JP2013087336A - Method of preventing hydrogen embrittlement - Google Patents

Method of preventing hydrogen embrittlement Download PDF

Info

Publication number
JP2013087336A
JP2013087336A JP2011229562A JP2011229562A JP2013087336A JP 2013087336 A JP2013087336 A JP 2013087336A JP 2011229562 A JP2011229562 A JP 2011229562A JP 2011229562 A JP2011229562 A JP 2011229562A JP 2013087336 A JP2013087336 A JP 2013087336A
Authority
JP
Japan
Prior art keywords
steel
hydrogen
aqueous solution
alkaline aqueous
hydrogen embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011229562A
Other languages
Japanese (ja)
Inventor
Hiroyuki Saito
博之 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011229562A priority Critical patent/JP2013087336A/en
Publication of JP2013087336A publication Critical patent/JP2013087336A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent hydrogen embrittlement in iron and steel even under an environment including much hydrogen.SOLUTION: In a step S101 in a method of preventing hydrogen embrittlement, iron and steel to be treated is brought into contact with an alkaline aqueous solution. For example, an alkaline aqueous solution is stored in a predetermined container, and iron and steel is soaked in the alkaline aqueous solution. It is important that the alkaline aqueous solution has a pH at which a nonconductive coating is formed on a surface of the iron and steel brought into contact with the alkaline aqueous solution. Then, in a step S102, a potential at which hydrogen is oxidized to hydrogen ions is applied between the iron and steel and the alkaline aqueous solution.

Description

本発明は、鉄骨や鉄筋などに用いられている鉄鋼に発生する水素脆化を防止する水素脆化防止方法に関するものである。   The present invention relates to a hydrogen embrittlement prevention method for preventing hydrogen embrittlement generated in steel used for steel frames, reinforcing bars and the like.

高強度鋼などの鉄鋼は、鉄骨や鉄筋などとして建築物などの建築要素(固定構造体)の部材として用いられている。この鉄鋼が、構造体が配置されている環境の影響で発生した水素により脆化して特性を失うことがあることが知られている。この、水素による金属部材の脆化は、水素脆化と呼ばれており、応力が加わっているなかで一定以上の水素が鉄鋼内に侵入して蓄積することによって生じるものとされている(非特許文献1参照)。   Steels such as high-strength steel are used as members of building elements (fixed structures) such as buildings as steel frames and reinforcing bars. It is known that this steel may become brittle due to hydrogen generated by the influence of the environment in which the structure is disposed and lose its characteristics. This embrittlement of a metal member by hydrogen is called hydrogen embrittlement, and it is assumed that a certain amount or more of hydrogen penetrates and accumulates in steel while stress is applied (non-non-uniformity). Patent Document 1).

半田隆夫、齋藤博之、東康弘、中村真理子、藤本憲宏、「コンクリート中鉄筋の水素による遅れ破壊」、電子情報通信学会 信学技法、R2009−47、7−10頁、2009年。Takao Handa, Hiroyuki Saito, Yasuhiro Higashi, Mariko Nakamura, Norihiro Fujimoto, "Delayed Fracture of Reinforced Concrete Reinforced with Hydrogen", IEICE Technical, R2009-47, pp. 7-10, 2009.

上述した水素脆化を抑制するために、例えば、鉄鋼の合金組成を検討するなど、種々の水素脆化対策技術が模索されている。これらの対策により一定の効果が得られているが、鉄鋼が用いられる環境の水素量が多い場合には、拡散などによって水素が浸入し、水素脆化を引き起こす発端となり得る。このように、鉄鋼自体の組成の検討では、水素の浸入が抑制できないため、水素が多い環境などでは、水素脆化が引き起こされてしまうという問題がある。   In order to suppress the hydrogen embrittlement described above, various hydrogen embrittlement countermeasure techniques have been sought, for example, by examining the alloy composition of steel. Although certain effects have been obtained by these measures, when the amount of hydrogen in the environment where steel is used is large, hydrogen can infiltrate due to diffusion or the like, which can lead to hydrogen embrittlement. Thus, in the examination of the composition of the steel itself, since the infiltration of hydrogen cannot be suppressed, there is a problem that hydrogen embrittlement is caused in an environment where there is a lot of hydrogen.

