JP2013088183A - Abnormality detection system of electric power supply, abnormality detection device and abnormality detection method - Google Patents

Abnormality detection system of electric power supply, abnormality detection device and abnormality detection method Download PDF

Info

Publication number
JP2013088183A
JP2013088183A JP2011227002A JP2011227002A JP2013088183A JP 2013088183 A JP2013088183 A JP 2013088183A JP 2011227002 A JP2011227002 A JP 2011227002A JP 2011227002 A JP2011227002 A JP 2011227002A JP 2013088183 A JP2013088183 A JP 2013088183A
Authority
JP
Japan
Prior art keywords
voltage
abnormality
abnormality detection
detected
fluctuation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011227002A
Other languages
Japanese (ja)
Inventor
Yuji Nishi
勇二 西
Yukinari Tanabe
千済 田邉
Hiroyuki Umitani
裕之 海谷
Hiromasa Tanaka
宏昌 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011227002A priority Critical patent/JP2013088183A/en
Publication of JP2013088183A publication Critical patent/JP2013088183A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality detection system of an electric power supply, in which the increase of the number of components is suppressed.SOLUTION: The abnormality detection system of the electric power supply is mounted on a vehicle, and a plurality of power storage elements are connected in series therein. The abnormality detection system includes a voltage sensor for detecting a voltage of the power storage element and a controller for calculating respective voltage fluctuation amounts of at least two power storage elements during a prescribed period to detect the abnormality of the power storage elements by comparing the voltage fluctuation amounts between the power storage elements. The abnormality of the electric power supply can be detected by only the detection values by the voltage sensor, and a reduction of the number of components can be facilitated and also the erroneous detection is reducible.

Description

本発明は、車両に搭載される電源装置の異常検出技術に関する。   The present invention relates to an abnormality detection technique for a power supply device mounted on a vehicle.

特許文献1に記載の二次電池の異常検出は、二次電池を流れる電流を検出する電流センサの検出値と、二次電池の電圧を検出する電圧センサの検出値とを用いている。例えば、充電中の二次電池の電圧が減少している場合に、二次電池の異常を検出している。   The abnormality detection of the secondary battery described in Patent Document 1 uses the detection value of the current sensor that detects the current flowing through the secondary battery and the detection value of the voltage sensor that detects the voltage of the secondary battery. For example, the abnormality of the secondary battery is detected when the voltage of the secondary battery being charged is decreasing.

特許文献2では、二次電池を構成する電池セル間の電圧差が所定値以上である場合に電池セルの異常を検出するとともに、二次電池のSOCが低残存領域の際には、異常検出を中止して誤検出を防止している。   In Patent Document 2, an abnormality of a battery cell is detected when the voltage difference between the battery cells constituting the secondary battery is a predetermined value or more, and an abnormality is detected when the SOC of the secondary battery is in a low remaining region. Is stopped to prevent false detection.

特開2008−220168号公報JP 2008-220168 A 特開2009−254165号公報JP 2009-254165 A 特開2009−037962号公報JP 2009-037962 A

特許文献1では、異常検出のために二次電池の電圧検出値及び電流検出値が必要となり、少なくとも電流センサ、電圧センサの各センサを備える必要がある。   In Patent Document 1, a voltage detection value and a current detection value of a secondary battery are required for abnormality detection, and it is necessary to include at least each of a current sensor and a voltage sensor.

また、特許文献2のように単に電池セル間で電圧差を比較するだけでは、電圧検出時の状況や電池セルの状態によって異常検出の精度が低減してしまう。   Moreover, if the voltage difference is simply compared between battery cells as in Patent Document 2, the accuracy of abnormality detection is reduced depending on the situation at the time of voltage detection and the state of the battery cells.

本願第1の発明である車両に搭載される電源装置の異常検出システムは、直列に接続された複数の蓄電素子のうち少なくとも2つの蓄電素子の電圧値を電圧センサで測定し、所定期間における蓄電素子それぞれの電圧変動量を算出する。蓄電素子間の電圧変動量を比較することで、蓄電素子の異常を検出する。   An abnormality detection system for a power supply device mounted on a vehicle according to a first invention of the present application measures a voltage value of at least two power storage elements among a plurality of power storage elements connected in series with a voltage sensor, and stores power in a predetermined period. The voltage fluctuation amount of each element is calculated. By comparing the voltage fluctuation amount between the storage elements, an abnormality of the storage element is detected.

本願第1の発明によれば、電圧センサの検出値のみで蓄電素子の異常を検出できるので、電圧センサ以外の電流センサ等の機器類が不要となり、部品点数の増加を抑制できるとともに、所定期間における各電圧変動量を蓄電素子間で比較して蓄電素子の異常を検出しているので、電圧センサの電圧検出値を比較した異常検出に比べて誤検出を抑制でき、精度よく蓄電素子の異常を検出することができる。   According to the first invention of the present application, since the abnormality of the storage element can be detected only by the detection value of the voltage sensor, devices such as a current sensor other than the voltage sensor become unnecessary, and an increase in the number of parts can be suppressed, and a predetermined period Since each storage element is compared with each other to detect the voltage fluctuation amount, the detection error can be suppressed compared with the abnormality detection that compares the voltage detection value of the voltage sensor, and the storage element abnormality Can be detected.

蓄電素子間での電圧変動量の比率を算出し、比率が所定の閾値を超える場合に蓄電素子の異常を検出することで、電流センサによる計測によらずに各蓄電素子に実際に流れた電流に対する蓄電素子間の抵抗倍率が所定の閾値を超えているか否かによって、蓄電素子の異常を検出することができる。   By calculating the ratio of the amount of voltage fluctuation between the storage elements and detecting the abnormality of the storage element when the ratio exceeds a predetermined threshold, the current that actually flows to each storage element without being measured by the current sensor An abnormality of the power storage element can be detected based on whether or not the resistance magnification between the power storage elements exceeds a predetermined threshold value.

各蓄電素子の電圧変動量として、一定の電圧挙動検出時間内に検出された最大電圧と最小電圧との電圧差、又は所定の時間間隔で検出された各電圧値の変化量を用いることができる。   As the voltage fluctuation amount of each storage element, the voltage difference between the maximum voltage and the minimum voltage detected within a certain voltage behavior detection time, or the change amount of each voltage value detected at a predetermined time interval can be used. .

電源装置の温度及びSOCの少なくとも一方に応じて所定の閾値を変化させることができ、電源装置の温度を検出する温度センサをさらに含むように構成して、電源装置の温度とSOCに応じて予め設定された閾値の中から温度センサによって検出された温度及び電源装置のSOC情報に応じた閾値を選択し、比率が選択された閾値を超える場合に蓄電素子の異常を検出することができる。   A predetermined threshold value can be changed according to at least one of the temperature of the power supply device and the SOC, and a temperature sensor for detecting the temperature of the power supply device is further included, and the power supply device is configured in advance according to the temperature and the SOC of the power supply device. A threshold value corresponding to the temperature detected by the temperature sensor and the SOC information of the power supply device is selected from the set threshold values. When the ratio exceeds the selected threshold value, the abnormality of the storage element can be detected.

温度とSOCによって異なる蓄電素子の電圧(蓄電素子の抵抗)に対し、電源装置の温度とSOCに応じて異常検出を判定する基準値を変化させることで、異常検出精度を向上させることができる。   The abnormality detection accuracy can be improved by changing the reference value for determining abnormality detection according to the temperature and SOC of the power supply device with respect to the voltage of the energy storage element (resistance of the energy storage element) that varies depending on the temperature and the SOC.

直列に接続された1つの蓄電素子と他の2つの蓄電素子それぞれとを比較して、少なくとも一方の蓄電素子間での比較で異常が検出された場合に、蓄電素子の異常を検出するように構成できる。   Comparing one storage element connected in series with each of the other two storage elements, and detecting an abnormality in the storage element when an abnormality is detected by comparison between at least one of the storage elements Can be configured.

本願第2の発明である車両に搭載される電源装置の異常検出装置は、電圧センサによって検出される検出値を用いて直列に接続された複数の蓄電素子のうち少なくとも2つの蓄電素子の所定期間における蓄電素子それぞれの電圧変動量を算出する。蓄電素子間での電圧変動量を比較することで、蓄電素子の異常を検出する。   An abnormality detection device for a power supply device mounted on a vehicle according to a second invention of the present application is a predetermined period of at least two power storage elements among a plurality of power storage elements connected in series using a detection value detected by a voltage sensor. The amount of voltage fluctuation of each storage element is calculated. An abnormality of the power storage element is detected by comparing the amount of voltage fluctuation between the power storage elements.

本願第3の発明である車両に搭載される電源装置の異常検出方法は、電圧センサによって検出される検出値を用いて直列に接続された複数の蓄電素子のうち少なくとも2つの蓄電素子の所定期間におけるそれぞれの電圧変動量を算出するステップと、蓄電素子間の電圧変動量を比較して蓄電素子の異常を検出ステップと、を含む。   According to a third aspect of the present invention, there is provided an abnormality detection method for a power supply device mounted on a vehicle, wherein a predetermined period of at least two power storage elements among a plurality of power storage elements connected in series using a detection value detected by a voltage sensor. And calculating a voltage fluctuation amount of each of the power storage elements, and comparing a voltage fluctuation quantity between the power storage elements to detect an abnormality of the power storage element.

