JP2013088361A - Soil purification system - Google Patents

Soil purification system Download PDF

Info

Publication number
JP2013088361A
JP2013088361A JP2011231078A JP2011231078A JP2013088361A JP 2013088361 A JP2013088361 A JP 2013088361A JP 2011231078 A JP2011231078 A JP 2011231078A JP 2011231078 A JP2011231078 A JP 2011231078A JP 2013088361 A JP2013088361 A JP 2013088361A
Authority
JP
Japan
Prior art keywords
soil
particles
radioactive cesium
cesium
purification system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011231078A
Other languages
Japanese (ja)
Other versions
JP5904757B2 (en
Inventor
Tokusuke Hayami
徳介 早見
Satoshi Haraguchi
智 原口
Kentaro Matsunaga
健太郎 松永
Masato Yoshino
正人 吉野
Taku Menju
卓 毛受
Shigeto Kikuchi
茂人 菊池
Yasuhiko Nagamori
泰彦 永森
Tomohiro Todoroki
朋浩 轟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011231078A priority Critical patent/JP5904757B2/en
Publication of JP2013088361A publication Critical patent/JP2013088361A/en
Application granted granted Critical
Publication of JP5904757B2 publication Critical patent/JP5904757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soil purification system capable of purifying soil by collecting radioactive cesium from masses of soil while suppressing increase in sizes of apparatuses, complication and increase of energy consumption.SOLUTION: The soil purification system includes a separator, a desorption apparatus, an adsorption tower, and a circulator. The separator applies separation processing to soil including clay minerals to which radioactive cesium is stuck to separate the soil into first particles containing the clay minerals and second particles other than the first particles. The desorption apparatus extracts the radioactive cesium attached to the first particles by an acid aqueous solution of less than 100°C and outputs a cesium containing solution containing the extracted radioactive cesium. The adsorption tower is filled with an adsorbent for adsorbing the radioactive cesium and adsorbs the radioactive cesium contained in the cesium containing solution being in contact with the adsorbent. The circulator circulates a purified solution obtained after adsorbing the radioactive cesium by the adsorption tower to the desorption apparatus.

Description

本発明の実施形態は、土壌中に含まれる放射性物質を回収する土壌浄化システムに関する。   Embodiments of the present invention relate to a soil purification system that recovers radioactive substances contained in soil.

土壌中の粘土鉱物に強固に付着した放射性セシウムを土壌から回収し土壌を浄化するには、100℃以上の高温かつ6mol/L以上の高濃度の酸により土壌を溶解し、放射性セシウムを抽出する方法が有望である。ただし、大量の土壌から放射性セシウムを回収しようとする場合、高温かつ高濃度の酸を大量に使用する必要がある。このため、装置の大型化及び消費エネルギーの増大が問題になる。また、100℃以上の高濃度の酸を使用する場合、常圧での処理ができず、反応容器の耐圧仕様を向上させる必要等があるため、装置が複雑化するという問題がある。   To recover radioactive cesium firmly attached to clay minerals in the soil from the soil and purify the soil, dissolve the soil with a high concentration of acid at a high temperature of 100 ° C. or higher and 6 mol / L or more, and extract the radioactive cesium. The method is promising. However, when trying to recover radioactive cesium from a large amount of soil, it is necessary to use a large amount of high temperature and high concentration acid. For this reason, the enlargement of an apparatus and the increase in energy consumption become a problem. Further, when a high concentration acid of 100 ° C. or higher is used, there is a problem that the apparatus cannot be processed at normal pressure and the pressure resistance specification of the reaction vessel needs to be improved.

特開2007−209915号公報JP 2007-209915 A

以上のように、高温かつ高濃度の酸を用いて大量の土壌から放射性セシウムを回収し土壌を浄化しようとする場合、装置の大型化、複雑化及び消費エネルギーの増大等の問題が生じる。   As described above, when radioactive cesium is recovered from a large amount of soil using a high-temperature and high-concentration acid to purify the soil, problems such as an increase in size and complexity of the apparatus and an increase in energy consumption arise.

そこで、目的は、装置の大型化、複雑化及び消費エネルギーの増大を抑えて、大量の土壌から放射性セシウムを回収し土壌を浄化することが可能な土壌浄化システムを提供することにある。   Therefore, an object is to provide a soil purification system capable of recovering radioactive cesium from a large amount of soil and purifying the soil while suppressing increase in size and complexity of the apparatus and increase in energy consumption.