本発明は、以上のような問題点を解消するためになされたものであり、水素が多い環境においても、鉄鋼における水素脆化が抑制できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to suppress hydrogen embrittlement in steel even in an environment where there is a lot of hydrogen.

本発明に係る水素脆化防止方法は、鉄鋼をアルカリ性水溶液に接触させる工程と、鉄鋼とアルカリ性水溶液との間に、水素が水素イオンに酸化される電位を印加する工程とを少なくとも備える。なお、アルカリ性水溶液は、接触する鉄鋼の表面に不導体被膜が形成される範囲のpHとされていればよい。   The method for preventing hydrogen embrittlement according to the present invention includes at least a step of bringing steel into contact with an alkaline aqueous solution and a step of applying a potential at which hydrogen is oxidized into hydrogen ions between the steel and the alkaline aqueous solution. In addition, the alkaline aqueous solution should just be set to pH of the range in which a nonconductor film is formed on the surface of the steel which contacts.

以上説明したことにより、本発明によれば、水素が多い環境においても、鉄鋼における水素脆化が抑制できるようになるという優れた効果が得られる。   As described above, according to the present invention, it is possible to obtain an excellent effect that hydrogen embrittlement in steel can be suppressed even in an environment with a lot of hydrogen.

図1は、本発明の実施の形態における水素脆化防止方法を説明するためのフローチャートであるFIG. 1 is a flowchart for explaining a hydrogen embrittlement prevention method according to an embodiment of the present invention. 図2は、本発明の実施の形態における水素脆化防止方法を実現する装置の構成例を示す構成図である。FIG. 2 is a configuration diagram showing a configuration example of an apparatus for realizing the hydrogen embrittlement prevention method according to the embodiment of the present invention.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における水素脆化防止方法を説明するためのフローチャートである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining a method of preventing hydrogen embrittlement in an embodiment of the present invention.

この水素脆化防止方法は、まず、ステップS101で、対象とする鉄鋼をアルカリ性水溶液に接触させる。例えば、所定の容器にアルカリ性水溶液を収容し、このアルカリ性水溶液中に鉄鋼を浸漬すればよい。また、鉄鋼の一部にアルカリ性水溶液が接触した状態としてもよい。アルカリ性水溶液としては、例えば、pH=10程度に調整した水酸化ナトリウムの水溶液を用いればよい。ここで、鉄鋼の腐食を防止するためには、水溶液との接触面に不導体被膜が形成されるとよい。言い換えると、アルカリ性水溶液は、接触する鉄鋼の表面に不導体被膜が形成されるpHとするとよい。   In this hydrogen embrittlement prevention method, first, in step S101, the target steel is brought into contact with an alkaline aqueous solution. For example, an alkaline aqueous solution may be stored in a predetermined container, and steel may be immersed in the alkaline aqueous solution. Moreover, it is good also as a state which alkaline aqueous solution contacted a part of steel. As the alkaline aqueous solution, for example, an aqueous solution of sodium hydroxide adjusted to about pH = 10 may be used. Here, in order to prevent corrosion of steel, a nonconductive film is preferably formed on the contact surface with the aqueous solution. In other words, the alkaline aqueous solution may have a pH at which a nonconductive film is formed on the surface of the steel that comes into contact.

次に、ステップS102で、鉄鋼とアルカリ性水溶液との間に、水素が水素イオンに酸化される電位を印加する。水素が水素イオンになる電位は、アルカリ性水溶液のpHによって異なるが、ネルンストの理論によれば、電極電位E(対標準水素電極電位/V)=−0.059(pH)より貴にすればよい。また、実際には、活性化に要する過電圧があるので、上述した値よりさらに貴にするのが有効である。   Next, in step S102, a potential at which hydrogen is oxidized into hydrogen ions is applied between the steel and the alkaline aqueous solution. The potential at which hydrogen becomes a hydrogen ion varies depending on the pH of the alkaline aqueous solution, but according to Nernst's theory, it may be made nobler than electrode potential E (vs. standard hydrogen electrode potential / V) = − 0.059 (pH). . Further, in practice, there is an overvoltage required for activation, so it is effective to make it nobler than the above-mentioned value.