電圧変動量を算出するステップは、一定の電圧挙動検出時間内に検出された最大電圧と最小電圧との電圧差、又は所定の時間間隔で検出された各電圧値の変化量を電圧変動量として算出することができる。   The step of calculating the voltage fluctuation amount is a difference between the maximum voltage and the minimum voltage detected within a certain voltage behavior detection time, or the change amount of each voltage value detected at a predetermined time interval as the voltage fluctuation amount. Can be calculated.

異常を検出するステップは、蓄電素子間での電圧変動量の比率を算出して、比率が所定の閾値を超える場合に蓄電素子の異常を検出することができ、上記異常検出方法は、電源装置の温度及びSOCの少なくとも一方に応じて所定の閾値を変化させるステップをさらに含むことができる。所定の閾値を変化させるステップは、電源装置の温度を検出する温度センサによって検出される検出値と電源装置のSOC情報に基づいて、電源装置の温度とSOCに対して予め設定された閾値の中から該当する閾値を選択するように構成することができる。   The step of detecting the abnormality can calculate a ratio of the amount of voltage fluctuation between the power storage elements, and can detect the abnormality of the power storage element when the ratio exceeds a predetermined threshold value. The method may further include changing the predetermined threshold according to at least one of the temperature and the SOC. The step of changing the predetermined threshold is based on the detection value detected by the temperature sensor that detects the temperature of the power supply device and the SOC information of the power supply device. The corresponding threshold value can be selected from the following.

組電池の異常検出システムの構成を示す図である。It is a figure which shows the structure of the abnormality detection system of an assembled battery. 正常な単電池の電圧挙動,抵抗異常の単電池の電圧挙動の一例を示す図である。It is a figure which shows an example of the voltage behavior of a normal cell, and the voltage behavior of the cell of resistance abnormality. 正常な単電池の電圧挙動,抵抗異常の単電池の電圧挙動の一例を示す図である。It is a figure which shows an example of the voltage behavior of a normal cell, and the voltage behavior of the cell of resistance abnormality. 組電池の温度及びSOCに応じた閾値マップの一例を示す図である。It is a figure which shows an example of the threshold value map according to the temperature and SOC of an assembled battery. 組電池の異常検出動作を示すフローチャートである。It is a flowchart which shows the abnormality detection operation | movement of an assembled battery.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
本発明の実施例1である組電池(電源装置に相当する)の異常検出システムについて説明する。図1は、本実施例の組電池の異常検出システムの構成を示す図である。
Example 1
An abnormality detection system for an assembled battery (corresponding to a power supply device) that is Embodiment 1 of the present invention will be described. FIG. 1 is a diagram illustrating a configuration of an assembled battery abnormality detection system according to the present embodiment.

組電池10は、直列に接続された複数の単電池(蓄電素子に相当する)11を有する。単電池11としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)を用いることができる。組電池10を構成する単電池11の数は、要求出力などに基づいて、適宜設定することができる。また、組電池10は、並列に接続された複数の単電池11を含んでいてもよい。   The assembled battery 10 includes a plurality of single cells (corresponding to power storage elements) 11 connected in series. As the cell 11, a secondary battery such as a nickel metal hydride battery or a lithium ion battery can be used. An electric double layer capacitor (capacitor) can be used instead of the secondary battery. The number of the single cells 11 constituting the assembled battery 10 can be set as appropriate based on the required output. The assembled battery 10 may include a plurality of unit cells 11 connected in parallel.

本実施例の組電池10は、車両に搭載することができる。車両としては、ハイブリッド自動車や電気自動車がある。ハイブリッド自動車は、車両を走行させるための動力源として、組電池10に加えて、エンジン又は燃料電池を備えている。電気自動車は、車両の動力源として、組電池10のみを備えている。   The assembled battery 10 of the present embodiment can be mounted on a vehicle. Vehicles include hybrid cars and electric cars. The hybrid vehicle includes an engine or a fuel cell in addition to the assembled battery 10 as a power source for running the vehicle. The electric vehicle includes only the assembled battery 10 as a power source of the vehicle.

組電池10の正極端子及び負極端子は、昇圧コンバータ23と接続されている。システムメインリレーSMR−B,SMR−Gがコントローラ30からの制御信号を受けて、オン(接続状態)およびオフ(遮断状態)の間で切り替わることで、組電池10と昇圧コンバータ23との接続が制御される。   The positive terminal and the negative terminal of the assembled battery 10 are connected to the boost converter 23. The system main relays SMR-B and SMR-G receive a control signal from the controller 30 and are switched between on (connected state) and off (cut-off state), whereby the assembled battery 10 and the boost converter 23 are connected. Be controlled.

昇圧コンバータ23は、組電池10の出力電圧を昇圧して、昇圧後の電力をインバータ23に出力する。また、昇圧コンバータ23は、インバータ24の出力電圧を降圧して、降圧後の電力を組電池10に出力する。昇圧コンバータ23は、例えば、チョッパ回路で構成することができる。昇圧コンバータ23は、コントローラ30からの制御信号を受けて動作する。   Boost converter 23 boosts the output voltage of battery pack 10 and outputs the boosted power to inverter 23. Further, the boost converter 23 steps down the output voltage of the inverter 24 and outputs the lowered power to the assembled battery 10. The step-up converter 23 can be composed of, for example, a chopper circuit. Boost converter 23 operates in response to a control signal from controller 30.

インバータ24は、昇圧コンバータ23から出力された直流電力を交流電力に変換して、交流電力をモータ・ジェネレータ(MG)25に出力する。モータ・ジェネレータ25としては、例えば、三相交流モータを用いることができる。また、インバータ24は、モータ・ジェネレータ25から出力された交流電力を直流電力に変換して、直流電力を昇圧コンバータ23に出力する。   The inverter 24 converts the DC power output from the boost converter 23 into AC power, and outputs the AC power to the motor generator (MG) 25. For example, a three-phase AC motor can be used as the motor / generator 25. The inverter 24 converts AC power output from the motor / generator 25 into DC power and outputs the DC power to the boost converter 23.

モータ・ジェネレータ25は、インバータ24からの交流電力を受けて、車両を走行させるための運動エネルギを生成する。モータ・ジェネレータ25は、車輪と接続されており、モータ・ジェネレータ25によって生成された運動エネルギは、車輪に伝達される。車両を減速させたり、停止させたりするとき、モータ・ジェネレータ25は、車両の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。モータ・ジェネレータ25によって生成された交流電力は、インバータ24に出力される。これにより、回生電力を組電池10に蓄えることができる。   The motor / generator 25 receives AC power from the inverter 24 and generates kinetic energy for running the vehicle. The motor / generator 25 is connected to wheels, and the kinetic energy generated by the motor / generator 25 is transmitted to the wheels. When the vehicle is decelerated or stopped, the motor / generator 25 converts kinetic energy generated during braking of the vehicle into electric energy (AC power). The AC power generated by the motor / generator 25 is output to the inverter 24. Thereby, regenerative electric power can be stored in the assembled battery 10.

電圧監視IC20は、電圧センサ21を含んで構成される。電圧センサ21は、組電池10を構成する直列に接続された各単電池11に設けられ、単電池11それぞれの電圧を検出する。電圧監視IC20は、コントローラ30に接続され、電圧センサ21によって検出された各検出値をコントローラ30に出力する。   The voltage monitoring IC 20 includes a voltage sensor 21. The voltage sensor 21 is provided in each of the unit cells 11 connected in series constituting the assembled battery 10 and detects the voltage of each unit cell 11. The voltage monitoring IC 20 is connected to the controller 30 and outputs each detection value detected by the voltage sensor 21 to the controller 30.

温度センサ22は、組電池10の温度を検出する。温度センサ22は、コントローラ30に接続され、検出結果をコントローラ30に出力する。なお、温度センサ22は、電圧監視IC20に含まれるように構成することができ、例えば、組電池10の電圧及び温度を検出する監視ICとして構成できる。   The temperature sensor 22 detects the temperature of the assembled battery 10. The temperature sensor 22 is connected to the controller 30 and outputs a detection result to the controller 30. The temperature sensor 22 can be configured to be included in the voltage monitoring IC 20, and can be configured as a monitoring IC that detects the voltage and temperature of the assembled battery 10, for example.

コントローラ30は、組電池10の充放電制御を行う制御装置である。コントローラ30は、車両出力要求に基づいて負荷に組電池10の電力を出力する放電制御、車両が減速したり、停止したりする際の車両制動時における回生電力を組電池10に充電する充電制御を行う。   The controller 30 is a control device that performs charge / discharge control of the assembled battery 10. The controller 30 is a discharge control that outputs the power of the assembled battery 10 to a load based on a vehicle output request, and a charging control that charges the assembled battery 10 with regenerative power during vehicle braking when the vehicle decelerates or stops. I do.

