JP2013088051A - Self-excited vibration heat pipe - Google Patents

Self-excited vibration heat pipe Download PDF

Info

Publication number
JP2013088051A
JP2013088051A JP2011229690A JP2011229690A JP2013088051A JP 2013088051 A JP2013088051 A JP 2013088051A JP 2011229690 A JP2011229690 A JP 2011229690A JP 2011229690 A JP2011229690 A JP 2011229690A JP 2013088051 A JP2013088051 A JP 2013088051A
Authority
JP
Japan
Prior art keywords
heat
unit
area
pipe
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011229690A
Other languages
Japanese (ja)
Other versions
JP5882666B2 (en
Inventor
Yoshiro Miyazaki
芳郎 宮▲崎▼
Satoshi Maeda
智 前田
Yoshiyuki Nishizaka
嘉之 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO DENSHI KK
Original Assignee
TAIYO DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO DENSHI KK filed Critical TAIYO DENSHI KK
Priority to JP2011229690A priority Critical patent/JP5882666B2/en
Publication of JP2013088051A publication Critical patent/JP2013088051A/en
Application granted granted Critical
Publication of JP5882666B2 publication Critical patent/JP5882666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-excited vibration heat pipe capable of maintaining a high heat transporting performance with simple configuration.SOLUTION: The self-excited vibration heat pipe includes: a conduit line extending a plurality of times between a first area and a second area lower in temperature than the first area, and having a gravity generation part, which is arranged having its axial direction crossing a horizontal plane, at least at a part thereof; and a working fluid charged in the conduit line. The conduit line is provided with a driving part having: a heat reception part exchanging heat in the first area; a heat radiation part exchanging heat in the second area; and a restriction part which is configured to have a smaller heat reception quantity than that of the heat reception part on the first area side and have a smaller heat radiation quantity than that of the heat radiation part on the second area side and which restricts the operation of the working fluid.

Description

本発明は、自励振動ヒートパイプに関する。   The present invention relates to a self-excited vibration heat pipe.

管路内の流体の圧力変動を利用して熱輸送を行う自励振動ヒートパイプがある。自励振動ヒートパイプは加熱部と冷却部とを複数回往復する細管にその内容積の半分程度の作動流体を封入した構造である。作動流体が加熱部で蒸発し冷却部で凝縮することにより、熱は潜熱として加熱部から冷却部へ運ばれる。   There is a self-excited oscillating heat pipe that uses the pressure fluctuation of the fluid in the pipe to transfer heat. The self-excited vibration heat pipe has a structure in which a working fluid having about half the inner volume is sealed in a thin tube that reciprocates between a heating unit and a cooling unit a plurality of times. As the working fluid evaporates in the heating unit and condenses in the cooling unit, heat is transferred as latent heat from the heating unit to the cooling unit.

特開2004―3807号公報Japanese Patent Laid-Open No. 2004-3807

しかしながら、自励振動ヒートパイプは振動流の振幅に限界があり、熱輸送性能に限界があるため、大型の伝熱面に適用することが困難となる。   However, since the self-excited oscillating heat pipe has a limit in the amplitude of the oscillating flow and a limited heat transport performance, it is difficult to apply to a large heat transfer surface.

実施形態では、単純な構成で高い熱輸送性能を維持できる自励振動ヒートパイプを提供することを目的とする。   An object of the embodiment is to provide a self-excited vibration heat pipe that can maintain high heat transport performance with a simple configuration.

本発明の一形態にかかる自励振動ヒートパイプは、第1エリアと前記第1エリアよりも温度の低い第2エリアとにわたって複数往復し、少なくとも一部にその軸方向が水平面に対して交差して配される重力発生部を有する管路と、前記管路内に封入された作動流体と、を備え、前記管路には、前記第1エリアで熱交換する受熱部と、前記第2エリアで熱交換する放熱部と、前記第1エリア側において前記受熱部より受熱量が小さく、あるいは前記第2エリア側において前記放熱部より放熱量が小さく、構成され、前記作動流体の動作を規制する規制部と、を有する駆動部が設けられることを特徴とする。   A self-excited vibration heat pipe according to an embodiment of the present invention reciprocates a plurality of times over a first area and a second area having a temperature lower than that of the first area, and at least a part of the axial direction intersects a horizontal plane. And a working fluid sealed in the pipe, wherein the pipe has a heat receiving part for exchanging heat in the first area, and the second area. And a heat radiating part that exchanges heat at the first area side, and a heat receiving amount smaller than the heat receiving part on the first area side, or a heat radiating amount smaller than the heat radiating part on the second area side, and restricts the operation of the working fluid The drive part which has a control part is provided, It is characterized by the above-mentioned.

実施形態によれば、単純な構成で高い熱輸送性能を維持することが可能となる。   According to the embodiment, it is possible to maintain high heat transport performance with a simple configuration.

本発明の一実施形態にかかる自励振動ヒートパイプの構造を示す斜視図。The perspective view which shows the structure of the self-excited vibration heat pipe concerning one Embodiment of this invention. 同自励振動ヒートパイプの内部構造を示す説明図。Explanatory drawing which shows the internal structure of the self-excited vibration heat pipe. 同自励振動ヒートパイプの内部構造を示す説明図。Explanatory drawing which shows the internal structure of the self-excited vibration heat pipe. 同自励振動ヒートパイプの動作を示す説明図。Explanatory drawing which shows operation | movement of the self-excited vibration heat pipe. 他の実施形態にかかる自励振動ヒートパイプの構造を示す斜視図。The perspective view which shows the structure of the self-excited vibration heat pipe concerning other embodiment. 他の実施形態にかかる自励振動ヒートパイプの構造を示す説明図。Explanatory drawing which shows the structure of the self-excited vibration heat pipe concerning other embodiment. 他の実施形態にかかる自励振動ヒートパイプの構造を示す説明図。Explanatory drawing which shows the structure of the self-excited vibration heat pipe concerning other embodiment. 他の実施形態にかかる自励振動ヒートパイプの構造を示す説明図。Explanatory drawing which shows the structure of the self-excited vibration heat pipe concerning other embodiment. 他の実施形態にかかる自励振動ヒートパイプの構造を示す説明図。Explanatory drawing which shows the structure of the self-excited vibration heat pipe concerning other embodiment.