次に、上述した水素脆化防止方法を実現する装置について簡単に説明する。図2に示すように、ポテンショスタット201を用意し、この作用電極接続端に鉄鋼202を接続し、また、鉄鋼202の表面に接触させたアルカリ性水溶液203中に対極204および参照電極205を配置する。対極204は、例えば炭素電極を用いればよく、参照極205は、Ag/AgCl電極であればよい。また、アルカリ性水溶液203は容器211に収容され、容器211の開口部212で収容しているアルカリ性水溶液203が、鉄鋼202の表面に接触している。このようにポテンショスタット201を用いることで、鉄鋼202とアルカリ性水溶液203との間に、水素が水素イオンに酸化される電位を印加すればよい。   Next, an apparatus for realizing the above-described hydrogen embrittlement prevention method will be briefly described. As shown in FIG. 2, a potentiostat 201 is prepared, steel 202 is connected to the working electrode connection end, and a counter electrode 204 and a reference electrode 205 are arranged in an alkaline aqueous solution 203 in contact with the surface of the steel 202. . The counter electrode 204 may be a carbon electrode, for example, and the reference electrode 205 may be an Ag / AgCl electrode. The alkaline aqueous solution 203 is accommodated in the container 211, and the alkaline aqueous solution 203 accommodated in the opening 212 of the container 211 is in contact with the surface of the steel 202. By using the potentiostat 201 in this way, a potential at which hydrogen is oxidized into hydrogen ions may be applied between the steel 202 and the alkaline aqueous solution 203.

上述した本実施の形態における水素脆化防止方法によれば、鉄鋼内のすべての領域に存在する水素が、アルカリ性水溶液に接触している部分に向かって拡散していくようになる。一般に常温(20〜25℃)における鉄鋼中の水素は、1日程度でmmオーダーの移動(拡散)をするものとされている。   According to the hydrogen embrittlement prevention method in the present embodiment described above, the hydrogen present in all regions in the steel diffuses toward the portion in contact with the alkaline aqueous solution. In general, hydrogen in steel at room temperature (20 to 25 ° C.) is supposed to move (diffusion) on the order of mm in about one day.

このようにして移動する水素は、鉄鋼表面より外方に放出されアルカリ性水溶液中にイオンとなって溶け出すようになる。また、アルカリ性水溶液に接触している鉄鋼の表面近傍の水素が除去されると、濃度勾配により鉄鋼内部の水素が表面近傍に拡散するため、電位を印加し続けることにより鉄鋼内の界面近傍以外に存在する水素も除去することが可能となる。このため、鉄鋼に水素が蓄積されるのが防げるようになり、水素が多い環境においても、鉄鋼における水素脆化が抑制できるようになる。   The hydrogen that moves in this manner is released outward from the steel surface and is dissolved as ions in the alkaline aqueous solution. In addition, if hydrogen near the surface of the steel in contact with the alkaline aqueous solution is removed, the hydrogen inside the steel diffuses near the surface due to the concentration gradient, so by continuing to apply the potential other than near the interface in the steel. Existing hydrogen can also be removed. For this reason, it becomes possible to prevent hydrogen from being accumulated in steel, and hydrogen embrittlement in steel can be suppressed even in an environment where there is a lot of hydrogen.

上述した本実施の形態における処理は、水素を吸蔵してしまった鉄鋼を対象に一定時間ごとに行い、水素脆化が発生する水素吸蔵量に到達する前に吸蔵された水素を除去すればよい。また、上述した処理を継続的に行い、鉄鋼に水素が吸蔵されることを防止するようにしてもよい。   The treatment in the present embodiment described above is performed on a steel that has occluded hydrogen at regular intervals, and the occluded hydrogen may be removed before reaching the hydrogen occlusion amount at which hydrogen embrittlement occurs. . Further, the above-described treatment may be continuously performed to prevent hydrogen from being occluded in the steel.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious.

201…ポテンショスタット、202…鉄鋼、203…アルカリ性水溶液、204…対極、205…参照電極、211…容器、212…開口部。   DESCRIPTION OF SYMBOLS 201 ... Potentiostat, 202 ... Steel, 203 ... Alkaline aqueous solution, 204 ... Counter electrode, 205 ... Reference electrode, 211 ... Container, 212 ... Opening part.