実施形態によれば、土壌浄化システムは、分離装置、脱離装置、吸着塔及び循環装置を具備する。分離装置は、放射性セシウムが付着した粘土鉱物を含む土壌に分離処理を施し、前記粘土鉱物を含む第1の粒子と、それ以外の第2の粒子とに分離する。脱離装置は、100℃未満の酸水溶液により前記第1の粒子に付着された放射性セシウムを抽出し、前記抽出した放射性セシウムを含むセシウム含有液を出力する。さらに、セシウムを除去されて浄化された土壌を出力する。吸着塔は、放射性セシウムを吸着する吸着剤が充填され、前記吸着剤に接触したセシウム含有液に含まれる放射性セシウムを吸着する。循環装置は、前記吸着塔で放射性セシウムが吸着された後の浄化液を前記脱離装置へ循環させる。   According to the embodiment, the soil purification system includes a separation device, a desorption device, an adsorption tower, and a circulation device. The separation device performs a separation treatment on the soil containing the clay mineral to which radioactive cesium is adhered, and separates the first particle containing the clay mineral and the other second particles. The desorption device extracts the radioactive cesium attached to the first particles with an acid aqueous solution of less than 100 ° C., and outputs the cesium-containing liquid containing the extracted radioactive cesium. In addition, it outputs soil that has been clarified by removing cesium. The adsorption tower is filled with an adsorbent that adsorbs radioactive cesium, and adsorbs radioactive cesium contained in the cesium-containing liquid in contact with the adsorbent. The circulation device circulates the purification liquid after the radioactive cesium is adsorbed in the adsorption tower to the desorption device.

本実施形態に係る土壌浄化システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the soil purification system which concerns on this embodiment.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は、本実施形態に係る土壌浄化システムの機能構成を示すブロック図である。図1に示す土壌浄化システムは、分離装置10、脱離装置20、洗浄装置30、吸着塔40及び循環装置50を具備する。   FIG. 1 is a block diagram showing a functional configuration of the soil purification system according to the present embodiment. The soil purification system shown in FIG. 1 includes a separation device 10, a desorption device 20, a cleaning device 30, an adsorption tower 40, and a circulation device 50.

分離装置10には、原土壌が入れられる。原土壌は、数mm以下の粒径の粒子の集合体である。粗大な粒子は事前に除いておくことが好ましい。土壌は粒径により分類されるが、特に20μm以下をシルトと呼び、2μm以下の粒子を粘土と呼ぶ。シルト及び粘土には、雲母、ベントナイト及びバーミキュライト等の粘土鉱物が含まれる。粘土鉱物は、層状構造をしており、層間に放射性セシウムがイオン交換で強固に付着することが知られている。   The separation device 10 is filled with raw soil. The raw soil is an aggregate of particles having a particle size of several mm or less. Coarse particles are preferably removed in advance. Soil is classified according to particle size, and in particular, 20 μm or less is called silt, and 2 μm or less is called clay. Silt and clay include clay minerals such as mica, bentonite and vermiculite. The clay mineral has a layered structure, and it is known that radioactive cesium adheres firmly between layers by ion exchange.

分離装置10は、乾式サイクロン方式又は湿式サイクロン方式により、原土壌を第1及び第2の粒子に分離する。第1の粒子は、例えば、粒子の直径が20μm以下の粒子であり、粘土鉱物を含むと予想されるシルト及び粘土である。ただし、サイクロンを用いた土壌の分級では粒径に応じて確率で分離されるため、篩いと異なり同じ粒径の粒子が第1の粒子にも第2の粒子にも含まれる。汚染の程度、土壌の粒度分布など応じて、サイクロンの大きさや形状、流速を変えることにより、分離する粒径は都度変更することが望ましい。また、第2の粒子は、例えば、粒子の直径が20μmを超える粒子である組砂及び細砂である。なお、第2の粒子には、放射性セシウムを含むその他の放射性物質(例えば、放射性ストロンチウム等)が付着している。分離装置10により原土壌から分離された第1の粒子は、脱離装置20へ供給される。分離装置10により原土壌から分離された第2の粒子は、洗浄装置30へ供給される。   The separation device 10 separates raw soil into first and second particles by a dry cyclone method or a wet cyclone method. The first particles are, for example, silts and clays having a particle diameter of 20 μm or less and expected to contain clay minerals. However, since the soil classification using a cyclone is separated with probability according to the particle size, unlike the sieve, particles having the same particle size are included in both the first particle and the second particle. It is desirable to change the particle size to be separated each time by changing the size and shape of the cyclone and the flow velocity according to the degree of contamination and the particle size distribution of the soil. In addition, the second particles are, for example, braided sand and fine sand, which are particles having a particle diameter exceeding 20 μm. Note that other radioactive substances including radioactive cesium (for example, radioactive strontium) are attached to the second particles. The first particles separated from the raw soil by the separation device 10 are supplied to the desorption device 20. The second particles separated from the raw soil by the separation device 10 are supplied to the cleaning device 30.

