JP2013089696A - High breakdown voltage mosfet circuit simulation model creation method, device and program - Google Patents

High breakdown voltage mosfet circuit simulation model creation method, device and program Download PDF

Info

Publication number
JP2013089696A
JP2013089696A JP2011227268A JP2011227268A JP2013089696A JP 2013089696 A JP2013089696 A JP 2013089696A JP 2011227268 A JP2011227268 A JP 2011227268A JP 2011227268 A JP2011227268 A JP 2011227268A JP 2013089696 A JP2013089696 A JP 2013089696A
Authority
JP
Japan
Prior art keywords
mosfet
model
source
region
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011227268A
Other languages
Japanese (ja)
Inventor
Yukio Tamegaya
幸夫 為ヶ谷
Risho Ko
俐昭 黄
Yukichi Hatanaka
雄吉 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011227268A priority Critical patent/JP2013089696A/en
Publication of JP2013089696A publication Critical patent/JP2013089696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain drain current accuracy over a wide bias range in a high breakdown voltage MOSFET model, thereby improving the accuracy of simulation.SOLUTION: A model is created which comprises: first and second MOSFETs 1 and 2 having drains are connected in common, gates connected in common, and back gates connected in common, and respectively corresponding to the width of a source diffusion layer and the width of a well contact diffusion layer in the source region thereof; and a first variable resistance element 3 which is connected at one end to the source of the second MOSFET 2. In this model, a junction point at which the source of the second MOSFET 2 and the other end of the first variable resistance element 3 are connected is defined as a source terminal S, while the common connected drains, the common connected gates, and the common connected back gates of the first and the second MOSFETs are respectively defined as a drain terminal D, a gate terminal G, and a back gate terminal B, and the resistance value of the first variable resistance element 3 is adjusted on the basis of electrical characteristic data of a high breakdown voltage MOSFET which is the object of modeling.

Description

本発明は、高耐圧MOSFETの回路シミュレーション技術に関し、特に、回路シミュレーション用モデルの作成方法と装置並びにプログラムに関する。   The present invention relates to a circuit simulation technique for a high voltage MOSFET, and more particularly, to a circuit simulation model creation method, apparatus, and program.

高耐圧MOSFET(Metal Oxide Semiconductor Field Effect Transistor)の回路シミュレーション用モデルの高精度化を図るために、通常のMOSFETを表現する素子モデルに可変抵抗を組み合わせたマクロモデルを用いる技術が、例えば特許文献1等に記載されている。その例を図19(A)、(B)に示す。   In order to increase the accuracy of a circuit simulation model of a high voltage MOSFET (Metal Oxide Semiconductor Field Effect Transistor), a technique using a macro model in which a variable resistor is combined with an element model representing a normal MOSFET is disclosed in, for example, Patent Document 1 Etc. are described. Examples are shown in FIGS. 19A and 19B.

図19(A)は、MOSFET102のドレイン側に可変抵抗101を接続した回路ブロックを一つの高耐圧MOSFETを表現するマクロモデルとするものである。可変抵抗101の端子のうちMOSFET102のドレインに接続されない側の端子をマクロモデルのドレイン端子(D)とする。マクロモデルのゲート端子(G)、ソース端子(S)、バックゲート端子(「バルク端子」ともいう)(B)は、それぞれMOSFET102のゲート端子、ソース端子、バックゲート端子(バルク端子)と同一である。このマクロモデルにより、チャネル領域とドレイン電極(高濃度ドレイン拡散層)の間に位置する低濃度ドレイン拡散層が原因となるゲート・ソース間電圧(単に「ゲート電圧」ともいう)とドレイン・ソース間電圧(単に「ドレイン電圧」ともいう)に依存した寄生抵抗成分を表現することができる。   In FIG. 19A, a circuit block in which the variable resistor 101 is connected to the drain side of the MOSFET 102 is used as a macro model expressing one high voltage MOSFET. The terminal on the side not connected to the drain of the MOSFET 102 among the terminals of the variable resistor 101 is defined as a macro model drain terminal (D). The gate terminal (G), source terminal (S), and back gate terminal (also referred to as “bulk terminal”) (B) of the macro model are the same as the gate terminal, source terminal, and back gate terminal (bulk terminal) of the MOSFET 102, respectively. is there. This macro model allows the gate-source voltage (also referred to simply as “gate voltage”) and drain-source caused by the low-concentration drain diffusion layer located between the channel region and the drain electrode (high-concentration drain diffusion layer). A parasitic resistance component depending on voltage (also simply referred to as “drain voltage”) can be expressed.

図19(B)は、図19(A)における可変抵抗101を、接合型トランジスタ(JFET:Junction FET)103に置き換えたものである。図19(B)のマクロモデルも、図19(A)のマクロモデルと同様の効果を奏する。   FIG. 19B is obtained by replacing the variable resistor 101 in FIG. 19A with a junction transistor (JFET) 103. The macro model shown in FIG. 19B also has the same effect as the macro model shown in FIG.

また、非特許文献1の14章には、チャネル領域とドレイン電極の間に位置する低濃度ドレイン拡散層の寄生抵抗成分をトランジスタモデルのモデル式の中に含ませる技術が開示されている。この場合、図19(A)や図19(B)のマクロモデルは、例えば図19(C)に示すような、単一のMOSFET104により置き換えられる。図19(C)には、図19(A)の可変抵抗101、あるいは図19(B)のJFET103が、モデルの中に予め組み込まれている。このため、MOSFET104のドレインがマクロモデルのドレイン端子(D)とされる。   Further, Chapter 14 of Non-Patent Document 1 discloses a technique for including a parasitic resistance component of a low-concentration drain diffusion layer located between a channel region and a drain electrode in a model equation of a transistor model. In this case, the macro model shown in FIGS. 19A and 19B is replaced with a single MOSFET 104 as shown in FIG. 19C, for example. In FIG. 19C, the variable resistor 101 of FIG. 19A or the JFET 103 of FIG. 19B is incorporated in the model in advance. Therefore, the drain of the MOSFET 104 is the macro model drain terminal (D).

特開2005−190328号公報JP 2005-190328 A 特開2001−189449号公報JP 2001-189449 A 特許第3120389号公報Japanese Patent No. 3120389

Hiroshima University & STARC、"HiSIM_HV 1.2.0 User's Manual" (2009) [平成23年9月12日検索] <インターネットURL: http://home.hiroshima-u.ac.jp/usdl/HiSIM_HV/C-Code/HiSIM_HV_C.html>Hiroshima University & STARC, "HiSIM_HV 1.2.0 User's Manual" (2009) [Search September 12, 2011] <Internet URL: http://home.hiroshima-u.ac.jp/usdl/HiSIM_HV/C- Code / HiSIM_HV_C.html>

以下に、関連技術の分析を与える。   The following is an analysis of related technology.

図20に示したレイアウト構造の高耐圧MOSFETに対して、特許文献1や非特許文献1に記載された関連技術を用いても、精度の良い回路シミュレーション用のモデルが得られないことを、本願発明者らは、全く独自に知見した。なお、ソース領域に図20に示したレイアウト構造を備えたトランジスタに関する関連技術として、例えば特許文献2、特許文献3等の記載が参照される。   Even if the related technique described in Patent Document 1 and Non-Patent Document 1 is used for the high breakdown voltage MOSFET having the layout structure shown in FIG. 20, an accurate circuit simulation model cannot be obtained. The inventors have found it completely unique. Note that, for example, the descriptions of Patent Literature 2, Patent Literature 3 and the like are referred to as related technologies relating to transistors having the layout structure shown in FIG. 20 in the source region.

図20に示すように、高耐圧MOSFETは、ソース側に特殊な構造、すなわち、ソース拡散層112(高濃度N拡散層)と、Pウェル(不図示)に電源電圧を供給するためのウェルコンタクト拡散層(「ウェル電極拡散層」ともいう)111(高濃度P拡散層)とが、ゲート電極115(シリコン基板上にゲート絶縁膜を介して配置される)のソース領域側の辺に沿って、交互に隣接して配置されたレイアウト構造を備えている。このような高耐圧MOSFETにおいて、図19等を参照して説明したMOSFETモデルを用いた場合、ドレイン電流を、広いバイアス範囲で精度良く求めることはできない(この点については、後に詳細に説明する)。 As shown in FIG. 20, the high breakdown voltage MOSFET has a special structure on the source side, that is, a well for supplying a source voltage to the source diffusion layer 112 (high concentration N + diffusion layer) and a P well (not shown). A contact diffusion layer (also referred to as a “well electrode diffusion layer”) 111 (high-concentration P + diffusion layer) is provided on the source region side of the gate electrode 115 (disposed on the silicon substrate via a gate insulating film). And a layout structure arranged alternately adjacent to each other. In such a high breakdown voltage MOSFET, when the MOSFET model described with reference to FIG. 19 or the like is used, the drain current cannot be accurately obtained in a wide bias range (this will be described in detail later). .

本願発明者らは、その原因を解析・検討した結果、このたび、上記問題点を解決する全く新規なマクロモデルを開発し、該マクロモデルのシミュレーション精度を検証したので、以下に提案する。すなわち、本発明の目的は、ソース領域にソース拡散層とウェルコンタクト拡散層が隣接して配置された構造を備えた高耐圧MOSFETのモデルにおいて、ドレイン電流の精度を広いバイアス範囲で得ることができ、シミュレーション精度を向上させる装置、方法、プログラム、記録媒体を提供することにある。   As a result of analyzing and examining the cause, the present inventors have developed a completely new macro model that solves the above problems and verified the simulation accuracy of the macro model. That is, the object of the present invention is to obtain the drain current accuracy in a wide bias range in a high breakdown voltage MOSFET model having a structure in which a source diffusion layer and a well contact diffusion layer are arranged adjacent to each other in a source region. Another object is to provide an apparatus, a method, a program, and a recording medium that improve simulation accuracy.

前記課題の少なくとも1つを解決するため、本発明は、概略以下の構成とされる(だたし、以下に限定されるものでないことは勿論である)。   In order to solve at least one of the above-mentioned problems, the present invention is generally configured as follows (however, it is of course not limited to the following).

本発明の1つの側面によれば、ソース拡散層と、前記ソース拡散層と逆導電型のウェルコンタクト拡散層とがチャネル幅方向に沿って隣接して配置されたソース領域を有する高耐圧MOSFETの回路シミュレーション用のMOSFETのモデルとして、ドレインが共通接続され、ゲートが共通接続され、バックゲートが共通接続され、前記ソース領域の前記ソース拡散層の幅と前記ウェルコンタクト拡散層の幅にそれぞれ対応した第1及び第2のチャネル幅を有する第1及び第2のMOSFETと、前記第2のMOSFETのソースに一端が接続された第1の可変抵抗素子と、を備え、前記第1のMOSFETのソースと前記第1の可変抵抗素子の他端との接続点をソース端子とし、前記第1及び第2のMOSFETの前記共通接続したドレイン、前記共通接続したゲート、前記共通接続したバックゲートを、それぞれ、ドレイン端子、ゲート端子、バックゲート端子とするモデルを作成する手段と、
モデリング対象の前記高耐圧MOSFETの電気特性データを記憶する記憶手段と、
前記記憶手段から、前記高耐圧MOSFETの電気特性データを読み出し、前記電気特性データに基づき、前記回路シミュレーション用のMOSFETのモデルの前記第1の可変抵抗素子の抵抗値を調整する手段と、を備えたモデル作成装置が提供される。
According to one aspect of the present invention, there is provided a high breakdown voltage MOSFET having a source region in which a source diffusion layer and a well contact diffusion layer having a conductivity type opposite to that of the source diffusion layer are disposed adjacent to each other along a channel width direction. As a MOSFET model for circuit simulation, drains are connected in common, gates are connected in common, and back gates are connected in common, corresponding to the width of the source diffusion layer and the width of the well contact diffusion layer in the source region, respectively. First and second MOSFETs having first and second channel widths, and a first variable resistance element having one end connected to the source of the second MOSFET, the source of the first MOSFET And the other end of the first variable resistance element as a source terminal, the commonly connected gates of the first and second MOSFETs are connected. Inn, gate and the common connection, the back gate and the common connection, respectively, a drain terminal, a gate terminal, means for creating a model of a back gate terminal,
Storage means for storing electrical characteristic data of the high breakdown voltage MOSFET to be modeled;
Means for reading out electrical characteristic data of the high withstand voltage MOSFET from the storage means, and adjusting a resistance value of the first variable resistance element of the MOSFET model for circuit simulation based on the electrical characteristic data. A model creation device is provided.

本発明の別の側面によれば、ソース拡散層と、前記ソース拡散層と逆導電型のウェルコンタクト拡散層とがチャネル幅方向に沿って隣接して配置されたソース領域を有する高耐圧MOSFETの回路シミュレーション用のMOSFETのモデルを情報処理装置で作成するにあたり、
ドレインが共通接続され、ゲートが共通接続され、バックゲートが共通接続され、前記ソース領域の前記ソース拡散層の幅と前記ウェルコンタクト拡散層の幅にそれぞれ対応した第1及び第2のチャネル幅を有する第1及び第2のMOSFETと、
前記第2のMOSFETのソースに一端が接続された第1の可変抵抗素子と、
を備え、
前記第1のMOSFETのソースと前記第1の可変抵抗素子の他端の接続点をソース端子とし、前記第1及び第2のMOSFETの前記共通接続したドレイン、前記共通接続したゲート、前記共通接続したバックゲートを、それぞれ、ドレイン端子、ゲート端子、バックゲート端子とするモデルを作成する処理と、
モデリング対象の前記高耐圧MOSFETの電気特性データを記憶する記憶装置から、前記高耐圧MOSFETの電気特性データを読み出し、前記電気特性データに基づき、前記第1の可変抵抗素子の抵抗値を調整する処理を、
前記情報処理装置に実行させるプログラムが提供される。
According to another aspect of the present invention, there is provided a high breakdown voltage MOSFET having a source region in which a source diffusion layer and a well contact diffusion layer having a conductivity type opposite to that of the source diffusion layer are disposed adjacent to each other along a channel width direction. In creating a MOSFET model for circuit simulation with an information processing device,
The drains are connected in common, the gates are connected in common, the back gates are connected in common, and the first and second channel widths corresponding to the width of the source diffusion layer and the width of the well contact diffusion layer in the source region, respectively. First and second MOSFETs having:
A first variable resistance element having one end connected to the source of the second MOSFET;
With
Using the connection point between the source of the first MOSFET and the other end of the first variable resistance element as a source terminal, the commonly connected drain, the commonly connected gate, and the common connection of the first and second MOSFETs Processing to create a model with the back gate as a drain terminal, a gate terminal, and a back gate terminal,
Processing for reading electrical characteristic data of the high breakdown voltage MOSFET from a storage device that stores electrical characteristic data of the high breakdown voltage MOSFET to be modeled, and adjusting a resistance value of the first variable resistance element based on the electrical characteristic data The
A program to be executed by the information processing apparatus is provided.

本発明のさらに別の側面によれば、ソース拡散層と、前記ソース拡散層と逆導電型のウェルコンタクト拡散層とがチャネル幅方向に沿って隣接して配置されたソース領域を有する高耐圧MOSFETの回路シミュレーション用のMOSFETのモデルを情報処理装置で作成するにあたり、
ドレインが共通接続され、ゲートが共通接続され、バックゲートが共通接続され、前記ソース領域の前記ソース拡散層の幅と前記ウェルコンタクト拡散層の幅にそれぞれ対応した第1及び第2のチャネル幅を有する第1及び第2のMOSFETと、
前記第2のMOSFETのソースに一端が接続された第1の可変抵抗素子と、
を備え、
前記第1のMOSFETのソースと前記第1の可変抵抗素子の他端との接続点をソース端子とし、前記第1及び第2のMOSFETの前記共通接続したドレイン、前記共通接続したゲート、前記共通接続したバックゲートを、それぞれ、ドレイン端子、ゲート端子、バックゲート端子とするモデルを作成し、
モデリング対象の前記高耐圧MOSFETの電気特性データを記憶する記憶手段から、前記高耐圧MOSFETの電気特性データを読み出し、前記電気特性データに基づき、前記回路シミュレーション用のMOSFETのモデルの前記第1の可変抵抗素子の抵抗値を調整する、モデル作成方法が提供される。
According to yet another aspect of the present invention, a high breakdown voltage MOSFET having a source region in which a source diffusion layer and a well contact diffusion layer having a conductivity type opposite to that of the source diffusion layer are disposed adjacent to each other in the channel width direction. In creating a MOSFET model for circuit simulation in an information processing device,
The drains are connected in common, the gates are connected in common, the back gates are connected in common, and the first and second channel widths corresponding to the width of the source diffusion layer and the width of the well contact diffusion layer in the source region, respectively. First and second MOSFETs having:
A first variable resistance element having one end connected to the source of the second MOSFET;
With
A connection point between the source of the first MOSFET and the other end of the first variable resistance element is used as a source terminal, and the commonly connected drain, the commonly connected gate, and the common of the first and second MOSFETs Create models that use the connected back gates as the drain terminal, gate terminal, and back gate terminal, respectively.
The electrical characteristic data of the high breakdown voltage MOSFET is read out from the storage means for storing the electrical characteristic data of the high breakdown voltage MOSFET to be modeled, and the first variable of the model of the MOSFET for circuit simulation is based on the electrical characteristic data A model generation method for adjusting the resistance value of the resistance element is provided.

本発明によれば、ソース領域にソース拡散層とウェルコンタクト拡散層が隣接して配置された構造を備えた高耐圧MOSFETのモデルにおいて、ドレイン電流の精度を広いバイアス範囲で得ることができ、シミュレーション精度を向上させることができる。   According to the present invention, in a high breakdown voltage MOSFET model having a structure in which a source diffusion layer and a well contact diffusion layer are disposed adjacent to each other in a source region, the accuracy of drain current can be obtained in a wide bias range, and simulation is performed. Accuracy can be improved.

本発明の概要を説明する図である。It is a figure explaining the outline | summary of this invention. 本発明の第1の実施形態を説明する図である。It is a figure explaining the 1st Embodiment of this invention. 本発明の第1の実施形態を説明する図である。It is a figure explaining the 1st Embodiment of this invention. 本発明の第2の実施形態のシステムを説明する図である。It is a figure explaining the system of the 2nd Embodiment of this invention. 本発明の第2の実施形態の動作を説明する図である。It is a figure explaining the operation | movement of the 2nd Embodiment of this invention. 本発明の原理を説明する図である。It is a figure explaining the principle of this invention. 本発明の効果を説明する図である。It is a figure explaining the effect of this invention. 本発明の効果を説明する図である。It is a figure explaining the effect of this invention. 本発明の第3の実施形態を説明する図である。It is a figure explaining the 3rd Embodiment of this invention. 本発明の第3の実施形態を説明する図である。It is a figure explaining the 3rd Embodiment of this invention. 本発明の第4の実施形態を説明する図である。It is a figure explaining the 4th Embodiment of this invention. 本発明の第4の実施形態の動作を説明する図である。It is a figure explaining the operation | movement of the 4th Embodiment of this invention. 本発明の第2の実施形態を説明する図である。It is a figure explaining the 2nd Embodiment of this invention. 本発明の第5の実施形態を説明する図である。It is a figure explaining the 5th Embodiment of this invention. 本発明の第6の実施形態を説明する図である。It is a figure explaining the 6th Embodiment of this invention. 本発明の第6の実施形態を説明する図である。It is a figure explaining the 6th Embodiment of this invention. 本発明の第7の実施形態を説明する図である。It is a figure explaining the 7th Embodiment of this invention. 本発明の第7の実施形態を説明する図である。It is a figure explaining the 7th Embodiment of this invention. (A)、(B)、(C)は 関連技術を説明する図である。(A), (B), (C) is a figure explaining related technology. 関連技術を説明する図である。It is a figure explaining related technology. 関連技術の問題点を説明する図である。It is a figure explaining the problem of related technology. 関連技術の問題点を説明する図である。It is a figure explaining the problem of related technology. 関連技術の問題点を説明する図である。It is a figure explaining the problem of related technology. 関連技術の問題点を説明する図である。It is a figure explaining the problem of related technology.

本発明によれば、半導体基板上にゲート絶縁膜を介して配置されるゲート電極を間に挟んで半導体基板表面に対向配置される第1及び第2の拡散領域(diffused region)の一方の前記第1の拡散領域が、第1導電型の第1の拡散層(例えば図2の12)と、前記第1拡散層と逆導電型のウェルコンタクト拡散層(図2の11)とがチャネル幅方向に沿って隣接して配置されたMOSFETの回路シミュレーション用のMOSFETのモデルとして、前記第2の拡散領域(例えば図1のドレイン)同士が共通接続され、ゲート同士が共通接続され、バックゲート同士が共通接続され、前記第1の拡散領域の前記第1の拡散層(図2の12)の幅と前記ウェルコンタクト拡散層(図2の11)の幅にそれぞれ対応した第1及び第2のチャネル幅を有する第1及び第2のMOSFET(図1の1、2)と、前記第2のMOSFET(図1の2)の前記第1の拡散領域(例えば図1のソース)に一端が接続された第1の可変抵抗素子(図1の3)と、を備え、前記第1のMOSFET(図1の1)の前記第1の拡散領域と、前記第1の可変抵抗素子(図1の3)の他端との接続点を、第1端子(S)とし、前記第1及び第2のMOSFET(図1の1、2)の前記共通接続した前記第2の拡散領域、前記共通接続したゲート、前記共通接続したバックゲートを、それぞれ、第2端子(D)、ゲート端子(G)、バックゲート端子(B)とするモデルを用いる。モデリング対象の前記高耐圧MOSFETの電気特性データに基づき、前記回路シミュレーション用のMOSFETのモデルの前記第1の可変抵抗素子(図1の3)の抵抗値(Rs)を調整する。   According to the present invention, one of the first and second diffusion regions disposed opposite to the semiconductor substrate surface with a gate electrode disposed on the semiconductor substrate with a gate insulating film interposed therebetween. The first diffusion region includes a first conductivity type first diffusion layer (for example, 12 in FIG. 2) and a channel contact width between the first diffusion layer and the opposite conductivity type well contact diffusion layer (11 in FIG. 2). As a model of a MOSFET for circuit simulation of MOSFETs arranged adjacent to each other in the direction, the second diffusion regions (for example, the drain in FIG. 1) are connected in common, the gates are connected in common, and the back gates are connected. Are connected in common and correspond to the width of the first diffusion layer (12 in FIG. 2) and the width of the well contact diffusion layer (11 in FIG. 2) of the first diffusion region, respectively. And one end of the first and second MOSFETs (1 and 2 in FIG. 1) having the following channel width and the first diffusion region (for example, the source in FIG. 1) of the second MOSFET (2 in FIG. 1). A first variable resistance element (3 in FIG. 1) connected, the first diffusion region of the first MOSFET (1 in FIG. 1), and the first variable resistance element (FIG. 1). 3) is used as the first terminal (S) as a connection point with the other end of the first and second MOSFETs (1 and 2 in FIG. 1), the second diffusion region connected in common, and the common A model is used in which the connected gate and the commonly connected back gate are the second terminal (D), the gate terminal (G), and the back gate terminal (B), respectively. Based on the electrical characteristic data of the high breakdown voltage MOSFET to be modeled, the resistance value (Rs) of the first variable resistance element (3 in FIG. 1) of the model of the MOSFET for circuit simulation is adjusted.

以下では、上記した本発明についてその基本原理を説明し、つづいて実施形態を説明する。   In the following, the basic principle of the above-described present invention will be described, and then embodiments will be described.

上記したように、特許文献1、非特許文献1等に記載の関連技術を用いても、図20に示すレイアウト構造のMOSFETに対しては、精度の良い回路シミュレーションモデルが得られないことが、本願発明者らによるこの度の検討から明らかになったので、以下に説明する。   As described above, even if the related techniques described in Patent Document 1, Non-Patent Document 1, etc. are used, an accurate circuit simulation model cannot be obtained for the MOSFET having the layout structure shown in FIG. Since it became clear from examination of this time by the present inventors, it demonstrates below.

図20において、ゲート電極115の左側のソース側には、N型のソース拡散層112と、P型のウェルコンタクト拡散層111(P拡散層)がチャネル幅方向に隣接して配置されている。図20の例では、P型のウェルコンタクト拡散層(P拡散層)111、N型のソース拡散層(N拡散層)112が交互に隣接して配置されている。図20では、P型のウェルコンタクト拡散層(P拡散層)111が3つ、これらの間に、N型のソース拡散層(N拡散層)112が2つ配置されている。なお、図20のレイアウト構成はあくまで説明のために簡略化して例示したものであって、P型のウェルコンタクト拡散層(P拡散層)111、N型のソース拡散層(N拡散層)112の数、配置形態は図20の構成に制限されるものでない。なお、N型のソース拡散層112とP型のウェルコンタクト拡散層111は、通常、電気的に接続するように形成される。 In FIG. 20, an N + type source diffusion layer 112 and a P + type well contact diffusion layer 111 (P + diffusion layer) are arranged adjacent to each other in the channel width direction on the source side on the left side of the gate electrode 115. ing. In the example of FIG. 20, P + -type well contact diffusion layers (P + diffusion layers) 111 and N + -type source diffusion layers (N + diffusion layers) 112 are alternately arranged adjacent to each other. In FIG. 20, three P + -type well contact diffusion layers (P + diffusion layers) 111 are arranged, and two N + -type source diffusion layers (N + diffusion layers) 112 are arranged therebetween. Note that the layout configuration of FIG. 20 is simply illustrated for the sake of explanation, and includes a P + type well contact diffusion layer (P + diffusion layer) 111 and an N + type source diffusion layer (N + diffusion). The number and arrangement of the layers) 112 are not limited to the configuration shown in FIG. The N + -type source diffusion layer 112 and the P + -type well contact diffusion layer 111 are usually formed so as to be electrically connected.

図20において、ゲート電極115の右側のドレイン側には、ゲート電極115に隣接するN型の低濃度ドレイン拡散層114と、低濃度ドレイン拡散層114に隣接したN型のドレイン拡散層113(ドレインコンタクト用のN拡散層)が設けられる。 In FIG. 20, on the drain side on the right side of the gate electrode 115, an N type low concentration drain diffusion layer 114 adjacent to the gate electrode 115 and an N + type drain diffusion layer 113 adjacent to the low concentration drain diffusion layer 114. (N + diffusion layer for drain contact) is provided.