以下、本発明の一実施形態かかる自励振動ヒートパイプ1について、図1乃至図4を参照して説明する。各図中矢印X,Y,Zはそれぞれ互いに直交する3方向を示す。また、各図において説明のため、適宜構成を拡大、縮小または省略して示している。図1は自励振動ヒートパイプの構造を示す外観斜視図であり、図2及び図3は側方から見た自励振動ヒートパイプ1の内部構造を示す説明図である。   Hereinafter, a self-excited vibration heat pipe 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4. In the drawings, arrows X, Y, and Z indicate three directions orthogonal to each other. In each drawing, the configuration is appropriately enlarged, reduced, or omitted for explanation. FIG. 1 is an external perspective view showing the structure of a self-excited vibration heat pipe, and FIGS. 2 and 3 are explanatory views showing the internal structure of the self-excited vibration heat pipe 1 as viewed from the side.

図1に示すように、本実施形態にかかる自励振動ヒートパイプ1は、加熱部20(第1エリア)と加熱部20よりも温度が低い冷却部30(第2エリア)を複数回往復するように配された管路10と、管路10内に封入された作動流体40とを備えて構成される。この自励振動ヒートパイプ1は、温度変化によって生じる圧力変動により自励的に発生する圧力振動で作動流体40を駆動するヒートパイプ1である。   As shown in FIG. 1, the self-excited vibration heat pipe 1 according to the present embodiment reciprocates a heating unit 20 (first area) and a cooling unit 30 (second area) whose temperature is lower than that of the heating unit 20 a plurality of times. And the working fluid 40 enclosed in the duct 10 is configured. The self-excited vibration heat pipe 1 is a heat pipe 1 that drives the working fluid 40 by pressure vibration generated by self-excitation due to pressure fluctuation caused by temperature change.

ヒートパイプ1は一本の長い管路10からなり、この管路10が加熱部20と冷却部30とにわたって複数回往復して蛇行状に配されて構成されている。ヒートパイプ1は、Y方向両端にそれぞれU字状に折り返されるターン部11a、11bを複数形成し、これら複数のターン部11a、11bが両端部でそれぞれX方向に並んでいる。ヒートパイプ1の両端は互いに連通されてループ状になっており、循環する一つの流路を構成している。   The heat pipe 1 is composed of a single long pipe 10, and the pipe 10 is configured to meander and reciprocate a plurality of times over the heating unit 20 and the cooling unit 30. The heat pipe 1 has a plurality of turn portions 11a and 11b that are folded in a U shape at both ends in the Y direction, and the plurality of turn portions 11a and 11b are arranged in the X direction at both ends. Both ends of the heat pipe 1 are communicated with each other in a loop shape, and constitute one circulating flow path.

Y方向一方側(放熱側)は管路10の軸が水平面(図中XY平面)に沿って配置される水平部10Aを構成し、Y方向他端側(受熱側)は屈曲部11cから下方に折曲され、軸が上下方向(図中Z軸)に沿って配置される鉛直部10B(重力発生部)を構成している。   One side in the Y direction (heat radiating side) constitutes a horizontal portion 10A in which the axis of the pipe line 10 is arranged along a horizontal plane (XY plane in the figure), and the other end side in the Y direction (heat receiving side) is below the bent portion 11c. The vertical portion 10B (gravity generating portion) is configured such that the shaft is bent along the vertical direction (Z-axis in the figure).

なおここでは一例として、Y方向一端側の鉛直部10Bの側方に高温部となる加熱部20の熱源としてヒータ21を設置し、その他の低温部となる冷却部30は自然空冷とした例を示すが、加熱部20及び冷却部30の構成はこれに限られるものではない。例えば加熱部20と冷却部30は温度差があればよく、また加熱部20と冷却部30の間に断熱部などの他の温度領域が介在していてもよい。   Here, as an example, a heater 21 is installed as a heat source of the heating unit 20 that is a high temperature part on the side of the vertical part 10B on one end side in the Y direction, and the cooling unit 30 that is another low temperature part is natural air cooling. Although shown, the structure of the heating part 20 and the cooling part 30 is not restricted to this. For example, the heating unit 20 and the cooling unit 30 may have a temperature difference, and another temperature region such as a heat insulating unit may be interposed between the heating unit 20 and the cooling unit 30.

管路10は例えば銅などの熱伝導性の金属で構成される断面円形状の細管である。管路10は、毛細管現象により蒸気泡と液柱とが管軸方向に交互に分布するように、直径5mm以下に設定する。本実施形態では例えば材質:銅、外径:3mm、内径:2mmとした。図1に示す例では、ターン数:14ターン(28チャンネル)、配設幅W:約405mm、配設ピッチP:15mm、水平部長さL1:約1500 mm、鉛直部長さL2:約100 mm、加熱部長さL3:50mm、となるように配置した。さらに内部の作動流体40:R-134a、封入量割合:53%(90g)とした。   The pipe 10 is a thin tube having a circular cross section made of a heat conductive metal such as copper. The conduit 10 is set to have a diameter of 5 mm or less so that vapor bubbles and liquid columns are alternately distributed in the tube axis direction by capillary action. In this embodiment, for example, the material is copper, the outer diameter is 3 mm, and the inner diameter is 2 mm. In the example shown in FIG. 1, the number of turns: 14 turns (28 channels), the arrangement width W: about 405 mm, the arrangement pitch P: 15 mm, the horizontal part length L1: about 1500 mm, the vertical part length L2: about 100 mm, It arranged so that it might become heating part length L3: 50mm. Furthermore, the internal working fluid was 40: R-134a, and the enclosed amount ratio was 53% (90 g).