SOC(State of Charge)は、組電池10の満充電容量に対する現在充電容量の割合を示すものであり、コントローラ30は、組電池10のSOCを管理するために、電圧センサ21による検出結果を用いて組電池10のSOCを算出したり特定する処理を行い、記憶部32に組電池10の充放電履歴やSOC情報を記憶して管理することができる。   The SOC (State of Charge) indicates the ratio of the current charge capacity to the full charge capacity of the battery pack 10, and the controller 30 uses the detection result of the voltage sensor 21 in order to manage the SOC of the battery pack 10. Thus, the SOC of the assembled battery 10 can be calculated or specified, and the storage unit 32 can store and manage the charge / discharge history and SOC information of the assembled battery 10.

組電池10のSOCは、組電池10のOCV(Open Circuit Voltage)から特定することができる。SOC及びOCVは対応関係にあるため、この対応関係を予め求めておけば、OCVからSOCを特定することができる。組電池10のOCVは、電圧センサ21によって検出された組電池10の電圧(CCV:Closed Circuit Voltage)から算出することができる。組電池10のSOCと共に、組電池10を構成する直列に接続された単電池11それぞれのSOCを算出することもでき、本実施例のコントローラ30は、組電池10全体のSOCと各単電池11それぞれのSOCを管理することができる。   The SOC of the assembled battery 10 can be specified from the OCV (Open Circuit Voltage) of the assembled battery 10. Since SOC and OCV are in a correspondence relationship, if this correspondence relationship is obtained in advance, the SOC can be specified from the OCV. The OCV of the assembled battery 10 can be calculated from the voltage (CCV: Closed Circuit Voltage) of the assembled battery 10 detected by the voltage sensor 21. The SOC of each of the battery cells 11 connected in series that constitute the battery pack 10 can be calculated together with the SOC of the battery pack 10, and the controller 30 of this embodiment can determine the SOC of the battery pack 10 as a whole and each battery cell 11. Each SOC can be managed.

コントローラ30は、電圧センサ21によって検出された検出値を用いて組電池10の異常検出を行う異常検出部31と記憶部32を含んで構成される。本実施例の異常検出部31を含むコントローラ30は、組電池10の異常検出を行う制御装置として機能する。なお、異常検出部31は、コントローラ30とは別途の制御装置として構成することもでき、コントローラ30に対して外的に又は内的に設けることができる。   The controller 30 includes an abnormality detection unit 31 and a storage unit 32 that detect an abnormality of the assembled battery 10 using the detection value detected by the voltage sensor 21. The controller 30 including the abnormality detection unit 31 of the present embodiment functions as a control device that detects abnormality of the assembled battery 10. The abnormality detection unit 31 can also be configured as a control device separate from the controller 30 and can be provided externally or internally with respect to the controller 30.

次に、本実施例の組電池10の異常検出について説明する。異常検出は、異常検出部31によって遂行される。異常検出部31は、組電池10の電圧を検出する電圧センサ21によって検出される電圧検出値を用いて当該組電池10の異常を検出する異常検出装置として機能する。また、異常検出部31及び組電池10の電圧を検出する電圧センサ21は、組電池10の異常検出システムを構成する。   Next, abnormality detection of the assembled battery 10 of the present embodiment will be described. The abnormality detection is performed by the abnormality detection unit 31. The abnormality detection unit 31 functions as an abnormality detection device that detects an abnormality of the assembled battery 10 using a voltage detection value detected by the voltage sensor 21 that detects the voltage of the assembled battery 10. The abnormality detection unit 31 and the voltage sensor 21 that detects the voltage of the assembled battery 10 constitute an abnormality detection system for the assembled battery 10.

異常検出部31は、車両のイグニッションスイッチがオフからオンに切り替わり、システムメインリレーSMR−B,SMR−Gがオンされてコントローラ30によって充放電制御が開始された後に、組電池10の異常検出処理を行う。異常検出部31は、組電池10を構成する直列に接続された複数の単電池11のうち、少なくとも2つの単電池11について電圧センサ21で検出された電圧挙動から所定期間における電圧変動値を算出し、算出された各電圧変動値を単電池11間で比較して、電圧変動値の比率が基準値(閾値)を超える場合、単電池11の異常(組電池10の異常)を検出する。   The abnormality detection unit 31 performs an abnormality detection process for the assembled battery 10 after the ignition switch of the vehicle is switched from OFF to ON, the system main relays SMR-B and SMR-G are turned ON, and charge / discharge control is started by the controller 30. I do. The abnormality detection unit 31 calculates a voltage fluctuation value in a predetermined period from the voltage behavior detected by the voltage sensor 21 for at least two unit cells 11 among a plurality of unit cells 11 connected in series constituting the assembled battery 10. Then, the calculated voltage fluctuation values are compared between the single cells 11, and when the ratio of the voltage fluctuation values exceeds the reference value (threshold value), an abnormality of the single battery 11 (abnormality of the assembled battery 10) is detected.

図2に示すように、単電池11に異常が発生した場合、正常時の電圧挙動(太線で示した電圧挙動)と異なる電圧挙動(点線で示した電圧挙動)が検出される。本実施例では、電圧センサ21によって検出された単電池11間の各電圧値を比較するのではなく、直列に接続された単電池11それぞれの所定期間における電圧変動値を比較して、単電池11の異常を検出する。   As shown in FIG. 2, when an abnormality occurs in the unit cell 11, a voltage behavior (voltage behavior shown by a dotted line) different from the normal voltage behavior (voltage behavior shown by a thick line) is detected. In this embodiment, the voltage values between the single cells 11 detected by the voltage sensor 21 are not compared, but the voltage fluctuation values of each of the single cells 11 connected in series are compared with each other in a predetermined period. 11 abnormalities are detected.

ある計測点、例えば、時間tにおける単電池11それぞれで検出された電圧値を比較すると、一方の単電池11に異常が発生している場合でも同じ電圧値が検出されたり、電圧値の差分が小さく検出される場合があるため、単電池11の異常を精度よく検出できないことがある。具体的には、図2の例において点線と太線とが重なる個所に相当する時点の電圧検出値は、正常な単電池11及び異常な単電池11それぞれで同じ電圧が検出されてしまい、単電池11の異常を的確に検出できない。   Comparing the voltage values detected by each unit cell 11 at a certain measurement point, for example, time t, even if an abnormality occurs in one unit cell 11, the same voltage value is detected or the difference between the voltage values is Since it may be detected small, an abnormality of the unit cell 11 may not be detected accurately. Specifically, in the example of FIG. 2, the voltage detection value at the time corresponding to the place where the dotted line and the thick line overlap is detected as the same voltage in each of the normal cell 11 and the abnormal cell 11. 11 abnormalities cannot be accurately detected.

一方で、電圧センサ21で検出される電圧検出値は、単電池11のSOCによって異なる。このため、各単電池11でSOCにバラツキがあると、SOCの低い単電池11とSOCが高い単電池11それぞれの電圧検出値の間にSOC差に応じた差分値が含まれるので、誤検出などの検出精度の低下を招く要因となる。これに対しは、電流センサによって測定された電流値を用いて単電池11間のSOCのバラツキによる誤差を補正することが考えられるが、別途電流センサが必要となり、部品点数の増加を抑制することができない。   On the other hand, the voltage detection value detected by the voltage sensor 21 varies depending on the SOC of the unit cell 11. For this reason, if the SOC of each unit cell 11 varies, a difference value corresponding to the SOC difference is included between the voltage detection values of the unit cell 11 having a low SOC and the unit cell 11 having a high SOC. This causes a decrease in detection accuracy. For this, it is conceivable to correct the error due to the variation in the SOC between the single cells 11 using the current value measured by the current sensor, but a separate current sensor is required to suppress an increase in the number of parts. I can't.

本実施例では、電圧センサ21によって検出された検出結果から所定期間の電圧変動量を算出することで、単電池11間にSOCのバラツキがあっても電流センサによる計測によらずに各単電池11に実際に流れた電流に対してSOCの影響を低減した電圧、すなわち、各単電池11に実際に流れた電流に対してSOCの影響が抑制された単電池11の抵抗を単電池11間で比較し、単電池11間のSOCのバラツキによる検出精度の低下を抑制している。   In this embodiment, by calculating the voltage fluctuation amount for a predetermined period from the detection result detected by the voltage sensor 21, even if there is a variation in SOC between the single cells 11, each single cell is not measured by the current sensor. 11 is a voltage obtained by reducing the influence of the SOC with respect to the current actually flowing in the battery 11, that is, the resistance of the battery 11 in which the influence of the SOC is suppressed with respect to the current actually flowing in each battery 11. Therefore, a decrease in detection accuracy due to variations in SOC between the single cells 11 is suppressed.

本実施例では、図2及び図3に示す2通りの方法で電圧変動量を算出することができる。図2は、単電池11の正常時及び異常時の電圧挙動の一例を示す図であり、縦軸が電圧(V)、横軸が時間tである。   In this embodiment, the voltage fluctuation amount can be calculated by the two methods shown in FIGS. FIG. 2 is a diagram illustrating an example of the voltage behavior of the cell 11 when it is normal and abnormal. The vertical axis represents voltage (V) and the horizontal axis represents time t.

異常検出部31は、電圧センサ21の検出結果から組電池10を構成する単電池11の一定時間の電圧検出期間T(電圧挙動検出期間)内の最大電圧及び最小電圧を取得する。   The abnormality detection unit 31 acquires the maximum voltage and the minimum voltage within the voltage detection period T (voltage behavior detection period) of the unit cell 11 constituting the assembled battery 10 from the detection result of the voltage sensor 21 for a certain time.

