oven
US8839492B2 (en) Apparatus for pressure steam treatment of carbon fiber precursor acryl fiber bundle and method for producing acryl fiber bundle
JP5765425B2 (en) Carbon fiber bundle manufacturing method and carbon fiber precursor fiber bundle heating furnace
US7335018B2 (en) Flame resistant rendering heat treating device, and operation method for the device
JP2010100967A (en) Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber
EP3018238A1 (en) Horizontal heat treatment device and method for producing carbon fibers using horizontal heat treatment device
JP5037978B2 (en) Flameproof furnace and flameproofing method
JP2013091863A (en) Heat treatment furnace of fiber sheet
CN106435138B (en) A kind of beam wind circulating-heating aging furnace and the method using beam wind heating aluminium
CN201381277Y (en) Network array type heating glass tempering furnace
JPWO2020100714A1 (en) Manufacturing method of flame-resistant fiber bundle and carbon fiber bundle, and flame-resistant furnace
JP4961256B2 (en) Flameproof heat treatment equipment
JP5812205B2 (en) Gas supply blowout nozzle and method for producing flameproof fiber and carbon fiber using the same
JP4572460B2 (en) Heat treatment furnace and method for producing carbon fiber using the same
JP2004124310A (en) Flameproofing furnace
JP5740887B2 (en) Flame resistant furnace heating medium heating system
CN101906521A (en) Novel transverse hot air circulation device
JP4236316B2 (en) Flame-resistant heat treatment equipment for yarn
JP2003155629A (en) Heat treatment apparatus for making carbon fiber flameproof and method for producing carbon fiber
JP2014221956A (en) Heat treatment apparatus, and method for producing flame-resistant fiber by using the same
JP2001288623A (en) Hot air-circulating type convective oven and method for producing flameproof fiber
JP2014159658A (en) Heat treatment furnace, and heat treatment method using the same
CN210065540U (en) Circulating air pipe heating structure
KR101211738B1 (en) Heat treatment apparatus for oxidation of carbon fiber with additional heating fan
CN206502842U (en) A kind of beam wind circulating-heating aging furnace