管路10は、軸方向に沿って、冷却部30と熱交換する放熱部13と、加熱部20と熱交換する受熱部12と、加熱側において受熱部12より受熱量が小さく構成され作動流体40の動作を規制する規制部14と、が順番に配される駆動部50が設けられる。規制部14は、例えば管路の一部を熱源であるヒータ21から断熱してなる。   The pipe line 10 includes a heat radiating unit 13 that exchanges heat with the cooling unit 30, a heat receiving unit 12 that exchanges heat with the heating unit 20, and a heat receiving amount that is smaller than the heat receiving unit 12 on the heating side. The drive part 50 in which the control part 14 which controls operation | movement of 40 is arranged in order is provided. For example, the restricting unit 14 insulates a part of the pipe line from the heater 21 that is a heat source.

この実施形態では、水平部10Aに放熱部13が配され、鉛直部10Bにおいて受熱部12と規制部14が一本おきに交互に並列している。   In this embodiment, the heat radiating part 13 is arranged in the horizontal part 10A, and the heat receiving part 12 and the regulating part 14 are alternately arranged in parallel in the vertical part 10B.

受熱部12は加熱部20において熱源に近接配置されて熱交換可能になっており、規制部14は加熱部20に配されるが熱源から離間配置されて断熱されている。したがって規制部14では作動流体40の受熱が抑制され、膨張(蒸発)が抑制される。なお、規制部14の構成は断熱に限られず、例えば放熱部13と同様に冷却される構成としてもよい。この規制部14によって、軸方向におけるターン部11aの一方側と他方側とで圧力状態を異ならせている。   The heat receiving unit 12 is disposed close to the heat source in the heating unit 20 so as to be able to exchange heat, and the regulating unit 14 is disposed in the heating unit 20 but is spaced apart from the heat source and insulated. Therefore, in the regulation part 14, the heat receiving of the working fluid 40 is suppressed, and expansion (evaporation) is suppressed. In addition, the structure of the control part 14 is not restricted to heat insulation, For example, it is good also as a structure cooled similarly to the thermal radiation part 13. FIG. By this restricting portion 14, the pressure state is made different between one side and the other side of the turn portion 11a in the axial direction.

ヒートパイプ1は鉛直部10Bの各ターン部11aの最も下端部分で折り返され、受熱部12と規制部14が折り返し点を挟んで連通しているとともに、各受熱部12及び規制部14の上側がそれぞれ放熱部13に連通している。この鉛直部10B付近において、放熱部13と受熱部12と規制部14とが順番に連続配置されて駆動部50を構成している。すなわち、一往復分の管路10において、受熱部12を基準として上流側に規制部14が、下流側に放熱部13が配置される構成となっている。このため、下方に向かうU字状のターン部11aにおいて折り返し点を中心とした両側の部分のうち一方のみ加熱され他方が断熱されることとしたので、両側が同様に加熱される場合と比べて加熱される部分は蒸気が多く、断熱される部分は液が多くなる。このような気液分布では加熱によって発生した蒸気は上方へ流れ、液の多い部分に逆流することは難しく、流の方向が一方向に規制される。この結果、振動流の振幅による流の距離の限界がなくなり、熱輸送性能が改善される。   The heat pipe 1 is folded at the lowermost end portion of each turn portion 11a of the vertical portion 10B, and the heat receiving portion 12 and the regulating portion 14 communicate with each other across the turning point, and the upper side of each heat receiving portion 12 and the regulating portion 14 is Each communicates with the heat dissipation portion 13. In the vicinity of the vertical portion 10 </ b> B, the heat radiating portion 13, the heat receiving portion 12, and the regulating portion 14 are continuously arranged in order to constitute the driving portion 50. That is, in the pipe line 10 for one reciprocation, the restriction part 14 is arranged on the upstream side with the heat receiving part 12 as a reference, and the heat radiation part 13 is arranged on the downstream side. For this reason, in the U-shaped turn part 11a that goes downward, only one of the parts on both sides centering on the turning point is heated and the other is insulated, so that both sides are similarly heated. The part to be heated has a lot of steam and the part to be insulated has a lot of liquid. In such a gas-liquid distribution, steam generated by heating flows upward, and it is difficult to flow back to a portion where there is a lot of liquid, and the flow direction is restricted to one direction. As a result, the limit of the flow distance due to the amplitude of the oscillating flow is eliminated, and the heat transport performance is improved.

この実施形態では管路10の一往復毎に駆動部50が設けられ、計14の駆動部50が等間隔で配置されている。例えば本実施形態の設定では駆動部50同士の間隔は軸方向の長さで3000mm(一往復)程度となる。   In this embodiment, a driving unit 50 is provided for each reciprocation of the pipe 10, and a total of 14 driving units 50 are arranged at equal intervals. For example, in the setting of the present embodiment, the distance between the drive units 50 is about 3000 mm (one reciprocation) in the axial direction.

以下、本実施形態にかかる自励振動ヒートパイプ1の作用について図4を参照して説明する。図4は自励振動ヒートパイプ1の管路10の内部の状態を示す説明図である。自励振動ヒートパイプ1の管路10の内部には作動流体40として、蒸気泡41(気体)と液柱42(液体)とが分布している。作動流体40は加熱部20での加熱により蒸発して蒸気泡41となり、冷却部30での冷却により凝縮して液柱42となる。   Hereinafter, the operation of the self-excited vibration heat pipe 1 according to the present embodiment will be described with reference to FIG. FIG. 4 is an explanatory diagram showing an internal state of the conduit 10 of the self-excited vibration heat pipe 1. A vapor bubble 41 (gas) and a liquid column 42 (liquid) are distributed as a working fluid 40 in the duct 10 of the self-excited vibration heat pipe 1. The working fluid 40 evaporates by heating at the heating unit 20 to become vapor bubbles 41, and condenses by cooling at the cooling unit 30 to become liquid columns 42.