図20において、ゲート電極115への電圧の印加により、ゲート電極115下部のシリコン基板表面に反転層(チャネル)が形成され、ソースとドレイン間が導通する。   In FIG. 20, when a voltage is applied to the gate electrode 115, an inversion layer (channel) is formed on the surface of the silicon substrate below the gate electrode 115, and the source and the drain are electrically connected.

なお、図20に示す例では、NチャネルMOSFETはP型ウェル内に形成されているが、NチャネルMOSFETをP型シリコン基板表面に形成する場合、P型のウェルコンタクト拡散層111はP型の基板コンタクト(Substrate Contact)拡散層となる。したがって、以下では、P型のウェルコンタクト拡散層111はP型の基板コンタクト拡散層であってもよい。ウェルコンタクト拡散層(基板コンタクト拡散層)は、単に、ウェルコンタクト(基板コンタクト)とも呼ばれる。なお、NチャネルMOSFETのP型のウェルコンタクト拡散層(基板コンタクト)は例えば電源VSS(0V)に接続される。また図20では、NチャネルMOSFETのレイアウト構成を例示したが、PチャネルMOSFETの場合、極性が反転することを除いて同様である。 In the example shown in FIG. 20, the N-channel MOSFET is formed in the P-type well. However, when the N-channel MOSFET is formed on the surface of the P-type silicon substrate, the P + -type well contact diffusion layer 111 is P +. It becomes a type of substrate contact (Substrate Contact) diffusion layer. Therefore, hereinafter, the P + type well contact diffusion layer 111 may be a P + type substrate contact diffusion layer. The well contact diffusion layer (substrate contact diffusion layer) is also simply referred to as well contact (substrate contact). Note that the P + -type well contact diffusion layer (substrate contact) of the N-channel MOSFET is connected to a power supply VSS (0 V), for example. In FIG. 20, the layout configuration of the N-channel MOSFET is illustrated. However, the P-channel MOSFET is the same except that the polarity is inverted.

図20において、
Wnは、N型のソース拡散層112一つ当たりの幅、
Wpは、P型のウェルコンタクト拡散層111一つ当たりの幅、
Wは全チャネル幅
である。このWは、各ソース拡散層112の幅Wnの総和(=ΣWn)と、各ウェルコンタクト拡散層111の幅Wpの総和(=ΣWp)を加算した値となる(W=ΣWn+ΣWp)。
In FIG.
Wn is a width per source diffusion layer 112 of N + type,
Wp is the width per P + -type well contact diffusion layer 111,
W is the total channel width. This W is a value obtained by adding the sum (= ΣWn) of the widths Wn of the source diffusion layers 112 and the sum (= ΣWp) of the widths Wp of the well contact diffusion layers 111 (W = ΣWn + ΣWp).

なお、Wnは、ソース領域のすべてのN型ソース拡散層112について同じ値である場合もあれば、ソース拡散層112毎に異なる場合もある。Wpについても、同様である。すなわち、ソース領域のすべてのP型ウェルコンタクト拡散層111の幅が同一である場合もあれば、P型ウェルコンタクト拡散層111毎にその幅が異なる場合もある。 Note that Wn may have the same value for all the N + type source diffusion layers 112 in the source region, or may differ for each source diffusion layer 112. The same applies to Wp. In other words, all the P + -type well contact diffusion layers 111 in the source region may have the same width, or the P + -type well contact diffusion layers 111 may have different widths.

また、図20では、P型ウェルコンタクト拡散層111とN型ソース拡散層112のゲート電極115とは反対側の端部が面一に整列しているが、必ずしも整列している必要はない。例えば、N型ソース拡散層112が、ゲート電極115と対向する側と反対側にさらに延在し隣のN型ソース拡散層112と接続し、間のP型ウェルコンタクト拡散層111を囲むようにしてもよい。図20に示したレイアウト構造は、P型ウェルコンタクト拡散層111とN型ソース拡散層112が接続しているため、「ソース基板接続構造」とも称呼される。 In FIG. 20, the ends of the P + -type well contact diffusion layer 111 and the N + -type source diffusion layer 112 opposite to the gate electrode 115 are aligned with each other. Absent. For example, the N + type source diffusion layer 112 further extends on the side opposite to the side facing the gate electrode 115 and is connected to the adjacent N + type source diffusion layer 112, and the P + type well contact diffusion layer 111 therebetween is formed You may make it surround. The layout structure shown in FIG. 20 is also called a “source substrate connection structure” because the P + type well contact diffusion layer 111 and the N + type source diffusion layer 112 are connected.

図21(A)と図21(B)は、図20の高耐圧MOSFETの異なるWnratioに関して、ドレイン電流−ドレイン電圧特性(Id−Vd特性)をモデリングした結果と、実測値をそれぞれ示す図である(本願発明者らによって為された分析結果)。ここで、Wnratioは、図20の全チャネル幅W(=ΣWn+ΣWp)に対して、各N型ソース拡散層112の幅Wnの合計(=ΣWn)が占める割合であり、%表記を用いると、以下で与えられる。 FIG. 21A and FIG. 21B are diagrams respectively showing results of modeling drain current-drain voltage characteristics (Id-Vd characteristics) and actual measurement values for different Wnratio of the high breakdown voltage MOSFET of FIG. (Analysis result made by the present inventors). Here, Wnratio is the ratio of the total width Wn of each N + -type source diffusion layer 112 (= ΣWn) to the total channel width W (= ΣWn + ΣWp) in FIG. Given below.

Wnratio={(ΣWn)/(ΣWn+ΣWp)}×100   Wnratio = {(ΣWn) / (ΣWn + ΣWp)} × 100

図21(A)では、Wnratio=48%、図21(B)では、Wnratio=40%としている。なお、図21(A)、(B)において、横軸はドレイン電圧(drain−to−source voltage)Vds(単位:電圧(Voltage))、縦軸はドレイン電流(drain−to−source current)Id(単位:Ampere)であり、ゲート電圧(gate−to−source voltage)Vgsを0〜5Vまで1Vステップで変化させたId−Vd特性曲線が示されている。ゲート・ソース間電圧Vgs=0Vでは、NチャネルMOSFETはオフ状態であり、ドレイン電流Id=0である。   In FIG. 21A, Wnratio = 48%, and in FIG. 21B, Wnratio = 40%. 21A and 21B, the horizontal axis represents drain voltage (drain-to-source voltage) Vds (unit: voltage (Voltage)), and the vertical axis represents drain current (drain-to-source current) Id. An Id-Vd characteristic curve in which the gate voltage (gate-source voltage) Vgs is changed from 0 to 5 V in 1 V step is shown. When the gate-source voltage Vgs = 0V, the N-channel MOSFET is in the off state, and the drain current Id = 0.

図21(A)の例では、▲マークで示した実測値と、破線で示す関連技術によるモデリング結果(従来モデル)とは、ドレイン・ソース間電圧Vdsの全範囲(0〜20V)に亘って、ゲート・ソース間電圧Vgs=0、1、2、・・・、5Vの全てについて、比較的良く一致している。   In the example of FIG. 21A, the actual measurement value indicated by the ▲ mark and the modeling result (conventional model) by the related technique indicated by the broken line are over the entire range (0 to 20 V) of the drain-source voltage Vds. The gate-source voltages Vgs = 0, 1, 2,...

これに対して、同じモデルを、Wnratioが40%の場合の実測値(▲マークで示す)と比較した図21(B)の例では、実測値(▲)と、破線で示すモデルリング結果(従来モデル)とが合っていない。特に、ドレイン電流Idが、ドレイン・ソース間電圧Vdsに依存せずにほぼ一定となる領域のうち、ゲート・ソース間電圧Vgsが高い領域で実測値(▲)との差異が顕著となる。   On the other hand, in the example of FIG. 21B in which the same model is compared with an actual measurement value (indicated by a ▲ mark) when Wnratio is 40%, an actual measurement value (▲) and a modeling result indicated by a broken line ( The previous model) does not match. In particular, in the region where the drain current Id is substantially constant without depending on the drain-source voltage Vds, the difference from the actually measured value (▲) becomes remarkable in the region where the gate-source voltage Vgs is high.

これは、図20に示したレイアウト構成において、Wnratioの値の相違により、MOSFETのドレイン電流−ドレイン・ソース間電圧(Id−Vds)特性が変化していることによるものと思料される。   This is presumably because the drain current-drain-source voltage (Id-Vds) characteristics of the MOSFET change due to the difference in the Wnratio value in the layout configuration shown in FIG.

本願発明者らは、図19に示した関連技術のMOSFETモデルに関して、そのモデルパラメータの調整を試みたが、40%と48%というWnratioの値の相違によるドレイン電流−ドレイン・ソース間電圧(Id−Vds)特性の変化を、図19に示したMOSFETモデルによって表現することはできなかった。   The inventors of the present application tried to adjust model parameters of the related-art MOSFET model shown in FIG. 19, but the drain current-drain-source voltage (Id) due to the difference in Wnratio value of 40% and 48%. -Vds) The change in characteristics could not be expressed by the MOSFET model shown in FIG.

このようなMOSFETモデル(例えば図19に示したモデル)のフィッティング誤差に対して、本願発明者らは、より詳細な検討を行ったので、以下にその結果を説明する。   The inventors of the present application have made a more detailed examination on the fitting error of such a MOSFET model (for example, the model shown in FIG. 19), and the result will be described below.

図22(A)と図22(B)は、図20に示したレイアウト構造のNチャネルMOSFETがオンした状態におけるドレイン・ソース間電流Idsを、Wnratioが異なる素子(MOSFET)間で比較したものである(本願発明者らによって為された分析結果である)。なお、図22において、縦軸は、ドレイン・ソース間電流Idsを全チャネル幅W(=ΣWn+ΣWp)で規格化し、Ids/Wとしている。図22において、横軸の素子(MOSFET)AのWnratioは40%、素子(MOSFET)B、CのWnratioはともに48%である(なお、素子BとCは、Wnratioは共通であるが、別のMOSFETである)。   22 (A) and 22 (B) show a comparison of drain-source current Ids in a state where the N-channel MOSFET having the layout structure shown in FIG. 20 is turned on between elements (MOSFETs) having different Wnratio. Yes (analysis result made by the present inventors). In FIG. 22, the vertical axis represents the drain-source current Ids normalized by the total channel width W (= ΣWn + ΣWp), which is Ids / W. In FIG. 22, the Wnratio of the element (MOSFET) A on the horizontal axis is 40%, and the Wnratio of the elements (MOSFETs) B and C are both 48% (note that the elements B and C have the same Wnratio, but MOSFET).

図22(A)及び図22(B)において、マーク●は実測値を表している。また、破線で示す従来モデル(素子A、B、Cと破線との交点)は、例えば図19(A)のMOSFETモデルを用いてそのパラメータ(例えば図19(A)の可変抵抗素子101の抵抗値やその他のパラメータ)のフィティング等を行って得られたMOSFETモデルに対してシミュレーションを行い、Ids/Wを求めたものである。破線は、素子A、B、Cのそれぞれのモデリング結果を直線で結んだ線である(破線…の各ドットがモデリング結果を表しているのではなく、素子A、B、Cと破線との交点が、素子A、B、CのIds/Wである。図22(B)も同様である)。   In FIG. 22 (A) and FIG. 22 (B), the mark ● represents an actual measurement value. Further, the conventional model (intersection of the elements A, B, and C and the broken line) indicated by a broken line uses, for example, the MOSFET model of FIG. 19A and its parameters (for example, the resistance of the variable resistance element 101 of FIG. 19A). A simulation is performed on the MOSFET model obtained by fitting values and other parameters) to obtain Ids / W. The broken line is a line obtained by connecting the modeling results of the elements A, B, and C with straight lines (not each dot of the broken line... Represents the modeling result, but the intersection of the elements A, B, and C and the broken line. Is the Ids / W of the elements A, B, and C. The same applies to FIG.

図22(A)に示した線形領域(ドレイン・ソース間電圧Vds=0.1V、ゲート電圧Vg=5V)では、全チャネル幅Wで規格化したドレイン電流Ids/Wの実測値(●)は、Wnratio=40%の素子Aと、Wnratio=48%の素子B、Cでほぼ等しく、Wnratioにほとんど依存しないことが示されている。また、図19等の関連技術のモデル(従来モデル)を用いたモデリング結果Ids/Wは、図22(A)に示すように、線形領域では、素子AのWnratio=40%、素子B、CのWnratio=48%のいずれの実測値(●)とも交差しており、ほぼ一致していることが分かる。   In the linear region (drain-source voltage Vds = 0.1 V, gate voltage Vg = 5 V) shown in FIG. 22A, the measured value (●) of the drain current Ids / W normalized by the total channel width W is It is shown that the element A with Wnratio = 40% and the elements B and C with Wnratio = 48% are almost equal and hardly depend on Wnratio. Further, as shown in FIG. 22A, the modeling result Ids / W using the related technology model (conventional model) such as FIG. 19 is Wnratio = 40% of the element A, the elements B and C in the linear region. It intersects with any measured value (●) of Wnratio = 48% of FIG.

一方、図22(B)に示した飽和領域(ドレイン・ソース間電圧Vds=12V、ゲート・ソース間電圧Vg=5V)では、全チャネル幅Wで規格化したドレイン電流Ids/Wの実測値(●で示す)は、Wnratioに依存して変化する。すなわち、Wnratio=40%の素子Aでは、Ids/Wの実測値(●で示す)と、図19等の関連技術のモデル(従来モデル)を用いたモデリング結果(破線と素子Aの交差部)とは一致しない(差異がある)。しかしながら、Wnratio=48%の素子B、Cでは、Ids/Wの実測値(●で示す)と、破線と素子B、Cとの交点であるモデリング結果(従来モデル)とはほぼ一致しており、Wnratio=40%の素子Aのような、顕著な差異は認められない。   On the other hand, in the saturation region shown in FIG. 22B (drain-source voltage Vds = 12 V, gate-source voltage Vg = 5 V), the measured drain current Ids / W normalized by the total channel width W ( ) Changes depending on Wnratio. That is, in the element A with Wnratio = 40%, the modeling result using the measured value of Ids / W (indicated by ●) and the related technology model (conventional model) such as FIG. 19 (intersection of the broken line and the element A) Does not match (there is a difference). However, for elements B and C with Wnratio = 48%, the measured value of Ids / W (indicated by ●) is almost the same as the modeling result (conventional model) that is the intersection of the broken line and elements B and C. , Wnratio = 40% as in the device A, no significant difference is recognized.

図19等に示した関連技術では、Wnratio依存性は、例えば抵抗成分(図19(A)の可変抵抗101の抵抗値)を調整することにより、全体の電流レベルを上下させることが可能である。   In the related technology shown in FIG. 19 and the like, the Wnratio dependency can increase or decrease the overall current level by adjusting, for example, a resistance component (resistance value of the variable resistor 101 in FIG. 19A). .

しかしながら、図22(A)、図22(B)に見られるように、ドレイン電圧(ドレイン・ソース間電圧)に依存して、ドレイン・ソース間電流Idsに異なるWnratio依存性が現れる、という傾向をうまくモデリングすることはできない。   However, as seen in FIGS. 22A and 22B, depending on the drain voltage (drain-source voltage), a different Wnratio dependency appears in the drain-source current Ids. It cannot be modeled well.

特に、図22(A)及び図22(B)に示したように、
線形領域では、ドレイン・ソース間電流IdsはWnratioに依存せず、
飽和領域でのみ、ドレイン・ソース間電流IdsがWnratioに依存する、
という傾向が認められる。
In particular, as shown in FIGS. 22 (A) and 22 (B),
In the linear region, the drain-source current Ids does not depend on Wnratio,
Only in the saturation region, the drain-source current Ids depends on Wnratio.
This tendency is recognized.

通常の構造のMOSFET(例えば、後述する図3の高耐圧MOSFET参照)においては、線形領域の特性は、素子のレイアウト構造に依存して変化せず、飽和領域の特性だけが、素子のレイアウト構造に依存して変化する、ということはない。   In a MOSFET having a normal structure (for example, refer to a high breakdown voltage MOSFET in FIG. 3 described later), the characteristics of the linear region do not change depending on the layout structure of the element, and only the characteristics of the saturation region have the layout structure of the element. It does not change depending on.

線形領域の特性は、素子のレイアウト構造に依存して変化せず、飽和領域の特性だけが素子のレイアウト構造に依存して変化する、ということは、図20に示したレイアウト構造のMOSFETに特有の特性である(本願発明者らによって為された分析結果)。   The characteristic of the linear region does not change depending on the layout structure of the element, and only the characteristic of the saturation region changes depending on the layout structure of the element. This is unique to the MOSFET having the layout structure shown in FIG. (Analysis result made by the inventors of the present application).

このため、図19(A)乃至(C)に示した関連技術(MOSFETのドレインに接続した可変抵抗)のモデリングで表現することは、著しく、困難である。   For this reason, it is extremely difficult to express it by modeling the related technique (variable resistance connected to the drain of the MOSFET) shown in FIGS.

図23(A)と図23(B)は、それぞれ線形領域と飽和領域で、ドレイン・ソース間電流Idsのゲート・ソース間電圧Vgsによる微分値である相互コンダクタンス

Figure 2013089696
をゲート幅Wで規格化した値Gm/Wを、Wnratio=40%(破線)とWnratio=48%(実線)で比較した結果である(本願発明者らによって為された分析結果である)。 FIG. 23A and FIG. 23B show the mutual conductance which is a differential value of the drain-source current Ids with respect to the gate-source voltage Vgs in the linear region and the saturation region, respectively.
Figure 2013089696
The value Gm / W normalized by the gate width W is compared with Wnratio = 40% (broken line) and Wnratio = 48% (solid line) (analysis result made by the present inventors).

図23(A)及び図23(B)において、横軸はゲート・ソース間電圧Vgs(0〜5V)、縦軸はGm/W(実測値)である。なお、Wnratio=40%(破線)とWnratio=48%(実線)の特性極性は、ゲート・ソース間電圧Vgsを0〜5Vの範囲で所定の電圧ステップ(1V以下のステップ、例えば0.25Vステップ)で可変させて実測した複数点のGm/Wをカーブフィッティングして表示したものである。   In FIGS. 23A and 23B, the horizontal axis represents the gate-source voltage Vgs (0 to 5 V), and the vertical axis represents Gm / W (actually measured value). The characteristic polarity of Wnratio = 40% (broken line) and Wnratio = 48% (solid line) is a predetermined voltage step (1V or less step, for example, 0.25V step) with the gate-source voltage Vgs in the range of 0-5V. And Gm / W of a plurality of points measured and measured by curve fitting.

図22(A)に示したドレイン電流Idsの場合と同様に、線形領域Vds=0.1Vでは、Gm/Wは、図23(A)に示すように、Wnratioに依存しない。すなわち、Wnratio=40%(破線)とWnratio=48%(実線)とが、Vgs=0〜5Vの範囲でほぼ一致する(破線と実線がほぼ重なる)。なお、その原因は不明だが、1V<Vgs<1.25V付近の一部区間では差異が現れている。   As in the case of the drain current Ids shown in FIG. 22A, in the linear region Vds = 0.1 V, Gm / W does not depend on Wnratio as shown in FIG. That is, Wnratio = 40% (broken line) and Wnratio = 48% (solid line) almost coincide in the range of Vgs = 0 to 5V (the broken line and the solid line almost overlap). Although the cause is unknown, a difference appears in a partial section near 1 V <Vgs <1.25 V.

一方、飽和領域Vds=12Vでは、図23(B)に示すように、Gm/Wは、Wnratioに依存する。すなわち、Wnratio=40%(実線)と、Wnratio=48%(破線)とで特性が異なる(1V<Vgs≦5Vの広い範囲で、破線と実線とが重ならない)。   On the other hand, in the saturation region Vds = 12 V, Gm / W depends on Wnratio as shown in FIG. That is, the characteristics differ between Wnratio = 40% (solid line) and Wnratio = 48% (broken line) (the broken line and the solid line do not overlap in a wide range of 1V <Vgs ≦ 5V).

この原因について、電気伝導に寄与するキャリアが誘起される領域である反転層(inversion layer)の形成条件に着目して考察した。その結果を、図24(A)及び図24(B)を参照して以下に説明する。   This cause was examined by focusing attention on the formation conditions of the inversion layer, which is a region where carriers contributing to electrical conduction are induced. The results will be described below with reference to FIGS. 24 (A) and 24 (B).

図24(A)及び図24(B)のいずれも、モデリング対象とする高耐圧MOSFETのレイアウトを簡略化し模式的に例示したものであり、本願発明者らによって為された分析結果を説明するための図である。図24(A)及び図24(B)において、参照番号117で示す領域は、反転層が形成されない(あるいは、反転層が形成にくい)領域である。   Both FIG. 24A and FIG. 24B exemplify and schematically illustrate the layout of a high voltage MOSFET to be modeled, and explain the analysis results made by the inventors of the present application. FIG. In FIGS. 24A and 24B, a region denoted by reference numeral 117 is a region where the inversion layer is not formed (or the inversion layer is difficult to form).

図24(A)には、ドレイン・ソース間電圧(ドレイン電圧)Vdsが低く、NチャネルMOSFETが線形領域で動作する場合に、反転層が形成される様子が模式的に例示されている。ゲート電極115へのゲート電圧の印加によって、ゲート電極115下部(ゲート酸化膜直下)のシリコン基板表面付近に誘起される反転層116は、ソースからドレインにかけての電位差が小さいため、ドレイン側まで広がった形状で形成されると考えられる。P型のウェルコンタクト拡散層111付近では、ゲート電極115下部のシリコン基板表面に反転層は形成されないと考えられる。これを、図24(A)では、反転層が形成されにくい領域117として表している。 FIG. 24A schematically illustrates how the inversion layer is formed when the drain-source voltage (drain voltage) Vds is low and the N-channel MOSFET operates in the linear region. When the gate voltage is applied to the gate electrode 115, the inversion layer 116 induced near the silicon substrate surface under the gate electrode 115 (just below the gate oxide film) spreads to the drain side because the potential difference from the source to the drain is small. It is thought that it is formed in a shape. In the vicinity of the P + type well contact diffusion layer 111, it is considered that no inversion layer is formed on the silicon substrate surface under the gate electrode 115. This is shown as a region 117 in which an inversion layer is hardly formed in FIG.

しかし、図24(A)に示すように、反転層116はゲート電極115下部のドレイン114側の端部まで広い範囲にわたって形成されることから、反転層116の電荷の全体量について考えると、P型のウェルコンタクト拡散層111近傍で反転層が形成されないことの影響は小さい。 However, as shown in FIG. 24A, since the inversion layer 116 is formed over a wide range up to the end on the drain 114 side below the gate electrode 115, considering the total amount of charges in the inversion layer 116, P The influence of the inversion layer not being formed in the vicinity of the + type well contact diffusion layer 111 is small.

したがって、線形領域では、P型のウェルコンタクト拡散層111の幅の合計(=ΣWp)が全チャネル幅Wに対して占める割合Wpratio(=ΣWp/(ΣWn+ΣWp)×100)がドレイン・ソース間電流Idsに与える影響が小さいと考えられる。 Therefore, in the linear region, the ratio Wpatio (= ΣWp / (ΣWn + ΣWp) × 100) of the total width (= ΣWp) of the P + -type well contact diffusion layer 111 to the total channel width W is the drain-source current. It is considered that the influence on Ids is small.

また、ソース拡散層であるN拡散層112の幅の合計(=ΣWn)が全チャネル幅Wに占める割合Wnratio(%表記)は、Wnratio=(100−Wpratio)%であることから、線形領域では、Wnratioが反転層116の全電荷量に与える影響は小さく、Wnratioがドレイン電流Idsに与える影響は小さいと考えられる。このため、線形領域におけるドレイン・ソース間電流−ドレイン・ソース間電圧特性(Ids−Vds特性)やGm/Wは、N拡散層のチャネル幅の割合Wnratioには依存しない。 Further, since the ratio Wnratio (% notation) of the total width (= ΣWn) of the N + diffusion layer 112 that is the source diffusion layer to the total channel width W is Wnratio = (100−Wpatio)%, the linear region Then, it is considered that the influence of Wnratio on the total charge amount of the inversion layer 116 is small and the influence of Wnratio on the drain current Ids is small. For this reason, the drain-source current-drain-source voltage characteristic (Ids-Vds characteristic) and Gm / W in the linear region do not depend on the channel width ratio Wnratio of the N + diffusion layer.

図24(B)には、ドレイン・ソース間電圧Vdsが高く、NチャネルMOSFETが飽和領域で動作する場合に反転層が形成される様子が模式的に例示されている。飽和領域では、ソースからドレインにかけての電位差が大きく、反転層116はシリコン基板表面の電位が低い領域に形成される性質を持つ。このため、反転層116は、チャネル電位の低いソース近傍だけに形成されるものと思料される(ピンチオフ:ドレイン拡散層とウェル(基板)間のpn接合に逆方向電圧が印加され空乏層が広がり、チャネルが狭くなる)。   FIG. 24B schematically illustrates how the inversion layer is formed when the drain-source voltage Vds is high and the N-channel MOSFET operates in the saturation region. In the saturation region, the potential difference from the source to the drain is large, and the inversion layer 116 has a property of being formed in a region where the potential of the silicon substrate surface is low. Therefore, it is assumed that the inversion layer 116 is formed only in the vicinity of the source having a low channel potential (pinch-off: a reverse voltage is applied to the pn junction between the drain diffusion layer and the well (substrate), and the depletion layer expands. , The channel becomes narrower).

この場合、P型のウェルコンタクト拡散層111近傍で反転層が形成されないことが、反転層16全体の電荷量に与える影響が大きくなる。この結果、飽和領域では、N拡散層112の幅ΣWnの全チャネル幅Wに対する割合Wnratioが、ドレイン電流Idsに与える影響が増すものと思料される。 In this case, the fact that the inversion layer is not formed in the vicinity of the P + -type well contact diffusion layer 111 greatly affects the charge amount of the entire inversion layer 16. As a result, in the saturation region, the ratio Wnratio of the width ΣWn of the N + diffusion layer 112 to the total channel width W is considered to increase the influence on the drain current Ids.