異常検出部31は、時間t1からt2までの電圧検出期間Tにおける最大電圧と最小電圧を取得し、最大電圧と最小電圧との電圧差を電圧変動値として算出する。異常検出部31は、少なくとも2つの単電池11それぞれの同じ電圧検出期間Tにおける最大電圧と最小電圧との電圧差に基づく電圧変動値を算出する。   The abnormality detection unit 31 acquires the maximum voltage and the minimum voltage in the voltage detection period T from time t1 to t2, and calculates the voltage difference between the maximum voltage and the minimum voltage as a voltage fluctuation value. The abnormality detection unit 31 calculates a voltage fluctuation value based on the voltage difference between the maximum voltage and the minimum voltage in the same voltage detection period T of each of at least two unit cells 11.

図2の例では、一定時間内の電圧挙動における最大電圧及び最小電圧の電圧差を算出するので、電圧検出期間Tは、後述する図3の例の所定期間よりも長い時間(例えば、数十秒、数分)とすることができる。   In the example of FIG. 2, since the voltage difference between the maximum voltage and the minimum voltage in the voltage behavior within a certain time is calculated, the voltage detection period T is longer than a predetermined period of the example of FIG. Seconds, minutes).

単電池11の電圧変動値ΔIRは、電圧検出期間Tの最大電圧(MaxCCV)から最小電圧(MinCCV)を減算して算出することができる。
(式1)ΔIR=MaxCCV−MinCCV
The voltage fluctuation value ΔIR of the unit cell 11 can be calculated by subtracting the minimum voltage (MinCCV) from the maximum voltage (MaxCCV) in the voltage detection period T.
(Formula 1) ΔIR = MaxCCV−MinCCV

CCVは、電圧センサ21によって検出された電圧検出値である。電圧センサ21によって検出された単電池11のCCVとOCVは、下記に示す式2の関係を有するので、式1は下記に示す式3に変形できる。
(式2)CCV=OCV+IR
(式3)ΔIR=OCV+MaxIR−(OCV+MinIR)
ここで、Rは単電池11の抵抗、ΔIは電流センサ等の機器で検出した値ではなく、電圧センサ21によって検出された電圧値に基づく実際に単電池11に流れた電流値である。
CCV is a voltage detection value detected by the voltage sensor 21. Since CCV and OCV of the cell 11 detected by the voltage sensor 21 have the relationship of the following formula 2, the formula 1 can be transformed into the formula 3 shown below.
(Formula 2) CCV = OCV + IR
(Expression 3) ΔIR = OCV + MaxIR− (OCV + MinIR)
Here, R is the resistance of the unit cell 11, and ΔI is not a value detected by a device such as a current sensor, but a current value actually flowing through the unit cell 11 based on the voltage value detected by the voltage sensor 21.

単電池11のOCVは、電圧検出期間Tが短時間である場合、その間の単電池11のOCVの変動は、極めて小さく、最大電圧及び最小電圧それぞれの各OCVを同じ値とみなすことができる。このため、上記式3において最大電圧と最小電圧それぞれに含まれるOCVは互いに相殺され、電圧検出期間Tにおける単電池11の電圧変動量ΔIRは、以下の式4で表すことができる。
(式4)ΔIR=MaxIR−MinIR
When the voltage detection period T is a short time, the OCV of the unit cell 11 has a very small variation in the OCV of the unit cell 11 during that time, and each OCV of the maximum voltage and the minimum voltage can be regarded as the same value. For this reason, the OCV included in each of the maximum voltage and the minimum voltage in the above expression 3 cancels each other, and the voltage fluctuation amount ΔIR of the unit cell 11 in the voltage detection period T can be expressed by the following expression 4.
(Formula 4) ΔIR = MaxIR−MinIR

このように異常検出部31は、電圧センサ21によって検出される検出値のみを用いて、単電池11それぞれの電圧検出期間Tにおける電圧変動値ΔIRを算出することができる。   As described above, the abnormality detection unit 31 can calculate the voltage fluctuation value ΔIR in the voltage detection period T of each unit cell 11 using only the detection value detected by the voltage sensor 21.

図3は、単電池11の正常時及び異常時の電圧挙動の一例を示す図であり、縦軸が電圧(V)、横軸が時間tである。また、正常時の電圧挙動を太線で、異常時の電圧挙動を点線で示している。   FIG. 3 is a diagram illustrating an example of the voltage behavior of the cell 11 when it is normal and abnormal, where the vertical axis represents voltage (V) and the horizontal axis represents time t. In addition, the voltage behavior at normal time is indicated by a thick line, and the voltage behavior at abnormal time is indicated by a dotted line.

異常検出部31は、電圧センサ21の検出結果から組電池10を構成する単電池11の所定の時間間隔(電圧検出周期ts)で検出された各電圧値を取得する。すなわち、電圧センサ21は、例えば、秒間隔で各単電池11の電圧を検出する。   The abnormality detection unit 31 acquires each voltage value detected at a predetermined time interval (voltage detection cycle ts) of the cells 11 constituting the assembled battery 10 from the detection result of the voltage sensor 21. That is, the voltage sensor 21 detects the voltage of each cell 11 at intervals of seconds, for example.

異常検出部31は、電圧検出周期tsで今回検出された時間tbの電圧検出値と前回検出された電圧検出値とを取得し、少なくとも2つの単電池11それぞれの時間taから時間tb間の電圧変化量を電圧変動量として算出する。   The abnormality detection unit 31 acquires the voltage detection value at the time tb detected this time and the voltage detection value detected last time in the voltage detection cycle ts, and the voltage between the time ta and the time tb of each of the at least two unit cells 11. The amount of change is calculated as the amount of voltage fluctuation.

図3の例における単電池11の電圧変動値ΔIRは、電圧検出周期tsで今回検出された時間tbの電圧検出値(CCV(t))から前回検出された時間taの電圧検出値(CCV(t−1))を減算することで、算出することができる。tは、電圧検出周期tsで検出された時系列順を示している。
(式5)ΔI(t)R=CCV(t)−CCV(t−1)
The voltage fluctuation value ΔIR of the cell 11 in the example of FIG. 3 is the voltage detection value (CCV (CCV (t)) detected at the previous time from the voltage detection value (CCV (t)) at the time tb detected this time in the voltage detection cycle ts. It can be calculated by subtracting t-1)). t indicates the time-series order detected in the voltage detection period ts.
(Formula 5) ΔI (t) R = CCV (t) −CCV (t−1)

CCVは、電圧センサ21によって検出された電圧検出値であり、上述のように電圧センサ21によって検出された単電池11のCCVとOCVは、上記式2の関係を有するので、式5は下記に示す式6に変形できる。
(式6)ΔI(t)R={OCV+I(t)R−(OCV+I(t−1)R)}
Rは単電池11の抵抗、ΔI(t)は図2の例と同様に、電圧センサ21によって検出された電圧値に基づいて電圧検出周期tsにおいて実際に単電池11に流れた電流値である。
CCV is a voltage detection value detected by the voltage sensor 21. As described above, the CCV and OCV of the unit cell 11 detected by the voltage sensor 21 have the relationship of the above equation 2, so that the equation 5 is It can deform | transform into the formula 6 shown.
(Expression 6) ΔI (t) R = {OCV + I (t) R− (OCV + I (t−1) R)}
R is the resistance of the cell 11 and ΔI (t) is the current value that actually flows through the cell 11 in the voltage detection period ts based on the voltage value detected by the voltage sensor 21 as in the example of FIG. .

図2に例と同様に、図3の例においても単電池11のOCVは、電圧検出周期tsが短時間である場合、その間の単電池11のOCVの変動は、極めて小さく、時間t及び時間t−1それぞれの各OCVを同じ値とみなすことができるので、時間taから時間tbの電圧検出周期tsにおける単電池11の電圧変動量ΔI(t)Rは、以下の式6で表すことができる。
(式6)ΔI(t)R=I(t)R−I(t−1)R
2, in the example of FIG. 3, the OCV of the unit cell 11 also has a very small fluctuation of the OCV of the unit cell 11 when the voltage detection period ts is short, and the time t and time Since each OCV of t−1 can be regarded as the same value, the voltage fluctuation amount ΔI (t) R of the cell 11 in the voltage detection period ts from time ta to time tb can be expressed by the following formula 6. it can.
(Expression 6) ΔI (t) R = I (t) R−I (t−1) R

このように異常検出部31は、電圧センサ21によって検出される検出値のみを用いて、単電池11それぞれの電圧検出周期tsにおける所定の時間間隔での電圧変化量を電圧変動値ΔI(t)Rとして算出することができる。   As described above, the abnormality detection unit 31 uses only the detection value detected by the voltage sensor 21 to calculate the voltage change amount ΔI (t) at a predetermined time interval in the voltage detection cycle ts of each unit cell 11. R can be calculated.