作動流体40は加熱部20に配される受熱部12で加熱されて気相リッチとなり、冷却部30に配される放熱部13において冷却されて液相リッチとなる。液が多い部分では蒸発が優勢であるので圧力が高くなり、蒸気が多い部分では凝縮が優勢であるので圧力は低下する。一方、圧力が高い部分からは作動流体40が流出するので液が減少し、圧力の低い部分では作動流体40が流入するので液が増加する。このような圧力と液量との相互作用によって自励的に発生する圧力振動が持続し、熱輸送を行う。すなわち、蒸気泡41と液柱42の圧力差により自励的に発生する圧力振動により、作動流体40が継続的に管路10内を移動することで、熱は潜熱として、加熱部20から冷却部30へ運ばれ、熱輸送が行われる。   The working fluid 40 is heated by the heat receiving unit 12 disposed in the heating unit 20 and becomes rich in the gas phase, and is cooled in the heat radiating unit 13 disposed in the cooling unit 30 and becomes rich in the liquid phase. Since the evaporation is dominant in the portion where the liquid is large, the pressure is high, and in the portion where the vapor is large, the condensation is dominant and the pressure is reduced. On the other hand, since the working fluid 40 flows out from the portion where the pressure is high, the liquid decreases, and in the portion where the pressure is low, the liquid increases because the working fluid 40 flows in. The pressure vibration generated by the self-excitation due to the interaction between the pressure and the liquid amount is sustained, and heat transport is performed. That is, the working fluid 40 continuously moves in the pipe line 10 due to pressure vibration generated by the pressure difference between the vapor bubble 41 and the liquid column 42, so that the heat is cooled from the heating unit 20 as latent heat. It is carried to the part 30 and heat transport is performed.

さらに駆動部50では、低位の受熱部12で膨張した蒸気が重力の作用により高位の放熱部13側に移動する。このとき、受熱部12の軸方向一方側は放熱部13に連通し、他方側はターン部11aを通って規制部14に連通している。規制部14は断熱されていて受熱部12よりも受熱量が小さくあるいは受熱しないので、液相リッチ状態となり受熱部12よりも圧力が高い状態となる。このためターン部11aの一方側に設けられた受熱部12の蒸気泡41が重力の作用で上方の放熱部13側に移動する方向に方向付けられ、他方側の管路では液柱42が下降する方向に方向付けられる。   Furthermore, in the drive part 50, the vapor | steam expanded in the low heat receiving part 12 moves to the high heat radiation part 13 side by the effect | action of gravity. At this time, one side in the axial direction of the heat receiving part 12 communicates with the heat radiating part 13, and the other side communicates with the regulating part 14 through the turn part 11a. Since the regulating portion 14 is insulated and has a smaller amount of heat or does not receive heat than the heat receiving portion 12, it becomes a liquid phase rich state and a pressure higher than that of the heat receiving portion 12. For this reason, the steam bubble 41 of the heat receiving part 12 provided on one side of the turn part 11a is directed in the direction of moving to the upper heat radiating part 13 side by the action of gravity, and the liquid column 42 descends in the other pipe line. Oriented in the direction to do.

すなわち、駆動部50は、管路10を一本おきに断熱するだけの単純な構成で、作動流体40の流れの方向をコントロールする。この駆動部50によって、自励的に発生する振動流の一方向の流れを許容し、反対方向の流れを抑制することにより、管路10内に作動流体40の循環流を発生させ、自励振動を持続させることができる。作動流体40の流れは、図4の矢印で示す方向に方向付けられ、振動しながら流れる脈動循環流となる。   That is, the drive unit 50 controls the flow direction of the working fluid 40 with a simple configuration that only insulates the pipes 10 every other line. This drive unit 50 allows a unidirectional flow of vibration flow generated in a self-excited manner and suppresses a flow in the opposite direction, thereby generating a circulating flow of the working fluid 40 in the pipe line 10. Vibration can be sustained. The flow of the working fluid 40 is directed in the direction indicated by the arrow in FIG. 4 and becomes a pulsating circulation flow that flows while vibrating.

本実施形態によれば、単純な構成で作動流体40の動作をコントロールして高い熱輸送性能を維持できる。すなわち、通常自励振動ヒートパイプ1は水平状態では振動流の振幅に限界があるため熱輸送距離は数百mmとされているが、本実施形態では高低差を有する重力発生部を設けて重力により作動流体40を駆動することで熱輸送性能を格段に向上できる。   According to this embodiment, high heat transport performance can be maintained by controlling the operation of the working fluid 40 with a simple configuration. That is, the self-excited oscillating heat pipe 1 has a limit in the amplitude of the oscillating flow in the horizontal state, and therefore the heat transport distance is set to several hundred mm. However, in this embodiment, a gravity generating unit having a height difference is provided to reduce the gravity. Thus, the heat transport performance can be remarkably improved by driving the working fluid 40.

また、管路10の一部を断熱させて規制部14とする簡単な構成で作動流体40の動作方向を規制できる。   Further, the operation direction of the working fluid 40 can be regulated with a simple configuration in which a part of the pipe line 10 is thermally insulated to form the regulating unit 14.