脱離装置20は、脱離槽21、加熱部22、攪拌機23及びポンプ24を備える。脱離槽21には、攪拌機23が取り付けられ、例えば、硫酸、硝酸、塩酸又はこれらのいずれかの混合物等の強酸性の水溶液が入れられている。前記強酸性の水溶液には、イオン交換を促進する為に、0.01mol/L〜2mol/Lアンモニウムイオン、カリウムイオン又はカルシウムイオンを添加してもよい。酸水溶液の単位当りの濃度は0.5mol/L〜5mol/Lである。酸水溶液の量は、第1の粒子の重量と酸水溶液の重量との比が1:1〜1:10となるように調整される。加熱部22は、脱離槽21内の酸水溶液を100℃未満の例えば、60℃から90℃程度に加熱する。酸水溶液中での加熱により、土壌は表層から溶解され、表面及び内部に吸着したセシウムが溶液中に放出される。   The desorption device 20 includes a desorption tank 21, a heating unit 22, a stirrer 23, and a pump 24. A stirrer 23 is attached to the desorption tank 21, and for example, a strongly acidic aqueous solution such as sulfuric acid, nitric acid, hydrochloric acid, or any mixture thereof is placed therein. In order to promote ion exchange, 0.01 mol / L to 2 mol / L ammonium ion, potassium ion or calcium ion may be added to the strongly acidic aqueous solution. The concentration per unit of the acid aqueous solution is 0.5 mol / L to 5 mol / L. The amount of the acid aqueous solution is adjusted so that the ratio of the weight of the first particles to the weight of the acid aqueous solution is 1: 1 to 1:10. The heating unit 22 heats the aqueous acid solution in the desorption tank 21 to a temperature below 100 ° C., for example, from about 60 ° C. to about 90 ° C. By heating in an acid aqueous solution, the soil is dissolved from the surface layer, and cesium adsorbed on the surface and inside is released into the solution.

分離装置10で分離された第1の粒子は、脱離槽21へ供給される。脱離槽21に取り付けられる攪拌機23は、第1の粒子が加えられた酸水溶液を攪拌する。加熱部22は、第1の粒子が加えられた酸水溶液を60℃〜90℃程度に熱し、熱した状態で1〜6時間保持する。これにより、第1の粒子の粘土鉱物に付着している放射性セシウムが酸水溶液中に抽出され、セシウム含有液となる。ポンプ24は、脱離槽21のセシウム含有液を吸着塔50へ送水する。   The first particles separated by the separation device 10 are supplied to the desorption tank 21. The stirrer 23 attached to the desorption tank 21 stirs the acid aqueous solution to which the first particles are added. The heating unit 22 heats the acid aqueous solution to which the first particles are added to about 60 ° C. to 90 ° C., and holds the heated aqueous solution for 1 to 6 hours. Thereby, the radioactive cesium adhering to the clay mineral of the 1st particle | grains is extracted in acid aqueous solution, and becomes a cesium containing liquid. The pump 24 feeds the cesium-containing liquid in the desorption tank 21 to the adsorption tower 50.

第1の粒子の粘土鉱物に付着している放射性セシウムが酸水溶液中に抽出される際には、脱離槽21の底にはセシウムを除去された土壌が沈殿する。脱離槽21は、浄化された土壌を排出する排出機構をさらに備える。1回の脱離処理では浄化が不十分な場合は、必要に応じて再度土壌を脱離装置20へ投入し、脱離処理が繰り返し行われる。   When the radioactive cesium adhering to the clay mineral of the first particles is extracted into the acid aqueous solution, the soil from which the cesium has been removed is precipitated at the bottom of the desorption tank 21. The detachment tank 21 further includes a discharge mechanism for discharging the purified soil. If purification is insufficient by one detachment process, the soil is again input to the detachment apparatus 20 as necessary, and the detachment process is repeatedly performed.

吸着塔50には、セシウム吸着剤が充填される。ここで、セシウム吸着剤とは、例えば、ゼオライト、珪チタン酸塩及びプルシアンブルー等である。セシウム吸着剤は、脱離装置20から給水されるセシウム含有液に接触すると、セシウム含有液に含まれる放射性セシウムを吸着する。   The adsorption tower 50 is filled with a cesium adsorbent. Here, the cesium adsorbent is, for example, zeolite, silicate titanate, Prussian blue, or the like. When the cesium adsorbent comes into contact with the cesium-containing liquid supplied from the desorption device 20, it adsorbs radioactive cesium contained in the cesium-containing liquid.

循環装置60は、放射性セシウムが吸着された後の浄化水を汲み取り、脱離装置20へ循環させる。浄化水に放射性セシウムが抽出されていない粘土鉱物が含まれている場合、脱離装置20にて、この粘土鉱物に対する処理が行われることとなる。   The circulation device 60 draws purified water after the radioactive cesium has been adsorbed and circulates it to the desorption device 20. When the clay mineral from which radioactive cesium is not extracted is contained in the purified water, the desorption device 20 performs processing on the clay mineral.