異常検出部31は、図2及び図3に示した一方の算出方法で、少なくとも2つの単電池11(1)の電圧変動値ΔIR、単電池11(2)の電圧変動値ΔIR2を求めて、さらに2つの単電池11の一方の単電池11に対する他方の単電池11の電圧変動値の比率を求める。
(式7)ΔI(t)R/ΔI(t)R2(=R/R2
Abnormality detecting unit 31, while the calculation method shown in FIGS. 2 and 3, the voltage variation value .DELTA.iR 1 of at least two cells 11 (1), the voltage fluctuation value .DELTA.iR 2 of the cell 11 (2) determined Then, the ratio of the voltage fluctuation value of the other unit cell 11 to the one unit cell 11 of the two unit cells 11 is obtained.
(Expression 7) ΔI (t) R 1 / ΔI (t) R 2 (= R 1 / R 2 )

式7に示すように、単電池11それぞれは直列に接続されているので、各単電池11に流れる電流値は一定であり、単電池11間の電圧変動値の比率は、各単電池11間の抵抗倍率(抵抗比率)を表している。   As shown in Equation 7, since each of the single cells 11 is connected in series, the current value flowing through each single cell 11 is constant, and the ratio of the voltage fluctuation value between the single cells 11 is the same between the single cells 11. Represents the resistance magnification (resistance ratio).

本実施例では、所定期間における各電圧変動量を単電池11間で比較して単電池11の抵抗異常を検出することで、組電池10の異常を検出する。具体的には、上記式7のように少なくとも2つの単電池11間での抵抗倍率を算出し、抵抗倍率が所定の閾値を超える場合に単電池11の異常を検出することができる。   In the present embodiment, the abnormality of the battery pack 10 is detected by comparing each voltage fluctuation amount in the predetermined period between the battery cells 11 and detecting the resistance abnormality of the battery cells 11. Specifically, the resistance magnification between at least two unit cells 11 is calculated as in the above formula 7, and the abnormality of the unit cell 11 can be detected when the resistance factor exceeds a predetermined threshold.

単電池11が正常である場合、直列に接続された単電池11それぞれは、同じ電圧挙動を示すので、単電池11間の抵抗倍率は、1又は1に近い値となる。一方、他方の単電池11に抵抗異常がある場合、電圧挙動が正常時に比べてより大きく(又はより小さく)なり、抵抗異常が発生していない単電池11と抵抗異常が発生した単電池11との間の抵抗倍率は、数倍又は数分の1となる。本実施例では、所定期間における各電圧変動量を単電池11間で比較して抵抗倍率が所定の閾値を超えるか否か、又は所定の閾値よりも小さいか否かを判別し、単電池11の抵抗異常を検出することで、単電池11の異常を検出する。   When the unit cells 11 are normal, the unit cells 11 connected in series exhibit the same voltage behavior, and thus the resistance magnification between the unit cells 11 is a value close to 1 or 1. On the other hand, when the other unit cell 11 has a resistance abnormality, the voltage behavior becomes larger (or smaller) than that in the normal state, and the unit cell 11 in which the resistance abnormality has occurred and the unit cell 11 in which the resistance abnormality has occurred The resistance magnification between is several times or a fraction. In the present embodiment, each voltage fluctuation amount in a predetermined period is compared between the single cells 11 to determine whether or not the resistance magnification exceeds a predetermined threshold value or smaller than the predetermined threshold value. The abnormality of the unit cell 11 is detected by detecting the resistance abnormality.

なお、少なくとも2つの単電池11は、直列に接続された隣り合う2つの単電池11や任意の接続位置における2つの単電池11(例えば、単電池11(1)と単電池11(3)や単電池11(1)と単電池11(n))とすることができる。   The at least two unit cells 11 include two adjacent unit cells 11 connected in series, or two unit cells 11 (for example, the unit cell 11 (1) and the unit cell 11 (3) A single cell 11 (1) and a single cell 11 (n)) can be used.

また、図3の例における電圧変動値(電圧検出周期tsにおける所定の時間間隔での電圧変化量)を用いた抵抗倍率の算出では、過去に算出された抵抗倍率を今回算出された抵抗倍率に反映させる重み付け処理を適用することができる。   Further, in the calculation of the resistance magnification using the voltage fluctuation value (voltage change amount at a predetermined time interval in the voltage detection cycle ts) in the example of FIG. 3, the resistance magnification calculated in the past is changed to the resistance magnification calculated this time. A weighting process to be reflected can be applied.

例えば、式6において今回時間tの電圧変動量ΔI(t)R=I(t)R−I(t−1)Rに、前回時間t−1の電圧変動量ΔI(t−1)R=I(t−1)R−I(t−2)Rを重み値として反映させることができる。   For example, in Equation 6, the voltage fluctuation amount ΔI (t) R = I (t) R−I (t−1) R at the current time t is changed to the voltage fluctuation amount ΔI (t−1) R = at the previous time t−1. I (t-1) R-I (t-2) R can be reflected as a weight value.

今回時間tの電圧変動量ΔI(t)Rを、今回時間tの電圧変動量ΔI(t)Rと前回(電圧検出周期で1つ前の)時間t−1の電圧変動量ΔI(t−1)Rを所定の割合で加算して算出したり、前回時間t−1,前々回時間t−2、・・・・の複数の過去の電圧変動量を平均した値と今回時間tの電圧変動量ΔI(t)Rとを所定の割合で加算した値を、今回時間tの電圧変動量ΔI(t)Rとして算出することができる。また、今回時間tから順に前の時間t−1、時間t−2、時間t−3・・・・それぞれを所定の割合で今回時間tの電圧変動量ΔI(t)Rに反映させたり、今回時間tから前の任意の時間t−n(t>n)の電圧変動量を1つ又は複数選択して反映させることができる。   The voltage fluctuation amount ΔI (t) R at the current time t is divided into the voltage fluctuation amount ΔI (t) R at the current time t and the voltage fluctuation amount ΔI (t−t) at the previous time (one previous in the voltage detection cycle) t−1. 1) Calculate by adding R at a predetermined ratio, or average a plurality of past voltage fluctuation amounts at the previous time t-1, the previous time t-2,... And the voltage fluctuation at the current time t. A value obtained by adding the amount ΔI (t) R at a predetermined ratio can be calculated as the voltage fluctuation amount ΔI (t) R at the current time t. In addition, the previous time t-1, time t-2, time t-3,... Are sequentially reflected in the voltage fluctuation amount ΔI (t) R at the current time t at a predetermined rate from the current time t, One or a plurality of voltage fluctuation amounts at an arbitrary time t−n (t> n) before the current time t can be selected and reflected.

図3の例における電圧検出周期tsで検出された電圧検出値を用いて算出される抵抗倍率を、それ以前に算出された過去の抵抗倍率で評価するように重み付け処理を行うことで、電圧検出時のノイズの影響を小さくすることができ、異常検出精度をさらに向上させることができる。   Voltage detection is performed by performing a weighting process so that the resistance magnification calculated using the voltage detection value detected in the voltage detection period ts in the example of FIG. 3 is evaluated with the past resistance magnification calculated before that. The influence of noise at the time can be reduced, and the abnormality detection accuracy can be further improved.

次に、本実施例の抵抗倍率を用いた抵抗異常を判別するための基準値である閾値について説明する。本実施例の閾値は、組電池10の温度及びSOCの少なくとも一方に応じて変化する。   Next, a threshold value that is a reference value for determining resistance abnormality using the resistance magnification of the present embodiment will be described. The threshold value of the present embodiment changes according to at least one of the temperature of the battery pack 10 and the SOC.

組電池10の温度が低いと、単電池11の抵抗が大きくなり、また、単電池11のSOCが低いと単電池11の抵抗が大きくなる。正常な単電池11であっても単電池11の状態及び環境に応じて内部抵抗が相違するので、電圧変動量に基づく抵抗倍率も温度とSOCの一方又は両方の影響を受けて相違する。本実施例では、閾値と抵抗倍率との関係を組電池10の温度とSOCに応じて変化させることで、異常検出の精度をさらに向上させている。   When the temperature of the assembled battery 10 is low, the resistance of the single battery 11 increases, and when the SOC of the single battery 11 is low, the resistance of the single battery 11 increases. Even in the normal cell 11, the internal resistance differs depending on the state and environment of the cell 11, so the resistance magnification based on the amount of voltage variation also varies depending on one or both of temperature and SOC. In the present embodiment, the relationship between the threshold value and the resistance magnification is changed according to the temperature and SOC of the assembled battery 10, thereby further improving the accuracy of abnormality detection.

図4は、組電池10の温度及びSOCに応じて予め作成された閾値マップの一例であり、異常検出部31は、組電池10の温度又はSOCのいずれか一方、又は温度及びSOCに基づいて、図4に示した閾値マップから該当の閾値を選択し、選択された閾値と抵抗倍率とを比較して抵抗倍率が閾値を超えている場合、又は閾値よりも小さい場合に、単電池11の異常を検出する。図4の閾値マップは、記憶部32に格納することができる。   FIG. 4 is an example of a threshold map prepared in advance according to the temperature and SOC of the assembled battery 10, and the abnormality detection unit 31 is based on either the temperature or SOC of the assembled battery 10, or the temperature and SOC. 4, when a corresponding threshold value is selected from the threshold map shown in FIG. 4 and the selected threshold value is compared with the resistance magnification, and the resistance magnification exceeds the threshold, or is smaller than the threshold, Detect anomalies. The threshold map in FIG. 4 can be stored in the storage unit 32.

