JP2013087313A - Galvannealed steel sheet excellent in adhesion strength and method for manufacturing the same - Google Patents

Galvannealed steel sheet excellent in adhesion strength and method for manufacturing the same Download PDF

Info

Publication number
JP2013087313A
JP2013087313A JP2011227336A JP2011227336A JP2013087313A JP 2013087313 A JP2013087313 A JP 2013087313A JP 2011227336 A JP2011227336 A JP 2011227336A JP 2011227336 A JP2011227336 A JP 2011227336A JP 2013087313 A JP2013087313 A JP 2013087313A
Authority
JP
Japan
Prior art keywords
steel sheet
less
plating layer
plating
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011227336A
Other languages
Japanese (ja)
Other versions
JP5741364B2 (en
Inventor
Kojiro Akiba
浩二郎 秋葉
Kiyokazu Ishizuka
清和 石塚
Yukimoto Tanaka
幸基 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011227336A priority Critical patent/JP5741364B2/en
Publication of JP2013087313A publication Critical patent/JP2013087313A/en
Application granted granted Critical
Publication of JP5741364B2 publication Critical patent/JP5741364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet excellent in adhesion strength.SOLUTION: The galvannealed steel sheet has a plating layer 2 comprising, by mass, 7-15% Fe, 0.01-1% Al and the balance being Zn and unavoidable impurities on a surface of a steel sheet 1 comprising 0.05-0.50% C, 0.01-3.0% Mn, at least one chosen from ≤3.0% Si, ≤2.0% Al and ≤2.0% Cr, provided that Mn+Si+Al+Cr is ≥0.4%, and the balance being Fe and unavoidable impurities. Here, (x) the steel sheet side of the plating layer is a Zn-Fe alloy phase including (x1) at least one chosen from oxides of Mn, Si, Al and Cr and/or (x2) at least one composite oxide comprising at least two chosen from Mn, Si, Al and Cr, and (y) a surface layer of the plating layer 2 is a Zn-Fe alloy phase containing a ζ phase free of the oxide and/or the composite oxide.

Description

本発明は、接着強度に優れた合金化溶融亜鉛めっき鋼板とその製造方法に関する。   The present invention relates to an alloyed hot-dip galvanized steel sheet having excellent adhesive strength and a method for producing the same.

近年、特に、自動車技術分野において、燃費向上による省エネを目的とする車体軽量化の観点から、高強度鋼板の需要が高まっている。このような需要に対し、例えば、特許文献1には、鋼板組織を、フェライト相、ベイナイト相、及び、オーステナイト相の3相が混合した組織とし、成型加工時に、残留オーステナイトがマルテンサイトに変態することで高延性を示す変態誘起塑性を利用した鋼板が開示されている。   In recent years, particularly in the field of automobile technology, demand for high-strength steel sheets is increasing from the viewpoint of reducing the weight of a vehicle body for the purpose of energy saving by improving fuel consumption. In response to such demand, for example, in Patent Document 1, the steel sheet structure is a structure in which three phases of a ferrite phase, a bainite phase, and an austenite phase are mixed, and the residual austenite is transformed into martensite during molding. A steel sheet using transformation-induced plasticity that exhibits high ductility is disclosed.

この種の鋼板は、例えば、Cを0.05〜0.4質量%、Siを0.2〜3.0質量%、Mnを0.1〜2.5質量%を含有し、2相域での焼鈍後、冷却過程の温度パターンを制御することで複合組織を形成していて、高価な合金元素を用いることなく、所要の特性を確保できるという特徴を備えている。   This type of steel sheet contains, for example, 0.05 to 0.4% by mass of C, 0.2 to 3.0% by mass of Si, and 0.1 to 2.5% by mass of Mn. After annealing, the composite structure is formed by controlling the temperature pattern of the cooling process, and the required characteristics can be secured without using expensive alloy elements.

このような鋼板に、防錆機能を付与すべく、連続溶融亜鉛めっき設備で亜鉛めっきを施す場合、鋼板のSi量が0.3質量%を超えていると、めっき濡れ性が大きく低下し、通常のAl含有めっき浴を用いるゼンジマー法では、不めっきが発生して、外観品質が悪化するという問題がある。   In order to give a rust prevention function to such a steel sheet, when performing galvanization with a continuous hot dip galvanizing facility, if the Si amount of the steel sheet exceeds 0.3% by mass, the plating wettability is greatly reduced, In the Sendzimer method using a normal Al-containing plating bath, there is a problem that non-plating occurs and the appearance quality deteriorates.