そして、図24(B)に示すように、反転層16は、ゲート電極115直下のシリコン基板表面のソース側の限られた範囲に形成されるため(図24(B)では、反転層116の先端はゲート電極115の中間よりもソース側に近い領域に限られる)、反転層116の全電荷量は、N拡散層112の幅の合計(=ΣWn)が全チャネル幅Wに占める割合Wnratioの値の相違に敏感である。換言すれば、図24(B)の飽和領域においては、ゲート電極115直下の反転層115のドレイン側の縁とソース側の縁(N+拡散層112)で囲まれる領域の面積における反転層が形成されにくい領域117の占める面積の割合が、図24(A)の線形領域の場合よりも増大し、P型のウェルコンタクト拡散層111の幅の合計(=ΣWp)が全チャネル幅Wに対して占める割合Wpratioがドレイン・ソース間電流(ドレイン電流)Idsに与える影響が大きくなるものと思料される。 Then, as shown in FIG. 24B, the inversion layer 16 is formed in a limited range on the source side of the surface of the silicon substrate immediately below the gate electrode 115 (in FIG. 24B, the inversion layer 116 is formed). The tip is limited to a region closer to the source side than the middle of the gate electrode 115), and the total charge amount of the inversion layer 116 is the ratio Wnratio of the total width (= ΣWn) of the N + diffusion layer 112 to the total channel width W Sensitive to differences in values. In other words, in the saturation region of FIG. 24B, an inversion layer is formed in the area surrounded by the drain side edge and the source side edge (N + diffusion layer 112) of the inversion layer 115 immediately below the gate electrode 115. The ratio of the area occupied by the region 117 that is difficult to be increased is larger than that in the linear region of FIG. 24A, and the total width (= ΣWp) of the P + -type well contact diffusion layer 111 is larger than the total channel width W. It is thought that the influence of the ratio Wpatio on the drain-source current (drain current) Ids increases.

図23(A)及び図23(B)に示したような効果(Gm/WのWnratio依存性)は、図19等に示した関連技術のMOSFETモデルでは、一切考慮されていないため、取り扱うことができない。これが、図20の高耐圧MOSFET対して、精度の良い回路シミュレーション用モデルを作成することが困難であることの理由(原因)と考えられる。   The effects (Gm / W dependence on Wnratio) as shown in FIGS. 23A and 23B are not considered in the related technology MOSFET model shown in FIG. I can't. This is considered to be the reason (cause) that it is difficult to create an accurate circuit simulation model for the high voltage MOSFET of FIG.

以上、ソース領域において、ゲート電極の辺に沿って、ソース拡散層112とウェルコンタクト拡散層111が隣接して交互に配置される高耐圧MOSFETにおいて、ソース拡散層112とウェルコンタクト拡散層111の幅の割合(Wnratio)に依存して変化する電気特性の特徴を表現できる回路シミュレーション用のMOSFETモデルが存在せず、このため、その実現の必要性を説明した。   As described above, in the high breakdown voltage MOSFET in which the source diffusion layers 112 and the well contact diffusion layers 111 are alternately arranged adjacently along the side of the gate electrode in the source region, the widths of the source diffusion layers 112 and the well contact diffusion layers 111 are as follows. There is no MOSFET model for circuit simulation that can express the characteristics of the electrical characteristics that change depending on the ratio (Wnratio), and thus the necessity for its implementation has been described.

すなわち、飽和領域では、ドレイン・ソース間電流IdsのWnratio依存性が大きく、線形領域では,ドレイン・ソース間電流IdsのWnratio依存性が小さい,という特徴を表現できる回路シミュレーション用のMOSFETのモデルの実現が必要である。   That is, the implementation of a MOSFET model for circuit simulation that can express the feature that the drain-source current Ids is highly dependent on Wnratio in the saturation region and the drain-source current Ids is less dependent on Wnratio in the linear region. is necessary.

そして、MOSFETのモデルとしては、これらの電気的特性の特徴をできるだけ、少数のモデリングパラメータを用いて表現することができるMOSFETモデルの実現が望ましい。   As a MOSFET model, it is desirable to realize a MOSFET model that can express these characteristics of electrical characteristics using as few modeling parameters as possible.

さらに、回路シミュレーション用のMOSFETモデルに対して、回路シミュレータに、Wnratioの値を受け渡す仕組み、あるいは、MOSFETモデル内においてWnratioの値を決定するための仕組みが望まれる。   Further, a mechanism for transferring the Wnratio value to the circuit simulator for the MOSFET model for circuit simulation or a mechanism for determining the Wnratio value in the MOSFET model is desired.

また、これらの特徴を表現するMOSFETモデルの抽出するための手順を確立することも望まれる。   It is also desirable to establish a procedure for extracting MOSFET models that express these features.

特に、モデル抽出に用いるTEG(Test Element Group:評価用ウェハ)の構造、抽出アルゴリズム、抽出ツールを含めた形でモデル抽出の手順が確立されることが望まれる。   In particular, it is desirable to establish a model extraction procedure including a structure of a TEG (Test Element Group) used for model extraction, an extraction algorithm, and an extraction tool.

本発明によれば、ソース領域において、ソースの拡散層(NチャネルMOSFETの場合、N拡散層、PチャネルMOSFETの場合、P拡散層)と、ウェルコンタクト拡散層(NチャネルMOSFETの場合、P層、PチャネルMOSFETの場合、N+層)が互いに隣接して交互に配置されたLDMOS(Laterally Diffused MOS)構造(横方向拡散MOS構造)を有する高耐圧MOSFET(横型パワーMOSトランジスタ)の回路シミュレーション用のモデル、該モデルの作成方法、及びモデル作成装置が提供される。 According to the present invention, in the source region, a source diffusion layer (N + diffusion layer in the case of an N-channel MOSFET, P + diffusion layer in the case of a P-channel MOSFET) and a well contact diffusion layer (in the case of an N-channel MOSFET, A circuit of a high voltage MOSFET (lateral power MOS transistor) having an LDMOS (Laterally Diffused MOS) structure (lateral diffusion MOS structure) in which N + layers in the case of a P + layer and a P channel MOSFET are alternately arranged adjacent to each other. A model for simulation, a method for creating the model, and a model creation device are provided.

図1(A)は、本発明の一つの形態による高耐圧MOSFET(NチャネルMOSFET)のマクロモデルの構成を示す図である。図1(A)に示すように、第1のMOSFET(1)、第2のMOSFET(2)、可変抵抗素子(3)から構成され、第1のMOSFET(1)のドレイン、ゲート、バックゲート(バルク)をそれぞれ第2のMOSFET(2)のドレイン、ゲート、バックゲート(バルク)に接続して、それぞれ、高耐圧MOSFETマクロモデルのドレイン端子D、ゲート端子G、バックゲート(バルク)端子Bとし、第2のMOSFET(2)のソースに可変抵抗素子(3)の一端を接続し、該可変抵抗素子(3)の他端を、第1のMOSFET(1)のソースと並列に前記高耐圧MOSFETマクロモデルのソース端子Sへ接続する。特に制限されないが、第1のMOSFET(1)、第2のMOSFET(2)は、ともにNチャネルMOSFETである。   FIG. 1A is a diagram showing a macro model configuration of a high voltage MOSFET (N-channel MOSFET) according to one embodiment of the present invention. As shown in FIG. 1A, the first MOSFET (1), the second MOSFET (2), and the variable resistance element (3) are configured, and the drain, gate, and back gate of the first MOSFET (1). (Bulk) is connected to the drain, gate, and back gate (bulk) of the second MOSFET (2), respectively, and the drain terminal D, gate terminal G, and back gate (bulk) terminal B of the high voltage MOSFET macro model, respectively. One end of the variable resistance element (3) is connected to the source of the second MOSFET (2), and the other end of the variable resistance element (3) is connected in parallel with the source of the first MOSFET (1). Connect to the source terminal S of the breakdown voltage MOSFET macro model. Although not particularly limited, both the first MOSFET (1) and the second MOSFET (2) are N-channel MOSFETs.

第1のMOSFET(1)のチャネル幅は、モデリング対象の高耐圧MOSFETのソース領域のN拡散層12の幅Wn(図2参照)の総和(=ΣWn)とし、
第2のMOSFET(2)のチャネル幅は、モデリング対象の高耐圧MOSFETのソース領域のP拡散層11の幅Wp(図2参照)の総和(=ΣWp)とする。
The channel width of the first MOSFET (1) is the sum (= ΣWn) of the width Wn (see FIG. 2) of the N + diffusion layer 12 of the source region of the high breakdown voltage MOSFET to be modeled,
The channel width of the second MOSFET (2) is the sum (= ΣWp) of the width Wp (see FIG. 2) of the P + diffusion layer 11 in the source region of the high breakdown voltage MOSFET to be modeled.

第2のMOSFET(2)のソースに接続する可変抵抗素子(3)は、ウェルコンタクト拡散層(図2の11;P拡散層)近傍の寄生抵抗成分が、高耐圧MOSFETのドレイン電流(ドレイン・ソース間電流)に与える影響を表現するための等価抵抗である。 The variable resistance element (3) connected to the source of the second MOSFET (2) has a parasitic resistance component in the vicinity of the well contact diffusion layer (11 in FIG. 2; P + diffusion layer), and the drain current (drain) of the high breakdown voltage MOSFET. Equivalent resistance for expressing the effect on the current between sources).

図1(A)の可変抵抗素子(3)の抵抗値Rsは、典型的には、図1(B)に示すようなゲート電圧(ゲート・ソース間電圧)Vgの依存性と、ドレイン電圧(ドレイン・ソース間電圧)Vdの依存性を反映するように、設定される。なお、ソースがGND(グランド電位)の場合、ゲート・ソース間電圧はゲート電圧と等しく、ドレイン・ソース間電圧はドレイン電圧と等しいことから、単に、ゲート電圧、ドレイン電圧ともいう。図1(B)の横軸はドレイン電圧、縦軸は可変抵抗素子(3)の抵抗値Rsである。図1(B)には、ゲート電圧一定の条件でのRs−Vd特性が、いくつかの異なるゲート電圧Vgに対してプロットされている。   The resistance value Rs of the variable resistance element (3) in FIG. 1A typically has a dependency on the gate voltage (gate-source voltage) Vg as shown in FIG. The drain-source voltage is set so as to reflect the dependency of Vd. Note that when the source is GND (ground potential), the gate-source voltage is equal to the gate voltage, and the drain-source voltage is equal to the drain voltage. In FIG. 1B, the horizontal axis represents the drain voltage, and the vertical axis represents the resistance value Rs of the variable resistance element (3). In FIG. 1B, the Rs-Vd characteristic under the condition of constant gate voltage is plotted with respect to several different gate voltages Vg.

図1(B)に示すように、可変抵抗素子(3)の抵抗値Rsのバイアス依存性は、
・ドレイン電圧Vdの増加に伴い増加する第1の領域4と、
・抵抗値Rsがドレイン電圧に依存しない第2の領域5と、
の二つの領域からなる。
As shown in FIG. 1B, the bias dependence of the resistance value Rs of the variable resistance element (3) is
A first region 4 that increases as the drain voltage Vd increases;
A second region 5 in which the resistance value Rs does not depend on the drain voltage;
It consists of two areas.

図1(A)のMOSFETのモデルにおいて、第1の領域4と第2の領域5の境界で、抵抗値Rsが滑らかに接続されるように設定する。   In the MOSFET model of FIG. 1A, the resistance value Rs is set to be smoothly connected at the boundary between the first region 4 and the second region 5.

また、図1(A)のMOSFETのモデルにおいて、可変抵抗素子(3)の抵抗値Rsは、ゲート電圧Vgの上昇とともに、低下するように設定する。すなわち、ドレイン電圧Vdが一定の場合、ゲート電圧Vgが高くなるほど、可変抵抗素子(3)の抵抗値Rsは小さくなる。   In the MOSFET model of FIG. 1A, the resistance value Rs of the variable resistance element (3) is set so as to decrease as the gate voltage Vg increases. That is, when the drain voltage Vd is constant, the resistance value Rs of the variable resistance element (3) decreases as the gate voltage Vg increases.

第1のMOSFET(1)及び第2のMOSFET(2)には、ソース領域がすべてN拡散層12(ソース拡散層)からなる、通常構造の高耐圧MOSFET7(図3参照)に対して、抽出したモデルパラメータをそのまま、あるいは若干の修正を加えて適用する。 In the first MOSFET (1) and the second MOSFET (2), the high breakdown voltage MOSFET 7 (see FIG. 3) having a normal structure in which the source regions are all composed of the N + diffusion layer 12 (source diffusion layer), Apply the extracted model parameters as they are or with some modifications.

なお、上記では、NチャネルMOSFETについて説明したが、PチャネルMOSFETについても、極性を反転させることで、本発明を適用することができる。   Although the N-channel MOSFET has been described above, the present invention can also be applied to the P-channel MOSFET by inverting the polarity.

本発明によれば、簡易かつ明確な手順に基づいて、ソース基板接続型の高耐圧MOSFETの特性を正確に表現する回路シミュレーションモデルを得ることができる。以下、いくつかの実施形態について説明する。   According to the present invention, it is possible to obtain a circuit simulation model that accurately represents the characteristics of a source substrate connection type high voltage MOSFET based on a simple and clear procedure. Hereinafter, some embodiments will be described.

<実施形態1>
図1は、本発明の実施形態1を説明する図である。図1(A)には、高耐圧MOSFETの回路シミュレーション用マクロモデルの等価回路が示されている。図1(A)において、
参照符号Dは高耐圧MOSFETシミュレーション用マクロモデルのドレイン端子、
参照符号Gは前記マクロモデルのゲート端子、
参照符号Sは前記マクロモデルのソース端子、
参照符号Bは前記マクロモデルのバックゲート(バルク)端子である。
<Embodiment 1>
FIG. 1 is a diagram for explaining Embodiment 1 of the present invention. FIG. 1A shows an equivalent circuit of a macro model for circuit simulation of a high voltage MOSFET. In FIG. 1 (A),
Reference symbol D is a drain terminal of a macro model for high voltage MOSFET simulation,
Reference symbol G is the gate terminal of the macro model,
Reference symbol S is a source terminal of the macro model,
Reference symbol B is a back gate (bulk) terminal of the macro model.

図1(B)に示すように、MOSFETマクロモデルは、第1のMOSFET(1)、第2のMOSFET(2)、可変抵抗素子(3)から構成され、第1のMOSFET(1)のドレイン、ゲート、バックゲート(バルク)を、第2のMOSFET(2)のドレイン、ゲート、バックゲート(バルク)にそれぞれ共通接続し、それぞれ、高耐圧MOSFETマクロモデルのドレイン端子、ゲート端子、バックゲート(バルク)端子とし、第2のMOSFET(2)のソースに可変抵抗素子(3)の一端を接続し、可変抵抗素子(3)の他端を第1のMOSFET(1)のソースとともに、高耐圧MOSFETマクロモデルのソース端子へ接続している。   As shown in FIG. 1B, the MOSFET macro model includes a first MOSFET (1), a second MOSFET (2), and a variable resistance element (3), and the drain of the first MOSFET (1). , Gate and back gate (bulk) are commonly connected to the drain, gate and back gate (bulk) of the second MOSFET (2), respectively, and the drain terminal, gate terminal and back gate (back gate ( A bulk terminal, one end of the variable resistance element (3) is connected to the source of the second MOSFET (2), and the other end of the variable resistance element (3) together with the source of the first MOSFET (1) has a high breakdown voltage. It is connected to the source terminal of the MOSFET macro model.

可変抵抗素子(3)は、モデリング対象の高耐圧マクロモデルのバイアス依存性、例えば、ゲート・ソース間電圧依存性(ゲート電圧依存性)とドレイン・ソース間電圧依存性(ドレイン電圧依存性)を有する。   The variable resistance element (3) has a bias dependency of the high breakdown voltage macro model to be modeled, for example, a gate-source voltage dependency (gate voltage dependency) and a drain-source voltage dependency (drain voltage dependency). Have.

図2は、実施形態1のマクロモデルに対応する高耐圧NチャネルMOSFETのレイアウトを模式的に示す図である。図2において、11はソース領域のウェルコンタクト拡散層(P拡散層)、12はソース拡散層(N拡散層)、13はドレイン領域のN拡散層(ドレインコンタクト用N拡散層)、14はドレインのN拡散層、15はゲート電極(シリコン基板上のゲート絶縁膜の上に形成されている)である。なお、N拡散層は高濃度のN型拡散層、N拡散層は低濃度のN型拡散層、P拡散層は高濃度のP型拡散層をそれぞれ表している。 FIG. 2 is a diagram schematically showing a layout of a high breakdown voltage N-channel MOSFET corresponding to the macro model of the first embodiment. In FIG. 2, 11 is a well contact diffusion layer (P + diffusion layer) in the source region, 12 is a source diffusion layer (N + diffusion layer), and 13 is an N + diffusion layer (drain contact N + diffusion layer) in the drain region. , 14 are drain N - diffusion layers, and 15 is a gate electrode (formed on a gate insulating film on a silicon substrate). The N + diffusion layer represents a high concentration N type diffusion layer, the N diffusion layer represents a low concentration N type diffusion layer, and the P + diffusion layer represents a high concentration P type diffusion layer.

なお、図2において、Nチャネル型のMOSFETは、P型ウェル内に形成されているが、例えばNチャネルMOSFETをP型シリコン基板表面に形成する場合、P型のウェルコンタクト拡散層111はP型の基板コンタクト拡散層となる。この場合、ウェルコンタクトを基板コンタクトと読み替えることで、以下の実施形態がそのまま適用される。 In FIG. 2, the N-channel MOSFET is formed in the P-type well. However, when the N-channel MOSFET is formed on the surface of the P-type silicon substrate, for example, the P + -type well contact diffusion layer 111 is P It becomes a + type substrate contact diffusion layer. In this case, the following embodiment is applied as it is by replacing the well contact with the substrate contact.

高耐圧化のため、シリコン半導体基板表面において、ドレイン側のN拡散層13とゲート電極15の間に低濃度N拡散層14が配置されている。ソース側は、P型のウェルコンタクト拡散層(P拡散層)11とN型のソース拡散層(N拡散層)12が、一定の間隔で交互に配置された構造とされている。図2に例示したソース側の構造を、図20と同様に、「ソース基板接続構造」という。ソース領域の複数のウェルコンタクト拡散層(P拡散層)11はバックゲート端子(B)に共通に接続され、複数のソース拡散層(N拡散層)12はソース端子(S)に共通に接続され、ドレイン領域のN拡散層13(ドレインコンタクト)はドレイン端子(D)に接続されている。 In order to increase the breakdown voltage, a low concentration N diffusion layer 14 is arranged between the N + diffusion layer 13 on the drain side and the gate electrode 15 on the surface of the silicon semiconductor substrate. On the source side, a P + -type well contact diffusion layer (P + diffusion layer) 11 and an N + -type source diffusion layer (N + diffusion layer) 12 are alternately arranged at regular intervals. . The structure on the source side illustrated in FIG. 2 is referred to as a “source substrate connection structure” as in FIG. A plurality of well contact diffusion layers (P + diffusion layers) 11 in the source region are connected in common to the back gate terminal (B), and a plurality of source diffusion layers (N + diffusion layers) 12 are shared in the source terminal (S). The N + diffusion layer 13 (drain contact) in the drain region is connected to the drain terminal (D).

図1(A)のMOSFETモデルにおいて、第1のMOSFET(1)のチャネル幅は、図2のソース領域のN拡散層12の幅Wnの総和(=ΣWn)とし、第2のMOSFET(2)のチャネル幅は図2のソース領域のP拡散層11(ウェルコンタクト)の幅Wpの総和(=ΣWp)とする。 In the MOSFET model of FIG. 1A, the channel width of the first MOSFET (1) is the sum (= ΣWn) of the width Wn of the N + diffusion layer 12 in the source region of FIG. ) Is the sum (= ΣWp) of the width Wp of the P + diffusion layer 11 (well contact) in the source region of FIG.

図1(A)のMOSFETモデルにおいて、可変抵抗素子(3)の抵抗値Rsは、図1(B)に示すように、ゲート電圧(ゲート・ソース間電圧)Vgの依存性と、ドレイン電圧(ドレイン・ソース間電圧)Vdの依存性を反映するように、設定される。すなわち、可変抵抗素子3の抵抗値Rsは、図1(B)に示すように、可変抵抗素子(3)の抵抗値Rsがドレイン電圧Vdに依存する第1の領域4と、可変抵抗素子(3)の抵抗値Rsがドレイン電圧Vdに依存しない第2の領域5を有し、第1の領域4と第2に領域5の境界で滑らかに接続されるように設定される。   In the MOSFET model of FIG. 1A, the resistance value Rs of the variable resistance element (3) is dependent on the dependency of the gate voltage (gate-source voltage) Vg and the drain voltage (as shown in FIG. 1B). The drain-source voltage is set so as to reflect the dependency of Vd. That is, as shown in FIG. 1B, the resistance value Rs of the variable resistance element 3 includes the first region 4 in which the resistance value Rs of the variable resistance element (3) depends on the drain voltage Vd, and the variable resistance element ( The resistance value Rs of 3) has the second region 5 that does not depend on the drain voltage Vd, and is set so that the first region 4 and the second region 5 are smoothly connected to each other at the boundary of the region 5.

また、可変抵抗素子3の抵抗値Rsは、図1(B)に示すように、ゲート電圧Vgの上昇(低下)とともに、低下(上昇)するという特性を反映するように設定される。   Further, as shown in FIG. 1B, the resistance value Rs of the variable resistance element 3 is set so as to reflect the characteristic that the resistance value Rs decreases (rises) as the gate voltage Vg increases (decreases).

図3は、実施形態1のマクロモデル内の第1のMOSFET(1)及び第2のMOSFET(2)のモデルパラメータの初期値を抽出するために使用する通常構造の高耐圧MOSFETのレイアウトを模式的に示す図である。   FIG. 3 schematically shows the layout of a high-voltage MOSFET having a normal structure used for extracting initial values of model parameters of the first MOSFET (1) and the second MOSFET (2) in the macro model of the first embodiment. FIG.

図3に示すように、通常構造7のレイアウトは、図2のソース基板接続構造6とは、ソース側の構造が異なり、ソースはN拡散層12(チャネル幅=W)のみとなり、ウェルコンタクト層(P拡散層)11は、N拡散層12のゲート電極15に対向する側と反対側の領域に配置されている。 As shown in FIG. 3, the layout of the normal structure 7 is different from the structure of the source substrate connection structure 6 of FIG. 2 in that the source side structure is only the N + diffusion layer 12 (channel width = W) and the well contact. The layer (P + diffusion layer) 11 is disposed in a region on the opposite side to the side facing the gate electrode 15 of the N + diffusion layer 12.

<実施形態2>
次に、本発明の第2の実施形態を説明する。図4は、図1及び図2を参照して説明した前記実施形態1のMOSFETモデル(「マクロモデル」という)を作成するための第2の実施形態2に係るモデル作成装置の構成を示す図である。
<Embodiment 2>
Next, a second embodiment of the present invention will be described. FIG. 4 is a diagram showing a configuration of a model creating apparatus according to the second embodiment for creating the MOSFET model (referred to as “macro model”) of the first embodiment described with reference to FIGS. 1 and 2. It is.

図4において、ウェファ21として、図2のソース基板接続構造6と、図3の通常構造7の2種類のレイアウトパターンのMOSFETを搭載したものを用意する。   In FIG. 4, a wafer 21 having MOSFETs having two types of layout patterns, the source substrate connection structure 6 in FIG. 2 and the normal structure 7 in FIG. 3, is prepared.

電気特性測定装置22で、ウェファ21上のソース基板接続構造の高耐圧MOSFET(図2)と、通常構造の高耐圧MOSFET(図3)のId−Vg特性(ドレイン電流−ゲート電圧特性)やId−Vd特性(ドレイン電流−ドレイン電圧特性)等の電気特性を測定する。   In the electrical characteristic measuring apparatus 22, the Id-Vg characteristic (drain current-gate voltage characteristic) and Id of the high breakdown voltage MOSFET (FIG. 2) having the source substrate connection structure on the wafer 21 and the high breakdown voltage MOSFET having the normal structure (FIG. 3) Measure electrical characteristics such as -Vd characteristics (drain current-drain voltage characteristics).

記録媒体23は、ソース基板接続構造と通常構造の電気特性データ41/42、MOSFET抽出プログラム43、MOSFETモデル44、マクロモデル抽出プログラム45、マクロモデル48、モデル検証プログラム49等を記録する。なお、記録媒体23は、記録媒体を備えた記憶装置(例えばHDD(Hard Disk Drive)等の磁気ディスク記憶装置、あるいはDVD(Digital Versatile Disk)等の光ディスク記憶装置等)であってもよいことは勿論である。   The recording medium 23 records source substrate connection structure and normal structure electrical characteristic data 41/42, MOSFET extraction program 43, MOSFET model 44, macro model extraction program 45, macro model 48, model verification program 49, and the like. The recording medium 23 may be a storage device (for example, a magnetic disk storage device such as a HDD (Hard Disk Drive) or an optical disk storage device such as a DVD (Digital Versatile Disk)) provided with the recording medium. Of course.

情報処理装置24は、記録媒体23から、各種測定データや各種モデルを読み込み、モデル抽出やモデル検証等の処理を行う装置である。特に制限されないが、情報処理装置24において、本実施形態で作製されたマクロモデルを用いて、例えばSPICE系シミュレータ等による回路シミュレーション等を実行してもよい。あるいは、他の情報処理装置で回路シミュレーションを実行してもよい。   The information processing device 24 reads various measurement data and various models from the recording medium 23 and performs processing such as model extraction and model verification. Although not particularly limited, the information processing device 24 may execute a circuit simulation or the like using a SPICE simulator or the like, for example, using the macro model created in the present embodiment. Alternatively, circuit simulation may be executed by another information processing apparatus.

図5は、図4に示した装置によるマクロモデル作成の手順を示すフローチャートである。図4及び図5を参照して、実施形態1におえるマクロモデルの作成処理を説明する。   FIG. 5 is a flowchart showing a procedure for creating a macro model by the apparatus shown in FIG. With reference to FIG.4 and FIG.5, the creation process of the macro model in Embodiment 1 is demonstrated.