洗浄装置30は、分離装置10から供給される第2の粒子を、例えば、酢酸アンモニウム等のアンモニウム塩溶液を用いて洗浄する。これにより、第2の粒子に付着された放射性物質が、アンモニウムイオンとのイオン交換により除去される。なお、このとき除去される放射性物質は、放射性セシウムの他に、放射性ストロンチウムも含まれる。洗浄装置30で用いられるアンモニウム塩溶液も、脱離装置20における吸着塔40及び循環装置50を用いた再生利用と同様に、繰返し使用することができる(図示せず)。   The cleaning device 30 cleans the second particles supplied from the separation device 10 using, for example, an ammonium salt solution such as ammonium acetate. Thereby, the radioactive substance adhering to 2nd particle | grains is removed by ion exchange with an ammonium ion. Note that the radioactive substance removed at this time includes radioactive strontium in addition to radioactive cesium. The ammonium salt solution used in the cleaning device 30 can also be used repeatedly (not shown) in the same manner as the recycling using the adsorption tower 40 and the circulation device 50 in the desorption device 20.

以上のように、本実施形態では、分離装置10は、原土壌から粘土鉱物を含む第1の粒子を分離する。そして、脱離装置20は、分離された第1の粒子に対して放射性セシウムの脱離処理を行うようにしている。これにより、原土壌に含まれる粒子のうち、粘土鉱物を含む直径がおよそ20μm以下の粒子のみに対して脱離処理を行うことになるため、脱離槽21で使用される酸水溶液の量を抑えることが可能となる。   As described above, in the present embodiment, the separation device 10 separates the first particles including the clay mineral from the raw soil. The desorption device 20 performs a desorption process of radioactive cesium on the separated first particles. As a result, among the particles contained in the raw soil, the desorption treatment is performed only for particles having a diameter of about 20 μm or less including clay minerals, so the amount of the acid aqueous solution used in the desorption tank 21 is reduced. It becomes possible to suppress.

また、本実施形態では、放射性セシウムが抽出されたセシウム含有液を吸着塔40に供給した後、放射性セシウム吸着後の浄化水を、脱離装置20に循環する。つまり、脱離装置20における脱離処理が繰り返されるようにしている。これにより、ワンパスの処理での脱離率は低くても、脱離処理が繰り返されることで、結果的には高い脱離率を得ることが可能となる。すなわち、酸水溶液の温度が60℃〜90℃程度、つまり、100℃以上(例えば200℃等)の高温でない場合であっても、高い脱離率を得ることが可能となる。なお、粘土鉱物単体に付着したセシウムの温度100℃未満の酸水溶液による脱離率は30%程度であるが、この脱離処理を繰り返すことにより、高い脱離率を得ることが可能となる。また、脱離処理を繰り返し行うことで、酸水溶液の濃度が0.5mol/L〜5mol/L程度、つまり、6mol/L等の高濃度でない場合であっても、高い脱離率を得ることが可能となる。   Moreover, in this embodiment, after supplying the cesium containing liquid from which the radioactive cesium was extracted to the adsorption tower 40, the purified water after the radioactive cesium adsorption is circulated to the desorption device 20. That is, the desorption process in the desorption device 20 is repeated. Thereby, even if the desorption rate in the one-pass process is low, the desorption process is repeated, and as a result, a high desorption rate can be obtained. That is, even when the temperature of the acid aqueous solution is not about 60 ° C. to 90 ° C., that is, not a high temperature of 100 ° C. or higher (for example, 200 ° C. or the like), a high desorption rate can be obtained. Note that the detachment rate of the cesium adhering to the clay mineral alone with an acid aqueous solution having a temperature of less than 100 ° C. is about 30%. By repeating this detachment process, a high detachment rate can be obtained. Further, by repeatedly performing the desorption treatment, a high desorption rate can be obtained even when the concentration of the acid aqueous solution is about 0.5 mol / L to 5 mol / L, that is, not high concentration such as 6 mol / L. Is possible.

また、本実施形態では、洗浄装置30は、原土壌から第1の粒子を分離した後の第2の粒子に対して、洗浄処理を行うようにしている。これにより、放射性セシウムが粘土鉱物以外の粒子に付着している場合であっても、この放射性セシウムを除去することが可能となる。また、粘土鉱物以外の粒子に放射性セシウム以外の放射性物質が付着している場合であっても、この放射性物質を除去することが可能となる。   Moreover, in this embodiment, the washing | cleaning apparatus 30 is made to perform a washing process with respect to the 2nd particle | grains after isolate | separating 1st particle | grains from raw | natural soil. Thereby, even when radioactive cesium is attached to particles other than clay minerals, this radioactive cesium can be removed. Further, even when a radioactive substance other than radioactive cesium is attached to particles other than clay minerals, this radioactive substance can be removed.