なお、実験として、自励振動ヒートパイプ1の一部を透明な管で構成し、内部の状況を観察するとともに、ヒートパイプ1における複数個所で温度測定を行った。40Wでのヒータ21起動時は自励振動が作動せず受熱部12の温度だけが上昇したが、起動時後一定時間経過後に自励振動動作開始とともに受熱部12の温度低下と放熱部13の温度上昇が起こり、受熱部12と放熱部13の温度差が縮小した。このとき、受熱部12では放熱部13へ向かう気泡流が、規制部14では垂直面に向かう方向に微小な気泡をわずかに含む液体のゆっくりとした流れが、観察され、循環流の発生が確認された。   As an experiment, a part of the self-excited vibration heat pipe 1 was formed of a transparent tube, the internal state was observed, and temperature was measured at a plurality of locations in the heat pipe 1. When the heater 21 is activated at 40 W, the self-excited vibration is not activated and only the temperature of the heat receiving unit 12 is increased. However, the temperature of the heat receiving unit 12 is decreased with the start of the self-excited vibration operation after a lapse of a certain time after the activation. A temperature rise occurred, and the temperature difference between the heat receiving portion 12 and the heat radiating portion 13 was reduced. At this time, a bubble flow toward the heat radiating portion 13 is observed in the heat receiving portion 12, and a slow flow of a liquid containing a small amount of fine bubbles in the direction toward the vertical surface is observed in the regulating portion 14, confirming the occurrence of a circulating flow. It was done.

本実施形態では、ヒートパイプ1の一部を屈曲して高低差を設けるだけで高い熱輸送能力を得ることができるため、広範囲の水平面で熱交換を行う場合にも適用可能である。例えば広い範囲の水平面を加熱部または冷却部として利用し、一部を鉛直方向または水平面に傾斜するように傾けることにより、十分な熱輸送力が得られる。例えばヒートパイプ1の放熱部13を床や道路に敷設して床暖房、道路融雪などの熱交換に用いることが可能である。また、例えばヒートパイプ1の受熱部12を屋根に敷設してソーラーコレクタとして用いることが可能である。   In this embodiment, since a high heat transport capability can be obtained only by bending a part of the heat pipe 1 to provide a height difference, the present invention is also applicable when heat exchange is performed in a wide horizontal plane. For example, a sufficient heat transport force can be obtained by using a horizontal plane in a wide range as a heating unit or a cooling unit and tilting a part thereof so as to incline in a vertical direction or a horizontal plane. For example, the heat radiating portion 13 of the heat pipe 1 can be laid on the floor or road and used for heat exchange such as floor heating and road snow melting. Further, for example, the heat receiving portion 12 of the heat pipe 1 can be laid on the roof and used as a solar collector.

また細管を蛇行状に往復させた自励振動ヒートパイプはフレキシブルであって敷設作業も単純であるため低コストで広範囲に適用できる。また配設エリアの形状も問わないため、様々な場所に適用でき、汎用性が高い。   In addition, a self-excited oscillating heat pipe in which a thin tube is reciprocated in a meandering manner is flexible and simple to lay, so it can be widely applied at low cost. Further, since the shape of the arrangement area is not limited, it can be applied to various places and is highly versatile.

なお、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能である。また、各部の具体的構成や材質等は上記実施形態に例示したものに限られるものではなく適宜変更可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. In addition, the specific configuration, material, and the like of each unit are not limited to those illustrated in the above embodiment, and can be changed as appropriate.

例えば規制部14として加熱部20に配される管路の一部を熱源21から離間配置されて断熱した構成を例示したが、これに限られるものではない。例えば熱源21との間に断熱材を介して断熱してもよい。さらに規制部14は、加熱部20に配される管路10の一部が冷却されて構成されるものであってもよいし、冷却部30に配される管路10の一部が断熱または加熱されて放熱部14よりも放熱量が小さくなるように構成されるものであってもよい。これらの場合にも作動流体の圧力振動を規制して上記第1実施形態と同様の効果を得ることができる。   For example, a configuration in which a part of a pipe line disposed in the heating unit 20 as the regulating unit 14 is disposed away from the heat source 21 and insulated is exemplified, but the configuration is not limited thereto. For example, heat insulation may be provided between the heat source 21 and the heat source 21. Further, the restriction unit 14 may be configured by cooling a part of the pipe line 10 arranged in the heating part 20, or a part of the pipe line 10 arranged in the cooling part 30 is insulated or It may be configured to be heated so that the heat dissipation amount is smaller than that of the heat dissipation portion 14. In these cases, the same effect as that of the first embodiment can be obtained by regulating the pressure vibration of the working fluid.

例えば上記第1実施形態では一部に鉛直部10Bを有する構成を例示したが、これに限られるものではない。例えばヒートパイプ1が縦あるいは水平面あるいは傾斜するように斜めに配置することでてヒートパイプ1を全体として重力発生部を構成してもよい。   For example, in the first embodiment, the configuration having the vertical portion 10B in part is illustrated, but the configuration is not limited thereto. For example, the heat pipe 1 may be arranged so as to be vertically or horizontally or inclined so that the heat pipe 1 as a whole constitutes a gravity generating unit.

例えば、他の実施形態として図5に示すヒートパイプ2のように、ヒートパイプ2を水平面(XY平面)に対して傾斜配置して重力発生部を構成することも可能である。このとき、傾斜の下部を受熱部12として、上部を放熱部13とすることで重力を発生させることができる。また、加熱部20に配される管路10の一部を断熱させて規制部14を構成することで、循環流を発生させることができる。この実施形態においても上記第1実施形態と同様の効果が得られる。   For example, as another embodiment, as in the heat pipe 2 shown in FIG. 5, it is possible to configure the gravity generating section by arranging the heat pipe 2 to be inclined with respect to the horizontal plane (XY plane). At this time, gravity can be generated by using the lower portion of the slope as the heat receiving portion 12 and the upper portion as the heat radiating portion 13. Moreover, a circulating flow can be produced | generated by heat-insulating a part of pipe line 10 distribute | arranged to the heating part 20, and comprising the control part 14. FIG. Also in this embodiment, the same effect as the first embodiment can be obtained.