処理31において、電気特性測定装置22を用いて、ウェファ21の電気特性を測定し、記録媒体23に電気特性データを格納する。この時、ソース基板接続構造の高耐圧MOSFETと通常構造の高耐圧MOSFETの2種類に関して、モデル抽出に必要な電気特性(ドレイン電流−ゲート電圧特性(Id−Vg特性)、ドレイン電流−ドレイン電圧特性(Id−Vd特性)等)を測定し、電気特性データ41、42(通常構造電気特性データ、ソース基板接続構造電気特性データ)を格納する。   In process 31, the electrical characteristics of the wafer 21 are measured using the electrical characteristics measuring device 22, and electrical characteristics data is stored in the recording medium 23. At this time, electrical characteristics (drain current-gate voltage characteristics (Id-Vg characteristics), drain current-drain voltage characteristics) necessary for model extraction with respect to two types of high breakdown voltage MOSFETs having a source substrate connection structure and high breakdown voltage MOSFETs having a normal structure. (Id-Vd characteristic) etc.) is measured, and electric characteristic data 41 and 42 (normal structure electric characteristic data, source substrate connection structure electric characteristic data) are stored.

次に、処理32において、記録媒体23の電気特性データと、MOSFET抽出プログラム43を情報処理装置24に読み込み、情報処理装置24でMOSFET抽出プログラム43を実行することで、通常構造の高耐圧MOSFETモデルを作成し、記録媒体23のMOSFETモデル44に格納する。この時に使用するMOSFETモデルは、ドレイン抵抗のバイアス依存性を表現することができる高耐圧専用モデル(HiSIM_HV:Hiroshima University tarc GFET odel igh oltage/large current)等、図19(C)参照)を用い、また、ドレイン電流のチャネル長Lの依存性もある程度合わせておく。 Next, in process 32, the electrical characteristic data of the recording medium 23 and the MOSFET extraction program 43 are read into the information processing device 24, and the MOSFET extraction program 43 is executed by the information processing device 24, whereby a high-voltage MOSFET model having a normal structure is obtained. Is stored in the MOSFET model 44 of the recording medium 23. MOSFET model used at this time, the high-voltage-only model that can express the bias dependence of the drain resistance (HiSIM_HV: Hi roshima University S tarc I GFET M odel H igh V oltage / large current) such as FIG. 19 (C )), And the dependency of the drain current on the channel length L is adjusted to some extent.

次に、処理33において、記録媒体23のMOSFETモデル44とマクロモデル抽出プログラム45を情報処理装置24に読み込み、マクロモデル抽出プログラム45を実行することで、図1(A)に示した、ソース基板接続構造の高耐圧MOSFETのマクロモデルを作成し、記憶媒体23にマクロモデル48として格納する。この時、MOSFETモデル(図4の44)の中身は変更せずに、図1(A)の可変抵抗素子3のみを調整する。すなわち、可変抵抗素子3には、ゲート電圧Vg依存性とドレイン電圧Vd依存性を取り入れる。   Next, in processing 33, the MOSFET model 44 and the macro model extraction program 45 of the recording medium 23 are read into the information processing apparatus 24, and the macro model extraction program 45 is executed, whereby the source substrate shown in FIG. A macro model of a high breakdown voltage MOSFET having a connection structure is created and stored as a macro model 48 in the storage medium 23. At this time, only the variable resistance element 3 in FIG. 1A is adjusted without changing the contents of the MOSFET model (44 in FIG. 4). That is, the variable resistance element 3 incorporates the gate voltage Vg dependency and the drain voltage Vd dependency.

次に、処理34において、ソース基板接続構造の高耐圧MOSFETのマクロモデル48を再調整する(必要に応じて記録媒体23のマクロモデル48とマクロモデル抽出プログラム45を情報処理装置24に読み込む)。処理34では、特に、MOSFETのドレイン抵抗に関するパラメータに注目して調整する。図1(A)では、ドレイン抵抗((図19(A)の可変抵抗素子101参照)に関するパラメータは、モデルに組み込まれており、処理34では、このドレイン抵抗に関するパラメータを調整する。   Next, in process 34, the macro model 48 of the high breakdown voltage MOSFET of the source substrate connection structure is readjusted (the macro model 48 and the macro model extraction program 45 of the recording medium 23 are read into the information processing device 24 as necessary). In the process 34, adjustment is performed by paying particular attention to a parameter related to the drain resistance of the MOSFET. In FIG. 1A, parameters relating to the drain resistance (see the variable resistance element 101 in FIG. 19A) are incorporated in the model, and in the process 34, the parameters relating to the drain resistance are adjusted.

次に、処理35において、記録媒体23のマクロモデル48とモデル検証プログラム49を情報処理装置24に読み込み、モデル検証プログラム49を実行することで、マクロモデル48の検証を行う。   Next, in process 35, the macro model 48 and the model verification program 49 of the recording medium 23 are read into the information processing apparatus 24, and the model verification program 49 is executed to verify the macro model 48.

次に、処理36において、モデル検証プログラム49で実行されたマクロモデルの検証結果を判断し(例えば情報処理装置24の出力装置に出力されたマクロモデルの検証結果を見てユーザが判断してもよいし、情報処理装置24で自動で判断してもよい)、問題がなければ終了し(処理36のOK分岐)、問題がある場合には(処理36のNG分岐)、処理34へ戻り、処理36での検証結果がOKになるまで繰り返す。   Next, in processing 36, the verification result of the macro model executed by the model verification program 49 is determined (for example, even if the user determines by looking at the verification result of the macro model output to the output device of the information processing device 24). It may be automatically determined by the information processing device 24), and if there is no problem, the process ends (OK branch of process 36). If there is a problem (NG branch of process 36), the process returns to process 34. It repeats until the verification result in the process 36 becomes OK.

次に、図13を参照して、図4に示した実施形態2の装置によるマクロモデルの作成手順を詳細に説明する。   Next, a procedure for creating a macro model by the apparatus of the second embodiment shown in FIG. 4 will be described in detail with reference to FIG.

電気特性測定装置22を用いて、ウェファ21に搭載されたソース基板接続構造の高耐圧MOSFET(図2)と通常構造の高耐圧MOSFET(図3)の2種類のパターンの電気特性を測定する。通常構造の高耐圧MOSFET(図3)とソース基板接続構造の高耐圧MOSFET(図2)の測定データは、通常構造電気特性データ41、ソース基板接続構造電気特性データ42として、それぞれ記録媒体(図4の23)に格納する。   The electrical characteristics measuring device 22 is used to measure the electrical characteristics of two types of patterns, a high breakdown voltage MOSFET (FIG. 2) having a source substrate connection structure mounted on the wafer 21 and a high breakdown voltage MOSFET having a normal structure (FIG. 3). The measurement data of the high-voltage MOSFET with the normal structure (FIG. 3) and the high-voltage MOSFET with the source substrate connection structure (FIG. 2) are the normal structure electrical characteristic data 41 and the source substrate connection structure electrical characteristic data 42, respectively. 4 of 23).

次に、情報処理装置24(図4)は、MOSFET抽出プログラム43を用いて、通常構造電気特性データ41を読み込み、MOSFETの閾値電圧やドレイン電流特性(例えばId−Vg特性、Id−Vd特性)が、前記通常構造電気特性データ41と一致するようにモデル抽出を行い、MOSFETモデル44として、記録媒体(図4の23)へ格納する。   Next, the information processing device 24 (FIG. 4) reads the normal structure electrical characteristic data 41 using the MOSFET extraction program 43, and the MOSFET threshold voltage and drain current characteristics (for example, Id-Vg characteristics, Id-Vd characteristics). However, model extraction is performed so as to coincide with the normal structure electrical characteristic data 41, and the resultant is stored as a MOSFET model 44 in a recording medium (23 in FIG. 4).

MOSFETモデルは、ドレイン抵抗のバイアス依存性が表現できる高耐圧専用モデル(HiSIM_HV等、図19(C)参照)を用い、ドレイン電流のチャネル長依存性もある程度合わせておく。   The MOSFET model uses a high breakdown voltage dedicated model (HiSIM_HV, see FIG. 19C) that can express the bias dependence of the drain resistance, and the channel length dependence of the drain current is adjusted to some extent.

次に、情報処理装置24(図4)は、マクロモデル抽出プログラム45を用いて、記録媒体23(図4)から、MOSFETモデル44とソース基板接続構造電気特性データ42を読み込み、ソース基板接続構造のマクロモデルを作成し、MOSFETの閾値電圧やドレイン電流特性(例えばId−Vg特性、Id−Vd特性)が、ソース基板接続構造電気特性データ42と一致するように、モデル抽出を行い、仮マクロモデル46として、記録媒体へ格納する。   Next, the information processing apparatus 24 (FIG. 4) uses the macro model extraction program 45 to read the MOSFET model 44 and the source substrate connection structure electrical characteristic data 42 from the recording medium 23 (FIG. 4), and to obtain the source substrate connection structure. The model is extracted so that the threshold voltage and drain current characteristics (for example, Id-Vg characteristic, Id-Vd characteristic) of the MOSFET match the source substrate connection structure electrical characteristic data 42, and a temporary macro is created. The model 46 is stored in a recording medium.

この時、情報処理装置24(図4)のマクロモデル抽出プログラム45は、MOSFETモデル44の中身は変更せずに、可変抵抗素子3のみを調整する。   At this time, the macro model extraction program 45 of the information processing device 24 (FIG. 4) adjusts only the variable resistance element 3 without changing the contents of the MOSFET model 44.

可変抵抗素子3の抵抗値Rsは、ゲート電圧Vg依存性とドレイン電圧Vd依存性を組み込む。その一例を以下に示す。   The resistance value Rs of the variable resistance element 3 incorporates the gate voltage Vg dependency and the drain voltage Vd dependency. An example is shown below.

Rs' = (Rs0 + Rs1 * Vg + Rs2 * Vg2)/W (1) Rs' = (Rs0 + Rs1 * Vg + Rs2 * Vg 2) / W (1)

Rs = Rs' * (f(Vd,δ)* 0.5 + 0.5) (2)   Rs = Rs' * (f (Vd, δ) * 0.5 + 0.5) (2)

f(Vd,δ) = (Vg - 0.5 * (Vg - Vd -δ + sqrt((Vg - Vd -δ)2 + 4 *δ*Vg)))/Vg (3) f (Vd, δ) = (Vg-0.5 * (Vg-Vd -δ + sqrt ((Vg-Vd -δ) 2 + 4 * δ * Vg))) / Vg (3)

δ = 0.01 (4)   δ = 0.01 (4)

ここで、Vgはゲート電圧(ゲート・ソース間電圧)、Vdはドレイン電圧(ドレイン・ソース間電圧)である。また、Wは全チャネル幅(W=ΣWn+ΣWp)である。Rsは可変抵抗素子3の抵抗値である。   Here, Vg is a gate voltage (gate-source voltage), and Vd is a drain voltage (drain-source voltage). W is the total channel width (W = ΣWn + ΣWp). Rs is the resistance value of the variable resistance element 3.

また式(3)の関数f(Vd,δ)は、スムージング関数であり、座標(Vd,f(Vd))において、原点(0,0)を通る傾き1/Vgの直線(0≦Vd<Vg)と、Vd>Vgでf(Vd)=1となり、ドレイン電圧Vd=Vg前後で滑らかに接続する。δの値を大きくすると、Vd=Vg近辺で緩やかに変化する。   Further, the function f (Vd, δ) in the equation (3) is a smoothing function, and a straight line (0 ≦ Vd <) having a slope 1 / Vg passing through the origin (0, 0) at the coordinates (Vd, f (Vd)). Vg) and Vd> Vg, f (Vd) = 1, and the drain voltage Vd = Vg is smoothly connected before and after. When the value of δ is increased, it gradually changes around Vd = Vg.

したがって、式(2)のRs(可変抵抗素子3の抵抗値)は、Vd=0でRs、0<Vd<Vgで傾き1/Vgの直線、Vd>Vgで、Rs'となり、Vd=Vg前後で滑らかに接続する。   Therefore, Rs (resistance value of the variable resistance element 3) in the equation (2) is Rs when Vd = 0, 0 <Vd <Vg and a slope of 1 / Vg, Vs> Vg, Rs ′, and Vd = Vg Connect smoothly before and after.

また、可変抵抗素子3の別の例を次式(1')〜(3')に示す。   Further, another example of the variable resistance element 3 is shown in the following expressions (1 ′) to (3 ′).

Rs = ((Rs0 + Rs1 * Vg + Rs2 * Vg 2 ) * f (Vd) + Rs3)/W (1') R s = ((R s0 + R s1 * V g + R s2 * V g 2 ) * f (V d ) + R s3 ) / W (1 ')

f (Vd,δ) = (Vdsat - 0.5 * (Vdsat-Vd-δ + ((Vdsat-Vd-δ)2 + 4*δ*Vdsat)0.5 ))/Vdsat (2') f (V d , δ) = (V dsat -0.5 * (V dsat -V d -δ + ((V dsat -V d -δ) 2 + 4 * δ * V dsat ) 0.5 )) / V dsat (2 ')

Vdsat = (Vg - Vt) fac1/fac2 (3') V dsat = (V g -V t ) fac1 / fac2 (3 ')

式(3')の飽和ドレイン電圧Vdsatにおけるパラメータfac1 と fac2はドリフト抵抗での電圧ドロップの影響により生じる、測定される見かけの飽和電圧と、MOSFET(トランジスタ)内のピンチオフ電圧の差を補正するためのフィッティングパラメータである。VtはMOSFETの閾値電圧である。MOSFETのピンチオフ電圧は、ドリフト領域の有無に余り依存しないが、高耐圧MOSFETではドリフト領域寄生抵抗による電圧降下により、この電圧降下がない場合に比べて、見かけ上高い電圧でMOSFETのピンチオフが起こることを補正するものである。この補正は、ゲート長が短いトランジスタの場合に特に必要となる。   The parameters fac1 and fac2 in the saturation drain voltage Vdsat of equation (3 ') are for correcting the difference between the measured apparent saturation voltage and the pinch-off voltage in the MOSFET (transistor) caused by the voltage drop effect on the drift resistor. Are fitting parameters. Vt is the threshold voltage of the MOSFET. The pinch-off voltage of the MOSFET does not depend much on the presence or absence of the drift region, but the pinch-off of the MOSFET occurs at an apparently higher voltage in the high breakdown voltage MOSFET due to the voltage drop due to the parasitic resistance of the drift region than when there is no voltage drop. Is to correct. This correction is particularly necessary for a transistor with a short gate length.

次に、情報処理装置24(図4)は、マクロモデル調整プログラム47を用いて、記録媒体23(図4)から、仮マクロモデル46と、ソース基板接続構造電気特性データ42を読み込み、特にId−Vd特性の線形領域と飽和領域の境界付近が合うように、仮マクロモデル46内のMOSFETモデルのドレイン抵抗関係のパラメータを調整し、マクロモデル48として記録媒体23(図4)へ格納する。   Next, the information processing apparatus 24 (FIG. 4) uses the macro model adjustment program 47 to read the temporary macro model 46 and the source substrate connection structure electrical characteristic data 42 from the recording medium 23 (FIG. 4), and particularly Id. The parameter of the drain resistance relationship of the MOSFET model in the temporary macro model 46 is adjusted so that the vicinity of the boundary between the linear region and the saturation region of the −Vd characteristic is matched, and is stored as the macro model 48 in the recording medium 23 (FIG. 4).

次に、情報処理装置24(図4)は、マクロモデル検証プログラム49を用いて、記録媒体23(図4)から、マクロモデル48とソース基板接続構造電気特性データ42を読み込み、マクロモデルの検証を行う。   Next, the information processing apparatus 24 (FIG. 4) uses the macro model verification program 49 to read the macro model 48 and the source substrate connection structure electrical characteristic data 42 from the recording medium 23 (FIG. 4), and verify the macro model. I do.

ここでは、様々なチャネル長、チャネル幅の測定データに対して、電気特性の一致精度及び、チャネル長依存性、チャネル幅依存性を検証し、その結果を、マクロモデル検証結果50として記録媒体23(図4)へ格納する。   Here, with respect to measurement data of various channel lengths and channel widths, the matching accuracy of electrical characteristics, channel length dependency, and channel width dependency are verified, and the results are recorded as a macro model verification result 50 on the recording medium 23. (FIG. 4).

次に、マクロモデル検証結果50を判断し、問題がなければ、前記マクロモデル48を最終結果として終了し、問題ある場合には、マクロモデル調整処理(前記マクロモデル調整プログラム47)へ戻り、検証結果がOK(可)となるまで繰り返す。この時の入力データは、仮マクロモデル46の代わりに、記録媒体23(図4)からマクロモデル48を読み込む。   Next, the macro model verification result 50 is judged, and if there is no problem, the macro model 48 is terminated as a final result. If there is a problem, the process returns to the macro model adjustment process (the macro model adjustment program 47) and verified. Repeat until the result is OK. As input data at this time, instead of the temporary macro model 46, the macro model 48 is read from the recording medium 23 (FIG. 4).

実施形態1、2の作用効果について説明する。   The effects of the first and second embodiments will be described.

モデル対象のソース基板接続構造を有する高耐圧MOSFETにおいて、
拡散層(図2の12)に隣接する領域の電流を、第1のMOSFET(図1の1)で表わし、
拡散層(ウェルコンタクト拡散層、図2の11)に隣接する領域の電流を可変抵抗素子(図1の3)と第2のMOSFET(図1の2)の直列接続回路によって表わし、
拡散層(図2の12)のチャネル幅Wn(総和)と、P拡散層(ウェルコンタクト拡散層、図2の11)のチャネル幅Wp(総和)を、それぞれ、第1のMOSFET1のチャネル幅と、第2のMOSFET2のチャネル幅としてマクロモデルに取り入れることにより、N拡散層(図2の12)とP拡散層(図2の11)のチャネル幅の割合(例えばWnratio=ΣWn/(ΣWn+ΣWp))に依存して変化するMOSFETの特性を、高精度にフィッティングすることができた。
In a high voltage MOSFET having a source substrate connection structure to be modeled,
The current in the region adjacent to the N + diffusion layer (12 in FIG. 2) is represented by the first MOSFET (1 in FIG. 1).
The current in the region adjacent to the P + diffusion layer (well contact diffusion layer, 11 in FIG. 2) is represented by a series connection circuit of the variable resistance element (3 in FIG. 1) and the second MOSFET (2 in FIG. 1).
The channel width Wn (total) of the N + diffusion layer (12 in FIG. 2) and the channel width Wp (total) of the P + diffusion layer (well contact diffusion layer, 11 in FIG. 2) are respectively determined in the first MOSFET 1 By incorporating the channel width and the channel width of the second MOSFET 2 into the macro model, the ratio of the channel widths of the N + diffusion layer (12 in FIG. 2) and the P + diffusion layer (11 in FIG. 2) (for example, Wnratio = ΣWn) The MOSFET characteristics that change depending on / (ΣWn + ΣWp)) could be fitted with high accuracy.

ソース基板接続構造の高耐圧MOSFETに特有のP拡散層(ウェルコンタクト拡散層、図2の11)近傍でのバイアスに依存したキャリアの流れについては、高耐圧MOSFETのドレイン・ソース間電流Idsに与える影響を表現することができる等価抵抗を、可変抵抗素子3(図1参照)として、第2のMOSFET(2)のソースに直列に接続することで解決した。 Regarding the carrier flow depending on the bias in the vicinity of the P + diffusion layer (well contact diffusion layer, 11 in FIG. 2) peculiar to the high breakdown voltage MOSFET of the source substrate connection structure, the drain-source current Ids of the high breakdown voltage MOSFET The equivalent resistance that can express the influence exerted is solved by connecting the variable resistance element 3 (see FIG. 1) in series with the source of the second MOSFET (2).

ソース基板接続構造の高耐圧MOSFETでは、図24(A)及び図24(B)を参照して説明したように、P拡散層111(ウェルコンタクト拡散層)近傍のチャネル領域では、反転層116が形成されにくいため(領域117参照)、見かけ上、抵抗が付加された形となり、しかも、P拡散層11の近傍は、ゲート電極115で覆われているので、この抵抗値は、ゲート電圧(ゲート・ソース間電圧)Vgs依存性を持つことになる。 In the high breakdown voltage MOSFET having the source substrate connection structure, as described with reference to FIGS. 24A and 24B, the inversion layer 116 is formed in the channel region in the vicinity of the P + diffusion layer 111 (well contact diffusion layer). Is difficult to be formed (see region 117), and apparently a resistance is added, and the vicinity of the P + diffusion layer 11 is covered with the gate electrode 115, so that the resistance value is equal to the gate voltage. (Gate-source voltage) Vgs dependence.

本実施形態では、P拡散層(図2の11)近傍の抵抗成分(寄生抵抗)を、抵抗値Rsがゲート・ソース間電圧Vgsに依存する抵抗(図1の可変抵抗素子3)で表現している。より具体的には、ゲート・ソース間電圧Vgsが高いときは、ゲート・ソース間電圧Vgsが低い場合に比べ、P拡散層11(図2の11)の周囲のチャネル領域には、相対的に、反転層が形成され易くなり、寄生抵抗の抵抗値は低下すると考えられる。このことから、寄生抵抗は、ゲート・ソース間電圧Vgsが高くなると、その抵抗値が下がるようなゲート・ソース間電圧Vgs依存性を持たせた(図1(B)のRs参照)。 In this embodiment, the resistance component (parasitic resistance) in the vicinity of the P + diffusion layer (11 in FIG. 2) is expressed by a resistance (variable resistance element 3 in FIG. 1) whose resistance value Rs depends on the gate-source voltage Vgs. doing. More specifically, when the gate-source voltage Vgs is high, the channel region around the P + diffusion layer 11 (11 in FIG. 2) is relatively less than when the gate-source voltage Vgs is low. In addition, it is considered that the inversion layer is easily formed, and the resistance value of the parasitic resistance is lowered. For this reason, the parasitic resistance has dependency on the gate-source voltage Vgs such that the resistance value decreases as the gate-source voltage Vgs increases (see Rs in FIG. 1B).

また、ソース基板接続構造の高耐圧MOSFETに特有の特性(図22乃至図24、及びそれらの関連説明参照)を表現するため、可変抵抗素子3(図1参照)に、ドレイン・ソース間電圧(ドレイン電圧)Vds依存性を持たせた。その典型的な形態について、図6を参照して説明する。   In addition, in order to express characteristics peculiar to the high breakdown voltage MOSFET of the source substrate connection structure (see FIGS. 22 to 24 and their related explanations), the variable resistance element 3 (see FIG. 1) has a drain-source voltage (see FIG. (Drain voltage) Vds dependence was given. The typical form is demonstrated with reference to FIG.

図6(A)は、図2のレイアウト構造のMOSFETのゲート電極15直下のシリコン半導体基板表面に形成されるチャネルを模式的に等価回路で示した図である。図6(B)は、図6(A)の可変抵抗素子3の抵抗値Rsのドレイン・ソース間電圧(ドレイン電圧)依存特性を示す図であり、横軸はドレイン電圧、縦軸は可変抵抗素子3の抵抗値Rsである。   FIG. 6A is a diagram schematically showing an equivalent circuit of channels formed on the surface of the silicon semiconductor substrate immediately below the gate electrode 15 of the MOSFET having the layout structure of FIG. FIG. 6B is a diagram showing the drain-source voltage (drain voltage) dependence characteristics of the resistance value Rs of the variable resistance element 3 of FIG. 6A. The horizontal axis represents the drain voltage, and the vertical axis represents the variable resistance. This is the resistance value Rs of the element 3.

図6(A)に示すように、ソース領域のN拡散層12とドレイン(低濃度ドレイン拡散層(N拡散層)14、ドレイン拡散層(N拡散層)13)間には、図1の第1のMOSFET1が接続され、ウェルコンタクト拡散層であるP拡散層11とドレイン(14、13)間には、図1の第2のMOSFET2が接続され、第2のMOSFET2のソースとP拡散層11(図1の端子S)間には、抵抗値Rsが可変の可変抵抗素子3が接続されている。図6(A)では、第1のMOSFET1がドレインとN拡散層12間に2個、第2のMOSFET2と可変抵抗素子3の直列回路がドレインとP拡散層11間に3組、並列に接続されている。これら第1、第2のMOSFET1、2(計5個)のゲートは共通接続され、MOSFETモデルのゲート端子(図1のG)に接続され、ドレインは共通接続され、MOSFETモデルのドレイン端子(図1のD)に接続される。2個のN拡散層11は共通接続され、MOSFETモデルのソース端子(図1のS)に接続され、3個のP拡散層11は共通接続され、MOSFETモデルのバックゲート(バルク)端子(図1のB)に接続される。 As shown in FIG. 6A, there is a gap between the N + diffusion layer 12 and the drain (low-concentration drain diffusion layer (N diffusion layer) 14 and drain diffusion layer (N + diffusion layer) 13) in the source region. 1 is connected, and the second MOSFET 2 of FIG. 1 is connected between the P + diffusion layer 11 which is a well contact diffusion layer and the drains (14, 13), and the source of the second MOSFET 2 A variable resistance element 3 having a variable resistance value Rs is connected between the P + diffusion layers 11 (terminal S in FIG. 1). In FIG. 6A, two first MOSFETs 1 are arranged between the drain and the N + diffusion layer 12, and three series circuits of the second MOSFET 2 and the variable resistance element 3 are arranged in parallel between the drain and the P + diffusion layer 11. It is connected to the. The gates of these first and second MOSFETs 1 and 2 (five in total) are connected in common, connected to the gate terminal (G in FIG. 1) of the MOSFET model, the drains are connected in common, and the drain terminal (see FIG. 1 D). Two N + diffusion layers 11 are commonly connected and connected to a source terminal (S in FIG. 1) of the MOSFET model, and three P + diffusion layers 11 are commonly connected and a back gate (bulk) terminal of the MOSFET model. (B in FIG. 1).

図6(B)において、可変抵抗素子3の抵抗値Rsのドレイン電圧依存性は、抵抗値Rsがドレイン電圧Vdの増加に伴い増加する第1の領域4と、抵抗値Rsがドレイン電圧Vdに依存しない第2の領域5の二つの領域から構成される。   In FIG. 6B, the drain voltage dependency of the resistance value Rs of the variable resistance element 3 is that the first region 4 in which the resistance value Rs increases as the drain voltage Vd increases, and the resistance value Rs becomes the drain voltage Vd. The second area 5 is independent of the second area 5.

より典型的には、第1の領域4と第2の領域5の境界では、式(3)のスムージング関数f(Vd,δ)により、抵抗値Rsが滑らかに接続されるように構成される。   More typically, at the boundary between the first region 4 and the second region 5, the resistance value Rs is configured to be smoothly connected by the smoothing function f (Vd, δ) of Expression (3). .