これは、還元焼鈍時に、鋼板表面に、SiやMnを含有する外部酸化皮膜が生成し、これらの酸化物の溶融Znに対する濡れ性が悪いことが原因であると言われている。   This is said to be due to the fact that an external oxide film containing Si or Mn is formed on the steel sheet surface during reduction annealing, and the wettability of these oxides to molten Zn is poor.

この問題を解決する手段として、特許文献2には、予め、空気比0.9〜1.2の雰囲気中で鋼板を加熱して、Fe酸化物を生成させ、次いで、H2を含む還元帯で、酸化物の厚みを500Å以下にした後、MnとAlを添加した浴でめっきを行う方法が提案されているが、実ラインでは、種々の添加元素を含む多様な鋼板を通板するので、酸化物の厚みを適確に制御することは困難である。 As means for solving this problem, Patent Document 2 discloses that a steel sheet is heated in advance in an atmosphere having an air ratio of 0.9 to 1.2 to generate Fe oxide, and then a reduction zone containing H 2. Then, after reducing the thickness of the oxide to 500 mm or less, a method of plating in a bath containing Mn and Al has been proposed, but in the actual line, various steel plates containing various additive elements are passed through. It is difficult to accurately control the thickness of the oxide.

他の不めっき抑制手段としては、特許文献3に、下層に特定のめっきを付与して、めっき性を改善する方法が開示されている。しかし、この方法では、溶融めっきラインにおいて、焼鈍炉の前段に、新たに、めっき設備を設けるか、又は、電気めっきラインにおいて、予めめっき処理を行う必要がある。いずれの場合にも、大幅な製造コストの増加が見込まれる。   As another non-plating suppressing means, Patent Document 3 discloses a method of improving plating properties by applying specific plating to the lower layer. However, in this method, it is necessary to newly provide a plating facility before the annealing furnace in the hot dipping line, or to perform a plating process in advance in the electroplating line. In either case, a significant increase in manufacturing cost is expected.

一方、特許文献4には、焼鈍時に、焼鈍雰囲気の酸素ポテンシャルを調整して、鋼板中のFeを酸化させずに、合金化溶融亜鉛めっき鋼板を製造する手法が開示されている。この手法においては、鋼中のSiやMn等の易酸化性元素を、雰囲気の酸素ポテンシャルを制御することで内部酸化させ、外部酸化皮膜の形成を抑制して、めっき性の向上を達成している。   On the other hand, Patent Document 4 discloses a method of manufacturing an alloyed hot-dip galvanized steel sheet without adjusting Fe in the steel sheet by adjusting the oxygen potential of the annealing atmosphere during annealing. In this method, oxidizable elements such as Si and Mn in steel are internally oxidized by controlling the oxygen potential of the atmosphere, and the formation of an external oxide film is suppressed, thereby achieving an improvement in plating performance. Yes.

この手法を適用することにより、めっき後に鋼板を再加熱し、Znめっき層と鋼板を反応させ、Zn−Fe合金からなる合金めっき層を形成する際のZn−Fe合金化反応を均一に進行させることが可能となる。   By applying this technique, the steel plate is reheated after plating, the Zn plating layer and the steel plate are reacted, and the Zn-Fe alloying reaction is uniformly progressed when an alloy plating layer made of a Zn-Fe alloy is formed. It becomes possible.

自動車用補強部材に用いる高強度鋼板は、一般に、曲げを主体とする加工で加工される。めっき原板として、C量が比較的高い高強度鋼板を用いる場合、めっき原板自体が硬いために、曲げ加工時に、鋼板表層にクラックが入り易い。このクラックは、鋼板の使用時に、鋼板が板厚方向に割れる要因となる。   In general, a high-strength steel plate used for a reinforcing member for automobiles is processed by processing mainly consisting of bending. When a high-strength steel plate having a relatively high C content is used as the plating original plate, the plating original plate itself is hard, so that cracks are likely to occur in the steel plate surface layer during bending. This crack becomes a factor that the steel plate breaks in the plate thickness direction when the steel plate is used.

この曲げ性の問題を解決すべく、特許文献5には、焼鈍雰囲気中の酸素ポテンシャルの制御により、めっき性を向上させるだけでなく、鋼板表面の炭素濃度を下げ、ごく表層の延性を向上させることで、クラックの発生を抑制し、さらに、鋼板表層付近に、Si、Mnの酸化物を生成させることで、クラックが発生しても、この酸化物により、クラックの伝播を抑制して、曲げ性を確保する技術が開示されている。   In order to solve this problem of bendability, Patent Document 5 discloses that not only the plateability is improved by controlling the oxygen potential in the annealing atmosphere, but also the carbon concentration on the surface of the steel sheet is lowered and the ductility of the surface layer is improved. By suppressing the generation of cracks, and by generating oxides of Si and Mn near the surface of the steel sheet, even if cracks occur, this oxide suppresses the propagation of cracks, and bending A technique for ensuring the safety is disclosed.