図4の縦軸は温度(℃)、横軸はSOC(%)であり、異常検出部31は、温度センサ22によって検出された組電池10の温度に該当する閾値を選択したり、組電池10のSOCに該当する閾値を選択することができる。また、温度及びSOCに該当する閾値を選択することができる。図4の閾値マップでは、組電池10の温度が低く、かつSOCが低い場合に閾値が大きくなり、組電池10の温度及びSOCが高い場合に閾値が低くなるように閾値が設定されている。   The vertical axis in FIG. 4 is temperature (° C.) and the horizontal axis is SOC (%), and the abnormality detection unit 31 selects a threshold corresponding to the temperature of the assembled battery 10 detected by the temperature sensor 22, or the assembled battery A threshold value corresponding to 10 SOCs can be selected. In addition, threshold values corresponding to temperature and SOC can be selected. In the threshold map of FIG. 4, the threshold is set so that the threshold increases when the temperature of the assembled battery 10 is low and the SOC is low, and the threshold decreases when the temperature and SOC of the assembled battery 10 are high.

また、本実施例では、2つの閾値それぞれと抵抗倍率とを比較し、単電池11間の抵抗異常を判別することができる。例えば、閾値Aは、抵抗倍率が1以上の場合の閾値、閾値Bは抵抗倍率が1未満の閾値として用いることができる。すなわち、本実施例の組電池10の異常検出では、単電池11間での電圧変動量の比率が閾値Aと閾値Bとの間(閾値の上限値と下限値との間)であれば単電池11は正常であると判別し、単電池11間での電圧変動量の比率が閾値Aを超えている場合、又は閾値Bを下回る場合には、単電池11は異常であると判別する。   In this embodiment, each of the two threshold values is compared with the resistance magnification, and a resistance abnormality between the single cells 11 can be determined. For example, the threshold A can be used as a threshold when the resistance magnification is 1 or more, and the threshold B can be used as a threshold when the resistance magnification is less than 1. That is, in the abnormality detection of the assembled battery 10 of this embodiment, if the ratio of the voltage fluctuation amount between the single cells 11 is between the threshold value A and the threshold value B (between the upper limit value and the lower limit value of the threshold value), The battery 11 is determined to be normal, and when the ratio of the voltage fluctuation amount between the single cells 11 exceeds the threshold A or is lower than the threshold B, the single cell 11 is determined to be abnormal.

図5は、本実施例の電流センサの異常検出の動作を示すフローチャートである。図5に示す処理は、コントローラ30の異常検出部31によって実行される。異常検出部31は、例えば、車両のイグニッションスイッチがオフからオンに切り替わり、システムメインリレーSMR−B,SMR−Gがオンされて充放電制御が開始されることに伴って、組電池10の異常検出処理を開始することができる(S101)。   FIG. 5 is a flowchart showing an abnormality detection operation of the current sensor of this embodiment. The process shown in FIG. 5 is executed by the abnormality detection unit 31 of the controller 30. For example, the abnormality detection unit 31 detects the abnormality of the assembled battery 10 when the ignition switch of the vehicle is switched from OFF to ON, and the system main relays SMR-B and SMR-G are turned ON to start charge / discharge control. The detection process can be started (S101).

ステップS102において、異常検出部31は、組電池10の直列に接続された各単電池11それぞれの電圧検出値を、電圧監視IC20を介して取得する。   In step S <b> 102, the abnormality detection unit 31 acquires the voltage detection value of each unit cell 11 connected in series with the assembled battery 10 via the voltage monitoring IC 20.

ステップS103において、異常検出部31は、電圧センサ21によって検出された所定期間の電圧値を用いて、図2及び図3に示した一方の算出手法で電圧変動量ΔIR(ΔV)を算出する。電圧電動量ΔIRの算出については上述した通りであり、予め一方の算出プログラムが記憶部32に記憶され、異常検出部31は、記憶部32に記憶された算出プログラムに従って、図2又は図3に示した一方の算出方法を用いて所定期間における各単電池11それぞれの電圧変動量ΔIRを算出する。   In step S <b> 103, the abnormality detection unit 31 calculates the voltage fluctuation amount ΔIR (ΔV) using one of the calculation methods shown in FIGS. 2 and 3 using the voltage value of the predetermined period detected by the voltage sensor 21. The calculation of the voltage electric quantity ΔIR is as described above, and one calculation program is stored in the storage unit 32 in advance, and the abnormality detection unit 31 is shown in FIG. 2 or FIG. 3 according to the calculation program stored in the storage unit 32. The voltage fluctuation amount ΔIR of each unit cell 11 in a predetermined period is calculated using one of the calculation methods shown.

ステップS104において、異常検出部31は、ステップS103で算出した所定期間における各電圧変動量を単電池11間で比較した抵抗倍率を算出する。抵抗倍率は、上記式7のように求めることができる。   In step S <b> 104, the abnormality detection unit 31 calculates a resistance magnification by comparing the voltage fluctuation amounts in the predetermined period calculated in step S <b> 103 between the single cells 11. The resistance magnification can be obtained as shown in Equation 7 above.

ステップS105において、異常検出部31は、組電池10の温度とSOCに応じて閾値を変化させる閾値選択処理を行う。異常検出部31は、温度センサ22によって検出された組電池10の温度及びコントローラ30で管理されている組電池10のSOC情報を取得し、取得した組電池10の温度及びSOC情報に応じた閾値を図4に示した閾値マップから選択する。   In step S <b> 105, the abnormality detection unit 31 performs a threshold selection process for changing the threshold according to the temperature and SOC of the assembled battery 10. The abnormality detection unit 31 acquires the temperature of the assembled battery 10 detected by the temperature sensor 22 and the SOC information of the assembled battery 10 managed by the controller 30, and a threshold value corresponding to the acquired temperature and SOC information of the assembled battery 10 Is selected from the threshold map shown in FIG.

ステップS106、S107において、異常検出部31は、ステップS104で算出された抵抗倍率とステップS105で選択された閾値を用いて、比較対象の単電池11に抵抗異常があるか否かを判別する。   In steps S106 and S107, the abnormality detection unit 31 determines whether there is a resistance abnormality in the comparison target cell 11 using the resistance magnification calculated in step S104 and the threshold selected in step S105.

本実施例では、直列に接続された隣り合う単電池11間の抵抗異常を判別したり、任意の単電池11間の抵抗異常を判別することで、単電池11の異常が検出するが、さらに検出精度を向上させるために、1つの単電池11を他の異なる2つの単電池11それぞれと比較することで、単電池11の異常を検出するように構成できる。   In this embodiment, the abnormality of the unit cell 11 is detected by determining the resistance abnormality between the adjacent unit cells 11 connected in series or by determining the resistance abnormality between the arbitrary unit cells 11. In order to improve the detection accuracy, it can be configured to detect an abnormality of the unit cell 11 by comparing one unit cell 11 with each of two other different unit cells 11.

なお、抵抗倍率を求める各単電池11の選択は、任意であり、異常検出部31は、例えば、異常検出処理を開始する際に比較対象の単電池11を決定し、決定された単電池11のみの電圧変動量ΔIRを求めるようにしたり、複数の各単電池11それぞれの電圧変動量ΔIRを求めてから、比較対象の単電池11それぞれをランダムに又は所定のルールに従って決定するようにしてもよい。また、図5の例では、1つの単電池11を他の異なる2つの単電池11それぞれと比較することで、単電池11の異常を検出しているが、上述のように、後述するステップS106及びステップS107の少なくとも一方を含む異常検出によって組電池10の異常を検出するようにしてもよい。   The selection of each unit cell 11 for obtaining the resistance magnification is arbitrary, and the abnormality detection unit 31 determines, for example, the unit cell 11 to be compared when starting the abnormality detection process, and the determined unit cell 11 is determined. Only the voltage fluctuation amount ΔIR is obtained, or the voltage fluctuation amount ΔIR of each of the plurality of single cells 11 is obtained, and then each single cell 11 to be compared is determined randomly or according to a predetermined rule. Good. Further, in the example of FIG. 5, the abnormality of the unit cell 11 is detected by comparing one unit cell 11 with each of two other different unit cells 11, but as described above, step S <b> 106 described later is performed. In addition, the abnormality of the assembled battery 10 may be detected by abnormality detection including at least one of step S107.

まず、ステップ106において、異常検出部31は、第1単電池11及び第2単電池11間の電圧変動量に基づく抵抗倍率を閾値と比較して抵抗異常を判別する。抵抗異常があると判別された場合には、ステップS110に進み、組電池10に異常があると判別して異常処理を遂行する。   First, in step 106, the abnormality detection unit 31 determines a resistance abnormality by comparing a resistance magnification based on a voltage fluctuation amount between the first unit cell 11 and the second unit cell 11 with a threshold value. If it is determined that there is a resistance abnormality, the process proceeds to step S110, where it is determined that there is an abnormality in the assembled battery 10, and abnormality processing is performed.