また、上記第1実施形態では鉛直部10Bに受熱部12、水平部10Aに放熱部13を配置したが、逆であってもよい。例えば他の実施形態として図6に示すヒートパイプ3は、水平部10Aに受熱部12を、上方に屈曲させた鉛直部10Bに放熱部13及び規制部14を交互に配置した。このヒートパイプ3では上方に屈曲した放熱部13に向かって受熱部12で蒸発した蒸気泡が移動することで、作動流体40が駆動され、放熱部13で冷却されて再び凝縮する。この繰り返しによって、上記第1実施形態と同様に作動流体40の動作が継続し、熱輸送能力が維持できる。   Moreover, in the said 1st Embodiment, although the heat receiving part 12 was arrange | positioned to the vertical part 10B and the heat radiating part 13 to 10 A of horizontal parts, the reverse may be sufficient. For example, in another embodiment, in the heat pipe 3 shown in FIG. 6, the heat receiving portion 12 is arranged in the horizontal portion 10 </ b> A, and the heat radiating portion 13 and the regulating portion 14 are alternately arranged in the vertical portion 10 </ b> B bent upward. In the heat pipe 3, the vapor bubbles evaporated in the heat receiving portion 12 move toward the heat radiating portion 13 bent upward, whereby the working fluid 40 is driven, cooled by the heat radiating portion 13, and condensed again. By repeating this, the operation of the working fluid 40 continues as in the first embodiment, and the heat transport capability can be maintained.

さらに、例えば他の実施形態として図7に示すヒートパイプ4は両側のターン部11a,11bがそれぞれ上方に屈曲して鉛直部10Bを構成し、間の管路が水平部10Aを構成している。加熱側のターン部11aを加熱して受熱部12とするとともに、冷却側のターン部11bの一方側を冷却して放熱部13とし、他方側を断熱して規制部14としている。この実施形態においても、受熱部12の作動流体40が蒸発して上方に駆動され、放熱部13で冷却されて再び凝縮する。この繰り返しによって、上記第1実施形態と同様に作動流体40の動作が継続し、熱輸送能力が維持できる。   Furthermore, for example, as another embodiment, in the heat pipe 4 shown in FIG. 7, the turn portions 11a and 11b on both sides bend upward to form the vertical portion 10B, and the pipe between them forms the horizontal portion 10A. . While heating side turn part 11a is heated and used as heat receiving part 12, one side of cooling side turn part 11b is cooled to form heat radiating part 13, and the other side is insulated to form regulation part 14. Also in this embodiment, the working fluid 40 of the heat receiving unit 12 evaporates and is driven upward, cooled by the heat radiating unit 13, and condensed again. By repeating this, the operation of the working fluid 40 continues as in the first embodiment, and the heat transport capability can be maintained.

他の実施形態として図8に示すヒートパイプ5は、ヒートパイプ4とは反対に両側のターン部11a,11bを下方に屈曲して鉛直部10Bを構成している。この場合、加熱側に規制部14を設けることにより、駆動部50を形成できる。この結果、受熱部12の作動流体40が蒸発して上方に駆動され、放熱部13で冷却されて再び凝縮する。この繰り返しによって、上記第1実施形態と同様に作動流体40の動作が継続し、熱輸送能力が維持できる。なお、駆動部50を有効とするために、図7のように管路10の折り返し部が上にある場合は冷却側に、図8のように下にある場合は加熱側に規制部14を設けることとした。   As another embodiment, the heat pipe 5 shown in FIG. 8 has a vertical portion 10 </ b> B formed by bending downward the turn portions 11 a and 11 b on both sides, opposite to the heat pipe 4. In this case, the drive part 50 can be formed by providing the restriction part 14 on the heating side. As a result, the working fluid 40 of the heat receiving unit 12 is evaporated and driven upward, cooled by the heat radiating unit 13, and condensed again. By repeating this, the operation of the working fluid 40 continues as in the first embodiment, and the heat transport capability can be maintained. In order to make the drive unit 50 effective, the regulating unit 14 is provided on the cooling side when the folded portion of the pipe line 10 is on the upper side as shown in FIG. 7 and on the heating side when it is on the lower side as shown in FIG. We decided to provide it.

他の実施形態として図9に示すヒートパイプ6は、全体として鉛直方向に沿って配置され、下部を加熱側として受熱部12を配し、上部を冷却側として放熱部13を配している。さらに加熱側及び冷却側のそれぞれの管路10の一部を断熱させて規制部14を構成している。この実施形態では、規制部14、受熱部12、および放熱部13を軸方向に順番に有する駆動部50により、重力を利用して作動流体40の循環流を発生させることができる。この実施形態においても上記第1実施形態と同様の効果が得られる。   The heat pipe 6 shown in FIG. 9 as another embodiment is arranged along the vertical direction as a whole, and the heat receiving part 12 is arranged with the lower part as the heating side, and the heat radiation part 13 is arranged with the upper part as the cooling side. Furthermore, a part of each of the pipes 10 on the heating side and the cooling side is thermally insulated to constitute the restricting portion 14. In this embodiment, a circulating flow of the working fluid 40 can be generated using gravity by the driving unit 50 having the regulating unit 14, the heat receiving unit 12, and the heat radiating unit 13 in order in the axial direction. Also in this embodiment, the same effect as the first embodiment can be obtained.

上記実施形態では加熱部20と冷却部30を備え、軸方向に沿って、放熱部13と、受熱部12と、規制部14と、が連続して順番に配される駆動部50を例示したが、例えば放熱部13と受熱部12の間に他の温度エリアとして断熱部などがあってもよい。   In the said embodiment, the heating part 20 and the cooling part 30 were provided, and the drive part 50 with which the thermal radiation part 13, the heat receiving part 12, and the control part 14 were continuously arranged in order along the axial direction was illustrated. However, for example, there may be a heat insulating part or the like as another temperature area between the heat radiating part 13 and the heat receiving part 12.

さらに、一本おきではなく複数本おきに規制部14を設けてもよいし、規制部14と受熱部12の高さ位置が異なっていてもよい。さらに管路10に作動流体40の流れを規制する逆止弁を併用し、循環流の効果を高めることも可能である。   Furthermore, the restriction part 14 may be provided every plural lines instead of every other, or the height positions of the restriction part 14 and the heat receiving part 12 may be different. Furthermore, a check valve for restricting the flow of the working fluid 40 may be used in the pipeline 10 to enhance the effect of the circulation flow.