また、本実施形態では、脱離槽21に沈殿する浄化された土壌に対しても繰り返し脱離処理を行うようにしている。これにより、ワンパスの処理での脱離率は低くても、脱離処理が繰り返されることで、結果的には高い脱離率を得ることが可能となる。   In the present embodiment, the desorption treatment is repeatedly performed on the purified soil that settles in the desorption tank 21. Thereby, even if the desorption rate in the one-pass process is low, the desorption process is repeated, and as a result, a high desorption rate can be obtained.

したがって、本実施形態に係る土壌浄化システムによれば、システムの大型化、複雑化及び消費エネルギーの増大を抑えて、大量の土壌から放射性セシウムを脱離し土壌を浄化することができる。   Therefore, according to the soil purification system which concerns on this embodiment, the enlargement of a system, complication, and the increase in consumption energy can be suppressed, and radioactive cesium can be detach | desorbed from a lot of soil, and soil can be purified.

なお、上記実施形態では、脱離装置20に攪拌機23が取り付けられる場合を例に説明したが、これに限定される訳ではない。例えば、攪拌機23を用いず、脱離槽21内で第1の粒子を酸水溶液に浸漬させるようにしても構わない。   In the above embodiment, the case where the stirrer 23 is attached to the desorption device 20 has been described as an example, but the present invention is not limited to this. For example, the first particles may be immersed in the acid aqueous solution in the desorption tank 21 without using the stirrer 23.

また、上記実施形態では、加熱部22により脱離槽21内の酸水溶液を熱する場合を例に説明したが、これに限定される訳ではない。例えば、脱離装置20は、加熱部22の代わりに電磁波発生部を備えていても構わない。電磁波発生装置は、電磁波を発生し、発生した電磁波を脱離槽21へ照射する。脱離槽21の酸水溶液は、電磁波による誘電加熱により60℃〜90℃へ加温される。   In the above-described embodiment, the case where the acid aqueous solution in the desorption tank 21 is heated by the heating unit 22 has been described as an example, but the present invention is not limited to this. For example, the desorption device 20 may include an electromagnetic wave generation unit instead of the heating unit 22. The electromagnetic wave generator generates an electromagnetic wave and irradiates the desorption tank 21 with the generated electromagnetic wave. The acid aqueous solution in the desorption tank 21 is heated to 60 ° C. to 90 ° C. by dielectric heating using electromagnetic waves.

また、脱離装置20は、加熱部22の代わりに超音波発生部を備えていても構わない。超音波発生部は、超音波を発生し、発生した超音波を脱離槽21へ照射する。脱離槽21の酸水溶液による放射性セシウムの抽出処理は、照射される超音波により促進されることになる。なお、加熱部22、電磁波発生部及び超音波発生部は、同時に使用されても構わない。   Further, the desorption device 20 may include an ultrasonic wave generation unit instead of the heating unit 22. The ultrasonic generator generates ultrasonic waves and irradiates the desorption tank 21 with the generated ultrasonic waves. The extraction process of radioactive cesium with the acid aqueous solution in the desorption tank 21 is promoted by the irradiated ultrasonic waves. The heating unit 22, the electromagnetic wave generating unit, and the ultrasonic wave generating unit may be used at the same time.

また、上記実施形態では、脱離槽21内に酸水溶液と第1の粒子とが入れられる場合を例に説明したが、これに限定される訳ではない。粘土鉱物の構成成分が溶解することで生成される、アルミニウムイオン、鉄イオン及び珪素イオンと結合するキレート材を、酸水溶液と混合して脱離槽21へ入れるようにしても構わない。これにより、脱離率がさらに向上することになる。なお、キレート材には、アルギニン等のカルボン酸を含む有機酸、又は、アルブミン及びペクチン等のカルボン酸を含む高分子が用いられる。   Moreover, although the said embodiment demonstrated to the case where the acid aqueous solution and the 1st particle | grains were put in the desorption tank 21, it is not necessarily limited to this. You may make it mix the chelate material couple | bonded with an aluminum aqueous solution, an iron ion, and a silicon ion produced | generated by melt | dissolving the structural component of a clay mineral with the acid aqueous solution, and you may make it put in the desorption tank 21. Thereby, the desorption rate is further improved. As the chelating material, an organic acid containing a carboxylic acid such as arginine or a polymer containing a carboxylic acid such as albumin and pectin is used.