また、より典型的には、第1の領域4と第2の領域5の境界は、モデリング対象とする高耐圧MOSFETの線形領域と飽和領域の境界、あるいは、その付近に設定される。これは、図24(A)に示すように、ドレイン電圧Vdの低い領域(線形領域)では、P拡散層111の存在がドレイン電流Id(ドレイン・ソース間電流Ids)に与える影響が小さく、図24(B)に示すように、ドレイン電圧Vdの高い領域(飽和領域)では、P拡散層111の存在がドレイン電流Id(ドレイン・ソース間電流Ids)に与える影響が大きい、ことを表現したものである。 More typically, the boundary between the first region 4 and the second region 5 is set at or near the boundary between the linear region and the saturation region of the high voltage MOSFET to be modeled. As shown in FIG. 24A, in the region where the drain voltage Vd is low (linear region), the influence of the presence of the P + diffusion layer 111 on the drain current Id (drain-source current Ids) is small. As shown in FIG. 24B, in the region where the drain voltage Vd is high (saturation region), the presence of the P + diffusion layer 111 greatly affects the drain current Id (drain-source current Ids). It is a thing.

本実施形態によれば、以上の作用によって、ソース基板接続構造を持つ高耐圧MOSFETに特有のバイアス電圧依存性を高精度に表現することができた。   According to this embodiment, the bias voltage dependence peculiar to the high voltage MOSFET having the source substrate connection structure can be expressed with high accuracy by the above-described operation.

また、図6(A)において、P拡散層11に隣接する反転層が充分に形成されない領域(図24(A)、(B)の117)がドレイン電流Idに与える影響を、ドレイン電圧Vd及びゲート電圧Vgに依存する可変抵抗素子3によって表現する。このため、マクロモデル作成にあたり、追加が必要なパラメータは、可変抵抗素子3に係わる少数のパラメータ(例えば式(1)のRs0、Rs1、Rs2等)である。 Further, in FIG. 6A, the influence of the region where the inversion layer adjacent to the P + diffusion layer 11 is not sufficiently formed (117 in FIGS. 24A and 24B) on the drain current Id is expressed as the drain voltage Vd. And the variable resistance element 3 depending on the gate voltage Vg. For this reason, the parameters that need to be added when creating the macro model are a small number of parameters related to the variable resistance element 3 (for example, Rs0, Rs1, Rs2, etc. in the equation (1)).

すなわち、本実施形態によれば、MOSFETモデルの調整や改良を行った場合に予想されるフィッティング対象パラメータの大きな増大はなく、フィッティング方法が確立されている通常構造の高耐圧MOSFETモデルを起点に、可変抵抗素子3に関する少数のモデリングパラメータ(式(1)、(2)等のRs0、Rs1、Rs2等)をフィッティングすることにより、精度の良いマクロモデルを形成することができた。   That is, according to the present embodiment, there is no significant increase in the fitting target parameter expected when the adjustment or improvement of the MOSFET model is performed, and the high-voltage MOSFET model having a normal structure in which the fitting method is established is the starting point. By fitting a small number of modeling parameters relating to the variable resistance element 3 (Rs0, Rs1, Rs2, etc. in the formulas (1), (2), etc.), a macro model with high accuracy could be formed.

また、本実施形態のマクロモデルの構成によれば、回路シミュレーションの実行にあたり、MOSFETモデルに対して、
Wnratioの値をインスタンスパラメータ(インスタンス名で特定される素子に設定するパラメータ)として受け渡す、あるいは、
図2、図6のN拡散層12とP拡散層11のそれぞれに対応するチャネル幅Wn、Wpを受け渡す、あるいは、
モデル内においてチャネル幅Wの関数としてWnratioの値を計算する、
ことにより、マクロモデル内において用いるWnratioの値を特定することができる。
Further, according to the configuration of the macro model of the present embodiment, when executing the circuit simulation, for the MOSFET model,
Pass the Wnratio value as an instance parameter (a parameter set for the element specified by the instance name), or
2 and 6, channel widths Wn and Wp respectively corresponding to the N + diffusion layer 12 and the P + diffusion layer 11 are passed, or
Calculate the value of Wnratio as a function of channel width W in the model,
Thus, the value of Wnratio used in the macro model can be specified.

また、ソース領域が全てN拡散層12により形成される通常構造の高耐圧MOSFET(図3参照)の特性測定パターンを用意して電気特性の測定を行い、その測定結果に基づき通常構造の高耐圧MOSFETモデルを一旦作成したあと、通常構造の高耐圧MOSFETモデルと可変抵抗素子3により構成される高耐圧MOSFETモデルのマクロモデルを作成し、可変抵抗素子3の少数のパラメータを調整するという、簡易で、手順が明確な方法により、回路シミュレーション用のモデルを作成することができる。 In addition, a characteristic measurement pattern of a high-voltage MOSFET (see FIG. 3) having a normal structure in which the source regions are all formed of the N + diffusion layer 12 is prepared, and an electric characteristic is measured. Once the breakdown voltage MOSFET model is created, a macro model of a high breakdown voltage MOSFET model composed of a high breakdown voltage MOSFET model having a normal structure and the variable resistance element 3 is created, and a small number of parameters of the variable resistance element 3 are adjusted. Thus, a model for circuit simulation can be created by a method with a clear procedure.

なお、本実施形態では、図6(B)に示すように、可変抵抗素子3を、抵抗値がドレイン電圧Vdの増加に伴い増加する第1の領域4と、抵抗値がドレイン電圧に依存しない第2の領域5の二つの領域から構成される例を示したが、精度に対する要求が低い場合は、単一の領域からなるモデルで可変抵抗素子3を表現しても良い。但し、モデルの精度が要求される場合には、前記の通り二つの領域からなるモデル、あるいは、以下に実施形態4で説明するように、三つ以上の領域からなるモデルで、可変抵抗素子3を表現することが好ましい。   In the present embodiment, as shown in FIG. 6B, the variable resistance element 3 includes the first region 4 in which the resistance value increases as the drain voltage Vd increases, and the resistance value does not depend on the drain voltage. Although the example comprised from two area | regions of the 2nd area | region 5 was shown, when the request | requirement with respect to accuracy is low, you may represent the variable resistive element 3 with the model which consists of a single area | region. However, when the accuracy of the model is required, the variable resistance element 3 is a model composed of two regions as described above or a model composed of three or more regions as described in the fourth embodiment. Is preferably expressed.

可変抵抗素子3のモデルにおける、第1の領域4と第2の領域5の境界は、例えば、モデル対象とするMOSFETの線形領域と飽和領域の境界付近のドレイン電圧Vdを選択する。あるいは、モデル対象とするMOSFETの線形領域と飽和領域の境界よりも高めのドレイン電圧Vd、典型的には、線形領域と飽和領域の境界となるドレイン電圧Vdの1〜2.5倍程度の値としてもよい。なお、MOSFETの線形領域と飽和領域の境界のドレイン電圧は、「飽和電圧」と呼ばれる。   As the boundary between the first region 4 and the second region 5 in the model of the variable resistance element 3, for example, the drain voltage Vd near the boundary between the linear region and saturation region of the MOSFET to be modeled is selected. Alternatively, the drain voltage Vd higher than the boundary between the linear region and the saturation region of the MOSFET to be modeled, typically, a value about 1 to 2.5 times the drain voltage Vd serving as the boundary between the linear region and the saturation region. It is good. The drain voltage at the boundary between the linear region and the saturation region of the MOSFET is called “saturation voltage”.

なお、上記実施形態1、2においては、NチャネルMOSFETについて記載したが、PチャネルMOSFETについても実施形態1の極性を反転させることで、同様にして本発明を適用することができる(PチャネルMOSFETではソース端子電圧がドレイン端子電圧よりも高電圧とされ、ゲート・ソース間電圧Vgsは負値又は0となる)。   Although the N-channel MOSFET has been described in the first and second embodiments, the present invention can be similarly applied to the P-channel MOSFET by inverting the polarity of the first embodiment (P-channel MOSFET). In this case, the source terminal voltage is higher than the drain terminal voltage, and the gate-source voltage Vgs is a negative value or 0).

図7(A)と図7(B)は、本実施形態による高耐圧MOSFETについて、異なるWnratioに関して、ドレイン電流−ドレイン電圧特性(Id−Vd特性)をモデリングした結果(実線)と、実測値(▲)と、図19の従来モデル(破線、図21に対応)を比較して示す図である。ここで、Wnratioは、図2の全チャネル幅W(=ΣWn+ΣWp)に対して、各N型ソース拡散層(N拡散層)12の幅Wnの合計ΣWnが占める割合(%表記)である。 FIG. 7A and FIG. 7B show the results of modeling drain current-drain voltage characteristics (Id-Vd characteristics) with respect to different Wnratio (high line) and measured values ( FIG. 20 is a diagram comparing the conventional model of FIG. 19 (broken line, corresponding to FIG. 21). Here, Wnratio is the ratio (% notation) of the total ΣWn of the width Wn of each N + -type source diffusion layer (N + diffusion layer) 12 to the total channel width W (= ΣWn + ΣWp) in FIG. .

Wnratio={(ΣWn)/(ΣWn+ΣWp)}×100   Wnratio = {(ΣWn) / (ΣWn + ΣWp)} × 100

図7(A)では、Wnratio=48%、図7(B)では、Wnratio=40%としている。なお、図7(A)、図7(B)において、横軸はドレイン電圧(drain−to−source voltage)Vds(単位:Voltage)、縦軸はドレイン電流(drain−to−source current)Id(単位:Ampere)であり、ゲート電圧(gate−to−source voltage)Vgsを0〜5Vまで1Vステップで変化させたId−Vdカーブが示されている。Vgs=0Vでは、MOSFETはオフ状態であり、ドレイン電流Id=0である。   In FIG. 7A, Wnratio = 48%, and in FIG. 7B, Wnratio = 40%. 7A and 7B, the horizontal axis represents drain voltage (drain-to-source voltage) Vds (unit: Voltage), and the vertical axis represents drain current (drain-to-source current) Id ( An Id-Vd curve is shown in which the gate voltage (gate-to-source voltage) Vgs is changed from 0 to 5V in 1V steps. At Vgs = 0V, the MOSFET is off and the drain current Id = 0.

図7(A)では、▲マークで示した実測値と、実線で示す実施形態と、破線で示す関連技術によるモデリング結果(従来モデル)とは、Vdsの全範囲、ゲート・ソース間電圧(ゲート電圧)Vgs=0、1、2、・・・、5Vの全てについて、比較的良く一致している。   In FIG. 7A, the actual measurement value indicated by the ▲ mark, the embodiment indicated by the solid line, and the modeling result (conventional model) by the related technology indicated by the broken line indicate the entire range of Vds, the gate-source voltage (gate Voltage) Vgs = 0, 1, 2,...

図7(B)では、実測値(▲)と、実線で示す実施形態のモデルリング結果とは、線形領域、及び、飽和領域のいずれについてもほぼ一致している。   In FIG. 7B, the actual measurement value (▲) and the modeling result of the embodiment indicated by the solid line almost coincide with each other in both the linear region and the saturation region.

一方、図7(B)において、破線で示す従来モデルでは、飽和領域で一致しない(特に、飽和領域のうち、ゲート電圧Vgsが高い領域で実測値(▲)との差異が顕著となる)。   On the other hand, in the conventional model shown by the broken line in FIG. 7B, the saturation region does not match (particularly, the difference from the actual measurement value (▲) becomes remarkable in the saturation region where the gate voltage Vgs is high).

図8(A)と図8(B)は、NチャネルMOSFETがオンした状態におけるドレイン電流(ドレイン・ソース間電流)Idsを、Wnratioが異なる素子(MOSFET)間で比較したものである。なお、図8において、縦軸のドレイン電流は全チャネル幅Wで規格化し、Ids/Wとしている。横軸の素子(MOSFET)AのWnratioは40%、素子(MOSFET)B、CのWnratioは48%である(なお、素子BとCは、Wnratioは共通であるが、別のMOSFETである)。図8(A)に示すように、実線で示す本発明の実施形態と、●で示す実測値とはほぼ一致している(破線で示す従来モデルもほぼ一致している)。   FIG. 8A and FIG. 8B compare the drain current (drain-source current) Ids in a state where the N-channel MOSFET is turned on between elements (MOSFETs) having different Wnratio. In FIG. 8, the drain current on the vertical axis is normalized by the total channel width W and is set to Ids / W. The Wnratio of the element (MOSFET) A on the horizontal axis is 40%, and the Wnratio of the elements (MOSFETs) B and C is 48% (Note that the elements B and C are common MOSFETs but are different MOSFETs). . As shown in FIG. 8A, the embodiment of the present invention indicated by a solid line and the actually measured value indicated by ● are substantially matched (the conventional model indicated by a broken line is also substantially matched).

図8(A)に示した線形領域(ドレイン・ソース間電圧Vds=0.1V、ゲート電圧Vg=5V)では、全チャネル幅Wで規格化したドレイン電流Ids/Wの実測値(●)は、Wnratio=40%の素子Aと、Wnratio=48%の素子B、Cでほぼ略等しく、Wnratioにほとんど依存しない。また図2、図6に示した実施形態を用いたモデリング結果Ids/Wは、図8(A)に示すように、線形領域では、素子AのWnratio=40%、素子B、CのWnratio=48%のいずれの実測値(●)とも交差しており、ほぼ一致していることが分かる。なお、図22(A)を参照して説明したように、図19等の関連技術のモデル(従来モデル)を用いたモデリング結果Ids/Wは、図8(A)に示すように、線形領域では、Wnratio=40%の素子A、Wnratio=48%の素子B、Cのいずれの実測値(●)とも交差しており、ほぼ一致している。   In the linear region (drain-source voltage Vds = 0.1 V, gate voltage Vg = 5 V) shown in FIG. 8A, the measured value (●) of the drain current Ids / W normalized by the total channel width W is , Wnratio = 40% of the element A and Wnratio = 48% of the elements B and C are substantially the same and hardly depend on Wnratio. Further, the modeling result Ids / W using the embodiment shown in FIGS. 2 and 6 is, as shown in FIG. 8A, in the linear region, Wnratio = 40% for the element A, Wnratio = for the elements B and C = It intersects with any actual measurement value (●) of 48%. As described with reference to FIG. 22A, the modeling result Ids / W using the model (conventional model) of the related technology such as FIG. 19 is a linear region as shown in FIG. In FIG. 5, the measured values (●) of the element A with Wnratio = 40% and the elements B and C with Wnratio = 48% intersect with each other and are almost the same.

図8(B)に示した飽和領域(ドレイン・ソース間電圧Vds=12V、ゲート電圧Vg=5V)では、全チャネル幅W(=ΣWn+ΣWp)で規格化したドレイン電流Ids/Wの実測値(●で示す)は、Wnratioに依存して変化する。   In the saturation region (drain-source voltage Vds = 12 V, gate voltage Vg = 5 V) shown in FIG. 8B, the measured value (●) of the drain current Ids / W normalized by the total channel width W (= ΣWn + ΣWp). ) Changes depending on Wnratio.

図8(B)に示した飽和領域において、Wnratio=40%の素子Aでは、Ids/Wの実測値(●で示す)と、図2、図6に示した実施形態を用いたモデリング結果Ids/Wは一致している。一方、図19等の関連技術のモデル(従来モデル)を用いたモデリング結果(破線と素子Aの交差部)では、Ids/Wは、Wnratio=40%の素子Aに関して、実測値との差異が顕著である。   In the saturation region shown in FIG. 8B, in the element A with Wnratio = 40%, the measured value of Ids / W (indicated by ●) and the modeling result Ids using the embodiment shown in FIGS. / W matches. On the other hand, in the modeling result using the related technology model (conventional model) such as FIG. 19 (intersection of the broken line and the element A), Ids / W is different from the measured value for the element A with Wnratio = 40%. It is remarkable.

なお、図8(B)において、Wnratio=48%の素子B、Cについても、実施形態(実線)は実測値(●)と一致している。なお、破線で示す従来モデルも、Wnratio=48%の素子B、Cについて、実測値(●)とほぼ一致している。   In FIG. 8B, the elements (solid lines) of the elements B and C with Wnratio = 48% agree with the actually measured values (●). It should be noted that the conventional model indicated by the broken line also substantially matches the actual measurement value (●) for the elements B and C with Wnratio = 48%.

<実施形態3>
図9は、本発明の実施形態3において、高耐圧MOSFETの回路シミュレーション用マクロモデルを等価回路で示す図である。
<Embodiment 3>
FIG. 9 is a diagram showing a macro model for circuit simulation of a high voltage MOSFET in an equivalent circuit in the third embodiment of the present invention.

図9において、
参照符号Dは、高耐圧MOSFETシミュレーション用マクロモデルのドレイン端子、
参照符号Gは、該マクロモデルのゲート端子、
参照符号Sは、該記マクロモデルのソース端子、
参照符号Bは、該マクロモデルのウェル端子
である。
In FIG.
Reference symbol D is a drain terminal of a macro model for high voltage MOSFET simulation,
Reference symbol G is a gate terminal of the macro model,
Reference symbol S denotes a source terminal of the macro model,
Reference symbol B is a well terminal of the macro model.

図9を参照すると、このマクロモデルは、
第1のMOSFET(151)、
第2のMOSFET(152)、
第1の可変抵抗素子(153)、
第2の可変抵抗素子(154)、
第3の可変抵抗素子(155)
から構成されている。
Referring to FIG. 9, this macro model is
First MOSFET (151),
A second MOSFET (152),
A first variable resistance element (153),
A second variable resistance element (154),
Third variable resistance element (155)
It is composed of

第1のMOSFET(151)のゲート、バルク(バックゲート)を第2のMOSFET(152)のゲート、バルクにそれぞれ共通接続し、それぞれ高耐圧MOSFETマクロモデルのゲート端子(G)、バルク端子(B)としている。   The gate and bulk (back gate) of the first MOSFET (151) are connected in common to the gate and bulk of the second MOSFET (152), respectively, and the gate terminal (G) and bulk terminal (B) of the high voltage MOSFET macro model, respectively. ).

第1のMOSFET(151)のドレインに第1の可変抵抗素子(153)の一端を接続し、第2のMOSFET(152)のドレインに第2の可変抵抗素子(154)の一端を接続し、第1の可変抵抗素子(153)の他端と、第2の可変抵抗素子(154)の他端をともに高耐圧MOSFETマクロモデルのドレイン端子(D)へ接続している。   One end of the first variable resistance element (153) is connected to the drain of the first MOSFET (151), and one end of the second variable resistance element (154) is connected to the drain of the second MOSFET (152), The other end of the first variable resistance element (153) and the other end of the second variable resistance element (154) are both connected to the drain terminal (D) of the high voltage MOSFET macro model.

第2のMOSFET(152)のソースに、第3の可変抵抗素子(155)の一端を接続し、第3の可変抵抗素子(155)の他端を、第1のMOSFET(151)のソースとともに高耐圧MOSFETマクロモデルのソース端子(S)へ接続している。   One end of the third variable resistance element (155) is connected to the source of the second MOSFET (152), and the other end of the third variable resistance element (155) is connected to the source of the first MOSFET (151). It is connected to the source terminal (S) of the high voltage MOSFET macro model.

第1及び第2の可変抵抗素子(153、154)は、高耐圧マクロモデルのドレイン電圧に対する依存性を有する。   The first and second variable resistance elements (153, 154) have dependency on the drain voltage of the high breakdown voltage macro model.

第3の可変抵抗素子(155)は、図1の可変抵抗素子(3)に相当し、高耐圧マクロモデルのゲート電圧Vgに対する依存性とドレイン電圧Vdに対する依存性を有する。   The third variable resistance element (155) corresponds to the variable resistance element (3) of FIG. 1, and has a dependency on the gate voltage Vg and a dependency on the drain voltage Vd of the high voltage macro model.

前記実施形態1、2と本実施形態との相違点は、第1のMOSFET(151)及び第2のMOSFET(152)のドレインにそれぞれ第1の可変抵抗素子(153)と第2の可変抵抗素子(154)を直列に挿入した点である。   The difference between the first and second embodiments and the present embodiment is that the first variable resistance element (153) and the second variable resistance are connected to the drains of the first MOSFET (151) and the second MOSFET (152), respectively. The element (154) is inserted in series.

前記実施形態1、2では、ドレイン抵抗のドレイン電圧依存性を表現できる高耐圧専用モデル(HiSIM_HV等)を必要とするが、実施形態3では、通常のMOSFETモデル(BSIM3(erkley hort−channel GFET(nsulated ate FETodel)、BSIM4等)を使用することできる。 In the embodiments 1 and 2 requires a high withstand voltage only model (HiSIM_HV etc.) that can represent the drain voltage dependence of the drain resistor, in the third embodiment, ordinary MOSFET model (BSIM3 (B erkley S hort- channel I GFET (I nsulated G ate FET ) M odel), able to use BSIM4 etc.).

<実施形態4>
次に、本発明の実施形態4について説明する。本実施形態は、図9に示した実施形態3のマクロモデルを作成するための装置に関する実施形態である。図11は、実施形態4の構成を示す図である。なお、図11において、図4と同一又は同等の要素には、同一の参照符号が付されている。
<Embodiment 4>
Next, a fourth embodiment of the present invention will be described. This embodiment is an embodiment relating to an apparatus for creating the macro model of the third embodiment shown in FIG. FIG. 11 is a diagram illustrating a configuration of the fourth embodiment. In FIG. 11, the same or equivalent elements as those in FIG.

図11を参照すると、ウェファ21は、ソース基板接続構造(図2)と通常構造(図3)の2種類のパターンのMOSFETを搭載したものを用意する。   Referring to FIG. 11, the wafer 21 is prepared by mounting two types of patterns of MOSFETs, a source substrate connection structure (FIG. 2) and a normal structure (FIG. 3).

電気特性測定装置22で、ウェファ21のMOSFET(ソース基板接続構造と通常構造)のId−Vg、Id−Vd特性等の電気特性を測定する。   The electrical characteristic measuring device 22 measures electrical characteristics such as Id-Vg and Id-Vd characteristics of the MOSFET (source substrate connection structure and normal structure) of the wafer 21.

記録媒体25(あるいは記憶装置)は、電気特性データ41/42、MOSFET抽出プログラム43、MOSFETモデル44、マクロモデル1抽出プログラム45−1、マクロモデル1(48−1)、マクロモデル2抽出プログラム45−2、マクロモデル2(48−2)、モデル検証プログラム49等を記録する。   The recording medium 25 (or storage device) includes the electrical characteristic data 41/42, the MOSFET extraction program 43, the MOSFET model 44, the macro model 1 extraction program 45-1, the macro model 1 (48-1), and the macro model 2 extraction program 45. -2, macro model 2 (48-2), model verification program 49, etc. are recorded.

情報処理装置24は、各種測定データや各種モデルを読み込み、モデル抽出やモデル検証を行う装置である。   The information processing device 24 reads various measurement data and various models, and performs model extraction and model verification.

本実施形態と、前記実施形態2との相違点は、マクロモデルの作成が2種類に分かれている点である。   The difference between the present embodiment and the second embodiment is that the creation of the macro model is divided into two types.

図12は、図11の装置において、マクロモデルの作成手順を示すフローチャートである。なお、図12において、図5と同一又は同等の処理を行う処理は、同一の参照番号が付されている。   FIG. 12 is a flowchart showing a procedure for creating a macro model in the apparatus of FIG. In FIG. 12, processes that perform the same or equivalent processes as those in FIG. 5 are given the same reference numerals.

まず、処理31において、電気特性測定装置22を用いて、ウェファ21の電気特性を測定し、記録媒体25に、電気特性データ41/42を格納する。この時、ソース基板接続構造と通常構造の2種類のパターンでモデル抽出に必要な電気特性(ドレイン電流−ゲート電圧特性(Id−Vg特性)、ドレイン電流−ドレイン電圧特性(Id−Vd特性)等)を測定し電気特性データ41、42として記録する。   First, in the process 31, the electrical characteristics of the wafer 21 are measured using the electrical characteristics measuring device 22, and the electrical characteristics data 41/42 is stored in the recording medium 25. At this time, electrical characteristics (drain current-gate voltage characteristics (Id-Vg characteristics), drain current-drain voltage characteristics (Id-Vd characteristics), etc.) required for model extraction with two types of patterns of the source substrate connection structure and the normal structure ) Is measured and recorded as electrical characteristic data 41 and 42.

次に、処理32において、記録媒体25の電気特性データ41/42とMOSFET抽出プログラム43を情報処理装置24に読み込み、通常構造の高耐圧MOSFETモデル44を作成する。この時に使用するモデルは、通常のMOSFETモデル(BSIM3、BSIM4等)を用い、ドレイン電流のチャネル長依存性もある程度合わせておく。ドレイン電流−ドレイン電圧特性(Id−Vd特性)において、ゲート電圧Vgの高い領域が合わない場合があるが、そのまま次へ進む。   Next, in process 32, the electrical characteristic data 41/42 of the recording medium 25 and the MOSFET extraction program 43 are read into the information processing device 24, and a high voltage MOSFET model 44 having a normal structure is created. The model used at this time is a normal MOSFET model (BSIM3, BSIM4, etc.), and the channel length dependence of the drain current is adjusted to some extent. In the drain current-drain voltage characteristics (Id-Vd characteristics), the region where the gate voltage Vg is high may not match, but the process proceeds to the next.

次に、処理37において記録媒体25の電気特性データ41/42とMOSFETモデル44とマクロモデル1抽出プログラム45−1を情報処理装置24に読み込み、図10に示す通常構造の高耐圧MOSFETのマクロモデル1(48−1)を作成する。   Next, in the process 37, the electrical characteristic data 41/42 of the recording medium 25, the MOSFET model 44, and the macro model 1 extraction program 45-1 are read into the information processing device 24, and the macro model of the high voltage MOSFET having the normal structure shown in FIG. 1 (48-1) is created.

図10に示すように、MOSFET(151)のドレインとマクロモデルのドレイン端子D間に可変抵抗素子(153)が接続されている。この時、MOSFETのパラメータは、なるべく変えず、図10の可変抵抗素子(153)のみで調整する。可変抵抗素子(153)には、ドレイン電圧Vd依存性を持たせる。   As shown in FIG. 10, a variable resistance element (153) is connected between the drain of the MOSFET (151) and the drain terminal D of the macro model. At this time, the parameters of the MOSFET are not changed as much as possible, and are adjusted only by the variable resistance element (153) of FIG. The variable resistance element (153) is dependent on the drain voltage Vd.