一方、ステップS106において、第1単電池11及び第2単電池11間の電圧変動量に基づく抵抗倍率が抵抗異常ではないと判別された場合、異常検出部31は、ステップS107に進む。   On the other hand, in step S106, when it is determined that the resistance magnification based on the voltage fluctuation amount between the first unit cell 11 and the second unit cell 11 is not a resistance abnormality, the abnormality detection unit 31 proceeds to step S107.

ステップS107において、異常検出部31は、ステップS106で比較対象の第2単電池11と第1単電池11を除く他の第3単電池11との間の電圧変動量に基づく抵抗倍率を閾値と比較して抵抗異常を判別する。抵抗異常があると判別された場合には、ステップS110に進み、組電池10に異常があると判別して異常処理を遂行する。   In step S107, the abnormality detection unit 31 sets the resistance magnification based on the amount of voltage fluctuation between the second unit cell 11 to be compared in step S106 and the third unit cell 11 other than the first unit cell 11 as a threshold value. The resistance abnormality is determined by comparison. If it is determined that there is a resistance abnormality, the process proceeds to step S110, where it is determined that there is an abnormality in the assembled battery 10, and abnormality processing is performed.

一方、ステップS107において、第2単電池11及び第3単電池11間の電圧変動量に基づく抵抗倍率が抵抗異常ではないと判別された場合、異常検出部31は、ステップS108に進み、組電池10が正常であると判別してステップS109に進む。   On the other hand, if it is determined in step S107 that the resistance magnification based on the voltage fluctuation amount between the second unit cell 11 and the third unit cell 11 is not a resistance abnormality, the abnormality detection unit 31 proceeds to step S108, and the assembled battery 10 is determined to be normal, and the process proceeds to step S109.

ステップS109において、異常検出部31は、組電池10が正常であると判別されている間は、イグニッションスイッチがオフされるまで、ステップS102からステップS109を繰り返し行い、組電池10の異常検出を行う。   In step S109, while it is determined that the assembled battery 10 is normal, the abnormality detection unit 31 repeats steps S102 to S109 until the ignition switch is turned off to detect abnormality of the assembled battery 10. .

このように、1つの単電池11を他の異なる2つの単電池11それぞれと比較することで、少なくとも一方の単電池11間での抵抗比率に異常が検出された場合に、単電池11の異常を判別する、言い換えれば、1つの単電池11と他の異なる2つの単電池11それぞれとの間で各抵抗比率に異常が検出されない場合に、組電池10が正常であると判別することで、2つの単電池11間での抵抗比率の異常検出に比べてさらに精度よく異常検出を行うことができる。   As described above, when an abnormality is detected in the resistance ratio between at least one unit cell 11 by comparing one unit cell 11 with each other two different unit cells 11, the abnormality of the unit cell 11 is detected. In other words, when no abnormality is detected in each resistance ratio between one unit cell 11 and each of two other different unit cells 11, it is determined that the assembled battery 10 is normal. Anomaly detection can be performed with higher accuracy than the anomaly detection of the resistance ratio between the two single cells 11.

ステップS110の異常処理としては、例えば、ユーザなどに対して異常が発生していることを通知することができる。この通知は、ユーザの視覚又は聴覚で認識できるものであればよく、例えば、異常検出ランプを点灯させたり、スピーカを用いて異常が発生していることを示す情報を出力したり、異常が発生していることを示す情報をディスプレイに表示させることができる。   As the abnormality process in step S110, for example, it can be notified to the user that an abnormality has occurred. This notification may be anything that can be recognized by the user's visual or auditory sense. For example, an abnormality detection lamp is turned on, information indicating that an abnormality has occurred using a speaker, or an abnormality has occurred. It is possible to display information indicating that the display is in progress on the display.

また、組電池10の異常を検出した場合に、本実施例の組電池10を搭載するハイブリッド車両では、エンジンのみを駆動源とする走行モードに設定したり、電気自動車では、走行を中止する通知を行うなど、組電池10からの電力を用いた走行や機器の駆動を行わないようにすることもできる。ステップS109を遂行した後、異常検出部31は、異常検出処理を終了する。   In addition, when an abnormality is detected in the assembled battery 10, in a hybrid vehicle equipped with the assembled battery 10 according to the present embodiment, a driving mode in which only the engine is used as a driving source is set, or in an electric vehicle, the driving is stopped. For example, it is possible not to run the vehicle using the electric power from the assembled battery 10 or drive the device. After performing Step S109, the abnormality detection unit 31 ends the abnormality detection process.

本実施では、電圧センサ21の検出値のみで単電池11の異常を検出できるので、電圧センサ21以外の電流センサ等の機器類が不要となり、部品点数の増加を抑制できる。さらに、所定期間における各電圧変動量を単電池11間で比較して単電池11の異常、すなわち、組電池10の異常を検出するので、電圧センサ21の電圧検出値を単に比較した異常検出に比べて精度よく単電池11の異常を検出することができる。   In this embodiment, since the abnormality of the unit cell 11 can be detected only by the detection value of the voltage sensor 21, devices such as a current sensor other than the voltage sensor 21 are not required, and an increase in the number of parts can be suppressed. Furthermore, each voltage fluctuation amount in a predetermined period is compared between the cells 11 to detect the abnormality of the cells 11, that is, the abnormality of the assembled battery 10, so that the abnormality detection is simply performed by comparing the voltage detection value of the voltage sensor 21. The abnormality of the unit cell 11 can be detected with higher accuracy than that.

また、電圧センサ21によって検出された検出結果から所定期間の電圧変動量を算出することで、単電池11間にSOCのバラツキがあっても電流センサによる計測によらずに各単電池11に実際に流れた電流に対してSOCの影響を低減した電圧、すなわち、各単電池11に実際に流れた電流に対してSOCの影響が抑制された単電池11の抵抗を単電池11間で比較して異常を検出するので、検出精度が向上する。   Further, by calculating the voltage fluctuation amount for a predetermined period from the detection result detected by the voltage sensor 21, even if there is a variation in SOC between the single cells 11, each single cell 11 is actually measured regardless of the measurement by the current sensor. The voltage in which the influence of the SOC is reduced with respect to the current that flows in the battery, that is, the resistance of the single battery 11 in which the influence of the SOC is suppressed with respect to the current that actually flows in each of the single batteries 11 is compared between the single batteries 11 Therefore, the detection accuracy is improved.

10 組電池(電源装置)
11 単電池(蓄電素子)
20 電圧監視IC
21 電圧センサ
22 温度センサ
23 昇圧コンバータ
24 インバータ
25 モータ・ジェネレータ
30 コントローラ
10 battery pack (power supply)
11 Single cell (storage element)
20 Voltage monitoring IC
21 Voltage sensor 22 Temperature sensor 23 Boost converter 24 Inverter 25 Motor generator 30 Controller

Claims (11)