また、溶出した放射性セシウムを吸着する吸着剤を、酸水溶液と混合して脱離槽21へ入れるようにしても構わない。これにより、放射性セシウムの粘土鉱物への再吸着を防止することが可能となり、脱離率のさらなる向上が期待できる。   Further, an adsorbent that adsorbs the eluted radioactive cesium may be mixed with an acid aqueous solution and put into the desorption tank 21. Thereby, it becomes possible to prevent re-adsorption of radioactive cesium to the clay mineral, and further improvement of the desorption rate can be expected.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…分離装置、20…脱離装置、21…脱離槽、22…加熱部、23…攪拌機、24…ポンプ、30…洗浄装置、40…吸着塔、50…循環装置   DESCRIPTION OF SYMBOLS 10 ... Separation device, 20 ... Desorption device, 21 ... Desorption tank, 22 ... Heating part, 23 ... Stirrer, 24 ... Pump, 30 ... Cleaning device, 40 ... Adsorption tower, 50 ... Circulation device

Claims (11)

放射性セシウムが付着した粘土鉱物を含む土壌に分離処理を施し、前記粘土鉱物を含む粒径の第1の粒子と、それ以外の第2の粒子とに分離する分離装置と、
100℃未満の酸水溶液により前記第1の粒子に付着された放射性セシウムを抽出し、前記抽出した放射性セシウムを含むセシウム含有液を出力する脱離装置と、
放射性セシウムを吸着する吸着剤が充填され、前記吸着剤に接触したセシウム含有液に含まれる放射性セシウムを吸着する吸着塔と、
前記吸着塔で放射性セシウムが吸着された後の浄化液を前記脱離装置へ循環させる循環装置と
を具備することを特徴とする土壌浄化システム。
A separation device that performs a separation treatment on soil containing clay mineral to which radioactive cesium is attached, and separates the soil into first particles having a particle diameter containing the clay mineral and other second particles;
A desorption device for extracting radioactive cesium attached to the first particles with an aqueous acid solution of less than 100 ° C., and outputting a cesium-containing liquid containing the extracted radioactive cesium;
An adsorbing tower that is filled with an adsorbent that adsorbs radioactive cesium and adsorbs radioactive cesium contained in a cesium-containing liquid that is in contact with the adsorbent;
A soil purification system, comprising: a circulation device that circulates the purification liquid after the radioactive cesium is adsorbed by the adsorption tower to the desorption device.
前記脱離装置は、前記セシウム含有液を出力する際に生成される脱離処理後の土壌に対し、前記脱離処理後の土壌に含まれる第1の粒子に付着された放射性セシウムの抽出を再度行うことを特徴とする請求項1記載の土壌浄化システム。   The desorption device extracts the radioactive cesium attached to the first particles contained in the soil after the desorption treatment with respect to the soil after the desorption treatment generated when outputting the cesium-containing liquid. The soil purification system according to claim 1, which is performed again. 前記分離装置により分離される第2の粒子をアンモニウム塩溶液を使用して洗浄することで、前記第2の粒子に付着される前記放射性セシウムを含む放射性物質を除去する洗浄装置をさらに具備することを特徴とする請求項1又は2記載の土壌浄化システム。   A cleaning device for removing the radioactive substance containing the radioactive cesium attached to the second particles by cleaning the second particles separated by the separation device using an ammonium salt solution; The soil purification system of Claim 1 or 2 characterized by these. 前記脱離装置において、前記第1の粒子の重量と前記酸水溶液の重量との比は、1:1乃至1:10であることを特徴とする請求項1乃至3のいずれかに記載の土壌浄化システム。   4. The soil according to claim 1, wherein a ratio of the weight of the first particles to the weight of the acid aqueous solution is 1: 1 to 1:10. Purification system. 前記脱離装置において、前記酸水溶液の単位当りの濃度は、0.5mol/L〜5mol/Lであることを特徴とする請求項1乃至4のいずれかに記載の土壌浄化システム。   5. The soil purification system according to claim 1, wherein a concentration per unit of the acid aqueous solution is 0.5 mol / L to 5 mol / L in the desorption device. 前記脱離装置において、前記酸水溶液は、前記第1の粒子が入れられた状態で60℃乃至90℃で熱せられ、1時間乃至6時間保持されることを特徴とする請求項1乃至5のいずれかに記載の土壌浄化システム。   6. The desorption apparatus according to claim 1, wherein the acid aqueous solution is heated at 60 ° C. to 90 ° C. in a state where the first particles are placed and is held for 1 to 6 hours. The soil purification system in any one. 前記脱離装置は、加熱部を備え、前記加熱部により前記酸水溶液が熱せられることを特徴とする請求項6記載の土壌浄化システム。   The soil removal system according to claim 6, wherein the desorption device includes a heating unit, and the acid aqueous solution is heated by the heating unit. 前記脱離装置は、電磁波発生部を備え、前記電磁波発生部で発生される電磁波により前記酸水溶液が熱せられることを特徴とする請求項6又は7記載の土壌浄化システム。   The soil purification system according to claim 6 or 7, wherein the desorption device includes an electromagnetic wave generation unit, and the acid aqueous solution is heated by the electromagnetic wave generated by the electromagnetic wave generation unit. 前記脱離装置は、超音波発生部を備え、前記超音波発生部で発生される超音波を前記酸水溶液に照射することにより、前記第1の粒子に付着された放射性セシウムの抽出処理を促進させることを特徴とする請求項1乃至6のいずれかに記載の土壌浄化システム。   The desorption device includes an ultrasonic wave generation unit, and accelerates the extraction process of radioactive cesium attached to the first particles by irradiating the acid aqueous solution with ultrasonic waves generated by the ultrasonic wave generation unit. The soil purification system according to any one of claims 1 to 6, wherein: 前記酸水溶液には、粘土鉱物の構成成分が溶解することで生成される金属イオンと結合するキレート材が混合されることを特徴とする請求項1乃至9のいずれかに記載の土壌浄化システム。   The soil purification system according to any one of claims 1 to 9, wherein the acid aqueous solution is mixed with a chelating material that binds to metal ions generated by dissolution of constituent components of clay mineral. 前記酸水溶液には、溶出した放射性セシウムを吸着する吸着剤が混合されることを特徴とする請求項1乃至10のいずれかに記載の土壌浄化システム。   The soil purification system according to any one of claims 1 to 10, wherein the acid aqueous solution is mixed with an adsorbent that adsorbs the eluted radioactive cesium.
JP2011231078A 2011-10-20 2011-10-20 Soil purification system Expired - Fee Related JP5904757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011231078A JP5904757B2 (en) 2011-10-20 2011-10-20 Soil purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231078A JP5904757B2 (en) 2011-10-20 2011-10-20 Soil purification system