次に、処理33において記録媒体25のマクロモデル1(48−1)とマクロモデル2抽出プログラム45−2を、情報処理装置24に読み込み、マクロモデル2抽出プログラム45−2を実行して、ソース基板接続構造の高耐圧MOSFETのマクロモデル2(48−2)を作成する。   Next, in the process 33, the macro model 1 (48-1) and the macro model 2 extraction program 45-2 of the recording medium 25 are read into the information processing apparatus 24, and the macro model 2 extraction program 45-2 is executed. A macro model 2 (48-2) of a high voltage MOSFET having a substrate connection structure is created.

図9の等価回路において、第1のMOSFET(151)と第2のMOSFET(152)は同じモデルとし、第1の変抵抗素子(153)と第2の可変抵抗素子(154)も同一とする。この時、マクロモデル1の中身は変更せずに、可変抵抗素子(155)のみを調整する。可変抵抗素子(155)は、前記実施形態1の例えば式(1)〜式(4)(あるいは式(1’)〜(3’))と同様に、ゲート電圧Vgの依存性と、ドレイン電圧Vdの依存性を持たせる。   In the equivalent circuit of FIG. 9, the first MOSFET (151) and the second MOSFET (152) are the same model, and the first variable resistance element (153) and the second variable resistance element (154) are also the same. . At this time, only the variable resistance element (155) is adjusted without changing the contents of the macro model 1. The variable resistance element (155) includes the dependency of the gate voltage Vg and the drain voltage as in, for example, the expressions (1) to (4) (or the expressions (1 ′) to (3 ′)) of the first embodiment. Vd dependency is provided.

次に、処理34において記録媒体25のマクロモデル2(48−2)とマクロモデル2抽出プログラム(45−2)を情報処理装置24に読み込み、マクロモデル2抽出プログラム(45−2)を実行することで、ソース基板接続構造の高耐圧MOSFETのマクロモデル2(48−2)を再調整する。この時、特にドレイン抵抗(図9の152、153)に関するパラメータに注目して調整する。   Next, in process 34, the macro model 2 (48-2) and the macro model 2 extraction program (45-2) of the recording medium 25 are read into the information processing apparatus 24, and the macro model 2 extraction program (45-2) is executed. Thus, the macro model 2 (48-2) of the high breakdown voltage MOSFET having the source substrate connection structure is readjusted. At this time, the adjustment is performed by paying particular attention to parameters relating to drain resistance (152 and 153 in FIG. 9).

次に、処理35において記録媒体25のマクロモデル2(48−2)とモデル検証プログラム49を情報処理装置24に読み込み、マクロモデル2(48−2)の検証を行う。   Next, in process 35, the macro model 2 (48-2) and the model verification program 49 of the recording medium 25 are read into the information processing apparatus 24, and the macro model 2 (48-2) is verified.

処理36においてモデルの検証結果を判断し、問題なければ終了し、問題がある場合には(処理36のNG分岐)、処理34へ戻り検証結果がOKとなるまで繰り返す。   In the process 36, the model verification result is determined. If there is no problem, the process ends. If there is a problem (NG branch in the process 36), the process returns to the process 34 and is repeated until the verification result becomes OK.

詳細なフローに関しては、前記実施形態2で説明で参照した図13において、MOSFETモデル44とマクロモデル抽出プログラム45の間に、可変抵抗素子153の調整が追加されるのみであることから、その説明は省略する。実施形態4においても、前記実施形態1、2と同様の効果を奏する。   Regarding the detailed flow, the adjustment of the variable resistance element 153 is only added between the MOSFET model 44 and the macro model extraction program 45 in FIG. 13 referred to in the description of the second embodiment. Is omitted. In the fourth embodiment, the same effects as in the first and second embodiments are obtained.

<実施形態5>
次に、本発明の実施形態5を説明する。図14は、実施形態5のマクロモデルの作成手順を説明する図である。前記実施形態2との相違点は、差分データ生成プログラム52と電気特性差分データ53が追加された点である。図4及び図14を参照して、本実施形態の手順を以下に説明する。
<Embodiment 5>
Next, a fifth embodiment of the present invention will be described. FIG. 14 is a diagram illustrating a procedure for creating a macro model according to the fifth embodiment. The difference from the second embodiment is that a difference data generation program 52 and electrical characteristic difference data 53 are added. The procedure of this embodiment will be described below with reference to FIGS.

電気特性測定装置22を用いて、ウェファ21に搭載されたソース基板接続構造の高耐圧MOSFET(図2)と通常構造の高耐圧MOSFET(図3)の2種類のパターンの電気特性を測定する。通常構造の高耐圧MOSFET(図3)とソース基板接続構造の高耐圧MOSFET(図2)の測定データは、通常構造電気特性データ41とソース基板接続構造電気特性データ42として、それぞれ記録媒体23へ格納する。   The electrical characteristics measuring device 22 is used to measure the electrical characteristics of two types of patterns, a high breakdown voltage MOSFET (FIG. 2) having a source substrate connection structure mounted on the wafer 21 and a high breakdown voltage MOSFET having a normal structure (FIG. 3). The measurement data of the high-voltage MOSFET having the normal structure (FIG. 3) and the high-voltage MOSFET having the source substrate connection structure (FIG. 2) are transferred to the recording medium 23 as the normal structure electric characteristic data 41 and the source substrate connection structure electric characteristic data 42, respectively. Store.

次に、情報処理装置24は、MOSFET抽出プログラム43を用いて、記録媒体23から、通常構造電気特性データ41を読み込み、MOSFETの閾値電圧やドレイン電流特性が前記通常構造電気特性データ41と一致するようにモデル抽出を行い、MOSFETモデル44として記録媒体23へ格納する。   Next, the information processing apparatus 24 reads the normal structure electrical characteristic data 41 from the recording medium 23 using the MOSFET extraction program 43, and the threshold voltage and drain current characteristics of the MOSFET match the normal structure electrical characteristic data 41. The model is extracted as described above and stored in the recording medium 23 as the MOSFET model 44.

MOSFETモデルはドレイン抵抗のバイアス依存性が表現できる高耐圧専用モデル(例えばHiSIM_HV等)を用い、チャネル長依存性もある程度合わせておく。   As the MOSFET model, a high breakdown voltage dedicated model (for example, HiSIM_HV) that can express the bias dependency of the drain resistance is used, and the channel length dependency is adjusted to some extent.

次に、情報処理装置24は、差分データ生成プログラム52を用いて、記録媒体23から、通常構造電気特性データ41と、ソース基板接続構造電気特性データ42を読み込み、通常構造電気特性データ41に対して、ソース拡散層(12)の幅が全チャネル幅に占める割合(ΣWn/W:図2)を乗じた値を、ソース基板接続構造電気特性データ42から差し引いた電気特性差分データ53を、記録媒体23に格納する。   Next, the information processing apparatus 24 reads the normal structure electrical property data 41 and the source substrate connection structure electrical property data 42 from the recording medium 23 using the difference data generation program 52, and the normal structure electrical property data 41 is read. Then, the electrical characteristic difference data 53 obtained by subtracting the value obtained by multiplying the ratio of the width of the source diffusion layer (12) to the total channel width (ΣWn / W: FIG. 2) from the electrical characteristic data 42 of the source substrate connection structure is recorded. Store in the medium 23.

情報処理装置24では、通常構造電気特性データ41と前記ソース基板接続構造電気特性データ42の測定点が異なる場合には、例えば内挿又は外挿演算を実行して補間を行う。   In the information processing device 24, when the measurement points of the normal structural electrical property data 41 and the source substrate connection structural electrical property data 42 are different, for example, interpolation is performed by performing interpolation or extrapolation.

次に、情報処理装置24は、マクロモデル抽出プログラム45を用いて、前記MOSFETモデル44と前記電気特性差分データ53を読み込み、MOSFETの全チャネル幅Wを、ウェルコンタクト拡散層の幅の合計(ΣWp:図2)として、MOSFETモデル44のソースに可変抵抗素子3(図1参照)を挿入し、可変抵抗素子3を、前記実施形態2と同様に調整する。   Next, the information processing device 24 reads the MOSFET model 44 and the electrical characteristic difference data 53 using the macro model extraction program 45, and calculates the total channel width W of the MOSFET as the sum of the widths of the well contact diffusion layers (ΣWp 2), the variable resistance element 3 (see FIG. 1) is inserted into the source of the MOSFET model 44, and the variable resistance element 3 is adjusted in the same manner as in the second embodiment.

その後、情報処理装置24は、ソース基板接続構造のマクロモデル(図1又は図9)を作成し、仮マクロモデル46として、記録媒体23へ格納する。これ以降は、前記実施形態2と同一の手順であるため、説明は省略する。   Thereafter, the information processing apparatus 24 creates a macro model (FIG. 1 or FIG. 9) of the source substrate connection structure and stores it as the temporary macro model 46 in the recording medium 23. Subsequent steps are the same as those in the second embodiment, and a description thereof will be omitted.

本実施形態のマクロモデル抽出プログラム45は、電気特性差分データ53の波形(データの値)に対するフィッティング(例えば最小二乗法等を用いたカーブ・フィッティング)を行うことによって、マクロモデルにおける可変抵抗素子3のモデリングパラメータを決定する。   The macro model extraction program 45 of the present embodiment performs fitting (for example, curve fitting using the least squares method) on the waveform (data value) of the electrical characteristic difference data 53, so that the variable resistance element 3 in the macro model is obtained. Determine the modeling parameters.

また、本実施形態の変形例として、マクロモデル抽出プログラム45は、可変抵抗素子3の抵抗値Rsの値をモデリングするにあたり、電気特性差分データ53の波形(データの値)に基づき、第1の領域4(図1(B)参照)と第2の領域5(図1(B)参照)の境界を検出する機能を備えてもよい。   In addition, as a modification of the present embodiment, the macro model extraction program 45 uses the first value based on the waveform (data value) of the electrical characteristic difference data 53 when modeling the resistance value Rs of the variable resistance element 3. A function of detecting a boundary between the region 4 (see FIG. 1B) and the second region 5 (see FIG. 1B) may be provided.

また、マクロモデル抽出プログラム45は、検出した当該境界に基づいて、マクロモデルにおける可変抵抗素子3の抵抗値Rsを表現する数式中のパラメータ、あるいは、そのパラメータの初期値を決定する機能を備えてもよい。   Further, the macro model extraction program 45 has a function of determining a parameter in a mathematical expression expressing the resistance value Rs of the variable resistance element 3 in the macro model or an initial value of the parameter based on the detected boundary. Also good.

あるいは、マクロモデル抽出プログラム45は、モデル作成者が、マクロモデルの抽出において参照できるよう、第1の領域4(図1(B)参照)と第2の領域5(図1(B)参照)の境界を検出し表示する機能を備えてもよい。   Alternatively, the macro model extraction program 45 allows the model creator to refer to the macro model extraction so that the first area 4 (see FIG. 1B) and the second area 5 (see FIG. 1B). A function of detecting and displaying the boundary may be provided.

また、マクロモデル抽出プログラム45は、マクロモデルが表現する電気特性における第1の領域4(図1(B)参照)と第2の領域5(図1(B)参照)の境界を、電気特性差分データ53における、これら境界と比較検証し、検証結果を表示する機能を備えてもよい。   In addition, the macro model extraction program 45 sets the boundary between the first region 4 (see FIG. 1B) and the second region 5 (see FIG. 1B) in the electrical characteristics represented by the macro model as electrical characteristics. A function of comparing and verifying with the boundaries in the difference data 53 and displaying the verification result may be provided.

例えば、マクロモデル抽出プログラム45は、電気特性差分データ53を用いて各ゲート電圧において、ドレイン電流Idのドレイン電圧Vdによる微分値がゼロになるドレイン電圧Vd_gds0を検出し、その値を第1の領域4と第2の領域5の境界としてもよい。   For example, the macro model extraction program 45 detects the drain voltage Vd_gds0 at which the differential value of the drain current Id with respect to the drain voltage Vd becomes zero at each gate voltage using the electrical characteristic difference data 53, and the value is detected in the first region. 4 may be a boundary between the second region 5 and the second region 5.

あるいは、マクロモデル抽出プログラム45は、可変抵抗素子3の抵抗値Rsを表現する数式中のパラメータをフィッティングする際の初期値として用いる。ドレイン電流のドレイン電圧による微分値がゼロになるドレイン電圧Vd_gds0が複数存在する場合には、その一方、あるいは、二点の中間点を第1の領域4と第2の領域5の境界としてもよい。   Alternatively, the macro model extraction program 45 is used as an initial value when fitting a parameter in a mathematical expression expressing the resistance value Rs of the variable resistance element 3. When there are a plurality of drain voltages Vd_gds0 at which the derivative value of the drain current by the drain voltage becomes zero, one or two intermediate points may be used as the boundary between the first region 4 and the second region 5. .

さらに、マクロモデル抽出プログラム45は、複数のVd_gds0の一方だけを用いる場合の一例として、ドレインバイアスの小さい領域はRsがドレイン電圧Vdに伴い変化する特性の中に含めることができるので、ドレインバイアスの大きいほうのVd_gds0の値を境界として用いるようにしてもよい。   Furthermore, as an example of the case where only one of a plurality of Vd_gds0 is used, the macro model extraction program 45 can include a region with a small drain bias in the characteristics in which Rs changes with the drain voltage Vd. The larger value of Vd_gds0 may be used as the boundary.

本実施形態は、前記実施形態1、2と同様の効果を奏する。   This embodiment has the same effects as the first and second embodiments.

また、本実施形態においては、電気特性差分データ53を作成することにより、電気特性差分データ53を作成しない場合と比べて、マクロモデルにおける可変抵抗素子3のモデルパラメータを、より高精度に決定することができる。   Further, in the present embodiment, by creating the electrical characteristic difference data 53, the model parameter of the variable resistance element 3 in the macro model is determined with higher accuracy than when the electrical characteristic difference data 53 is not created. be able to.

これは、電気特性差分データ53は、P拡散層11(図1(A)参照)の存在に起因する寄生抵抗の影響を強く受ける電流成分を抜き出したものであり、P拡散層11による寄生抵抗の影響がより顕著に現れるので、可変抵抗素子3のモデルパラメータのフィッティングが容易になるためである。 This electrical characteristic difference data 53, which has extracted the P + strongly receive current component the influence of the parasitic resistance due to the presence of the diffusion layer 11 (see FIG. 1 (A)), by the P + diffusion layer 11 This is because the influence of the parasitic resistance appears more conspicuously, and the fitting of the model parameters of the variable resistance element 3 becomes easy.

また、電気特性差分データ53を作成することで、可変抵抗素子3の抵抗値Rsを高精度にモデリングするに当たって、必要な第1の領域4と第2の領域5の境界(図1(B)、図6(B)参照)の検出が容易になる。   In addition, by creating the electrical characteristic difference data 53, the boundary between the first region 4 and the second region 5 necessary for modeling the resistance value Rs of the variable resistance element 3 with high accuracy (FIG. 1B). , FIG. 6B) becomes easy to detect.

さらに、本実施形態によれば、情報処理装置24で実行されるプログラムが、
第1の電気特性実測データ(通常構造の電気特性データ41)と、第2の電気特性実測データ(ソース基板接続構造の電気特性データ42)とを用いた演算により、第3の電気特性データ(電気特性差分データ53)を生成する処理(機能)と、
第3の電気特性を対象として回路シミュレーション用素子モデルを生成する処理(機能)と、
を備えたことにより、可変抵抗素子3のモデルパラメータのフィッティング、あるいはモデリングを行うにあたり、可変抵抗素子3の抵抗値Rsを高精度にモデリングするために必要とされる、第1の領域4と第2の領域5(図1(B)、図6(B)参照)の境界の検出を容易化している。
Furthermore, according to this embodiment, the program executed by the information processing apparatus 24 is
The third electrical property data (by the calculation using the first electrical property measurement data (electrical property data 41 of the normal structure) and the second electrical property measurement data (the electrical property data 42 of the source substrate connection structure) Processing (function) for generating electrical characteristic difference data 53);
Processing (function) for generating a circuit simulation element model for the third electrical characteristic;
When the model parameter of the variable resistance element 3 is fitted or modeled, the first region 4 and the first area 4 required for modeling the resistance value Rs of the variable resistance element 3 with high accuracy are provided. 2 is easy to detect the boundary of the region 5 (see FIGS. 1B and 6B).

また、本実施形態においては、MOSFETを、チャネル幅W方向に、仮想的に複数に分割し(図6(A)参照)、分割したチャネル幅のうち、特定の仮想的な領域の電気特性において、第2のMOSFET2と、可変抵抗素子3(Rs)の直列接続を流れる電流を、第1の電気特性実測データ(通常構造電気特性データ41)と、第2の電気特性実測データ(ソース基板接続構造電気特性データ42)とを用いた演算により、求めている。これにより、可変抵抗素子3のモデルパラメータのフィッティング、あるいはモデリングするにあたり、可変抵抗素子3の抵抗値Rsを高精度にモデリングするために必要とされる、第1の領域4と第2の領域5の境界の検出を容易化している。   In the present embodiment, the MOSFET is virtually divided into a plurality in the channel width W direction (see FIG. 6A), and the electrical characteristics of a specific virtual region out of the divided channel widths. , The current flowing through the series connection of the second MOSFET 2 and the variable resistance element 3 (Rs), the first electric characteristic actual measurement data (normal structure electric characteristic data 41) and the second electric characteristic actual measurement data (source substrate connection) It is obtained by calculation using the structural electrical characteristic data 42). Accordingly, the first region 4 and the second region 5 which are required for modeling the resistance value Rs of the variable resistance element 3 with high accuracy when fitting or modeling the model parameter of the variable resistance element 3. Detecting the boundaries of

<実施形態6>
次に、本発明の実施形態6を説明する。本実施形態は、前記実施形態1乃至5において、可変抵抗素子3の抵抗値Rsの領域分割を二つから三つ以上に変更した例である。
<Embodiment 6>
Next, a sixth embodiment of the present invention will be described. The present embodiment is an example in which the region division of the resistance value Rs of the variable resistance element 3 is changed from two to three or more in the first to fifth embodiments.

本実施形態では、可変抵抗素子3の抵抗値Rsが、
低電圧側のドレイン・ソース間電圧Vdsに依存しないバイアス領域と、
ドレイン・ソース間電圧Vdsに依存するバイアス領域と、
高電圧側のドレイン・ソース間電圧Vdsに依存しないバイアス領域の
三つの領域からなる。また、この三つの領域の隣接する領域間が互いに滑らかに接続される。
In the present embodiment, the resistance value Rs of the variable resistance element 3 is
A bias region independent of the drain-source voltage Vds on the low voltage side;
A bias region depending on the drain-source voltage Vds;
It consists of three regions, a bias region that does not depend on the drain-source voltage Vds on the high voltage side. Further, the adjacent regions of the three regions are smoothly connected to each other.

図15は、可変抵抗素子3の抵抗値Rsを、三つの領域に分割する例を説明する図である。図15の横軸はドレイン電圧Vd、縦軸は可変抵抗素子3の抵抗値Rsである。   FIG. 15 is a diagram illustrating an example in which the resistance value Rs of the variable resistance element 3 is divided into three regions. In FIG. 15, the horizontal axis represents the drain voltage Vd, and the vertical axis represents the resistance value Rs of the variable resistance element 3.

本実施形態においては、図1(B)の抵抗値Rsがドレイン電圧Vdに依存する第1の領域4を、低ドレイン電圧側で抵抗値Rsがドレイン電圧Vdに依存しない第1の領域の低V側領域(8)と、抵抗値Rsがドレイン電圧Vdに依存する第1の領域の高V側領域(9)の二つの領域に分割して表現する。 In the present embodiment, the first region 4 in which the resistance value Rs in FIG. 1B depends on the drain voltage Vd is used as the first region 4 in which the resistance value Rs does not depend on the drain voltage Vd on the low drain voltage side. It is divided into two regions, the V D side region (8) and the high V D side region (9) of the first region where the resistance value Rs depends on the drain voltage Vd.

第1の領域の低V側領域(8)と第1の領域の高V側領域(9)の境界、及び、
第1の領域の高V側領域(9)と第2の領域5との境界は、
典型的には、ともに、ゲート電圧Vgが高い場合に、ドレイン電圧Vdが高い側に移動する。
The boundary between the low V D side region (8) of the first region and the high V D side region (9) of the first region; and
The boundary between the high V D side region (9) of the first region and the second region 5 is
Typically, in both cases, when the gate voltage Vg is high, the drain voltage Vd moves to the higher side.

また、より典型的には、第1の領域の低V側領域(8)と、第1の領域の高V側領域(9)の境界、及び、
第1の領域の高V側領域(9)と第3の領域(8)との境界、
はともに滑らかに接続される。
More typically, the boundary between the low V D side region (8) of the first region and the high V D side region (9) of the first region, and
The boundary between the high V D side region (9) of the first region and the third region (8);
Both are connected smoothly.

可変抵抗素子3の抵抗値Rsは、一例として例えば、式(5)〜式(13)を用いて表現することができる。   The resistance value Rs of the variable resistance element 3 can be expressed using, for example, Expressions (5) to (13), for example.

Voffset01= Vg + Voffset1 (5)     Voffset01 = Vg + Voffset1 (5)

Voffset02 = Vg + Voffset2 (6)     Voffset02 = Vg + Voffset2 (6)

Rs01 = (Rs0 + Rs1 * Vg + Rs2 *Vg2) / W (7) Rs01 = (Rs0 + Rs1 * Vg + Rs2 * Vg 2 ) / W (7)

Rs02 = Rs01 * Voffset02 / Voffset01 (8)     Rs02 = Rs01 * Voffset02 / Voffset01 (8)

Rs10 = Rs01 * Rs3 (9)     Rs10 = Rs01 * Rs3 (9)

Rs11 = Rs01 * (Voffset01 - 0.5 * (Voffset01-Vd-δ+ sqrt((Voffset01- Vd-δ)2 + 4 *δ* Voffset01))) / Voffset01 (10) Rs11 = Rs01 * (Voffset01-0.5 * (Voffset01-Vd-δ + sqrt ((Voffset01- Vd-δ) 2 + 4 * δ * Voffset01))) / Voffset01 (10)

Rs12 = Rs02 * (Voffset02 - 0.5 * (Voffset02-Vd-δ+ sqrt((Voffset02-Vd-δ)2 + 4 *δ* Voffset02))) / Voffset02 (11) Rs12 = Rs02 * (Voffset02-0.5 * (Voffset02-Vd-δ + sqrt ((Voffset02-Vd-δ) 2 + 4 * δ * Voffset02))) / Voffset02 (11)

Rs = Rs10 + (Rs01 / (Rs02 − Rs01)) * (Rs12 − Rs11) (12)     Rs = Rs10 + (Rs01 / (Rs02 − Rs01)) * (Rs12 − Rs11) (12)

δ = 0.01 (13)     δ = 0.01 (13)

ここで、
Voffset1は第1の領域の低ドレイン電圧側領域(8)と、第1の領域の高ドレイン電圧側領域(9)の境界を表現するためのフィッティングパラメータ、
Voffset2は、第1の領域の高ドレイン電圧側領域(9)と、第2の領域(5)の境界を表現するためのフィッティングパラメータ、
Rs1、Rs2、Rs3、Rs4は、抵抗値Rsのゲートバイアス依存性を表現するためのフィッティングパラメータである。
here,
Voffset1 is a fitting parameter for expressing the boundary between the low drain voltage side region (8) of the first region and the high drain voltage side region (9) of the first region,
Voffset2 is a fitting parameter for expressing the boundary between the high drain voltage side region (9) of the first region and the second region (5),
Rs1, Rs2, Rs3, and Rs4 are fitting parameters for expressing the gate bias dependence of the resistance value Rs.

また、実施形態6におけるマクロモデル抽出プログラム45のより好ましい一形態では、実施形態3のマクロモデル抽出プログラム45において、第1の領域4(図1(B)参照)と、第2の領域5(図1(B)参照)の境界を検出する手順に代えて、
第1の領域の低V側領域(8)と第1の領域の高V側領域(9)の境界、及び、
第1の領域の高V側領域(9)と第2の領域(5)との境界
を検出し、実施形態3と同様の処理を実行する機能を有する。
Further, in a more preferable form of the macro model extraction program 45 in the sixth embodiment, in the macro model extraction program 45 of the third embodiment, the first area 4 (see FIG. 1B) and the second area 5 ( In place of the procedure for detecting the boundary in FIG.
The boundary between the low V D side region (8) of the first region and the high V D side region (9) of the first region; and
High V D side region of the first region (9) to detect the boundary between the second region (5), it has a function of executing the same processing as the third embodiment.

実施形態6において、マクロモデル抽出プログラム45は,電気特性差分データ53を用いて各ゲート電圧において、ドレイン電流のドレイン電圧による微分値がゼロになるドレイン電圧Vd_gds0を二つ検出し、
低ドレインバイアス側のVd_gds0を、第1の領域の低V側領域(8)と第1の領域の高V側領域(9)の境界とし、
高ドレインバイアス側のVd_gds0を、第1の領域の高V側領域(9)と第2の領域(5)との境界、
とする機能を、マクロモデル抽出プログラム45において備える。
In the sixth embodiment, the macro model extraction program 45 uses the electrical characteristic difference data 53 to detect two drain voltages Vd_gds0 at which the differential value of the drain current by the drain voltage becomes zero at each gate voltage,
Let Vd_gds0 on the low drain bias side be the boundary between the low V D side region (8) of the first region and the high V D side region (9) of the first region,
The high drain bias side Vd_gds0, the boundary between the high V D side region of the first region (9) the second region (5),
Is provided in the macro model extraction program 45.

実施形態6において、図1又は図9の可変抵抗素子3の抵抗値Rsを三つの領域に分割する理由について、図16を参照して説明する。   The reason why the resistance value Rs of the variable resistance element 3 in FIG. 1 or FIG. 9 is divided into three regions in the sixth embodiment will be described with reference to FIG.

図16(A)は、第1の領域の低V側領域(8)で反転層が形成される形態を示す。第1の領域の低V側領域(8)は、ドレイン電圧Vdが低い領域でMOSFETは線形領域で動作しており、反転層116はゲート電力のドレイン端近傍まで伸びている。 FIG. 16 (A) shows an embodiment in which an inversion layer is formed at a lower V D side region of the first region (8). Low V D side region of the first region (8), the MOSFET drain voltage Vd is at a low region is operated in the linear region, the inversion layer 116 extends to the drain end near the gate power.