しかし、酸化物が鋼中に内部酸化する条件で鋼板を焼鈍しても、めっき/鋼板界面に形成する酸化物が全くなくなるわけではなく、内部酸化物の形成挙動に起因するめっき層/鋼板界面の性状によっては、鋼板とめっき層の密着性が劣化し、加工時にめっきが剥離するという問題が生じ易い。   However, even if the steel plate is annealed under the condition that the oxide is internally oxidized in the steel, the oxide formed at the plating / steel plate interface is not completely lost, and the plating layer / steel plate interface resulting from the formation behavior of the internal oxide Depending on the properties, the adhesion between the steel sheet and the plating layer deteriorates and the problem that the plating peels off during processing is likely to occur.

高強度鋼板を原板として合金化溶融亜鉛めっき鋼板を製造する際、めっき密着性を改善するため、例えば、特許文献6では、めっき層と鋼板の界面に形成するSi−Mn酸化物とZn−Fe金属間化合物からなる組織の態様に着目し、該組織と鋼板の界面の凹凸の大きさを制御して、めっき層と鋼板の密着性を向上させる技術が開示されている。   In order to improve plating adhesion when producing an alloyed hot-dip galvanized steel sheet using a high-strength steel sheet as an original sheet, for example, in Patent Document 6, in Si—Mn oxide and Zn—Fe formed at the interface between a plating layer and a steel sheet, A technique for improving the adhesion between the plating layer and the steel sheet by controlling the size of the irregularities at the interface between the structure and the steel sheet is disclosed focusing on the form of the structure made of an intermetallic compound.

しかし、この技術は、めっき前に鋼板を焼鈍する際、昇温工程を、Feの酸化雰囲気中で行い、その後、還元雰囲気中で一定時間保持するという工程を採用しており、合金化処理後のめっき層と鋼板の界面の状態を所定の状態にするためは、焼鈍雰囲気を厳密に調整して、鋼板の酸化及び還元を厳格に制御しなければならない。   However, this technique employs a process of heating the steel sheet before plating in a Fe oxidizing atmosphere and then holding it in a reducing atmosphere for a certain period of time. In order to make the state of the interface between the plating layer and the steel plate a predetermined state, the annealing atmosphere must be strictly adjusted to strictly control the oxidation and reduction of the steel plate.

特許文献7では、めっき層と鋼板の界面から、鋼板側の深さ方向のZn−Fe金属間化合物の進入深さを10μm以下に制御して、耐パウダリング性やめっき密着性を向上させる技術が開示されている。   In Patent Document 7, from the interface between the plating layer and the steel plate, the depth of penetration of the Zn-Fe intermetallic compound in the depth direction on the steel plate side is controlled to 10 μm or less to improve powdering resistance and plating adhesion. Is disclosed.

最近、特許文献8及び9に開示されているように、特に、自動車の車体を中心に、めっき鋼板を接着用構造材として使用する動きがあるが、この場合、合金化溶融亜鉛めっき鋼板が有する上記欠点が大きな問題となる。   Recently, as disclosed in Patent Documents 8 and 9, there is a movement to use a galvanized steel sheet as a structural material for adhesion, particularly in the body of an automobile. In this case, the galvannealed steel sheet has The above disadvantages become a big problem.

重合わせ引張剪断試験によって、めっき処理をしていない母材を用いた接着構造の破断強度と、合金化溶融亜鉛めっき鋼板を用いた接着構造の破断強度を比較すると、後者の破断強度は、前者の破断強度の1/2程度に低下する。   By comparing the breaking strength of the bonded structure using the unplated base material with the bonded structure using the galvannealed steel sheet, the latter breaking strength is It decreases to about 1/2 of the breaking strength.

そして、破断の形態は、上記母材の接着構造の場合には、接着剤の凝集破壊となるのに対して、合金化溶融亜鉛めっき鋼板の接着構造の場合には、めっき層と鋼板の界面で剥離する界面剥離となる。   And, in the case of the adhesive structure of the base material, the form of fracture is a cohesive failure of the adhesive, whereas in the case of the adhesive structure of the galvannealed steel sheet, the interface between the plating layer and the steel sheet. Interfacial peeling that peels off at.