Publications (2)

Publication Number Publication Date
JP2013088361A true JP2013088361A (en) 2013-05-13
JP5904757B2 JP5904757B2 (en) 2016-04-20

Family

ID=48532395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231078A Expired - Fee Related JP5904757B2 (en) 2011-10-20 2011-10-20 Soil purification system

Country Status (1)

Country Link
JP (1) JP5904757B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235011A (en) * 2013-05-31 2014-12-15 株式会社東芝 Device and method for decontaminating soil
JP2015021856A (en) * 2013-07-19 2015-02-02 株式会社タクマ System and method for removing cesium contained in waste
JP2015025706A (en) * 2013-07-25 2015-02-05 株式会社東芝 Method and device for decontaminating soil
JP2015118010A (en) * 2013-12-18 2015-06-25 一般財団法人生産技術研究奨励会 Decontamination method for soil contaminated with radioactive materials, and decontamination device
JP2016020882A (en) * 2014-07-16 2016-02-04 ユニオン昭和株式会社 Method for decontaminating contaminated incineration ash
JP2017167161A (en) * 2017-05-31 2017-09-21 三菱重工業株式会社 Radioactive cesium processing system and radioactive cesium processing method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531477A (en) * 1990-12-17 1993-02-09 Westinghouse Electric Corp <We> Method for removing metal contaminant from solid material using contact with ion-exchange powder
JPH0651096A (en) * 1991-09-18 1994-02-25 British Nuclear Fuels Plc Ground improving method
JPH07185513A (en) * 1993-10-18 1995-07-25 Westinghouse Electric Corp <We> Method of removing metal, radioactive contaminating factor, etc. from granule
JPH09257994A (en) * 1996-03-27 1997-10-03 Mitsubishi Materials Corp Radioactivity removing device for radioactive waste
JP2000051835A (en) * 1998-08-12 2000-02-22 Dowa Mining Co Ltd Method for cleaning soil by using iron powder
JP2002536180A (en) * 1999-02-11 2002-10-29 コモドア・アプライド・テクノロジーズ・インコーポレーテッド Methods for improving sites contaminated with toxic waste.
JP2002341088A (en) * 2001-05-21 2002-11-27 Shimizu Corp Treating method of activated concrete
JP2003014890A (en) * 2001-06-28 2003-01-15 Toshiba Corp Disposal method for radioactivated graphite and its system
JP2004089809A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Method and apparatus for cleaning contaminated soil
JP2004305903A (en) * 2003-04-07 2004-11-04 Shozo Yanagida Method for treating organic halogen compound
JP2010069391A (en) * 2008-09-17 2010-04-02 Kinzo Ri Decontamination method and decontaminating apparatus for contaminated soil
JP2013011580A (en) * 2011-06-03 2013-01-17 Naraken Godo Saiseki Kk Method for removing radioactive substance from contaminated object to which radioactive substances adhere
JP2013088227A (en) * 2011-10-17 2013-05-13 Akita Univ Separation and recovery method of radioactive alkali metal and/or radioactive alkali earth metal
JP5755548B2 (en) * 2011-10-20 2015-07-29 株式会社東芝 How to remove cesium from soil