このため、P拡散層(ウェルコンタクト拡散層)11近傍に形成される反転層が形成されない領域117(従がって、チャネル電荷が少ない領域)が、全反転層の電荷に与える影響は小さい。よって、図1又は図9の可変抵抗素子3としてモデリングされる寄生抵抗Rsの値は小さい。 For this reason, the region 117 where the inversion layer formed in the vicinity of the P + diffusion layer (well contact diffusion layer) 11 is not formed (therefore, the region having a small channel charge) has little influence on the charges of all inversion layers. . Therefore, the value of the parasitic resistance Rs modeled as the variable resistance element 3 of FIG. 1 or FIG. 9 is small.

また,反転層が116ゲート電極115のドレイン近傍まで常に伸びているため、図1又は図9の可変抵抗素子3としてモデリングされる寄生抵抗Rsのドレイン電圧依存性は小さい。   Further, since the inversion layer always extends to the vicinity of the drain of the 116 gate electrode 115, the drain voltage dependency of the parasitic resistance Rs modeled as the variable resistance element 3 in FIG. 1 or FIG. 9 is small.

図16(B)は、第1の領域の高V側領域(9)で反転層が形成される形態を示す。これは、第1の領域の低V側領域(8)と第2領域(5)の中間的なドレインバイアス条件における形態である。第1の領域の低V側領域(8)よりもドレイン電圧Vdが高くトランジスタは飽和領域、あるいは線形領域から飽和領域への遷移領域で動作する。 FIG. 16 (B) shows a configuration in which an inversion layer is formed in the high V D side region of the first region (9). This is the form in intermediate drain bias conditions lower V D side region (8) and a second region of the first region (5). The drain voltage Vd is higher than the low V D side region (8) of the first region, and the transistor operates in the saturation region or the transition region from the linear region to the saturation region.

反転層116が形成される範囲は、まだ反転層が形成されない領域117よりもドレイン側に広がっているので、反転層が形成されない領域117が、全反転層電荷に与える影響は、反転層116がドレイン領域近傍のごく狭い範囲に形成される場合と比べると、小さい。   Since the range where the inversion layer 116 is formed is wider on the drain side than the region 117 where the inversion layer is not yet formed, the influence of the region 117 where the inversion layer is not formed on the total inversion layer charge is Compared to the case where it is formed in a very narrow range near the drain region, it is small.

また、第1の領域の高V側領域(9)では、反転層116の形成される範囲のドレイン領域側の境界が、ドレイン電圧Vdの上昇とともに、ゲート電極115のドレイン領域側の端部から、ソース領域寄りに移動する。 Further, the high V D side region of the first region (9), the range boundaries of the drain region side of which is formed of the inversion layer 116, with increasing drain voltage Vd, the ends of the drain region side of the gate electrode 115 To move closer to the source area.

従って、ドレイン電圧Vdの上昇とともに、反転層が形成されない領域117が全反転層電荷に与える影響が増す。このため、第1の領域の高V側領域(9)では、ドレイン電圧Vdの上昇とともに、図1又は図9の可変抵抗素子3としてモデリングされる寄生抵抗Rsの値は増加する。 Therefore, as the drain voltage Vd increases, the influence of the region 117 where the inversion layer is not formed on the total inversion layer charge increases. Therefore, the high V D side region of the first region (9), with increasing drain voltage Vd, the value of the parasitic resistance Rs which is modeled as a variable resistance element 3 of FIG. 1 or FIG. 9 is increased.

図16(C)は、第2の領域(5)で反転層が形成される形態を示す。第2の領域(5)は、第1の領域の高V側領域(9)よりもドレイン電圧Vdが高い状態であり、MOSトランジスタは飽和領域で動作している。このとき、反転層116は、ソース領域近傍の狭い範囲に形成される。このため、反転層が形成されない領域117(したがってチャネル電荷が少ない領域)が、全反転層電荷に与える影響は大きく、図1又は図9の可変抵抗素子3としてモデリングされる寄生抵抗Rsの値は大きい。 FIG. 16C shows a mode in which an inversion layer is formed in the second region (5). Second region (5) is a state higher drain voltage Vd than the high V D side region (9) of the first region, MOS transistors operating in the saturation region. At this time, the inversion layer 116 is formed in a narrow range near the source region. For this reason, the region 117 where the inversion layer is not formed (therefore, the region where the channel charge is small) has a large influence on the total inversion layer charge, and the value of the parasitic resistance Rs modeled as the variable resistance element 3 in FIG. large.

また、この状態では、反転層116のドレイン領域側の境界は、すでに反転層が形成されない領域117が存在する領域のドレイン側の境界よりも、ソース領域に近い位置となるので、ドレイン電圧Vdの変化に伴う、反転層が形成されない領域117が、全反転層電荷に与える影響の変化も小さくなる。このため、図1又は図9の可変抵抗素子3としてモデリングされる寄生抵抗Rsの値は、ドレイン電圧に依存しないか、あるいは、ドレイン電圧に対する依存性は、第1の領域の高V側領域(9)の場合よりも、小さい。 Further, in this state, the boundary on the drain region side of the inversion layer 116 is closer to the source region than the boundary on the drain side of the region where the region 117 where the inversion layer is not already formed is present. The change in the influence of the region 117 where the inversion layer is not formed due to the change on the total inversion layer charge is also reduced. For this reason, the value of the parasitic resistance Rs modeled as the variable resistance element 3 in FIG. 1 or FIG. 9 does not depend on the drain voltage, or the dependence on the drain voltage depends on the high V D side region of the first region. It is smaller than the case of (9).

第1の領域の低V側領域(8)と第1の領域の高V側領域(9)の境界は、モデリング対象とするMOSFETの線形領域と飽和領域の境界となるドレイン電圧Vd、すなわち、飽和電圧と同程度とする。あるいは、飽和電圧よりも若干低めの値、例えば、典型的には、飽和電圧の0.2倍から1倍程の値とする。 The boundary between the low V D side region (8) of the first region and the high V D side region (9) of the first region is a drain voltage Vd that is a boundary between the linear region and saturation region of the MOSFET to be modeled, That is, it is approximately the same as the saturation voltage. Alternatively, the value is slightly lower than the saturation voltage, for example, typically a value about 0.2 to 1 times the saturation voltage.

第1の領域の高V側領域(9)と、第2の領域(5)の境界は、モデリング対象とするMOSFETの飽和電圧と同程度とする。あるいは、飽和電圧よりも高めの値、例えば、典型的には、飽和電圧の1倍から2.5倍程の値とする。 The boundary between the high V D side region (9) of the first region and the second region (5) is set to the same level as the saturation voltage of the MOSFET to be modeled. Alternatively, the value is higher than the saturation voltage, for example, typically about 1 to 2.5 times the saturation voltage.

また、第1の領域の高V側領域(9)と第2の領域(5)の境界となるドレイン電圧は、第1の領域の低V側領域(8)と第1の領域の高V側領域(9)の境界となるドレイン電圧よりも高い。 In addition, the drain voltage serving as the boundary between the high V D side region (9) and the second region (5) of the first region is equal to the low V D side region (8) of the first region and the first region. It is higher than the drain voltage which becomes the boundary of the high V D side region (9).

なお、本実施形態では、可変抵抗素子3の抵抗値Rs(寄生抵抗Rsを表す)が、三つの領域に分割される例を示したが、必要に応じて、さらに四つ以上に分割しても良い。   In the present embodiment, the example in which the resistance value Rs (representing the parasitic resistance Rs) of the variable resistive element 3 is divided into three regions has been shown. However, if necessary, the resistance value Rs is further divided into four or more regions. Also good.

また、本実施形態では、前記実施形態1〜5の抽出手順において、可変抵抗素子3の抵抗値Rsを、二つの領域から構成されるようにモデリングする手順において、可変抵抗素子3の抵抗値Rsを三つの領域、あるいは四つ以上の領域から構成されるように、モデリングすることにより、モデルを抽出する。   In the present embodiment, in the extraction procedure of the first to fifth embodiments, the resistance value Rs of the variable resistance element 3 is determined in the procedure of modeling the resistance value Rs of the variable resistance element 3 so as to be composed of two regions. A model is extracted by modeling so as to be composed of three regions or four or more regions.

本実施形態では、可変抵抗素子3の抵抗値Rsを、前記実施形態1等で説明した、二つの領域よりも、さらに多く分割した領域によってモデリングを行う構成としたことにより、可変抵抗素子3のモデリング精度を向上することができる。その結果、回路シミュレーション用マクロモデルの精度を向上し、このマクロモデルを用いた回路シミュレーションの精度を向上する。   In the present embodiment, the resistance value Rs of the variable resistance element 3 is modeled in a region divided more than the two regions described in the first embodiment and the like. Modeling accuracy can be improved. As a result, the accuracy of the macro model for circuit simulation is improved, and the accuracy of the circuit simulation using this macro model is improved.

また、本実施形態において、前記実施形態5に記載した電気特性差分データ53を作成することで、可変抵抗素子3の抵抗値Rsの値を高精度にモデリングするに当たって必要な第1の領域の低V側領域(8)と、第1の領域の高V側領域(9)の境界、及び第1の領域の高V側領域(9)と第2の領域(5)との境界の検出をより容易化している。 Further, in the present embodiment, by creating the electrical characteristic difference data 53 described in the fifth embodiment, the first region required for modeling the resistance value Rs of the variable resistance element 3 with high accuracy is reduced. The boundary between the V D side region (8) and the high V D side region (9) of the first region, and the boundary between the high V D side region (9) of the first region and the second region (5) Is easier to detect.

<実施形態7>
次に、本発明の実施形態7を説明する。本実施形態は、前記実施形態5、6におけるマクロモデル抽出プログラム45に、以下の形態、あるいは以下のうち一部の形態が追加される。本実施形態では、MOSFETのソース側に付加された寄生抵抗に対するMOSFETの電流感度を表す寄生抵抗感度データ61を求めることにより、可変抵抗素子3のモデル及びマクロモデルを生成する。実施形態7について、図17及び図18を参照して説明する。
<Embodiment 7>
Next, a seventh embodiment of the present invention will be described. In the present embodiment, the following forms, or some of the following forms, are added to the macro model extraction program 45 in the fifth and sixth embodiments. In the present embodiment, a model and a macro model of the variable resistance element 3 are generated by obtaining parasitic resistance sensitivity data 61 representing the current sensitivity of the MOSFET with respect to the parasitic resistance added to the source side of the MOSFET. The seventh embodiment will be described with reference to FIGS. 17 and 18.

図18は、図17におけるMOSFETモデル44を使用する手順の一部を、通常構造電気特性データ41を使用する手順に置き換えたものである。   FIG. 18 is obtained by replacing a part of the procedure using the MOSFET model 44 in FIG. 17 with a procedure using the normal structural electrical characteristic data 41.

本実施形態7においては、通常構造電気特性データ41又は通常構造電気特性データ41に対応するMOSFETモデル44を用いて、寄生抵抗感度解析プログラム64により、MOSFETのソース側に付加された寄生抵抗に対するMOSFETの電流感度を表す寄生抵抗感度データ61を求める。寄生抵抗感度データとは、各バイアス条件において、ソース側にある大きさの寄生抵抗が付いた時に、MOSFETのドレイン電流がどれだけ変動するかを表すデータである。   In the seventh embodiment, the MOSFET for the parasitic resistance added to the source side of the MOSFET by the parasitic resistance sensitivity analysis program 64 using the normal structure electrical characteristic data 41 or the MOSFET model 44 corresponding to the normal structure electrical characteristic data 41 is used. Parasitic resistance sensitivity data 61 representing the current sensitivity is obtained. The parasitic resistance sensitivity data is data representing how much the drain current of the MOSFET fluctuates when a certain amount of parasitic resistance is attached on the source side under each bias condition.

なお、MOSFETモデル44の代わりに、通常構造電気特性データ41を用いて寄生抵抗感度データ61を求める場合には、通常構造電気特性データ41をテーブルモデルとして扱い寄生抵抗感度データ61を求める。ここで、テーブルモデルとは、数式により表現したMOSFETのモデルとは異なり、各バイアス点でのMOSFETの電流値データの集まりから与えられたバイアス条件におけるMOSFETの電流(ドレイン電流)を求めるしくみのことをいう。   When the parasitic resistance sensitivity data 61 is obtained using the normal structural electrical characteristic data 41 instead of the MOSFET model 44, the normal structural electrical characteristic data 41 is treated as a table model to obtain the parasitic resistance sensitivity data 61. Here, the table model is a mechanism for obtaining the MOSFET current (drain current) under a given bias condition from a collection of MOSFET current value data at each bias point, unlike the MOSFET model expressed by mathematical formulas. Say.

次に、通常構造電気特性データ41、又は通常構造電気特性データに対応する通常構造のMOSFETモデル44、電気特性差分データ53、得られた寄生抵抗感度データ61を用いることによって、寄生抵抗成分抽出プログラム65により、図1の可変抵抗素子3(図9の155)の抵抗値Rsのバイアス依存性を推定したデータであるRsバイアス依存性推定データ62を作成する。すなわち、ソース側に寄生抵抗Rsが付かない電気特性である通常構造電気特性データ41と、ソース側に寄生抵抗Rsが付く電気特性である電気特性差分データ53(第2のMOSFET2に流れる電流に相当)とを比較することによって、各バイアス条件での単位チャネル幅当たりの寄生抵抗による電流変動量を求める。   Next, the parasitic resistance component extraction program is obtained by using the normal structure electrical characteristic data 41 or the normal structure MOSFET model 44 corresponding to the normal structure electrical characteristic data, the electrical characteristic difference data 53, and the obtained parasitic resistance sensitivity data 61. 65, Rs bias dependency estimation data 62, which is data in which the bias dependency of the resistance value Rs of the variable resistance element 3 (155 in FIG. 9) of FIG. 1 is estimated, is created. That is, normal structure electrical characteristic data 41 that is an electrical characteristic that does not have a parasitic resistance Rs on the source side, and electrical characteristic difference data 53 that is an electrical characteristic that has a parasitic resistance Rs on the source side (corresponding to the current flowing through the second MOSFET 2) ) To obtain the current fluctuation amount due to the parasitic resistance per unit channel width under each bias condition.

そして、得られた電流変動量と、各バイアス条件で寄生抵抗が電流に与える影響を示す寄生抵抗感度データ61を用いて、各バイアス条件での寄生抵抗である抵抗値Rsバイアス依存性推定データ62、具体的には、各バイアス条件での可変抵抗素子3(図9の155)の抵抗値Rsについて、Rsバイアス依存性推定データ62を求める手順である。Rsバイアス依存性推定データは、例えば図1(B)、図6(B)、図15に示したような特性データである。   Then, using the obtained current fluctuation amount and the parasitic resistance sensitivity data 61 indicating the influence of the parasitic resistance on the current under each bias condition, the resistance value Rs bias dependency estimation data 62 which is the parasitic resistance under each bias condition. Specifically, this is a procedure for obtaining the Rs bias dependency estimation data 62 for the resistance value Rs of the variable resistance element 3 (155 in FIG. 9) under each bias condition. The Rs bias dependency estimation data is characteristic data as shown in FIGS. 1B, 6B, and 15, for example.

また、図17のマクロモデル抽出プログラム45は、Rsのバイアス依存性推定データ62を用いて、可変抵抗モデルパラメータ抽出プログラム66によって、可変抵抗素子3(図9の155)の抵抗値Rsのバイアス依存性を表すパラメータである可変抵抗モデル63を作成する、   Also, the macro model extraction program 45 in FIG. 17 uses the bias dependency estimation data 62 of Rs and the bias dependency of the resistance value Rs of the variable resistance element 3 (155 in FIG. 9) by the variable resistance model parameter extraction program 66. Create a variable resistance model 63 that is a parameter representing the sexiness,

そして、マクロモデル抽出プログラム45は、Rsバイアス依存性推定データ62を、可変抵抗素子3(図9の155)の抵抗値Rsのバイアス依存性を表すパラメータを作成するための初期値モデルの作成に使用し、可変抵抗モデル63を作成する。   Then, the macro model extraction program 45 uses the Rs bias dependency estimation data 62 to create an initial value model for creating a parameter representing the bias dependency of the resistance value Rs of the variable resistance element 3 (155 in FIG. 9). The variable resistance model 63 is created by using the variable resistance model 63.

可変抵抗モデルパラメータ抽出プログラム66は、可変抵抗モデル63を自動生成するようにしてもよい。あるいは、可変抵抗モデルパラメータ抽出プログラム66は、可変抵抗モデルパラメータ抽出プログラム66を実行する情報処理装置(図4の24)において、適宜、操作者からの操作・指示等に応じて、可変抵抗モデル63を生成するようにしてもよい。   The variable resistance model parameter extraction program 66 may automatically generate the variable resistance model 63. Alternatively, the variable resistance model parameter extraction program 66 is appropriately selected in the information processing apparatus (24 in FIG. 4) that executes the variable resistance model parameter extraction program 66 according to the operation / instruction from the operator. May be generated.

また、得られた可変抵抗モデル63及び通常構造電気特性データに対応するMOSFETモデル44を用いて、仮マクロモデル作成プログラム67により、図1(A)と同様の構成を持つ仮マクロモデル46が生成される。上記のとおり、実施形態7は、可変抵抗素子3の抵抗値Rsのバイアス依存性を表すパラメータを高精度に抽出することを可能としている。   In addition, the temporary macro model 46 having the same configuration as that in FIG. 1A is generated by the temporary macro model creation program 67 using the obtained variable resistance model 63 and the MOSFET model 44 corresponding to the normal structure electrical characteristic data. Is done. As described above, the seventh embodiment makes it possible to extract a parameter representing the bias dependence of the resistance value Rs of the variable resistance element 3 with high accuracy.

なお、上記の特許文献、非特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。   It should be noted that the disclosures of the above-mentioned patent documents and non-patent documents are incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Various disclosed elements (including each element of each claim, each element of each embodiment, each element of each drawing, etc.) can be combined or selected within the scope of the claims of the present invention. . That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.

1、151 第1のMOSFET
2、152 第2のMOSFET
3、155 可変抵抗素子
6 ソース基板接続構造
7 通常構造
11、111 P拡散層(ウェルコンタクト拡散層)
12、112 N拡散層(ソース拡散層)
13、113 ドレイン拡散層
14、114 低濃度ドレイン拡散層
15、115 ゲート電極
21 ウェファ
22 電気特性測定装置
23、25 記録媒体
24 情報処理装置
31〜37 処理
41、42 電気特性データ
43 MOSFET抽出プログラム
44 MOSFETモデル
45、45−1、45−2 マクロモデル抽出プログラム
46 仮マクロモデル
47 マクロモデル調整プログラム
48、48−1、48−2 マクロモデル
49 モデル検証プログラム
50 モデル検証結果
51 結果判定
52 差分データ生成プログラム
53 電気特性差分データ
61 寄生抵抗感度データ
62 Rsバイアス依存性推定データ
63 可変抵抗モデル
64 寄生抵抗感度解析プログラム
65 寄生抵抗成分抽出プログラム
66 可変抵抗モデルパラメータ抽出プログラム
67 仮マクロモデル作成プログラム
101 可変抵抗
102、104 MOSFET
103 JFET
116 反転層
117 反転層が形成されにくい領域(反転層が形成されない領域)
153、154、155 可変抵抗素子
1, 151 First MOSFET
2, 152 Second MOSFET
3, 155 Variable resistance element 6 Source substrate connection structure 7 Normal structure 11, 111 P + diffusion layer (well contact diffusion layer)
12, 112 N + diffusion layer (source diffusion layer)
13, 113 Drain diffusion layers 14, 114 Low-concentration drain diffusion layers 15, 115 Gate electrode 21 Wafer 22 Electrical property measuring device 23, 25 Recording medium 24 Information processing device 31-37 Processing 41, 42 Electrical property data 43 MOSFET extraction program 44 MOSFET model 45, 45-1, 45-2 Macro model extraction program 46 Temporary macro model 47 Macro model adjustment program 48, 48-1, 48-2 Macro model 49 Model verification program 50 Model verification result 51 Result determination 52 Difference data generation Program 53 Electrical characteristic difference data 61 Parasitic resistance sensitivity data 62 Rs bias dependency estimation data 63 Variable resistance model 64 Parasitic resistance sensitivity analysis program 65 Parasitic resistance component extraction program 66 Variable resistance model parameter extraction program 7 Provisional macro model creating program 101 a variable resistor 102, 104 MOSFET
103 JFET
116 Inversion layer 117 Region where inversion layer is hard to be formed (region where inversion layer is not formed)
153, 154, 155 variable resistance element

Claims (26)