近年、高強度合金化溶融亜鉛めっき鋼板を接着構造用部材として用いる際には、鋼板自体の強度が高いことから、より高い接着性が求められることとなり、めっき層と鋼板界面の組織を制御するだけでは十分ではなく、めっき層自体にも、接着性を担保するための工夫を取り入れ、さらなるめっき密着性の改善を行うことが求められている。   In recent years, when a high-strength galvannealed steel sheet is used as an adhesive structural member, the strength of the steel sheet itself is high, so higher adhesion is required, and the structure of the interface between the plating layer and the steel sheet is controlled. In addition, it is not sufficient, and it is required that the plating layer itself be further improved in plating adhesion by incorporating a device for ensuring adhesion.

Zn−Fe合金めっき層には、Fe量が少ない順に、ζ相、δ1相、Γ相、Γ1相など複数の相が存在する。一般に、Zn−Fe合金相は、Fe量が多いほど、硬くて脆い。特許文献10には、合金めっき層中の組織を全てζ相にすることで、めっき層の密着性の高い合金化溶融亜鉛めっき鋼板を製造する技術が開示されている。 In the Zn—Fe alloy plating layer, there are a plurality of phases such as a ζ phase, a δ 1 phase, a Γ phase, and a Γ 1 phase in ascending order of Fe amount. In general, the Zn-Fe alloy phase is harder and more brittle as the amount of Fe increases. Patent Document 10 discloses a technique for producing an alloyed hot-dip galvanized steel sheet with high adhesion of the plating layer by making all the structures in the alloy plating layer into the ζ phase.

しかし、特許文献4に開示の手法を用いて、SiやMn等の元素を含有する高強度鋼板を原板として合金化溶融亜鉛めっき鋼板を製造した場合、上述した酸化物粒子が、Zn−Fe合金相中に分散した状態になることで、合金層が有する塑性変形能が小さくなり、めっき層に応力が負荷された際、めっき層の割れ及び剥離が起き易くなる。   However, when an alloyed hot-dip galvanized steel sheet is produced using a technique disclosed in Patent Document 4 using a high-strength steel sheet containing an element such as Si or Mn as an original sheet, the oxide particles described above are Zn-Fe alloys. By being dispersed in the phase, the plastic deformability of the alloy layer is reduced, and when the plating layer is stressed, the plating layer is easily cracked and peeled off.

特開平05−59429号公報JP 05-59429 A 特開平04−276057号公報Japanese Patent Laid-Open No. 04-276057 特開2003−105514号公報JP 2003-105514 A 特許第4718782号公報Japanese Patent No. 4718782 国際公開WO2011/025042号パンフレットInternational Publication WO2011 / 025042 Pamphlet 特開2011−127216号公報JP 2011-127216 A 特開2011−153367号公報JP 2011-153367 A 特開2011−007250号公報JP 2011-007250 A 特開2011−074422号公報JP 2011-074422 A 特開平05−311372号公報JP 05-311372 A

本発明は、合金化溶融亜鉛めっき鋼板に係る上記現状に鑑み、接着強度に優れ、接着用構造材として好適な合金化溶融亜鉛めっき鋼板とその製造方法を提供することを目的とする。   An object of the present invention is to provide an alloyed hot-dip galvanized steel sheet that is excellent in adhesive strength and suitable as a structural material for bonding, and a method for producing the same, in view of the above-described present situation relating to an alloyed hot-dip galvanized steel sheet.

本発明者らは、合金化溶融亜鉛めっき鋼板(以下、「めっき鋼板」と総称することがある。)において、接着用構造材として必要な接着強度を確保する手法について鋭意検討した。その結果、めっき層において、内部酸化物を内包するZn−Fe合金相の外側(めっき層の表層)に、酸化物を内包しないζ相を形成すると、接着強度が飛躍的に向上することが判明した。   The present inventors diligently studied a method for securing adhesive strength necessary as a structural material for bonding in an alloyed hot-dip galvanized steel sheet (hereinafter, sometimes referred to as “plated steel sheet”). As a result, it was found that when the ζ phase containing no oxide was formed outside the Zn—Fe alloy phase containing the internal oxide in the plating layer (surface layer of the plating layer), the adhesive strength was dramatically improved. did.

本発明は、上記知見に基づいてなされたもので、その要旨は、以下の通りである。   This invention was made | formed based on the said knowledge, The summary is as follows.

(1)質量%で、C:0.05〜0.50%、Mnを0.01〜3.0%含有し、さらに、Si:3.0%以下、Al:2.0%以下、Cr:2.0%以下の1種又は2種以上を含有し、Mn+Si+Al+Cr:0.4%以上で、残部Fe及び不可避的不純物からなる鋼板の表面に、Fe:7〜15%、Al:0.01〜1%、残部Zn及び不可避的不純物からなるめっき層を有する合金化溶融亜鉛めっき鋼板において、
(x)上記めっき層の鋼板側が、(x1)Mn、Si、Al、及び、Crの酸化物の1種又は2種以上、及び/又は、(x2)Mn、Si、Al、及び、Crの2種以上からなる複合酸化物の1種又は2種以上を内包するZn−Fe合金相であり、
(y)上記めっき層の表層が、上記酸化物及び/又は複合酸化物を内包しないζ相を含むZn−Fe合金相である
ことを特徴とするめっき接着強度に優れた合金化溶融亜鉛めっき鋼板。
(1) By mass%, C: 0.05 to 0.50%, Mn 0.01 to 3.0%, Si: 3.0% or less, Al: 2.0% or less, Cr : 2.0% or less of one or more, Mn + Si + Al + Cr: 0.4% or more, Fe: 7 to 15%, Al: 0. In an alloyed hot-dip galvanized steel sheet having a plating layer consisting of 01 to 1%, the balance Zn and inevitable impurities,
(X) The steel plate side of the plating layer is one or more of (x1) Mn, Si, Al, and Cr oxides and / or (x2) Mn, Si, Al, and Cr. A Zn-Fe alloy phase containing one or more of complex oxides composed of two or more,
(Y) An alloyed hot-dip galvanized steel sheet having excellent plating adhesive strength, wherein the surface layer of the plating layer is a Zn—Fe alloy phase containing a ζ phase that does not contain the oxide and / or the composite oxide. .

(2)前記Zn−Fe合金相は、合金化処理時、めっき層から浸入したZnと鋼板中のFeが反応して生成したものであることを特徴とする前記(1)に記載の接着強度に優れた合金化溶融亜鉛めっき鋼板。   (2) The adhesive strength according to (1), wherein the Zn—Fe alloy phase is formed by a reaction between Zn that has entered from the plating layer and Fe in the steel sheet during the alloying treatment. Excellent galvannealed steel sheet.

(3)前記鋼板が、さらに、質量%で、B:0.010%以下を含有することを特徴とする前記(1)又は(2)に記載の接着強度に優れた合金化溶融亜鉛めっき鋼板。   (3) The alloyed hot-dip galvanized steel sheet having excellent adhesive strength as described in (1) or (2) above, wherein the steel sheet further contains B: 0.010% or less by mass%. .

(4)前記鋼板が、さらに、質量%で、P:0.10%以下を含有することを特徴とする前記(1)〜(3)のいずれかに記載の接着強度に優れた合金化溶融亜鉛めっき鋼板。   (4) The steel sheet further contains P: 0.10% or less by mass%, and alloying and melting with excellent adhesive strength according to any one of the above (1) to (3) Galvanized steel sheet.

(5)前記(1)〜(4)のいずれかに記載の接着強度に優れた合金化溶融亜鉛めっき鋼板の製造方法において、
前記(1)〜(4)のいずれかに記載の成分組成の鋼板を、水素:0.1〜50体積%、残部:窒素及び不可避不純物からなり、log(PH2O/PH2)が0以下の雰囲気中で、600℃以上のある一定の温度領域(T1以上T2以下の領域)を、6℃/秒以下で最高750〜900℃に加熱して焼鈍し、その後、溶融亜鉛めっきを行い、次いで、420〜500℃で合金化処理を行う
ことを特徴とする接着強度に優れた合金化溶融亜鉛めっき鋼板の製造方法。
(5) In the method for producing an galvannealed steel sheet excellent in adhesive strength according to any one of (1) to (4),
The steel sheet having the composition described in any one of (1) to (4) above is composed of hydrogen: 0.1 to 50% by volume, balance: nitrogen and inevitable impurities, and log (P H2O / P H2 ) is 0 or less In the atmosphere, a certain temperature range of 600 ° C. or higher (T1 to T2 range) is annealed by heating to a maximum of 750 to 900 ° C. at a rate of 6 ° C./second or less, and then performing hot dip galvanization Next, a method for producing an alloyed hot-dip galvanized steel sheet having excellent adhesive strength, wherein alloying treatment is performed at 420 to 500 ° C.

(6)前記焼鈍を、連続式溶融めっき設備の全還元炉で行うことを特徴とする前記(5)に記載の接着強度に優れた合金化溶融亜鉛めっき鋼板の製造方法。   (6) The method for producing an galvannealed steel sheet having excellent adhesive strength according to (5), wherein the annealing is performed in a total reduction furnace of a continuous hot dip plating facility.

(7)前記溶融亜鉛めっきを、Al:0.01〜1%を含む亜鉛めっき浴を用い、浴温:430〜465℃で行うことを特徴とする前記(1)〜(6)のいずれかに記載の接着強度に優れた合金化溶融亜鉛めっき鋼板の製造方法。   (7) Any of the above (1) to (6), wherein the hot dip galvanizing is performed at a bath temperature of 430 to 465 ° C. using a galvanizing bath containing Al: 0.01 to 1%. The manufacturing method of the galvannealed steel plate excellent in the adhesive strength as described in 2.

本発明によれば、接着強度が飛躍的に向上した合金化溶融亜鉛めっき鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the galvannealed steel plate which adhesive strength improved dramatically can be provided.

合金化処理後の鋼板と合金めっき層の界面近傍の微細組織を示す図である。It is a figure which shows the microstructure of the interface vicinity of the steel plate after an alloying process, and an alloy plating layer. 内部酸化物を内包しないζ相を含むめっき層の表層を示す図である。It is a figure which shows the surface layer of the plating layer containing the (zeta) phase which does not include an internal oxide.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の接着強度に優れた合金化溶融亜鉛めっき鋼板(以下「本発明鋼板」ということがある。)は、質量%で、C:0.05〜0.50%、Mnを0.01〜3.0%含有し、さらに、Si:3.0%以下、Al:2.0%以下、Cr:2.0%以下の1種又は2種以上を含有し、Mn+Si+Al+Cr:0.4%以上で、残部Fe及び不可避的不純物からなる鋼板の表面に、Fe:7〜15%、Al:0.01〜1%、残部Zn及び不可避的不純物からなるめっき層を有する合金化溶融亜鉛めっき鋼板において、
(x)上記めっき層の鋼板側が、(x1)Mn、Si、Al、及び、Crの酸化物の1種又は2種以上、及び/又は、(x2)Mn、Si、Al、及び、Crの2種以上からなる複合酸化物の1種又は2種以上を内包するZn−Fe合金相であり、
(y)上記めっき層の表層が、上記酸化物及び/又は複合酸化物を内包しないζ相を含むZn−Fe合金相である
ことを特徴とする。
The alloyed hot-dip galvanized steel sheet (hereinafter sometimes referred to as “the steel sheet of the present invention”) having excellent adhesive strength according to the present invention is mass%, C: 0.05 to 0.50%, and Mn 0.01 to Contains 3.0%, Si: 3.0% or less, Al: 2.0% or less, Cr: 2.0% or less, one or more, Mn + Si + Al + Cr: 0.4% or more In an alloyed hot-dip galvanized steel sheet having a plating layer consisting of Fe: 7 to 15%, Al: 0.01 to 1%, the balance Zn and inevitable impurities on the surface of the steel sheet consisting of the remainder Fe and inevitable impurities ,
(X) The steel plate side of the plating layer is one or more of (x1) Mn, Si, Al, and Cr oxides and / or (x2) Mn, Si, Al, and Cr. A Zn-Fe alloy phase containing one or more of complex oxides composed of two or more,
(Y) The surface layer of the plating layer is a Zn—Fe alloy phase containing a ζ phase that does not include the oxide and / or the composite oxide.

亜鉛めっきを施す鋼板の厚さ(mm)は特に限定されない。通常、亜鉛めっきを施す鋼板の厚さは0.4〜3.2mmであるが、圧延機の負荷や生産性を考慮すると、1.0〜3.2mmが好ましい。   The thickness (mm) of the steel plate to which galvanization is applied is not particularly limited. Usually, the thickness of the steel sheet to which galvanization is applied is 0.4 to 3.2 mm, but 1.0 to 3.2 mm is preferable in consideration of the load and productivity of the rolling mill.

まず、本発明鋼板の成分組成を限定する理由について説明する。成分組成に係る%は質量%を意味する。   First, the reason which limits the component composition of this invention steel plate is demonstrated. % Related to the component composition means mass%.

C:0.05〜0.5%
Cは、鋼の強度を確保する元素である。0.05%未満では、強度向上効果が期待できず、0.5%を超えると、溶接性が劣化し、本発明鋼板の実用性が低下するので、Cは0.05〜0.5%とする。好ましくは0.1〜0.4%である。
C: 0.05-0.5%
C is an element that ensures the strength of steel. If it is less than 0.05%, the effect of improving the strength cannot be expected, and if it exceeds 0.5%, the weldability deteriorates and the practicality of the steel sheet of the present invention decreases, so C is 0.05 to 0.5%. And Preferably it is 0.1 to 0.4%.

Mn:0.01〜3.0%
Mnは、鋼の強度を確保する元素である。また、Mnは、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。0.01%未満では、添加効果が期待できず、3.0%超では、溶接性が劣化し、本発明鋼板の実用性が低下するので、Mnは0.01〜3.0%とする。好ましくは0.07〜3.0%である。
Mn: 0.01 to 3.0%
Mn is an element that ensures the strength of steel. Mn is an element that forms an internal oxide that suppresses coarsening of crystal grains in the vicinity of the surface of the steel sheet during annealing. If it is less than 0.01%, the effect of addition cannot be expected, and if it exceeds 3.0%, the weldability deteriorates and the practicality of the steel sheet of the present invention decreases, so Mn is 0.01 to 3.0%. . Preferably it is 0.07 to 3.0%.

Si:3.0%以下
Siは、鋼の強度を確保する元素である。また、Siは、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。3.0%を超えると、粗大な内部酸化物が生成して、めっき層が剥離し易くなるので、Siは3.0%以下とする。好ましくは2.0%以下である。下限は0%を含むが、添加する場合は0.01%以上が好ましい。
Si: 3.0% or less Si is an element that ensures the strength of steel. Si is an element that forms an internal oxide that suppresses coarsening of crystal grains in the vicinity of the surface of the steel sheet during annealing. If it exceeds 3.0%, a coarse internal oxide is generated and the plating layer is easily peeled off, so Si is made 3.0% or less. Preferably it is 2.0% or less. The lower limit includes 0%, but when added, 0.01% or more is preferable.

Al:2.0%以下
Alは、鋼を脱酸する元素である。また、Alは、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。2.0%を超えると、粗大な介在物及び内部酸化物が生成して、加工性が低下し、また、めっき層が剥離し易くなるので、Alは2.0%以下とする。高い加工性を確保する観点から、好ましくは1.5%以下である。下限は0%を含むが、添加する場合は0.01%以上が好ましい。
Al: 2.0% or less Al is an element that deoxidizes steel. In addition, Al is an element that forms an internal oxide that suppresses the coarsening of crystal grains in the vicinity of the surface of the steel sheet during annealing. If it exceeds 2.0%, coarse inclusions and internal oxides are produced, workability is lowered, and the plating layer is easily peeled off, so Al is made 2.0% or less. From the viewpoint of ensuring high workability, it is preferably 1.5% or less. The lower limit includes 0%, but when added, 0.01% or more is preferable.

Cr:2.0%以下
Crは、鋼板の加工性、特に、伸びを損なわずに、鋼の強度を確保する元素である。また、Crは、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。2.0%を超えると、粒界偏析で粒界が脆化し、また、合金化速度が遅くなるので、Crは2.0%以下とする。好ましくは1.5%以下である。下限は0%を含むが、添加する場合は、強度の確保の点で、0.01%以上が好ましい。
Cr: 2.0% or less Cr is an element that ensures the strength of the steel without impairing the workability of the steel sheet, particularly the elongation. Cr is an element that forms an internal oxide that suppresses coarsening of crystal grains in the vicinity of the surface of the steel sheet during annealing. If it exceeds 2.0%, the grain boundary becomes brittle due to grain boundary segregation, and the alloying speed becomes slow. Therefore, Cr is made 2.0% or less. Preferably it is 1.5% or less. The lower limit includes 0%, but when added, 0.01% or more is preferable in terms of securing strength.

Mn+Si+Al+Cr:0.4%以上
Mn、Si、Al、及び、Crは、前述したように、いずれも、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。Mn+Si+Al+Crが0.4%未満であると、内部酸化物の生成量が充分でなく、鋼板の表面近傍の結晶粒が粗大化して、所望の微細組織が得られない。それ故、Mn+Si+Al+Crは0.4%以上とする。好ましくは0.9%以上である。上限は、各元素の上限で定まるが、内部酸化物の過剰な生成を抑制する点で、6.0%以下が好ましい。
Mn + Si + Al + Cr: 0.4% or more As described above, Mn, Si, Al, and Cr are all elements that form an internal oxide that suppresses coarsening of crystal grains in the vicinity of the surface of a steel sheet during annealing. is there. If Mn + Si + Al + Cr is less than 0.4%, the amount of internal oxide produced is not sufficient, and the crystal grains near the surface of the steel sheet are coarsened, and a desired microstructure cannot be obtained. Therefore, Mn + Si + Al + Cr is 0.4% or more. Preferably it is 0.9% or more. Although an upper limit is decided by the upper limit of each element, 6.0% or less is preferable at the point which suppresses the excessive production | generation of an internal oxide.

ここで、内部酸化物は、Mn、Si、Al、及び、Crの酸化物、及び、Mn、Si、Al、及び、Crの2種以上からなる複合酸化物である。   Here, the internal oxide is an oxide of Mn, Si, Al, and Cr and a composite oxide composed of two or more of Mn, Si, Al, and Cr.