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531477A (en) * 1990-12-17 1993-02-09 Westinghouse Electric Corp <We> Method for removing metal contaminant from solid material using contact with ion-exchange powder
JPH0651096A (en) * 1991-09-18 1994-02-25 British Nuclear Fuels Plc Ground improving method
JPH07185513A (en) * 1993-10-18 1995-07-25 Westinghouse Electric Corp <We> Method of removing metal, radioactive contaminating factor, etc. from granule
JPH09257994A (en) * 1996-03-27 1997-10-03 Mitsubishi Materials Corp Radioactivity removing device for radioactive waste
JP2000051835A (en) * 1998-08-12 2000-02-22 Dowa Mining Co Ltd Method for cleaning soil by using iron powder
JP2002536180A (en) * 1999-02-11 2002-10-29 コモドア・アプライド・テクノロジーズ・インコーポレーテッド Methods for improving sites contaminated with toxic waste.
JP2002341088A (en) * 2001-05-21 2002-11-27 Shimizu Corp Treating method of activated concrete
JP2003014890A (en) * 2001-06-28 2003-01-15 Toshiba Corp Disposal method for radioactivated graphite and its system
JP2004089809A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Method and apparatus for cleaning contaminated soil
JP2004305903A (en) * 2003-04-07 2004-11-04 Shozo Yanagida Method for treating organic halogen compound
JP2010069391A (en) * 2008-09-17 2010-04-02 Kinzo Ri Decontamination method and decontaminating apparatus for contaminated soil
JP2013011580A (en) * 2011-06-03 2013-01-17 Naraken Godo Saiseki Kk Method for removing radioactive substance from contaminated object to which radioactive substances adhere
JP2013088227A (en) * 2011-10-17 2013-05-13 Akita Univ Separation and recovery method of radioactive alkali metal and/or radioactive alkali earth metal
JP5755548B2 (en) * 2011-10-20 2015-07-29 株式会社東芝 How to remove cesium from soil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7016000286; '土壌中のセシウムを低濃度の酸で抽出することに成功' [online] [平成28年2月3日検索], 20110831, 全4頁, 国立研究開発法人産業技術総合研究所 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235011A (en) * 2013-05-31 2014-12-15 株式会社東芝 Device and method for decontaminating soil
JP2015021856A (en) * 2013-07-19 2015-02-02 株式会社タクマ System and method for removing cesium contained in waste
JP2015025706A (en) * 2013-07-25 2015-02-05 株式会社東芝 Method and device for decontaminating soil
JP2015118010A (en) * 2013-12-18 2015-06-25 一般財団法人生産技術研究奨励会 Decontamination method for soil contaminated with radioactive materials, and decontamination device
JP2016020882A (en) * 2014-07-16 2016-02-04 ユニオン昭和株式会社 Method for decontaminating contaminated incineration ash
JP2017167161A (en) * 2017-05-31 2017-09-21 三菱重工業株式会社 Radioactive cesium processing system and radioactive cesium processing method

Also Published As

Publication number Publication date
JP5904757B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5904757B2 (en) Soil purification system
JP6334263B2 (en) Purification method for heavy metal contaminated soil
JP5382657B2 (en) Phosphate ion adsorbent manufacturing method, phosphate ion recovery method, phosphate fertilizer manufacturing method
JP2011528393A5 (en)
CN105668702B (en) The method that Chioro-anion exchange resin removes Cu, Zn, Pb, Cd in Ca-EDTA leached soil solutions
JP5062579B1 (en) Contaminated soil treatment system containing radioactive material.
JP2012187507A (en) Device and method for water treatment
JP5755548B2 (en) How to remove cesium from soil
JP2014016301A (en) Method and system for decontaminating object contaminated by radioactive material
JP2013178148A (en) Washing processing method for cesium contaminated soil
CN105482152B (en) Silicon chip dicing waste mortar washes recovery system and method
JP6014409B2 (en) Fly ash treatment method and treatment apparatus
JP2013221819A (en) Method and apparatus for decontamination and volume reduction of radiation-contaminated soil
JP2016017798A (en) Apparatus and method for treating fly ash
JP6279664B2 (en) Fly ash treatment method and fly ash treatment apparatus
JP2014124539A (en) Oil separator
JP2014151310A (en) Water treatment method and water treatment equipment
JP2009297618A (en) Method and apparatus for collecting particulate chip
JP2014074694A (en) Method for removing radioactive cesium
JP2011136872A (en) System for manufacturing artificial aggregate, stirrer and filtering device
TWI490173B (en) Method for recovering waste silicon waste from cutting oil
JP5715992B2 (en) Radioactive cesium-containing water treatment method, fly ash treatment method, radioactive cesium-containing water treatment device, and fly ash treatment device
JP6059477B2 (en) Decontamination method
JP2016176716A (en) Apparatus and method for treating contaminated soil
JP6090095B2 (en) Fly ash cleaning device and fly ash cleaning method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R151 Written notification of patent or utility model registration

Ref document number: 5904757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

LAPS Cancellation because of no payment of annual fees