ソース拡散層と、前記ソース拡散層と逆導電型のウェルコンタクト拡散層とがチャネル幅方向に沿って隣接して配置されたソース領域を有する高耐圧MOSFETの回路シミュレーション用のMOSFETのモデルとして、
ドレインが共通接続され、ゲートが共通接続され、バックゲートが共通接続され、前記ソース領域の前記ソース拡散層の幅と前記ウェルコンタクト拡散層の幅にそれぞれ対応した第1及び第2のチャネル幅を有する第1及び第2のMOSFETと、
前記第2のMOSFETのソースに一端が接続された第1の可変抵抗素子と、
を備え、
前記第1のMOSFETのソースと前記第1の可変抵抗素子の他端との接続点をソース端子とし、前記第1及び第2のMOSFETの前記共通接続したドレイン、前記共通接続したゲート、前記共通接続したバックゲートを、それぞれ、ドレイン端子、ゲート端子、バックゲート端子とするモデルを作成する手段と、
モデリング対象の前記高耐圧MOSFETの電気特性データを記憶する記憶手段と、
前記記憶手段から、前記高耐圧MOSFETの電気特性データを読み出し、前記電気特性データに基づき、前記回路シミュレーション用のMOSFETのモデルの前記第1の可変抵抗素子の抵抗値を調整する手段と、
を備えたことを特徴とするモデル作成装置。
As a model of a MOSFET for circuit simulation of a high breakdown voltage MOSFET having a source diffusion layer and a source region in which the source diffusion layer and a well-contact diffusion layer of opposite conductivity type are disposed adjacent to each other in the channel width direction,
The drains are connected in common, the gates are connected in common, the back gates are connected in common, and the first and second channel widths corresponding to the width of the source diffusion layer and the width of the well contact diffusion layer in the source region, respectively. First and second MOSFETs having:
A first variable resistance element having one end connected to the source of the second MOSFET;
With
A connection point between the source of the first MOSFET and the other end of the first variable resistance element is used as a source terminal, and the commonly connected drain, the commonly connected gate, and the common of the first and second MOSFETs Means for creating a model in which the connected back gate is a drain terminal, a gate terminal, and a back gate terminal, respectively;
Storage means for storing electrical characteristic data of the high breakdown voltage MOSFET to be modeled;
Means for reading out the electrical characteristic data of the high withstand voltage MOSFET from the storage means, and adjusting a resistance value of the first variable resistance element of the model of the MOSFET for circuit simulation based on the electrical characteristic data;
A model creation device characterized by comprising:
前記ソース領域において、前記ソース拡散層と前記ウェルコンタクト拡散層とが前記チャネル幅方向に交互に配置された、前記高耐圧MOSFETの前記回路シミュレーション用のMOSFETのモデルにおける前記第1のMOSFETのチャネル幅を、前記モデリング対象MOSFETのソース領域の前記ソース拡散層の幅の総和とし
前記第2のMOSFETのチャネル幅を、前記モデリング対象MOSFETのソース領域の前記ウェルコンタククト拡散層の幅の総和とする手段を備えている、ことを特徴とする請求項1記載のモデル作成装置。
In the source region, the channel width of the first MOSFET in the MOSFET model for circuit simulation of the high breakdown voltage MOSFET, in which the source diffusion layer and the well contact diffusion layer are alternately arranged in the channel width direction. Is the sum of the widths of the source diffusion layers in the source region of the modeling target MOSFET, and the channel width of the second MOSFET is the sum of the widths of the well contact diffusion layers in the source region of the modeling target MOSFET The model creation apparatus according to claim 1, further comprising:
前記回路シミュレーション用のMOSFETのモデルが、前記第1及び第2のMOSFETのドレインと前記モデルのドレイン端子の間に、第2及び第3の可変抵抗素子をそれぞれ備えた、ことを特徴とする請求項1又は2記載のモデル作成装置。   The model of the circuit simulation MOSFET includes a second variable resistance element and a third variable resistance element between a drain of the first and second MOSFETs and a drain terminal of the model, respectively. Item 3. The model creation device according to item 1 or 2. 前記回路シミュレーション用のMOSFETのモデルの前記第1の可変抵抗素子の抵抗値が、ドレイン・ソース間電圧に依存する第1の領域と、前記ドレイン・ソース間電圧に依存しない第2の領域と、を有し、前記第1の領域と前記第2の領域とを滑らかに接続するように設定する手段を備えている、ことを特徴とする請求項1乃至3のいずれか1項に記載のモデル作成装置。   A first region in which a resistance value of the first variable resistance element of the MOSFET model for circuit simulation depends on a drain-source voltage; and a second region that does not depend on the drain-source voltage; 4. The model according to claim 1, further comprising a unit configured to smoothly connect the first region and the second region. 5. Creation device. 前記回路シミュレーション用のMOSFETのモデルの前記第1の可変抵抗素子の抵抗値の前記第1の領域と前記第2の領域の境界を、モデリング対象の前記高耐圧MOSFETの線形領域と飽和領域の境界のドレイン・ソース間電圧を下限とし、前記境界のドレイン・ソース間電圧を予め定められた所定数倍した電圧を上限とする電圧範囲内の値に対応させて設定する手段を備えている、ことを特徴とする請求項4記載のモデル作成装置。   The boundary between the first region and the second region of the resistance value of the first variable resistance element of the MOSFET model for circuit simulation is defined as the boundary between the linear region and the saturation region of the high voltage MOSFET to be modeled. Means for setting a value corresponding to a value within a voltage range having a lower limit as a drain-source voltage and a voltage obtained by multiplying the drain-source voltage at the boundary by a predetermined number of times as an upper limit. The model creation apparatus according to claim 4. 前記回路シミュレーション用のMOSFETモデルにおいて、前記第1の可変抵抗素子は、前記ウェルコンタクト拡散層近傍の寄生抵抗がMOSFETのドレイン電流に与える影響を表現するための等価抵抗に対応し、
前記第1の可変抵抗素子の抵抗値が、ドレイン・ソース間電圧の増加に伴い増加する第1の領域と、前記抵抗値がドレイン・ソース間電圧に依存しない第2の領域と、を有し、 前記第1の領域と前記第2の領域の境界で前記抵抗値が滑らかに接続し、前記第1の可変抵抗素子の前記抵抗値は、ゲート・ソース間電圧の上昇とともに低下する特性を有する、ことを特徴とする請求項1乃至3のいずれか1項に記載のモデル作成装置。
In the MOSFET model for circuit simulation, the first variable resistance element corresponds to an equivalent resistance for expressing the influence of the parasitic resistance near the well contact diffusion layer on the drain current of the MOSFET,
A first region in which the resistance value of the first variable resistance element increases as the drain-source voltage increases; and a second region in which the resistance value does not depend on the drain-source voltage. The resistance value is smoothly connected at the boundary between the first region and the second region, and the resistance value of the first variable resistance element has a characteristic of decreasing as the gate-source voltage increases. The model creation device according to any one of claims 1 to 3, wherein
前記回路シミュレーション用のMOSFETモデルにおいて、
前記第1の可変抵抗素子の抵抗値が、
ドレイン・ソース間電圧に依存する第1の領域と、前記ドレイン・ソース間電圧に依存しない第2の領域と、を有し、
前記第1の領域を、前記抵抗値のドレイン・ソース間電圧特性に対応させて少なくとも二つの領域に分割し、
前記第1及び第2の領域間、及び、前記第1の領域を分割した領域の隣接領域間を互いに滑らかに接続するように設定する手段を備えている、ことを特徴とする請求項1乃至3のいずれか1項に記載のモデル作成装置。
In the MOSFET model for circuit simulation,
The resistance value of the first variable resistance element is
A first region that depends on the drain-source voltage; and a second region that does not depend on the drain-source voltage;
Dividing the first region into at least two regions corresponding to the drain-source voltage characteristics of the resistance value;
2. The apparatus according to claim 1, further comprising: a unit configured to smoothly connect the first and second regions and adjacent regions of a region obtained by dividing the first region. 4. The model creation device according to any one of items 3.
前記ウェルコンタククト拡散層を含まずに前記ソース拡散層からなるソース領域を有する通常構造の高耐圧MOSFETの電気特性データを用いて、通常構造のMOSFETのモデルを作成し、
前記通常構造のMOSFETのモデルと、前記第1の可変抵抗素子とから構成されるMOSFETのモデルにおいて、モデリング対象の前記高耐圧MOSFETの前記電気特性データに合わせて、前記第1の可変抵抗素子のパラメータを調整する手段を備えている、ことを特徴とする請求項1乃至6のいずれか1項に記載のモデル作成装置。
Using the electrical characteristics data of a normal structure high voltage MOSFET having a source region composed of the source diffusion layer without including the well contact diffusion layer, a normal structure MOSFET model is created,
In the MOSFET model composed of the normal structure MOSFET model and the first variable resistance element, the first variable resistance element of the first variable resistance element is matched with the electrical characteristic data of the high breakdown voltage MOSFET to be modeled. The model creating apparatus according to claim 1, further comprising a parameter adjusting unit.
前記通常構造のMOSFETのモデルと、前記第1の可変抵抗素子とから構成されるMOSFETのモデルからなる第1のモデルを生成し、
前記第1のモデルに基づき、前記回路シミュレーション用のMOSFETのモデルとして、前記モデリング対象MOSFETのドレイン端子の間に、前記第2及び第3の可変抵抗素子をそれぞれ備えた第2のモデルを生成し、前記第1の可変抵抗素子の抵抗値を調整した上で前記第2及び第3の可変抵抗素子の抵抗値を調整する手段を備えている、ことを特徴とする請求項3記載のモデル作成装置。
Generating a first model comprising a MOSFET model composed of the normal-structure MOSFET model and the first variable resistance element;
Based on the first model, a second model including the second and third variable resistance elements between the drain terminals of the modeling target MOSFET is generated as a model of the circuit simulation MOSFET. 4. The model creation according to claim 3, further comprising means for adjusting a resistance value of the second and third variable resistance elements after adjusting a resistance value of the first variable resistance element. apparatus.
前記通常構造のMOSFETの前記電気特性データに、モデリング対象の前記高耐圧MOSFETの前記ソース領域の前記ソース拡散層の幅の総和を、モデリング対象の前記高耐圧MOSFETのチャネル幅で除した値を乗じた値を、モデリング対象の前記高耐圧MOSFETの電気特性データから差し引いて電気特性差分データを求める手段と、
モデリング対象の前記高耐圧MOSFETの前記ソース領域の前記ウェルコンタクト拡散層の幅の総和に相当する部分を、前記通常構造MOSFETのモデルと、前記通常構造MOSFETのモデルと、前記通常構造MOSFETのモデルのソースに接続された前記第1の可変抵抗素子の抵抗値を調整する手段と、
を備えている、ことを特徴とする請求項1乃至5のいずれか1項に記載のモデル作成装置。
The electrical characteristic data of the normal structure MOSFET is multiplied by a value obtained by dividing the sum of the widths of the source diffusion layers in the source region of the high breakdown voltage MOSFET to be modeled by the channel width of the high breakdown voltage MOSFET to be modeled. Means for subtracting the calculated value from the electrical characteristic data of the high breakdown voltage MOSFET to be modeled to obtain electrical characteristic difference data;
A portion corresponding to the sum of the widths of the well contact diffusion layers in the source region of the high breakdown voltage MOSFET to be modeled is defined as a model of the normal structure MOSFET, a model of the normal structure MOSFET, and a model of the normal structure MOSFET. Means for adjusting a resistance value of the first variable resistance element connected to a source;
The model creation device according to claim 1, wherein the model creation device includes:
モデリング対象の前記高耐圧MOSFETのソース側に付加された寄生抵抗に対する前記MOSFETの電流感度を表す寄生抵抗感度データを求める手段と、
前記第1の可変抵抗素子のバイアスに依存した可変抵抗モデルを作成する手段と、
を備えている、ことを特徴とする請求項1乃至5のいずれか1項に記載のモデル作成装置。
Means for obtaining parasitic resistance sensitivity data representing the current sensitivity of the MOSFET with respect to the parasitic resistance added to the source side of the high breakdown voltage MOSFET to be modeled;
Means for creating a variable resistance model depending on the bias of the first variable resistance element;
The model creation device according to claim 1, wherein the model creation device includes:
ソース拡散層と、前記ソース拡散層と逆導電型のウェルコンタクト拡散層とがチャネル幅方向に沿って隣接して配置されたソース領域を有する高耐圧MOSFETの回路シミュレーション用のMOSFETのモデルとして、
ドレインが共通接続され、ゲートが共通接続され、バックゲートが共通接続され、前記ソース領域の前記ソース拡散層の幅と前記ウェルコンタクト拡散層の幅にそれぞれ対応した第1及び第2のチャネル幅を有する第1及び第2のMOSFETと、
前記第2のMOSFETのソースに一端が接続された第1の可変抵抗素子と、
を備え、
前記第1のMOSFETのソースと前記第1の可変抵抗素子の他端の接続点をソース端子とし、前記第1及び第2のMOSFETの共通接続したドレイン、共通接続したゲート、共通接続したバックゲートを、それぞれ、ドレイン端子、ゲート端子、バックゲート端子とし、前記第1の可変抵抗素子の抵抗素子が、モデリング対象の前記高耐圧MOSFETのドレイン・ソース間電圧依存特性、及びゲート・ソース間電圧依存特性を有するように設定されたMOSFETモデルを記録した、コンピュータで読み出し可能な記録媒体。
As a model of a MOSFET for circuit simulation of a high breakdown voltage MOSFET having a source diffusion layer and a source region in which the source diffusion layer and a well-contact diffusion layer of opposite conductivity type are disposed adjacent to each other in the channel width direction,
The drains are connected in common, the gates are connected in common, the back gates are connected in common, and the first and second channel widths corresponding to the width of the source diffusion layer and the width of the well contact diffusion layer in the source region, respectively. First and second MOSFETs having:
A first variable resistance element having one end connected to the source of the second MOSFET;
With
The connection point between the source of the first MOSFET and the other end of the first variable resistance element is used as a source terminal, the drain connected in common, the gate connected in common, and the back gate connected in common between the first and second MOSFETs. Are the drain terminal, the gate terminal, and the back gate terminal, respectively, and the resistance element of the first variable resistance element is a drain-source voltage dependence characteristic and a gate-source voltage dependence characteristic of the high breakdown voltage MOSFET to be modeled. A computer-readable recording medium on which a MOSFET model set to have characteristics is recorded.
ソース拡散層と、前記ソース拡散層と逆導電型のウェルコンタクト拡散層とがチャネル幅方向に沿って隣接して配置されたソース領域を有する高耐圧MOSFETの回路シミュレーション用のMOSFETのモデルを情報処理装置で作成するにあたり、
ドレインが共通接続され、ゲートが共通接続され、バックゲートが共通接続され、前記ソース領域の前記ソース拡散層の幅と前記ウェルコンタクト拡散層の幅にそれぞれ対応した第1及び第2のチャネル幅を有する第1及び第2のMOSFETと、
前記第2のMOSFETのソースに一端が接続された第1の可変抵抗素子と、
を備え、
前記第1のMOSFETのソースと前記第1の可変抵抗素子の他端の接続点をソース端子とし、前記第1及び第2のMOSFETの前記共通接続したドレイン、前記共通接続したゲート、前記共通接続したバックゲートを、それぞれ、ドレイン端子、ゲート端子、バックゲート端子とするモデルを作成する処理と、
モデリング対象の前記高耐圧MOSFETの電気特性データを記憶する記憶手段から、前記高耐圧MOSFETの電気特性データを読み出し、前記電気特性データに基づき、前記第1の可変抵抗素子の抵抗値を調整する処理を、
前記情報処理装置に実行させるプログラム。
A MOSFET model for circuit simulation of a high breakdown voltage MOSFET having a source diffusion layer and a source region in which the source diffusion layer and a well-contact diffusion layer of opposite conductivity type are disposed adjacent to each other in the channel width direction In creating with the device,
The drains are connected in common, the gates are connected in common, the back gates are connected in common, and the first and second channel widths corresponding to the width of the source diffusion layer and the width of the well contact diffusion layer in the source region, respectively. First and second MOSFETs having:
A first variable resistance element having one end connected to the source of the second MOSFET;
With
Using the connection point between the source of the first MOSFET and the other end of the first variable resistance element as a source terminal, the commonly connected drain, the commonly connected gate, and the common connection of the first and second MOSFETs Processing to create a model with the back gate as a drain terminal, a gate terminal, and a back gate terminal,
A process of reading electrical characteristic data of the high breakdown voltage MOSFET from storage means for storing electrical characteristic data of the high breakdown voltage MOSFET to be modeled, and adjusting a resistance value of the first variable resistance element based on the electrical characteristic data The
A program to be executed by the information processing apparatus.
ソース拡散層と、前記ソース拡散層と逆導電型のウェルコンタクト拡散層とがチャネル幅方向に沿って隣接して配置されたソース領域を有する高耐圧MOSFETの回路シミュレーション用のMOSFETのモデルを情報処理装置で作成するにあたり、
ドレインが共通接続され、ゲートが共通接続され、バックゲートが共通接続され、前記ソース領域の前記ソース拡散層の幅と前記ウェルコンタクト拡散層の幅にそれぞれ対応した第1及び第2のチャネル幅を有する第1及び第2のMOSFETと、
前記第2のMOSFETのソースに一端が接続された第1の可変抵抗素子と、
を備え、
前記第1のMOSFETのソースと前記第1の可変抵抗素子の他端との接続点をソース端子とし、前記第1及び第2のMOSFETの前記共通接続したドレイン、前記共通接続したゲート、前記共通接続したバックゲートを、それぞれ、ドレイン端子、ゲート端子、バックゲート端子とするモデルを作成し、
モデリング対象の前記高耐圧MOSFETの電気特性データを記憶する記憶手段から、前記高耐圧MOSFETの電気特性データを読み出し、前記電気特性データに基づき、前記回路シミュレーション用のMOSFETのモデルの前記第1の可変抵抗素子の抵抗値を調整する、ことを特徴とするモデル作成方法。
A MOSFET model for circuit simulation of a high breakdown voltage MOSFET having a source diffusion layer and a source region in which the source diffusion layer and a well-contact diffusion layer of opposite conductivity type are disposed adjacent to each other in the channel width direction In creating with the device,
The drains are connected in common, the gates are connected in common, the back gates are connected in common, and the first and second channel widths corresponding to the width of the source diffusion layer and the width of the well contact diffusion layer in the source region, respectively. First and second MOSFETs having:
A first variable resistance element having one end connected to the source of the second MOSFET;
With
A connection point between the source of the first MOSFET and the other end of the first variable resistance element is used as a source terminal, and the commonly connected drain, the commonly connected gate, and the common of the first and second MOSFETs Create models that use the connected back gates as the drain terminal, gate terminal, and back gate terminal, respectively.
The electrical characteristic data of the high breakdown voltage MOSFET is read out from the storage means for storing the electrical characteristic data of the high breakdown voltage MOSFET to be modeled, and the first variable of the model of the MOSFET for circuit simulation is based on the electrical characteristic data A model creation method characterized by adjusting a resistance value of a resistance element.
前記ソース領域において、前記ソース拡散層と前記ウェルコンタクト拡散層とが前記チャネル幅方向に交互に配置された前記高耐圧MOSFETの前記回路シミュレーション用のMOSFETのモデルにおける前記第1のMOSFETのチャネル幅を、前記モデリング対象MOSFETのソース領域の前記ソース拡散層の幅の総和とし、
前記第2のMOSFETのチャネル幅を、前記モデリング対象MOSFETのソース領域の前記ウェルコンタククト拡散層の幅の総和とする、ことを特徴とする請求項14記載のモデル作成方法。
In the source region, the channel width of the first MOSFET in the MOSFET model for circuit simulation of the high breakdown voltage MOSFET in which the source diffusion layer and the well contact diffusion layer are alternately arranged in the channel width direction. , The sum of the widths of the source diffusion layers of the source region of the modeling target MOSFET,
15. The model creation method according to claim 14, wherein the channel width of the second MOSFET is a sum of widths of the well contact diffusion layers in the source region of the modeling target MOSFET.
前記回路シミュレーション用のMOSFETのモデルとして、前記第1及び第2のMOSFETのドレインと前記モデルのドレイン端子の間に、第2及び第3の可変抵抗素子をそれぞれ挿入する、ことを特徴とする請求項14又は15記載のモデル作成方法。   The second and third variable resistance elements are respectively inserted between the drains of the first and second MOSFETs and the drain terminals of the model as models of the MOSFETs for circuit simulation. Item 16. A model creation method according to item 14 or 15. 前記回路シミュレーション用のMOSFETのモデルの前記第1の可変抵抗素子の抵抗値が、ドレイン・ソース間電圧に依存する第1の領域と、前記ドレイン・ソース間電圧に依存しない第2の領域と、を有し、前記第1の領域と前記第2の領域とを滑らかに接続するように設定する、ことを特徴とする請求項14乃至16のいずれか1項に記載のモデル作成方法。   A first region in which a resistance value of the first variable resistance element of the MOSFET model for circuit simulation depends on a drain-source voltage; and a second region that does not depend on the drain-source voltage; 17. The model creation method according to claim 14, wherein the first region and the second region are set so as to be smoothly connected. 前記回路シミュレーション用のMOSFETのモデルの前記第1の可変抵抗素子の抵抗値の前記第1の領域と前記第2の領域の境界を、モデリング対象の前記高耐圧MOSFETの線形領域と飽和領域の境界のドレイン・ソース間電圧を下限とし、前記境界のドレイン・ソース間電圧を予め定められた所定数倍した電圧を上限とする電圧範囲内の値に対応させて設定する、ことを特徴とする請求項17記載のモデル作成方法。   The boundary between the first region and the second region of the resistance value of the first variable resistance element of the MOSFET model for circuit simulation is defined as the boundary between the linear region and the saturation region of the high voltage MOSFET to be modeled. The drain-source voltage is set to correspond to a value within a voltage range having a lower limit, and a voltage obtained by multiplying the drain-source voltage at the boundary by a predetermined number of times as an upper limit. Item 18. A model creation method according to Item 17. 前記回路シミュレーション用のMOSFETモデルにおいて、前記第1の可変抵抗素子は、前記ウェルコンタクト拡散層近傍の寄生抵抗がMOSFETのドレイン電流に与える影響を表現するための等価抵抗に対応し、
前記第1の可変抵抗素子の抵抗値が、ドレイン・ソース間電圧の増加に伴い増加する第1の領域と、前記抵抗値がドレイン・ソース間電圧に依存しない第2の領域と、を有し、 前記第1の領域と前記第2の領域の境界で前記抵抗値が滑らかに接続し、前記第1の可変抵抗素子の前記抵抗値は、ゲート・ソース間電圧の上昇とともに低下する特性を有する、ことを特徴とする請求項14乃至16のいずれか1項に記載のモデル作成方法。
In the MOSFET model for circuit simulation, the first variable resistance element corresponds to an equivalent resistance for expressing the influence of the parasitic resistance near the well contact diffusion layer on the drain current of the MOSFET,
A first region in which the resistance value of the first variable resistance element increases as the drain-source voltage increases; and a second region in which the resistance value does not depend on the drain-source voltage. The resistance value is smoothly connected at the boundary between the first region and the second region, and the resistance value of the first variable resistance element has a characteristic of decreasing as the gate-source voltage increases. The model creation method according to any one of claims 14 to 16.
前記回路シミュレーション用のMOSFETモデルにおいて、
前記第1の可変抵抗素子の抵抗値が、
ドレイン・ソース間電圧に依存する第1の領域と、前記ドレイン・ソース間電圧に依存しない第2の領域と、を有し、
前記第1の領域を、前記抵抗値のドレイン・ソース間電圧特性に対応させて少なくとも二つの領域に分割し、
前記第1及び第2の領域間、及び、前記第1の領域を分割した領域の隣接領域間を互いに滑らかに接続するように設定する、ことを特徴とする請求項14乃至16のいずれか1項に記載のモデル作成方法。
In the MOSFET model for circuit simulation,
The resistance value of the first variable resistance element is
A first region that depends on the drain-source voltage; and a second region that does not depend on the drain-source voltage;
Dividing the first region into at least two regions corresponding to the drain-source voltage characteristics of the resistance value;
17. The device according to claim 14, wherein the first and second regions and adjacent regions of the region obtained by dividing the first region are set so as to be smoothly connected to each other. The model creation method described in the section.
前記ウェルコンタククト拡散層を含まずに前記ソース拡散層からなるソース領域を有する通常構造の高耐圧MOSFETの電気特性データを用いて、通常構造のMOSFETのモデルを作成し、
前記通常構造のMOSFETのモデルと、前記第1の可変抵抗素子とから構成されるMOSFETのモデルにおいて、モデリング対象の前記高耐圧MOSFETの前記電気特性データに合わせて、前記第1の可変抵抗素子のパラメータを調整する、ことを特徴とする請求項14乃至20のいずれか1項に記載のモデル作成方法。
Using the electrical characteristics data of a normal structure high voltage MOSFET having a source region composed of the source diffusion layer without including the well contact diffusion layer, a normal structure MOSFET model is created,
In the MOSFET model composed of the normal structure MOSFET model and the first variable resistance element, the first variable resistance element of the first variable resistance element is matched with the electrical characteristic data of the high breakdown voltage MOSFET to be modeled. 21. The model creation method according to claim 14, wherein a parameter is adjusted.
前記通常構造のMOSFETのモデルと前記第1の可変抵抗素子から構成されるMOSFETのモデルからなる第1のモデルを生成し、
前記第1のモデルに基づき、前記回路シミュレーション用のMOSFETのモデルとして、前記モデリング対象MOSFETのドレイン端子の間に、前記第2及び第3の可変抵抗素子をそれぞれ備えた第2のモデルを生成し、前記第1の可変抵抗素子の抵抗値を調整した上で前記第2及び第3の可変抵抗素子の抵抗値を調整する、ことを特徴とする請求項16記載のモデル作成方法。
Generating a first model comprising a MOSFET model of the normal structure and a MOSFET model comprising the first variable resistance element;
Based on the first model, a second model including the second and third variable resistance elements between the drain terminals of the modeling target MOSFET is generated as a model of the circuit simulation MOSFET. The model creation method according to claim 16, wherein the resistance values of the second and third variable resistance elements are adjusted after adjusting the resistance values of the first variable resistance elements.
前記通常構造のMOSFETの前記電気特性データに、モデリング対象の前記高耐圧MOSFETの前記ソース領域の前記ソース拡散層の幅の総和を、モデリング対象の前記高耐圧MOSFETのチャネル幅で除した値を乗じた値を、モデリング対象の前記高耐圧MOSFETの電気特性データから差し引いて電気特性差分データを求め、
モデリング対象の前記高耐圧MOSFETの前記ソース領域の前記ウェルコンタクト拡散層の幅の総和に相当する部分を、前記通常構造MOSFETのモデルと、前記通常構造MOSFETのモデルと、前記通常構造MOSFETのモデルのソースに接続された前記第1の可変抵抗素子の抵抗値を調整する、ことを特徴とする請求項14乃至18のいずれか1項に記載のモデル作成方法。
The electrical characteristic data of the normal structure MOSFET is multiplied by a value obtained by dividing the sum of the widths of the source diffusion layers in the source region of the high breakdown voltage MOSFET to be modeled by the channel width of the high breakdown voltage MOSFET to be modeled. The value obtained by subtracting the value from the electrical property data of the high breakdown voltage MOSFET to be modeled to obtain electrical property difference data,
A portion corresponding to the sum of the widths of the well contact diffusion layers in the source region of the high breakdown voltage MOSFET to be modeled is defined as a model of the normal structure MOSFET, a model of the normal structure MOSFET, and a model of the normal structure MOSFET. The model creation method according to claim 14, wherein a resistance value of the first variable resistance element connected to a source is adjusted.
モデリング対象の前記高耐圧MOSFETのソース側に付加された寄生抵抗に対する前記MOSFETの電流感度を表す寄生抵抗感度データを求め、
前記第1の可変抵抗素子のバイアスに依存した可変抵抗モデルを作成する、ことを特徴とする請求項14乃至18のいずれか1項に記載のモデル作成方法。
Obtain parasitic resistance sensitivity data representing the current sensitivity of the MOSFET with respect to the parasitic resistance added to the source side of the high breakdown voltage MOSFET to be modeled,
The model creation method according to claim 14, wherein a variable resistance model depending on a bias of the first variable resistance element is created.
請求項1乃至11のいずれか1項に記載のモデル作成装置で作成されたMOSFETのモデルを用いて回路シミュレーションを実行するシミュレーション装置。   A simulation apparatus that executes a circuit simulation using a MOSFET model created by the model creation apparatus according to claim 1. 請求項14乃至24のいずれか1項に記載のモデル作成方法で作成されたMOSFETのモデルを用いて回路シミュレーションを実行するシミュレーション方法。   25. A simulation method for executing a circuit simulation using a MOSFET model created by the model creation method according to claim 14.
JP2011227268A 2011-10-14 2011-10-14 High breakdown voltage mosfet circuit simulation model creation method, device and program Pending JP2013089696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011227268A JP2013089696A (en) 2011-10-14 2011-10-14 High breakdown voltage mosfet circuit simulation model creation method, device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227268A JP2013089696A (en) 2011-10-14 2011-10-14 High breakdown voltage mosfet circuit simulation model creation method, device and program

Publications (1)

Publication Number Publication Date
JP2013089696A true JP2013089696A (en) 2013-05-13

Family

ID=48533333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227268A Pending JP2013089696A (en) 2011-10-14 2011-10-14 High breakdown voltage mosfet circuit simulation model creation method, device and program

Country Status (1)

Country Link
JP (1) JP2013089696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111368490A (en) * 2020-02-24 2020-07-03 杰华特微电子(杭州)有限公司 Circuit model of transverse double-diffusion transistor and modeling method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111368490A (en) * 2020-02-24 2020-07-03 杰华特微电子(杭州)有限公司 Circuit model of transverse double-diffusion transistor and modeling method thereof

Similar Documents

Publication Publication Date Title
KR100940415B1 (en) On resistance test method for back-side-drain wafer
Aarts et al. Compact modeling of high-voltage LDMOS devices including quasi-saturation
Agarwal et al. Analytical modeling and experimental validation of threshold voltage in BSIM6 MOSFET model
JP3269459B2 (en) MISFET overlap length measuring method, measuring device, and recording medium recording extraction program
US20130054209A1 (en) Modeling Method of SPICE Model Series of SOI FET
US7983889B2 (en) Simulation method and simulation apparatus for LDMOSFET
JP5069711B2 (en) MOSFET model parameter extraction method
CN102636678A (en) Threshold voltage degradation measuring circuit
JP2013089696A (en) High breakdown voltage mosfet circuit simulation model creation method, device and program
US6750673B1 (en) Method for measuring an effective channel length of a MOSFET
US20110238393A1 (en) Spice model parameter output apparatus and method, and recording medium
JP3431610B2 (en) Semiconductor element characteristic simulation method and characteristic simulation apparatus
JP4748552B2 (en) MISFET overlap length extraction method, extraction apparatus, and recording medium storing extraction program
KR101126981B1 (en) Method for extracting parasitic series resistances in amorphous thin film transistors
Angelov et al. MOSFET models at the edge of 100-nm sizes
Scholten et al. Reliability simulation models for hot carrier degradation
JP2008053617A (en) Current model generating method and electronic circuit
Chauhan et al. Modeling of high voltage MOSFETs based on EKV (HV-EKV)
CN101471273B (en) Method of predicting drain current in MOS transistor
Singhal et al. An Improved Robust Infinitely Differentiable Drift Resistance Model for BSIM High Voltage Compact Model
Fajardo et al. Correction of the errors due to the non zero drain-to-source voltage in the gm/ID based Vth extraction methods
Hu Compact modeling for the changing transistor
JP2005311210A (en) Physical characteristics extraction method of spice parameter
Lee et al. Accurate Non-Quasi-Static Gate-Source Impedance Model of RF MOSFETs
Suriano et al. A Simplified DC Thermal Model of Recessed Gate P-HEMTs for CAD Applications