上記第1実施形態においては、一例として、加熱部20は加熱源としてヒータ21を用い、冷却部30は自然空冷として熱輸送の効果を検証したが、加熱部20冷却部30の例はこれらに限られるものではない。例えば加熱部(第1エリア)はCPUなどの発熱電子機器、太陽熱吸収面、温水や高温排ガス等とし、冷却部(第2エリア)は水冷、放射放熱面、融雪面等とすることが可能であり、電子機器の冷却、冷暖房、ソーラーコレクタ、融雪装置を含む様々な用途に適用できる。   In the first embodiment, as an example, the heating unit 20 uses the heater 21 as a heating source, and the cooling unit 30 verifies the effect of heat transport as natural air cooling, but the example of the heating unit 20 cooling unit 30 includes these It is not limited. For example, the heating part (first area) can be a heat generating electronic device such as a CPU, a solar heat absorption surface, hot water or high-temperature exhaust gas, etc., and the cooling part (second area) can be a water cooling, radiation heat radiation surface, snow melting surface, etc. Yes, it can be applied to various uses including electronic equipment cooling, air conditioning, solar collector, snow melting equipment.

さらに、上記実施形態の構成要件のうち一部を省略しても本発明を実現可能である。   Furthermore, the present invention can be realized even if some of the constituent features of the above-described embodiment are omitted.

1〜5…自励振動ヒートパイプ、10…管路、10A…水平部、10B…鉛直部(重力発生部)、11a.11b…ターン部、11c…屈曲部、12…受熱部、13…放熱部、14…規制部、20…加熱部(第1エリア)、21…ヒータ(熱源)、30…冷却部(第2エリア)、40…作動流体、41…蒸気泡、42…液柱、50…駆動部。   1-5 ... Self-excited vibration heat pipe, 10 ... Pipe line, 10A ... Horizontal part, 10B ... Vertical part (gravity generating part), 11a. DESCRIPTION OF SYMBOLS 11b ... Turn part, 11c ... Bending part, 12 ... Heat receiving part, 13 ... Radiation part, 14 ... Control part, 20 ... Heating part (1st area), 21 ... Heater (heat source), 30 ... Cooling part (2nd area) 40 ... working fluid, 41 ... vapor bubble, 42 ... liquid column, 50 ... driving unit.

Claims (5)

第1エリアと前記第1エリアよりも温度の低い第2エリアとにわたって複数往復し、少なくとも一部にその軸方向が水平面に対して交差して配される重力発生部を有する管路と、
前記管路内に封入された作動流体と、を備え、
前記管路には、前記第1エリアで熱交換する受熱部と、前記第2エリアで熱交換する放熱部と、前記第1エリア側において前記受熱部より受熱量が小さく、あるいは前記第2エリア側において前記放熱部より放熱量が小さく、構成され、前記作動流体の動作を規制する規制部と、を有する駆動部が設けられることを特徴とする自励振動ヒートパイプ。
A pipe having a gravity generating portion that reciprocates a plurality of times over a first area and a second area having a temperature lower than that of the first area, and at least a portion of which is arranged with its axial direction intersecting a horizontal plane;
A working fluid sealed in the pipe line,
The pipe has a heat receiving part that exchanges heat in the first area, a heat radiating part that exchanges heat in the second area, and a smaller amount of heat received than the heat receiving part on the first area side, or the second area. A self-excited oscillating heat pipe, characterized in that a drive unit having a heat release amount smaller than that of the heat release unit on the side and configured to restrict the operation of the working fluid is provided.
前記規制部は、前記第1エリアに配される管路の一部が断熱または冷却され、あるいは前記第2エリアに配される前記管路の一部が断熱または加熱されて構成され、
前記駆動部は、前記放熱部、前記受熱部、及び前記規制部を軸方向に順番に有して構成され、
前記駆動部において、前記作動流体は、前記受熱部にて蒸発し、前記放熱部にて凝縮し、圧力振動を発生させて熱輸送を行い、前記重力発生部の高低差による重力で前記蒸発した作動流体が上位へ移動するとともに、前記規制部により前記作動流体の動作方向が規制されることを特徴とする請求項1記載の自励振動ヒートパイプ。
The restriction part is configured such that a part of the pipe line arranged in the first area is insulated or cooled, or a part of the pipe line arranged in the second area is insulated or heated,
The drive unit is configured to include the heat radiating unit, the heat receiving unit, and the regulating unit in order in the axial direction,
In the driving unit, the working fluid evaporates in the heat receiving unit, condenses in the heat radiating unit, generates pressure vibrations, performs heat transport, and evaporates due to gravity due to a difference in height of the gravity generating unit. The self-excited vibration heat pipe according to claim 1, wherein the working fluid moves upward and the operation direction of the working fluid is regulated by the regulating unit.
前記管路が屈曲して前記重力発生部を構成することを特徴とする請求項2記載の自励振動ヒートパイプ。   The self-excited vibration heat pipe according to claim 2, wherein the pipe line is bent to constitute the gravity generating unit. 前記重力発生部は、前記管路が高低差を有するように水平方向に対して傾斜して構成されることを特徴とする請求項2記載の自励振動ヒートパイプ。   The self-excited vibration heat pipe according to claim 2, wherein the gravity generator is configured to be inclined with respect to a horizontal direction so that the pipe has a height difference. 前記管路は両端部が互いに連通するループ型であり、
前記管路の複数箇所に前記駆動部及び前記重力発生部が設けられるとともに、
前記管路が折り返されるターン部分における前記往路側と前記復路側とで圧力条件が異なるように前記規制部が設けられることを特徴とする請求項2記載の自励振動ヒートパイプ。
The pipe line is a loop type with both ends communicating with each other,
The drive unit and the gravity generation unit are provided at a plurality of locations of the pipeline,
The self-excited vibration heat pipe according to claim 2, wherein the restricting portion is provided so that pressure conditions are different between the forward path side and the return path side in a turn portion where the pipe line is folded.
JP2011229690A 2011-10-19 2011-10-19 Self-excited vibration heat pipe Expired - Fee Related JP5882666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229690A JP5882666B2 (en) 2011-10-19 2011-10-19 Self-excited vibration heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229690A JP5882666B2 (en) 2011-10-19 2011-10-19 Self-excited vibration heat pipe