車両に搭載され、複数の蓄電素子が直列に接続された電源装置の異常検出システムであって、
前記蓄電素子の電圧を検出する電圧センサと、
所定期間における少なくとも2つの前記蓄電素子それぞれの電圧変動量を算出し、前記蓄電素子間で各電圧変動量を比較して前記蓄電素子の異常を検出する制御装置と、
を含むことを特徴とする異常検出システム。
An abnormality detection system for a power supply device mounted on a vehicle and having a plurality of power storage elements connected in series,
A voltage sensor for detecting a voltage of the storage element;
A control device for calculating a voltage fluctuation amount of each of the at least two power storage elements in a predetermined period, comparing each voltage fluctuation amount between the power storage elements, and detecting an abnormality of the power storage element;
An anomaly detection system comprising:
前記制御装置は、前記蓄電素子間での前記電圧変動量の比率を算出し、前記比率が所定の閾値を超える場合に前記蓄電素子の異常を検出することを特徴とする請求項1に記載の異常検出システム。   The said control apparatus calculates the ratio of the said voltage fluctuation amount between the said electrical storage elements, and when the said ratio exceeds a predetermined threshold value, it detects the abnormality of the said electrical storage element. Anomaly detection system. 前記制御装置は、一定の電圧挙動検出時間内に検出された最大電圧と最小電圧との電圧差を前記電圧変動量として算出することを特徴とする請求項1又は2に記載の異常検出システム。   The abnormality detection system according to claim 1, wherein the control device calculates a voltage difference between a maximum voltage and a minimum voltage detected within a certain voltage behavior detection time as the voltage fluctuation amount. 前記制御装置は、所定の時間間隔で検出された各電圧値の変化量を前記電圧変動量として算出することを特徴とする請求項1又は2に記載の異常検出システム。   The abnormality detection system according to claim 1, wherein the control device calculates a change amount of each voltage value detected at a predetermined time interval as the voltage fluctuation amount. 前記制御装置は、前記電源装置の温度及びSOCの少なくとも一方に応じて前記所定の閾値を変化させることを特徴とする請求項2に記載の異常検出システム。   The abnormality detection system according to claim 2, wherein the control device changes the predetermined threshold according to at least one of a temperature of the power supply device and an SOC. 前記電源装置の温度を検出する温度センサをさらに含み、
前記制御装置は、前記電源装置の温度とSOCに応じて予め設定された閾値の中から前記温度センサによって検出された温度及び前記電源装置のSOC情報に応じた閾値を選択し、前記比率が前記選択された閾値を超える場合に前記蓄電素子の異常を検出することを特徴とする請求項5に記載の異常検出装置。
A temperature sensor for detecting a temperature of the power supply device;
The control device selects a temperature detected by the temperature sensor and a threshold value corresponding to the SOC information of the power supply device from threshold values preset according to the temperature and SOC of the power supply device, and the ratio is the ratio The abnormality detection device according to claim 5, wherein an abnormality of the power storage element is detected when the selected threshold value is exceeded.
前記制御装置は、第1蓄電素子及び第2蓄電素子の間で前記電圧変動量を比較し、さらに前記第2蓄電素子と第3蓄電素子の間で前記電圧変動量を比較して、少なくとも一方の蓄電素子間での比較で異常が検出された場合に、前記蓄電素子の異常を検出することを特徴とする請求項1から6のいずれか1つに記載の異常検出システム。   The control device compares the voltage fluctuation amount between the first power storage element and the second power storage element, and further compares the voltage fluctuation amount between the second power storage element and the third power storage element. The abnormality detection system according to claim 1, wherein an abnormality of the electric storage element is detected when an abnormality is detected by comparison between the electric storage elements. 複数の蓄電素子が直列に接続され、車両に搭載される電源装置の異常検出装置であって、
前記蓄電素子の電圧を検出する電圧センサによって検出される検出値を用いて所定期間における少なくとも2つの前記蓄電素子それぞれの電圧変動量を算出し、前記蓄電素子間で各電圧変動量を比較して前記蓄電素子の異常を検出する制御部、を含むことを特徴とする異常検出装置。
A plurality of power storage elements are connected in series, an abnormality detection device for a power supply device mounted on a vehicle,
Using the detection value detected by the voltage sensor that detects the voltage of the storage element, calculate a voltage fluctuation amount of each of the at least two storage elements in a predetermined period, and compare each voltage fluctuation amount between the storage elements. The abnormality detection apparatus characterized by including the control part which detects abnormality of the said electrical storage element.
複数の蓄電素子が直列に接続され、車両に搭載される電源装置の異常検出方法であって、
前記蓄電素子の電圧を検出する電圧センサによって検出される検出値を用いて所定期間における少なくとも2つの前記蓄電素子それぞれの電圧変動量を算出するステップと、
前記蓄電素子間で各電圧変動量を比較して前記蓄電素子の異常を検出するステップと、
を含むことを特徴とする異常検出方法。
A power storage device abnormality detection method in which a plurality of power storage elements are connected in series and mounted on a vehicle,
Calculating a voltage fluctuation amount of each of at least two power storage elements in a predetermined period using a detection value detected by a voltage sensor that detects a voltage of the power storage element;
Comparing each voltage fluctuation amount between the storage elements to detect an abnormality of the storage element;
An abnormality detection method comprising:
前記電圧変動量を算出するステップは、一定の電圧挙動検出時間内に検出された最大電圧と最小電圧との電圧差、又は所定の時間間隔で検出された各電圧値の変化量を前記電圧変動量として算出することを特徴とする請求項9に記載の異常検出方法。   The step of calculating the voltage fluctuation amount includes calculating a voltage difference between a maximum voltage and a minimum voltage detected within a certain voltage behavior detection time or a change amount of each voltage value detected at a predetermined time interval. The abnormality detection method according to claim 9, wherein the abnormality detection method is calculated as a quantity. 前記異常を検出するステップは、前記蓄電素子間での前記電圧変動量の比率を算出して、前記比率が所定の閾値を超える場合に前記蓄電素子の異常を検出するとともに、
前記電源装置の温度及びSOCの少なくとも一方に応じて前記所定の閾値を変化させるステップをさらに含み、
前記所定の閾値を変化させるステップは、
前記電源装置の温度を検出する温度センサによって検出される検出値と前記電源装置のSOC情報に基づいて、前記電源装置の温度とSOCに対して予め設定された閾値の中から該当する閾値を選択することを特徴とする請求項9又は10に記載の異常検出方法。
The step of detecting the abnormality calculates a ratio of the voltage fluctuation amount between the storage elements, and detects an abnormality of the storage element when the ratio exceeds a predetermined threshold.
Changing the predetermined threshold according to at least one of temperature and SOC of the power supply device;
The step of changing the predetermined threshold includes:
Based on the detection value detected by the temperature sensor for detecting the temperature of the power supply device and the SOC information of the power supply device, a corresponding threshold value is selected from the preset threshold values for the temperature and SOC of the power supply device The abnormality detection method according to claim 9 or 10, wherein:
JP2011227002A 2011-10-14 2011-10-14 Abnormality detection system of electric power supply, abnormality detection device and abnormality detection method Pending JP2013088183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011227002A JP2013088183A (en) 2011-10-14 2011-10-14 Abnormality detection system of electric power supply, abnormality detection device and abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227002A JP2013088183A (en) 2011-10-14 2011-10-14 Abnormality detection system of electric power supply, abnormality detection device and abnormality detection method

Publications (1)

Publication Number Publication Date
JP2013088183A true JP2013088183A (en) 2013-05-13

Family

ID=48532250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227002A Pending JP2013088183A (en) 2011-10-14 2011-10-14 Abnormality detection system of electric power supply, abnormality detection device and abnormality detection method

Country Status (1)

Country Link
JP (1) JP2013088183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049416A (en) * 2017-09-07 2019-03-28 日立建機株式会社 Hybrid construction machine
US10800261B2 (en) 2017-02-20 2020-10-13 Gs Yuasa International Ltd. Battery state estimation apparatus, assembled battery, energy storage system, and methods of using the same
JP2021018876A (en) * 2019-07-18 2021-02-15 株式会社Gsユアサ Power storage device maintenance method and maintenance program
JP2021509251A (en) * 2018-10-12 2021-03-18 エルジー・ケム・リミテッド Battery management device and method
CN115656847A (en) * 2022-12-08 2023-01-31 东莞先知大数据有限公司 Electric vehicle battery abnormity determining method, electronic equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031120A (en) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd Fault diagnosis device and method for battery pack
JP2008118777A (en) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Abnormality detecting device for storage element, abnormality detecting method for storage element, and abnormality detecting program for storage element
JP2009123435A (en) * 2007-11-13 2009-06-04 Toyota Motor Corp Device and method of controlling secondary battery
JP2010181262A (en) * 2009-02-05 2010-08-19 Sanyo Electric Co Ltd Rechargeable battery fault detection apparatus, and rechargeable battery device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031120A (en) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd Fault diagnosis device and method for battery pack
JP2008118777A (en) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Abnormality detecting device for storage element, abnormality detecting method for storage element, and abnormality detecting program for storage element
JP2009123435A (en) * 2007-11-13 2009-06-04 Toyota Motor Corp Device and method of controlling secondary battery
JP2010181262A (en) * 2009-02-05 2010-08-19 Sanyo Electric Co Ltd Rechargeable battery fault detection apparatus, and rechargeable battery device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10800261B2 (en) 2017-02-20 2020-10-13 Gs Yuasa International Ltd. Battery state estimation apparatus, assembled battery, energy storage system, and methods of using the same
JP2019049416A (en) * 2017-09-07 2019-03-28 日立建機株式会社 Hybrid construction machine
JP2021509251A (en) * 2018-10-12 2021-03-18 エルジー・ケム・リミテッド Battery management device and method
US11262409B2 (en) 2018-10-12 2022-03-01 Lg Energy Solution, Ltd. Battery management apparatus and method
JP2021018876A (en) * 2019-07-18 2021-02-15 株式会社Gsユアサ Power storage device maintenance method and maintenance program
CN115656847A (en) * 2022-12-08 2023-01-31 东莞先知大数据有限公司 Electric vehicle battery abnormity determining method, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
US20180050601A1 (en) Electrically powered vehicle
JP5741389B2 (en) A method for estimating a full charge capacity of a power storage device and a power storage system.
JP5708668B2 (en) Power storage system
US9428177B2 (en) Vehicle
JP5621818B2 (en) Power storage system and equalization method
RU2564102C1 (en) Control device and control method for anhydrous accumulator battery
JP5682433B2 (en) Charge control system
JP5738784B2 (en) Power storage system
JP2013158087A (en) Power storage system and charged state estimation method
JP5716691B2 (en) Battery system and charge / discharge control method for non-aqueous secondary battery
JPWO2012101667A1 (en) Power storage system
JP2013205257A (en) Power supply device, and vehicle and power storage device equipped with power supply device
JP5780107B2 (en) Power storage system and method for detecting current sensor abnormality
JP2013213684A (en) Power storage system and charging state estimation method
JP2013088183A (en) Abnormality detection system of electric power supply, abnormality detection device and abnormality detection method
JP2014082923A (en) Diagnostic device and diagnosis system
JP5862478B2 (en) Power storage system and control method
JP2011040237A (en) Charging apparatus for lead-storage battery
JP2014186007A (en) Power storage system, control apparatus and malfunction detection method
JP5928385B2 (en) Power storage system
JP2014072992A (en) Chargeability determination device of battery
JP6102714B2 (en) Power storage system
JP5975925B2 (en) Battery control device, power storage device
WO2020085097A1 (en) Battery control device
JP2013127440A (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106