Claims (2)

鉄鋼をアルカリ性水溶液に接触させる工程と、
前記鉄鋼と前記アルカリ性水溶液との間に、水素が水素イオンに酸化される電位を印加する工程と
を少なくとも備えることを特徴とする水素脆化防止方法。
Contacting the steel with an alkaline aqueous solution;
Applying a potential at which hydrogen is oxidized into hydrogen ions between the steel and the alkaline aqueous solution.
請求項1記載の水素脆化防止方法において、
前記アルカリ性水溶液は、接触する前記鉄鋼の表面に不導体被膜が形成される範囲のpHとされていることを特徴とする水素脆化防止方法。
In the hydrogen embrittlement prevention method according to claim 1,
The method for preventing hydrogen embrittlement, wherein the alkaline aqueous solution has a pH within a range in which a non-conductive film is formed on the surface of the steel to be contacted.
JP2011229562A 2011-10-19 2011-10-19 Method of preventing hydrogen embrittlement Pending JP2013087336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229562A JP2013087336A (en) 2011-10-19 2011-10-19 Method of preventing hydrogen embrittlement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229562A JP2013087336A (en) 2011-10-19 2011-10-19 Method of preventing hydrogen embrittlement

Publications (1)

Publication Number Publication Date
JP2013087336A true JP2013087336A (en) 2013-05-13

Family

ID=48531564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229562A Pending JP2013087336A (en) 2011-10-19 2011-10-19 Method of preventing hydrogen embrittlement

Country Status (1)

Country Link
JP (1) JP2013087336A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350754A (en) * 2004-06-14 2005-12-22 Sumitomo Metal Ind Ltd Low alloy steel for oil well tube having excellent sulfide stress cracking resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350754A (en) * 2004-06-14 2005-12-22 Sumitomo Metal Ind Ltd Low alloy steel for oil well tube having excellent sulfide stress cracking resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7014001825; 株式会社ミスミ: "表面技術講座 カテゴリ:水素脆性 第348回 水素脆性-めっき前の脱水素" , 20080509 *

Similar Documents

Publication Publication Date Title
TW200728514A (en) Method of coating a surface of a substrate with a metal by electroplating
WO2010115213A3 (en) Corrosion-resistant anodes, devices including the anodes, and methods of using the anodes
JP2015031554A (en) Hydrogen penetration potential prediction method
CN103439170A (en) Method for displaying and detecting inhibition layer of hot-dip-coated zinc sheet
NO20091422L (en) Methods and systems for electroplating electrodes on site
KR101249851B1 (en) Method for testing hydrogen permeation of high strength metallic materials under tensile stress in elastic and plastic ranges using palladium coating layer
IN2014KN01651A (en)
Bertolini et al. Electrochemical realkalization as a conservation technique for reinforced concrete
WO2002088425A3 (en) Determination of chloride corrosion threshold for metals embedded in cementitious material
JP2013087336A (en) Method of preventing hydrogen embrittlement
JP6342783B2 (en) Hydrogen penetration evaluation method
CN106680340B (en) A method of assessing and quantifying corrosion product inside point corrosion pit influences spot corrosion growth rate
JP5892601B2 (en) Method for suppressing hydrogen generation on steel surface
JP6049134B2 (en) Method for suppressing hydrogen intrusion into steel
Tofeti Lima et al. Efficiency of different electrolytes on electrochemical chloride extraction to recover concrete structures under chloride-induced corrosion
JP2014136809A (en) Hydrogen invasion prevention method
JP5986126B2 (en) Hydrogen embrittlement evaluation method
AR098999A1 (en) DISSOLUTION OR EXTRACTION PROCESS OF AT LEAST A PRECIOUS METAL OF A SOURCE MATERIAL CONTAINING IT AND COMPOSITION USED
MX2022004334A (en) Systems and methods for treating a metal substrate.
JP5702324B2 (en) Hydrogen embrittlement prevention method
JP6077439B2 (en) Hydrogen intrusion prevention method
JP2013221193A (en) Method for suppressing hydrogen intrusion into metal
KR102168835B1 (en) Evaluation Method of Hydrogen Embrittlement and Stress Corrosion Properties of Steel
JP2015135302A (en) Hydrogen occlusion method
MD3082F1 (en) Process for metal electrochemical protection from corrosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224