Publications (2)

Publication Number Publication Date
JP2013088051A true JP2013088051A (en) 2013-05-13
JP5882666B2 JP5882666B2 (en) 2016-03-09

Family

ID=48532135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229690A Expired - Fee Related JP5882666B2 (en) 2011-10-19 2011-10-19 Self-excited vibration heat pipe

Country Status (1)

Country Link
JP (1) JP5882666B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438741A (en) * 2013-08-29 2013-12-11 中山市久能光电科技有限公司 Radiator
JP2014239174A (en) * 2013-06-10 2014-12-18 千代田空調機器株式会社 Air conditioner
JP2018531353A (en) * 2016-01-20 2018-10-25 レイセオン カンパニー Multi-level self-excited vibration heat pipe mounting in electronic circuit card module
JPWO2020225981A1 (en) * 2019-05-08 2020-11-12
CN113591365A (en) * 2021-06-22 2021-11-02 武汉科技大学 Multi-objective optimization method for self-oscillation heat exchange tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318493A (en) * 1987-06-23 1988-12-27 Akutoronikusu Kk Capillary heat pipe of loop type
JPH04190090A (en) * 1990-11-22 1992-07-08 Akutoronikusu Kk Loop type fine tube heat pipe
JP2004125382A (en) * 2002-08-07 2004-04-22 Denso Corp Counter oscillation flow type heat transport device
JP2008298342A (en) * 2007-05-30 2008-12-11 Kanai Educational Institution Check valve, self-excited vibration heat pipe, heat generation device, manufacturing method of check valve and manufacturing method of self-excited vibration heat pipe
US20110067843A1 (en) * 2008-11-14 2011-03-24 Vasiliev Jr Leonid Heat exchange device made of polymeric material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318493A (en) * 1987-06-23 1988-12-27 Akutoronikusu Kk Capillary heat pipe of loop type
JPH04190090A (en) * 1990-11-22 1992-07-08 Akutoronikusu Kk Loop type fine tube heat pipe
JP2004125382A (en) * 2002-08-07 2004-04-22 Denso Corp Counter oscillation flow type heat transport device
JP2008298342A (en) * 2007-05-30 2008-12-11 Kanai Educational Institution Check valve, self-excited vibration heat pipe, heat generation device, manufacturing method of check valve and manufacturing method of self-excited vibration heat pipe
US20110067843A1 (en) * 2008-11-14 2011-03-24 Vasiliev Jr Leonid Heat exchange device made of polymeric material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239174A (en) * 2013-06-10 2014-12-18 千代田空調機器株式会社 Air conditioner
CN103438741A (en) * 2013-08-29 2013-12-11 中山市久能光电科技有限公司 Radiator
JP2018531353A (en) * 2016-01-20 2018-10-25 レイセオン カンパニー Multi-level self-excited vibration heat pipe mounting in electronic circuit card module
TWI696415B (en) * 2016-01-20 2020-06-11 美商雷神公司 Multi-level cooling structure and method for forming the same, and circuit card module comprising a multi-level cooling structure
JPWO2020225981A1 (en) * 2019-05-08 2020-11-12
WO2020225981A1 (en) * 2019-05-08 2020-11-12 株式会社日立製作所 Self-excited vibration heat pipe cooling device, and railway vehicle on which cooling device is mounted
JP7179170B2 (en) 2019-05-08 2022-11-28 株式会社日立製作所 Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device
CN113591365A (en) * 2021-06-22 2021-11-02 武汉科技大学 Multi-objective optimization method for self-oscillation heat exchange tube
CN113591365B (en) * 2021-06-22 2024-04-26 武汉科技大学 Multi-objective optimization method for self-oscillation heat exchange tube

Also Published As

Publication number Publication date
JP5882666B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5882666B2 (en) Self-excited vibration heat pipe
EP2192369B1 (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
JP2859927B2 (en) Cooling device and temperature control device
US8622116B2 (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
US7907408B2 (en) Cooling apparatus and power converter
JP2012013373A (en) Heat pipe type cooling system and vehicle control equipment using the same
Davari et al. Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe 3 O 4 nanofluid
CN104040280A (en) Cooling device
US20180216895A1 (en) Pipe member, heat pipe, and cooling device
CN102128552B (en) Single-sided corrugated plate type pulsating heat pipe
JP6260368B2 (en) Self-excited vibration heat pipe
KR20220132524A (en) micro-channel pulsating heat pipe
Deng et al. Fabrication and thermal performance of a novel roll-bond flat thermosyphon
Ma et al. In-situ phase separation to improve phase change heat transfer performance
CN109974135A (en) A kind of radiator, air-conditioner outdoor unit and air conditioner
JP5673589B2 (en) Heat engine
JP2012220160A (en) Channel structure of self-excited vibration heat pipe
JP2011142298A (en) Boiling cooler
JP6760026B2 (en) Thermoacoustic engine
CN202032931U (en) Single-face corrugated plate type pulsating heat pipe
JP2015010766A (en) Outdoor unit for heat pump cycle
JP7124263B2 (en) Sampling heat pipe and geothermal heat pump using it
JP2017193969A (en) Heating device
JP6236597B2 (en) Air conditioner
JP7305313B2 (en) thermoelectric generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R150 Certificate of patent or registration of utility model

Ref document number: 5882666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees