JP2013087610A - Wave elimination structure for measure against long-period wave - Google Patents

Wave elimination structure for measure against long-period wave Download PDF

Info

Publication number
JP2013087610A
JP2013087610A JP2011232520A JP2011232520A JP2013087610A JP 2013087610 A JP2013087610 A JP 2013087610A JP 2011232520 A JP2011232520 A JP 2011232520A JP 2011232520 A JP2011232520 A JP 2011232520A JP 2013087610 A JP2013087610 A JP 2013087610A
Authority
JP
Japan
Prior art keywords
wave
period
long
seconds
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011232520A
Other languages
Japanese (ja)
Other versions
JP5519613B2 (en
Inventor
Akira Matsumoto
朗 松本
Masashi Tanaka
真史 田中
Minoru Hanzawa
稔 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2011232520A priority Critical patent/JP5519613B2/en
Publication of JP2013087610A publication Critical patent/JP2013087610A/en
Application granted granted Critical
Publication of JP5519613B2 publication Critical patent/JP5519613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wave elimination structure for measure against long-period wave that can effectively decrease a reflection factor of a long-period wave and can greatly reduce construction costs as compared as before.SOLUTION: A wave elimination structure 1 for measure against long-period wave constructed by forming a mound 2 by stacking base riprap on the in-port side of a breakwater structure 10, and forming a covering material layer 3 by arranging a covering material (covering stones, wave elimination blocks, or covering blocks) on a top end face of the mound 2 and a slope gradually becoming lower toward the in-port side is characterized in that the top end face of the covering layer 3 is set to be in level with the sea level or within a range of ±1 m above or below the sea level.

Description

本発明は、長周期波の反射率を効果的に低減させることができる長周期波対策用の消波構造物に関する。   The present invention relates to a wave-dissipating structure for long-period wave countermeasures that can effectively reduce the reflectance of long-period waves.

海上においては、一般的な波(風波)のほかに、長い周期(例えば30秒以上の周期)を有する波(長周期波)が発生することが知られている。長周期波が港内に進入し、或いは、港内において発生すると、係留索の破断や荷役障害といった問題を引き起こすことがあるため、このような問題を回避するためには、港内に進入し、或いは、港内において発生した長周期波の反射率を効果的に低減させる対策を講じる必要がある。   On the sea, it is known that, in addition to a general wave (wind wave), a wave (long period wave) having a long period (for example, a period of 30 seconds or more) is generated. If a long-period wave enters the port or occurs in the port, it may cause problems such as mooring line breakage and cargo handling trouble. It is necessary to take measures to effectively reduce the reflectance of long-period waves generated in the harbor.

従来の長周期波対策工としては、図12に示すような消波構造物21が公知である。図12に示す消波構造物21は、防波堤或いはケーソン等の防波構造物10の港内側に、捨石等を積み上げてマウンド22を形成し、このマウンド22の天端面及び傾斜面(港内側へ向かって次第に低くなる傾斜面)の上に被覆石を配置して被覆材層23を形成することによって構成されている。尚、この種の消波構造物21においては、被覆材層23の天端面が、海水面よりも常時高くなるように、つまり、満潮時においても、被覆材層23の天端面が海水面下に没しないように設計されている。   As a conventional long-period wave countermeasure, a wave-dissipating structure 21 as shown in FIG. 12 is known. The wave-dissipating structure 21 shown in FIG. 12 forms a mound 22 by stacking rubble and the like on the inner side of the port of the wave-breaking structure 10 such as a breakwater or a caisson. The covering material layer 23 is formed by disposing a covering stone on an inclined surface that gradually becomes lower. In this type of wave-dissipating structure 21, the top end surface of the covering material layer 23 is always higher than the seawater surface, that is, the top end surface of the covering material layer 23 is below the seawater surface even at high tide. Designed not to sink.

また、特開2007−16405号公報に示すような長周期波高低減構造物なども知られている。   A long-period wave height reduction structure as disclosed in JP 2007-16405 A is also known.

特開2007−16405号公報JP 2007-16405 A

図12に示したような、従来の長周期波対策用の消波構造物21は、ある程度のレベルで長周期波の反射率を低減させることができるが、必ずしも十分なレベルであるとは言い難く、性能の更なる向上が望まれている。また、従来の長周期波対策用の消波構造物21において、天端幅を大きく設定すれば、性能を向上させることができる可能性があるが、天端幅を大きくするほど、それだけ施工費用が嵩むことになるという問題があるほか、港内に設定される航路との関係で天端幅が制約され、大きく設定することができない場合がある。   The conventional wave-dissipating structure 21 for long-period waves as shown in FIG. 12 can reduce the reflectivity of long-period waves at a certain level, but it is not necessarily a sufficient level. It is difficult and further improvement in performance is desired. Moreover, in the conventional wave-dissipating structure 21 for long-period wave countermeasures, there is a possibility that the performance can be improved if the top end width is set large. However, the construction cost increases as the top end width increases. In addition to the problem that the top end width is restricted due to the relationship with the route set in the port, it may not be set large.

本発明は、上記のような従来技術における課題を解決しようとするものであって、長周期波の反射率を効果的に低減させることができ、また、従来と比べて施工費用を大幅に縮減できる長周期波対策用の消波構造物を提供することを目的とする。   The present invention is intended to solve the above-described problems in the prior art, can effectively reduce the reflectance of long-period waves, and greatly reduces the construction cost compared to the conventional technique. An object of the present invention is to provide a wave-dissipating structure for long-period waves.

本発明に係る長周期波対策用の消波構造物は、防波堤の港内側、或いは、護岸前面にマウンドを形成し、このマウンドの天端面、及び、港内側へ向かって次第に低くなる傾斜面の上に被覆材を配置して被覆材層を形成することによって構築され、被覆材層の天端面が、海水面と同じ高さ、或いは、海水面の高さ±1mの範囲内となるように設定されていることを特徴としている。   The wave-dissipating structure for long-period wave countermeasures according to the present invention forms a mound inside the port of the breakwater or the front of the revetment, and has a slope that gradually decreases toward the top end surface of the mound and the inside of the port. It is constructed by placing a covering material on top and forming a covering material layer, so that the top end surface of the covering material layer is the same height as the seawater surface or within the range of the seawater surface height ± 1 m. It is characterized by being set.

この消波構造物においては、被覆材として、消波ブロックを使用し、それらを二層積みすることが好ましく、この場合、被覆石や被覆ブロックを使用した場合と比べて、より効果的に長周期波の反射率を低減させることができる。   In this wave-dissipating structure, it is preferable to use a wave-dissipating block as a covering material and to stack them in two layers. In this case, it is more effective than the case where a covering stone or a covering block is used. The reflectance of the periodic wave can be reduced.

尚、ここに言う「海水面」とは、消波構造物の構築場所における海水面の年間平均潮位を意味し、また、ここに言う「被覆材層の天端面」とは、被覆材層を形成する被覆材の各頂部の平均高さ位置を含む水平面を意味する。   The “sea level” mentioned here means the annual average tide level of the sea level at the construction site of the wave-dissipating structure, and the “top end face of the covering layer” here means the covering layer. It means a horizontal plane including the average height position of each top of the covering material to be formed.

本発明に係る長周期波対策用の消波構造物は、従来のものと比べて、長周期波の反射率を効果的に低減させることができる。特に、被覆材として消波ブロックを二層積みで使用した場合、周期が75秒以下の長周期波に対して安定した反射率低減効果を期待することができる。また、従来の長周期波対策用の消波構造物と比べ、大幅な工費縮減が可能となる。   The wave-dissipating structure for long-period waves according to the present invention can effectively reduce the reflectance of long-period waves compared to the conventional one. In particular, when the wave-dissipating block is used as a covering material in a two-layer stack, a stable reflectance reduction effect can be expected for a long-period wave having a period of 75 seconds or less. In addition, the construction cost can be greatly reduced as compared with the conventional wave-dissipating structure for long-period waves.

図1は、本発明の第1実施形態に係る消波構造物1の断面図である。FIG. 1 is a cross-sectional view of a wave-dissipating structure 1 according to the first embodiment of the present invention. 図2は、実施例1における比較例1(干出型捨石堤)、及び、本発明1(没水型捨石堤)における長周期波(周期T=30秒、90秒)の反射率Kの解析結果を示すグラフである。FIG. 2 shows the reflectance K R of the long-period wave (period T = 30 seconds, 90 seconds) in Comparative Example 1 (exposed-type rubble bank) in Example 1 and the present invention 1 (submerged-type rubble bank). It is a graph which shows the analysis result of. 図3は、実施例1における比較例1(干出型捨石堤)、及び、本発明1(没水型捨石堤)における長周期波(周期T=60秒、120秒)の反射率Kの解析結果を示すグラフである。FIG. 3 shows the reflectivity K R of the long-period wave (period T = 60 seconds, 120 seconds) in Comparative Example 1 (dried-type rubble bank) in Example 1 and Invention 1 (submerged-type rubble bank). It is a graph which shows the analysis result of. 図4は、実施例2における比較例2(干出型消波ブロック被覆堤)、及び、本発明2(没水型消波ブロック被覆堤)における長周期波(周期T=30秒、90秒)の反射率Kの解析結果を示すグラフである。FIG. 4 shows a long-period wave (period T = 30 seconds, 90 seconds) in Comparative Example 2 (dried-type wave-dissipating block-covered embankment) in Example 2 and Invention 2 (submersible wave-dissipating block-covered embankment). ) is a graph showing the analysis results of the reflectance K R of. 図5は、実施例2における比較例2(干出型消波ブロック被覆堤)、及び、本発明2(没水型消波ブロック被覆堤)における長周期波(周期T=60秒、120秒)の反射率Kの解析結果を示すグラフである。FIG. 5 shows a long-period wave (period T = 60 seconds, 120 seconds) in Comparative Example 2 (dried-type wave-dissipating block-covered embankment) in Example 2 and Invention 2 (submerged-type wave-dissipating block-covered embankment). ) is a graph showing the analysis results of the reflectance K R of. 図6は、実施例3における本発明1(没水型捨石堤)、本発明2(没水型消波ブロック被覆堤)、及び、本発明3(没水型被覆ブロック堤)における長周期波(周期T=30秒、45秒、60秒、75秒)の反射率Kの解析結果を示すグラフである。FIG. 6 shows long-period waves according to the present invention 1 (submerged-type rubble bank), the present invention 2 (submerged-type wave-dissipating block-covered dam), and the present invention 3 (submerged-type covered-block dam) in Example 3. (period T = 30 seconds, 45 seconds, 60 seconds, 75 seconds) is a graph showing the analysis results of the reflectance K R of. 図7は、実施例4における本発明2(没水型消波ブロック被覆堤)の天端上水深Rを変化させた場合における長周期波(周期T=30秒、45秒、60秒、75秒、90秒、120秒)の反射率Kの解析結果を示すグラフである。FIG. 7 shows long-period waves (period T = 30 seconds, 45 seconds, 60 seconds, 75) when the top water depth R of the present invention 2 (submerged type wave-dissipating block-covered embankment) in Example 4 is changed. sec, 90 sec, is a graph showing the analysis results of the reflectance K R of 120 seconds). 図8は、実施例5における比較例1(干出型捨石堤)、本発明1(没水型捨石堤)、本発明2(没水型消波ブロック被覆堤)、及び、本発明3(没水型被覆ブロック堤)の、波長Lに対する消波構造物の大きさを表す値Bの割合を変化させた場合における長周期波(波高:0<H≦0.5m)の反射率Kの解析結果を示すグラフである。FIG. 8 shows Comparative Example 1 in Example 5 (dried-type rubble bank), Invention 1 (submerged-type rubble bank), Invention 2 (Submerged-type wave-dissipating block-covered dam), and Invention 3 ( Reflectance K of long-period waves (wave height: 0 <H ≦ 0.5 m) when the ratio of the value B * representing the size of the wave-dissipating structure with respect to the wavelength L is changed. It is a graph which shows the analysis result of R. 図9は、実施例5における比較例1(干出型捨石堤)、本発明1(没水型捨石堤)、本発明2(没水型消波ブロック被覆堤)、及び、本発明3(没水型被覆ブロック堤)の、波長Lに対する消波構造物の大きさを表す値Bの割合を変化させた場合における長周期波(波高:0.5<H≦1.0m)の反射率Kの解析結果を示すグラフである。FIG. 9 shows Comparative Example 1 in Example 5 (dried-type rubble bank), Invention 1 (submerged-type rubble bank), Invention 2 (Submerged-type wave-dissipating block-covered dam), and Invention 3 ( Reflection of long-period waves (wave height: 0.5 <H ≦ 1.0 m) when the ratio of the value B * representing the size of the wave-dissipating structure with respect to the wavelength L is changed. is a graph showing the analysis results of the rate K R. 図10は、本発明の第2実施形態に係る消波構造物1の断面図である。FIG. 10 is a cross-sectional view of the wave breaking structure 1 according to the second embodiment of the present invention. 図11は、消波構造物の大きさを表す値Bの説明図である。FIG. 11 is an explanatory diagram of a value B * representing the size of the wave-dissipating structure. 図12は、従来の長周期波対策用の消波構造物21の断面図である。FIG. 12 is a cross-sectional view of a conventional wave-dissipating structure 21 for long-period wave countermeasures.

以下、添付図面に沿って、本発明「長周期波対策用消波構造物」を実施するための形態について説明する。図1は、本発明の第1実施形態に係る消波構造物1の断面図である。図示されているように、この消波構造物1は、防波構造物10(防波堤、ケーソン等)の港内側に、基礎捨石を積み上げてマウンド2を形成し、このマウンド2の天端面及び傾斜面(港内側へ向かって次第に低くなる傾斜面)の上に被覆材(被覆石、消波ブロック、被覆ブロック等)を配置して被覆材層3を形成することによって構成されている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment for carrying out the “wave absorbing structure for long-period wave countermeasures” of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a wave-dissipating structure 1 according to the first embodiment of the present invention. As shown in the figure, this wave-dissipating structure 1 is formed by stacking foundation rubble to form a mound 2 inside the harbor of a wave-breaking structure 10 (breakwater, caisson, etc.). The covering material layer 3 is formed by disposing a covering material (a covering stone, a wave-dissipating block, a covering block, etc.) on a surface (an inclined surface that gradually decreases toward the inside of the port).

尚、この消波構造物1においては、被覆材層3の天端面が、海水面(年間平均潮位)と同じ高さとなるように設定されており、これにより、従来の長周期波対策用の消波構造物21と比較して、長周期波の反射率をより効果的に低減させることができる。   In this wave-dissipating structure 1, the top end surface of the covering material layer 3 is set to be at the same height as the sea level (annual average tide level). Compared with the wave-absorbing structure 21, the reflectance of the long-period wave can be reduced more effectively.

尚、本実施形態においては、防波構造物10は、図1に示すように海底地盤上に設置されているが、図10に示すように、海底地盤上に形成した基礎捨石マウンド4上に設置することもできる(本発明の第2実施形態)。   In addition, in this embodiment, although the wave-proof structure 10 is installed on the seabed ground as shown in FIG. 1, on the foundation rubble mound 4 formed on the seabed ground as shown in FIG. It can also be installed (second embodiment of the present invention).

また、第1実施形態、及び、第2実施形態においては、防波構造物10の港内側に、マウンド2と、天端面が海水面と同じ高さの被覆材層3とからなる消波構造物1が構築されている(図1、図10参照)が、港内の護岸(海底地盤上に形成した護岸、及び、基礎捨石マウンド上に形成した護岸)の前面に同様の消波構造物1を形成するようにしてもよい。   Moreover, in 1st Embodiment and 2nd Embodiment, the wave-dissipating structure which consists of the mound 2 and the coating | covering material layer 3 whose top end surface is the same height as seawater surface inside the port of the wave-proof structure 10 Although the structure 1 is constructed (see FIGS. 1 and 10), the same wave-dissipating structure 1 in front of the harbor revetment (the revetment formed on the seabed ground and the revetment formed on the foundation rubble mound) May be formed.

以下、本発明に係る消波構造物について、本発明の発明者らが行った実験の結果を、実施例1〜5として説明する。   Hereinafter, the results of experiments conducted by the inventors of the present invention on the wave-dissipating structure according to the present invention will be described as Examples 1 to 5.

(概要)
造波装置を付帯した水理実験用の水槽内に、下記に示すような消波構造物の1/50のスケールの模型(比較例1、及び、本発明1)をそれぞれ構築し、造波装置によって長周期波を発生させて測定した水位変動を解析し、反射率Kを求めた。
(Overview)
In the water tank for hydraulic experiments accompanied by the wave generator, 1/50 scale models (Comparative Example 1 and Invention 1) of the wave-dissipating structure as shown below were constructed, respectively. analyzing the level change measured by generating long-period waves by the device to determine the reflectance K R.

(比較例1:干出型捨石堤)
防波構造物10の港内側に、基礎捨石を積み上げてマウンド22を形成し、このマウンド22の天端面及び傾斜面の上に被覆材を配置して被覆材層23を形成し、図12に示すような消波構造物21の模型を水槽内に構築した。尚、ここでは、被覆材として、基礎捨石と大きさの異なる割石(被覆石)を使用した。また、被覆材層23の天端面については、水面よりも十分に高くなるように設定した。
(Comparative example 1: Dried rubble bank)
A mound 22 is formed by stacking foundation rubble on the inner side of the harbor of the wave-breaking structure 10, and a covering material layer 23 is formed by arranging a covering material on the top end face and the inclined surface of the mound 22, as shown in FIG. A model of the wave-dissipating structure 21 as shown was constructed in the water tank. In addition, here, crushed stone (covering stone) having a different size from the basic rubble was used as the covering material. Further, the top end surface of the covering material layer 23 was set to be sufficiently higher than the water surface.

(本発明1:没水型捨石堤)
防波構造物10の港内側に、基礎捨石を積み上げてマウンド2を形成し、このマウンド2の天端面及び傾斜面の上に被覆材を配置して被覆材層3を形成し、図1に示すような消波構造物1の模型を水槽内に構築した。尚、ここでは、被覆材として、基礎捨石と大きさの異なる割石(被覆石)を使用した。また、被覆材層3の天端面については、水面と同じ高さとなるように設定した。
(Invention 1: Submerged rubble bank)
A mound 2 is formed by stacking foundation rubble on the inner side of the harbor of the wave-breaking structure 10, and a covering material layer 3 is formed by arranging a covering material on the top end face and the inclined surface of the mound 2, as shown in FIG. A model of the wave-dissipating structure 1 as shown was constructed in the water tank. In addition, here, crushed stone (covering stone) having a different size from the basic rubble was used as the covering material. Moreover, about the top end surface of the coating | covering material layer 3, it set so that it might become the same height as a water surface.

(解析結果)
比較例1の消波構造物21(干出型捨石堤)、及び、本発明1の消波構造物1(没水型捨石堤)における、周期が異なる四種類の長周期波(周期T=30秒、60秒、90秒、120秒(実スケール換算値))の反射率Kの解析結果を、図2及び図3に示す。尚、これらの図(グラフ)においては、縦軸を反射率K、横軸を長周期波の波高H(単位:メートル(実スケール換算値))としている。また、グラフ中の実線の折れ線は本発明1の解析結果を、破線の折れ線は比較例1の解析結果を示している。
(Analysis result)
Four types of long-period waves with different periods (period T ==) in the wave-dissipating structure 21 (dried-type rubble bank) of Comparative Example 1 and the wave-dissipating structure 1 (submerged-type rubble bank) of the present invention 1 30 seconds, 60 seconds, 90 seconds, the analysis results of the reflectance K R of 120 seconds (real scale converted value)), shown in FIGS. In these figures (graphs), the vertical axis represents the reflectance K R , and the horizontal axis represents the wave height H (unit: meter (actual scale converted value)) of the long-period wave. Moreover, the solid line in the graph indicates the analysis result of the present invention 1, and the broken line indicates the analysis result of the comparative example 1.

図2に示すように、周期Tが30秒の長周期波では、本発明1の反射率Kは、比較例1に対して大幅に低減した。図3に示すように、周期Tが60秒の長周期波においても、本発明1の反射率Kは、比較例1に対して大幅に低減した。周期Tが90秒の長周期波(図2参照)においても、ある程度評価できる程度に低減した。周期Tが120秒の長周期波(図3参照)では、波高Hが1m以下の場合には、ある程度評価できる程度に低減した。 As shown in FIG. 2, the long period waves of period T of 30 seconds, the reflectance K R of the present invention 1 was greatly reduced compared with Comparative Example 1. As shown in FIG. 3, also in the long-period waves of period T of 60 seconds, the reflectance K R of the present invention 1 was greatly reduced compared with Comparative Example 1. Even in a long-period wave having a period T of 90 seconds (see FIG. 2), it was reduced to such an extent that it could be evaluated to some extent. In the case of a long-period wave having a period T of 120 seconds (see FIG. 3), when the wave height H was 1 m or less, it was reduced to such an extent that it could be evaluated to some extent.

これらの解析結果から、本発明1の消波構造物1は、比較例1の消波構造物21と比較して、長周期波の反射率Kを好適に低減できることが確認された。 These analysis results, wave dissipating structure 1 of the present invention 1, as compared to the wave dissipating structure 21 of Comparative Example 1, it was confirmed that can be suitably reduced reflectivity K R of the long periodic wave.

(概要)
造波装置を付帯した水理実験用の水槽内に、下記に示すような消波構造物の1/50のスケールの模型(比較例2、及び、本発明2)をそれぞれ構築し、造波装置によって長周期波を発生させて測定した水位変動を解析し、反射率Kを求めた。
(Overview)
In the water tank for hydraulic experiments with the wave generator, 1/50 scale models of the wave-dissipating structure as shown below (Comparative Example 2 and Invention 2) were constructed, respectively. analyzing the level change measured by generating long-period waves by the device to determine the reflectance K R.

(比較例2:干出型消波ブロック被覆堤)
防波構造物10の港内側に、基礎捨石を積み上げてマウンド22を形成し、このマウンド22の天端面及び傾斜面の上に被覆材を配置して被覆材層23を形成し、図12に示すような消波構造物21の模型を水槽内に構築した。尚、ここでは、被覆材として消波ブロックを使用し、被覆材層23において二層積みとした。また、被覆材層23の天端面については、水面よりも十分に高くなるように設定した。
(Comparative example 2: dry-type wave-dissipating block-covered embankment)
A mound 22 is formed by stacking foundation rubble on the inner side of the harbor of the wave-breaking structure 10, and a covering material layer 23 is formed by arranging a covering material on the top end face and the inclined surface of the mound 22, as shown in FIG. A model of the wave-dissipating structure 21 as shown was constructed in the water tank. Here, a wave-dissipating block was used as the coating material, and the coating material layer 23 was a two-layer stack. Further, the top end surface of the covering material layer 23 was set to be sufficiently higher than the water surface.

(本発明2:没水型消波ブロック被覆堤)
防波構造物10の港内側に、基礎捨石を積み上げてマウンド2を形成し、このマウンド2の天端面及び傾斜面の上に被覆材を配置して被覆材層3を形成し、図1に示すような消波構造物1の模型を水槽内に構築した。尚、ここでは、被覆材として消波ブロックを使用し、被覆材層3において二層積みとした。また、被覆材層3の天端面については、水面と同じ高さとなるように設定した。
(Invention 2: Submerged wave-dissipating block-covered embankment)
A mound 2 is formed by stacking foundation rubble on the inner side of the harbor of the wave-breaking structure 10, and a covering material layer 3 is formed by arranging a covering material on the top end face and the inclined surface of the mound 2, as shown in FIG. A model of the wave-dissipating structure 1 as shown was constructed in the water tank. Here, a wave-dissipating block was used as the coating material, and the coating material layer 3 was a two-layer stack. Moreover, about the top end surface of the coating | covering material layer 3, it set so that it might become the same height as a water surface.

(解析結果)
比較例2の消波構造物21(干出型消波ブロック被覆堤)、及び、本発明2の消波構造物1(没水型消波ブロック被覆堤)における、周期が異なる四種類の長周期波(周期T=30秒、60秒、90秒、120秒(実スケール換算値))の反射率Kの解析結果を、図4及び図5に示す。尚、これらの図(グラフ)においては、縦軸を反射率K、横軸を長周期波の波高H(単位:メートル(実スケール換算値))としている。また、グラフ中の実線の折れ線は本発明2の解析結果を、破線の折れ線は比較例2の解析結果を示している。
(Analysis result)
Four types of lengths having different periods in the wave-dissipating structure 21 (drying-type wave-dissipating block-covered embankment) of Comparative Example 2 and the wave-dissipating structure 1 (submerged-type wave-dissipating block-covered embankment) of the present invention 2 periodic wave (period T = 30 seconds, 60 seconds, 90 seconds, 120 seconds (real scale conversion value)) the analysis results of the reflectance K R of, shown in FIGS. In these figures (graphs), the vertical axis represents the reflectance K R , and the horizontal axis represents the wave height H (unit: meter (actual scale converted value)) of the long-period wave. In the graph, the solid line represents the analysis result of the present invention 2, and the broken line represents the analysis result of Comparative Example 2.

図4に示すように、周期Tが30秒の長周期波では、本発明2の反射率Kは、比較例2に対して大幅に低減した。図5に示すように、周期Tが60秒の長周期波においても、本発明2の反射率Kは、比較例2に対して大幅に低減した。周期Tが90秒の長周期波(図4参照)においても、ある程度評価できる程度に低減した。周期Tが120秒の長周期波(図5参照)においても、ある程度低減した。これらの解析結果から、本発明2の消波構造物1は、比較例2の消波構造物21と比較して、長周期波の反射率Kを好適に低減できることが確認された。 As shown in FIG. 4, in the long periodic wave of period T of 30 seconds, the reflectance K R of the present invention 2 was significantly reduced compared with Comparative Example 2. As shown in FIG. 5, even in the long-period waves of period T of 60 seconds, the reflectance K R of the present invention 2 was significantly reduced compared with Comparative Example 2. Even in a long-period wave having a period T of 90 seconds (see FIG. 4), it was reduced to such an extent that it could be evaluated to some extent. Even in a long-period wave having a period T of 120 seconds (see FIG. 5), it was reduced to some extent. These analysis results, wave dissipating structure 1 of the present invention 2 is different from the wave dissipating structure 21 of Comparative Example 2, it was confirmed that can be suitably reduced reflectivity K R of the long periodic wave.

(概要)
造波装置を付帯した水理実験用の水槽内に、実施例1で使用した没水型捨石堤(本発明1)、実施例2で使用した没水型消波ブロック被覆堤(本発明2)、及び、下記に示すような消波構造物の1/50のスケールの模型(本発明3)をそれぞれ構築し、造波装置によって長周期波を発生させて測定した水位変動を解析し、反射率Kを求めた。
(Overview)
The submerged rubble dam used in Example 1 (Invention 1) and the submerged wave-dissipating block-covered levee used in Example 2 (Invention 2) in a water tank for hydraulic experiments with wave generators. ), And 1/50 scale model of the wave-dissipating structure as shown below (invention 3), respectively, and analyzed the fluctuations in the water level measured by generating a long-period wave with a wave generator, It was determined the reflectance K R.

(本発明3:没水型被覆ブロック堤)
防波構造物10の港内側に、基礎捨石を積み上げてマウンド2を形成し、このマウンド2の天端面及び傾斜面の上に被覆材を配置して被覆材層3を形成し、図1に示すような消波構造物1の模型を水槽内に構築した。尚、ここでは、被覆材として被覆ブロックを使用した。また、被覆材層3の天端面については、水面と同じ高さとなるように設定した。
(Invention 3: Submerged coated block dyke)
A mound 2 is formed by stacking foundation rubble on the inner side of the harbor of the wave-breaking structure 10, and a covering material layer 3 is formed by arranging a covering material on the top end face and the inclined surface of the mound 2, as shown in FIG. A model of the wave-dissipating structure 1 as shown was constructed in the water tank. Here, a covering block was used as the covering material. Moreover, about the top end surface of the coating | covering material layer 3, it set so that it might become the same height as a water surface.

(解析結果)
本発明1〜3の消波構造物1における、周期が異なる四種類の長周期波(周期T=30秒、45秒、60秒、75秒(実スケール換算値))の反射率Kの解析結果を、図6に示す。尚、これらの図(グラフ)においては、縦軸を反射率K、横軸を長周期波の波高H(単位:メートル(実スケール換算値))としている。また、グラフ中の一点鎖線の折れ線は本発明1の解析結果を、実線の折れ線は本発明2の解析結果を、破線の折れ線は本発明3の解析結果を示している。
(Analysis result)
In wave dissipating structure 1 of the present invention 1 to 3, cycle four different types of long period waves (period T = 30 seconds, 45 seconds, 60 seconds, 75 seconds (real scale conversion value)) of the reflectance K R of The analysis results are shown in FIG. In these figures (graphs), the vertical axis represents the reflectance K R , and the horizontal axis represents the wave height H (unit: meter (actual scale converted value)) of the long-period wave. The broken line in the graph indicates the analysis result of the present invention 1, the solid line indicates the analysis result of the present invention 2, and the broken line indicates the analysis result of the present invention 3.

図6に示すように、周期Tが30秒及び45秒のとき、被覆材として消波ブロックを二層積みで用いた本発明2は、被覆石を用いた本発明1及び被覆ブロックを用いた本発明3のいずれの場合よりも反射率Kが大幅に低くなった。また、周期Tが60秒及び75秒のとき、波高ランクが小さい(波形勾配H/Lが小さい)場合に一部バラツキが見られるものの、全体としては、被覆石を用いた本発明1、消波ブロックを用いた本発明2、及び、被覆ブロックを用いた本発明3の反射率Kは同程度であった。これらの結果から、被覆材として消波ブロックを二層積みで用いた場合、被覆石や被覆ブロックを用いた場合と比べて、より効果的かつ安定的に長周期波の反射率を低減できることが判った。 As shown in FIG. 6, when the period T is 30 seconds and 45 seconds, the present invention 2 in which the wave-dissipating blocks are used in a two-layer stack as the covering material uses the present invention 1 using the covering stone and the covering block. reflectance K R than either of the present invention 3 is significantly lower. In addition, when the period T is 60 seconds and 75 seconds, some variations are observed when the wave height rank is small (the waveform gradient H / L is small). the present invention 2 with waves block, and the reflectance K R of the present invention 3 with coated block was comparable. From these results, it is possible to reduce the reflectance of long-period waves more effectively and stably when the wave-dissipating block is used as a covering material in a two-layer stack as compared with the case where a covering stone or a covering block is used. understood.

(概要)
造波装置を付帯した水理実験用の水槽内に、実施例2で使用した没水型消波ブロック被覆堤(本発明2)を構築し、天端上水深R(水面から消波構造物の天端面までの深さ)を変化させながら、造波装置により長周期波を発生させて測定した水位変動を解析して反射率Kを求め、天端上水深Rと反射率Kの関係を調べた。
(Overview)
The submersible wave-dissipating block-covered levee used in Example 2 (invention 2) was constructed in a water tank for hydraulic experiments with a wave generator, and the top edge water depth R (wave-dissipating structure from the water surface) while varying the depth) to the top end face to generate a long period wave by wave-making device obtains the reflectivity K R by analyzing the level change was measured, the crest on depth R and the reflectance K R I investigated the relationship.

(解析結果)
本発明2の消波構造物1の天端上水深Rを−1.5mから1.5mの範囲で変化させた場合における、周期が異なる六種類の長周期波(周期T=30秒、45秒、60秒、75秒、90秒、120秒(実スケール換算値)/波高ランク0.5〜1.0m(実スケール換算値))の反射率Kの解析結果を、図7に示す。尚、これらの図(グラフ)においては、縦軸を反射率K、横軸を天端上水深R(単位:メートル(実スケール換算値))としている。
(Analysis result)
Six types of long-period waves with different periods (period T = 30 seconds, 45 when the top water depth R of the wave-dissipating structure 1 of the present invention 2 is changed in the range of −1.5 m to 1.5 m. sec, 60 sec, 75 sec, 90 sec, 120 sec the analysis results of the reflectance K R of (actual scale converted value) / height No. 0.5~1.0M (actual scale converted value)), shown in FIG. 7 . In these figures (graphs), the vertical axis represents the reflectance K R and the horizontal axis represents the top water depth R (unit: meters (actual scale converted value)).

図7に示すように、周期Tが30秒の長周期波については、天端上水深Rを1mとした場合(天端面が水深1mの高さとなるように設定した場合)に、反射率Kが最も低くなったが、天端上水深Rを0mとした場合(天端面が水面と同じ高さとなるように設定した場合)でも、十分に長周期波を低減できることが判った。また、周期Tが45秒の長周期波、60秒の長周期波、及び、75秒の長周期波については、天端上水深Rを0mとした場合に、反射率Kが最も低くなった。これらの結果から、消波ブロックを二層積みして被覆材層3を形成した消波構造物1においては、天端面が水面と同じ高さとなるように設定することによって、効果的に長周期波を低減できることが判った。 As shown in FIG. 7, for a long-period wave with a period T of 30 seconds, when the top edge water depth R is 1 m (when the top face is set to have a depth of 1 m), the reflectance K Although R was the lowest, it was found that long-period waves could be sufficiently reduced even when the top edge water depth R was set to 0 m (when the top face was set to be the same height as the water surface). Furthermore, long period waves of period T 45 seconds, long period waves of 60 seconds, and, for the long period waves of 75 seconds, the top end on the water depth R when the 0 m, the reflectance K R is the lowest It was. From these results, in the wave-dissipating structure 1 in which two layers of wave-dissipating blocks are stacked to form the covering material layer 3, by setting the top end surface to be the same height as the water surface, the long period can be effectively increased. It has been found that the waves can be reduced.

(概要)
造波装置を付帯した水理実験用の水槽内に、実施例1で使用した干出型捨石堤(比較例1)、実施例1で使用した没水型捨石堤(本発明1)、実施例2で使用した没水型消波ブロック被覆堤(本発明2)、及び、実施例3で使用した没水型被覆ブロック堤(本発明3)をそれぞれ構築し、造波装置により長周期波を発生させて反射率Kを解析し、長周期波の波長Lに対する消波構造物の大きさを表す値B(静水面上の幅B+(0.5×傾斜面の勾配の逆数β×水深h))(図11参照)の割合と反射率Kの関係を調べた。
(Overview)
In the water tank for hydraulic experiments with wave generators, the dry-type rubble used in Example 1 (Comparative Example 1), the submerged-type rubble used in Example 1 (Invention 1), and implementation The submerged-type wave-dissipating block-covered embankment used in Example 2 (present invention 2) and the submerged-type coated-block embankment used in Example 3 (present invention 3) were respectively constructed, and a long-period wave was generated by a wave making device. analyzing the reflectance K R to generate the inverse of the slope of the width B + (0.5 × inclined surface on the value B * (still water surface representing the magnitude of the wave dissipating structure for the wavelength L of the long periodic wave β × depth h)) (it was examined a relationship between the ratio and the reflectance K R of FIG. 11).

(解析結果)
比較例1、及び、本発明1〜3の各消波構造物のB/L(波長Lに対する消波構造物の大きさを表す値Bの割合)を変化させた場合における長周期波の反射率Kであって、長周期波の波高Hを「0<H≦0.5m(実スケール換算値)」とした場合の解析結果を図8に、長周期波の波高Hを「0.5<H≦1.0m(実スケール換算値)」とした場合の解析結果を図9に示す。尚、これらの図(グラフ)においては、縦軸を反射率K、横軸をB/Lとしている。
(Analysis result)
Long-period wave in the case of changing B * / L (the ratio of the value B * representing the size of the wave-dissipating structure with respect to the wavelength L) of each wave-dissipating structure according to Comparative Example 1 and Inventions 1 to 3 a reflectance K R, the analysis result in the case where the height H of the long-period waves and "0 <H ≦ 0.5 m (actual scale converted value)" in FIG. 8, the height H of the long periodic wave " FIG. 9 shows the analysis result when “0.5 <H ≦ 1.0 m (actual scale conversion value)”. In these figures (graphs), the vertical axis represents reflectance K R and the horizontal axis represents B * / L.

図8に示す解析結果(グラフ)に基づいて、性能(長周期波の反射率K)が同等である比較例1の消波構造物と本発明2の消波構造物を構築しようとする場合における各静水面上の幅Bの値を比較してみたところ、次の通りとなった。 Based on the analysis result (graph) shown in FIG. 8, an attempt is made to construct the wave-dissipating structure of Comparative Example 1 and the wave-dissipating structure of the present invention 2 having the same performance (long-period wave reflectivity K R ). When the value of the width B on each still water surface in the case was compared, it was as follows.

例えば、図8のグラフからは、所望の反射率Kが0.8の場合、本発明2におけるB/Lの値は約0.05、比較例1におけるB/Lの値は約0.10と読める。ここで、消波構造物の傾斜面の勾配の逆数βが1.5、水深hが10m、長周期波の波長が593m(周期T=60秒)である場合、比較例1の静水面上の幅Bの値は、B=B−0.5βhより、約51.8mとなり、本発明2の静水面上の幅Bの値は、約22.2mとなる。これらの計算結果に基づいて、それぞれの工費を試算してみると、本発明2の消波構造物は、比較例1の消波構造物の工費の約5〜6割の工費で、比較例1の消波構造物と同等の性能のものを構築でき、工費を大幅に縮減できることが判った。 For example, from the graph of FIG. 8, if desired reflectance K R is 0.8, the value of B * / L in the present invention 2 is the value of B * / L at about 0.05, Comparative Example 1 is about It can be read as 0.10. Here, when the reciprocal β of the gradient of the inclined surface of the wave-dissipating structure is 1.5, the water depth h is 10 m, and the wavelength of the long-period wave is 593 m (period T = 60 seconds), on the hydrostatic surface of Comparative Example 1 The width B is about 51.8 m from B = B * −0.5βh, and the width B on the hydrostatic surface of the present invention 2 is about 22.2 m. Based on these calculation results, the respective construction costs are estimated, and the wave-dissipating structure of the present invention 2 is about 50 to 60% of the construction cost of the wave-dissipating structure of Comparative Example 1, which is a comparative example. It was found that the same performance as the wave-dissipating structure 1 could be constructed, and the construction cost could be greatly reduced.

1,21:消波構造物、
2,22:マウンド、
3,23:被覆材層、
4:マウンド、
10:防波構造物
1, 21: wave-dissipating structure,
2, 22: Mound,
3, 23: coating material layer,
4: Mound,
10: Wave-proof structure

Claims (3)

防波堤の港内側、或いは、護岸前面にマウンドを形成し、このマウンドの天端面、及び、港内側へ向かって次第に低くなる傾斜面の上に被覆材を配置して被覆材層を形成することによって構築した長周期波対策用の消波構造物において、
被覆材層の天端面が、海水面と同じ高さ、或いは、海水面の高さ±1mの範囲内となるように設定されていることを特徴とする長周期波対策用の消波構造物。
By forming a mound on the inner side of the port of the breakwater or on the front side of the revetment, and arranging a coating material on the top end surface of this mound and an inclined surface that gradually decreases toward the inner side of the port, thereby forming a coating material layer In the constructed wave-dissipating structure for long-period waves,
The wave-dissipating structure for long-period wave countermeasures, characterized in that the top end surface of the covering layer is set to the same height as the seawater surface or within the range of the seawater surface height ± 1 m. .
前記被覆材として消波ブロックを使用し、それらを二層積みすることによって前記被覆材層を形成したことを特徴とする、請求項1に記載の長周期波対策用の消波構造物。   The wave-dissipating structure for long-period waves according to claim 1, wherein a wave-dissipating block is used as the covering material, and the covering material layer is formed by stacking them. 前記被覆材として被覆ブロックを使用したことを特徴とする、請求項1に記載の長周期波対策用の消波構造物。   The wave-absorbing structure for long-period wave countermeasure according to claim 1, wherein a covering block is used as the covering material.
JP2011232520A 2011-10-24 2011-10-24 Wave-absorbing structure for long-period wave countermeasures Active JP5519613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232520A JP5519613B2 (en) 2011-10-24 2011-10-24 Wave-absorbing structure for long-period wave countermeasures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232520A JP5519613B2 (en) 2011-10-24 2011-10-24 Wave-absorbing structure for long-period wave countermeasures

Publications (2)

Publication Number Publication Date
JP2013087610A true JP2013087610A (en) 2013-05-13
JP5519613B2 JP5519613B2 (en) 2014-06-11

Family

ID=48531799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232520A Active JP5519613B2 (en) 2011-10-24 2011-10-24 Wave-absorbing structure for long-period wave countermeasures

Country Status (1)

Country Link
JP (1) JP5519613B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105804003A (en) * 2016-03-22 2016-07-27 中交第四航务工程局有限公司 Wide shoulder type bulwark and transporting and installing method thereof
JP2020172837A (en) * 2019-04-15 2020-10-22 日建工学株式会社 Wave elimination structure
DE112014002008B4 (en) 2013-04-18 2022-02-24 Denso Corporation refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681621A1 (en) * 1991-09-20 1993-03-26 Suares Bores Pedro Permeable energy-dissipating system for making up marine constructions, and with perforated laminar elements
JP2528031B2 (en) * 1990-09-27 1996-08-28 東洋建設株式会社 Rubble type breakwater
JP2001115429A (en) * 1999-10-15 2001-04-24 Toyo Constr Co Ltd Environment-friendly breakwater
JP2002275855A (en) * 2001-03-21 2002-09-25 Penta Ocean Constr Co Ltd Wave dissipating caisson and wave dissipating structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528031B2 (en) * 1990-09-27 1996-08-28 東洋建設株式会社 Rubble type breakwater
FR2681621A1 (en) * 1991-09-20 1993-03-26 Suares Bores Pedro Permeable energy-dissipating system for making up marine constructions, and with perforated laminar elements
JP2001115429A (en) * 1999-10-15 2001-04-24 Toyo Constr Co Ltd Environment-friendly breakwater
JP2002275855A (en) * 2001-03-21 2002-09-25 Penta Ocean Constr Co Ltd Wave dissipating caisson and wave dissipating structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014002008B4 (en) 2013-04-18 2022-02-24 Denso Corporation refrigeration cycle device
CN105804003A (en) * 2016-03-22 2016-07-27 中交第四航务工程局有限公司 Wide shoulder type bulwark and transporting and installing method thereof
JP2020172837A (en) * 2019-04-15 2020-10-22 日建工学株式会社 Wave elimination structure

Also Published As

Publication number Publication date
JP5519613B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
He et al. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction
CN113032873B (en) Design method of anti-resonance breakwater
Xu et al. A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study
CN111188313B (en) Automatic multifunctional culvert type breakwater suitable for high-sand-content sea area, design method of culvert type breakwater and dredging method of culvert type breakwater
Zhao et al. Influences of wave resonance on hydrodynamic efficiency and loading of an OWC array under oblique waves
CN103255741B (en) The clump of piles structure of seashore wave absorption wave resistance
JP5519613B2 (en) Wave-absorbing structure for long-period wave countermeasures
CN212000870U (en) Automatic multifunctional culvert type breakwater suitable for high-sand-content sea area
Reddy et al. Hydrodynamic studies on vertical seawall defenced by low-crested breakwater
JP4764968B2 (en) breakwater
Sánchez-Badorrey et al. Sediment transport patterns in front of reflective structures under wind wave-dominated conditions
JP5067658B2 (en) Vertical mixing promotion equipment
Ma et al. Experimental investigation on regular wave process through an artificial reef
Shih et al. Experimental study on the energy dissipation characteristics of stepped embankments
Hsiao et al. Experimental study of the wave energy dissipation due to the porous-piled structure
JP2015094210A (en) Wave height occurrence facility construction structure and power generation facility construction
Shih et al. Investigation on the Wave Attenuation and Reflection Induced by a Submerged Barrier in Presence of Small Forward and Reversed Currents
Uda et al. Beach Changes on Coast Subject to Waves and Seaward or Shoreward Strong Currents
Fujiwara et al. Prediction of beach changes around artificial reef using BG model
Mane et al. Peak mooring forces in the horizontal interlaced multi-layered moored floating pipe breakwater
Panduranga et al. Gravity Waves Damping by a Porous Floating Breakwater Over an Undulated Seabed
Hirayama et al. Experimental study on wave reflection and transmission on a slit-type permeable breakwater in wave and current field reproduced in a basin
Kim et al. Experimental Study on Hydraulic Performance of Tiecell Caisson Breakwater with Wave Chamber
Yüksel et al. Sea Wall-Beach Profile Interaction On Run-Up Zone
PENG et al. Laboratory Study On Wave Overtopping Across Coastal Dikes With A Vegetated Foreshore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140403

R150 Certificate of patent or registration of utility model

Ref document number: 5519613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250