具体的には、Si酸化物、Mn酸化物、Si−Mn酸化物、Al酸化物、Al−Si複合酸化物、Al−Mn複合酸化物、Al−Si−Mn複合酸化物、Cr酸化物、Cr−Si複合酸化物、Cr−Mn複合酸化物、Cr−Si−Mn複合酸化物、Cr−Al複合酸化物、Cr−Al−Si複合酸化物、Cr−Al−Mn複合酸化物、Cr−Al−Mn−Si複合酸化物である。   Specifically, Si oxide, Mn oxide, Si—Mn oxide, Al oxide, Al—Si composite oxide, Al—Mn composite oxide, Al—Si—Mn composite oxide, Cr oxide, Cr-Si composite oxide, Cr-Mn composite oxide, Cr-Si-Mn composite oxide, Cr-Al composite oxide, Cr-Al-Si composite oxide, Cr-Al-Mn composite oxide, Cr- Al-Mn-Si composite oxide.

内部酸化物の大きさは、伸びが低下しないように、平均直径で1μmを超えないことが好ましく、鋼板の結晶粒界の移動を抑制する効果を発揮するためには、10nm以上であることが好ましい。酸化物の個数は特に限定しないが、断面観察時、深さd(μm)において、断面の板幅方向100μm長さ中に1個以上存在することが好ましい。   The size of the internal oxide is preferably not more than 1 μm in average diameter so that the elongation does not decrease, and in order to exhibit the effect of suppressing the movement of the grain boundary of the steel sheet, it should be 10 nm or more. preferable. The number of oxides is not particularly limited, but at the time of cross-sectional observation, it is preferable that at least one oxide is present in the length of 100 μm in the plate width direction of the cross section at a depth d (μm).

本発明鋼板は、上記成分の他、B:0.010%以下、及び、P:0.100%以下の一方又は両方を含有してもよい。   The steel sheet of the present invention may contain one or both of B: 0.010% or less and P: 0.100% or less in addition to the above components.

B:0.010%以下
Bは、粒界を強化し、2次加工性を改善する元素であるが、めっき性を劣化させる元素でもある。それ故、上限を0.010%とする、好ましくは0.0075%である。下限は特に限定しないが、上記改善効果を確保する点で、0.0001%以上が好ましい。
B: 0.010% or less B is an element that reinforces grain boundaries and improves secondary workability, but is also an element that deteriorates plating properties. Therefore, the upper limit is 0.010%, preferably 0.0075%. Although a minimum is not specifically limited, 0.0001% or more is preferable at the point which ensures the said improvement effect.

P:0.1%以下
Pは、鋼の強度を高める元素であるが、鋼板の板厚中央部に偏析して、溶接部を脆化する元素でもある。それ故、上限を0.10%とする。好ましくは0.08%以下である。下限は特に限定しないが、強度向上効果を確保する点で、0.001%以上が好ましい。
P: 0.1% or less P is an element that increases the strength of steel, but is also an element that segregates at the center of the plate thickness of the steel sheet and embrittles the weld. Therefore, the upper limit is made 0.10%. Preferably it is 0.08% or less. Although a minimum is not specifically limited, 0.001% or more is preferable at the point which ensures the strength improvement effect.

本発明鋼板は、上記以外の元素としてS、Nを不可避的に含有するが、Sは、0.02%以下が好ましく、Nは、0.01%以下が好ましい。また、本発明鋼板は、本発明鋼板の特性を阻害しない範囲で、必要に応じ、Ti、Nb、Mo、W、Co、Cu、Ni、Sn、V、及び、REMの1種又は2種以上を含有してもよい。   The steel sheet of the present invention inevitably contains S and N as elements other than those described above, but S is preferably 0.02% or less, and N is preferably 0.01% or less. In addition, the steel sheet of the present invention is one or more of Ti, Nb, Mo, W, Co, Cu, Ni, Sn, V, and REM as necessary, as long as the properties of the steel sheet of the present invention are not impaired. It may contain.

本発明鋼板のめっき層の成分組成を限定する理由について説明する。成分組成に係る%は質量%を意味する。   The reason for limiting the component composition of the plating layer of the steel sheet of the present invention will be described. % Related to the component composition means mass%.

Fe:7〜15%
7%未満であると、未合金となり、表面外観が悪いだけでなく、プレス時の耐フレーキング性が劣位となる。一方で、15%を超えると、過合金となり、プレス時の耐パウダリング性が劣位となるので、めっき層中のFeは7〜15%とする。
Fe: 7 to 15%
If it is less than 7%, it becomes unalloyed and not only the surface appearance is bad, but also the flaking resistance during pressing is inferior. On the other hand, if it exceeds 15%, it becomes an overalloy and the powdering resistance at the time of pressing becomes inferior, so Fe in the plating layer is made 7 to 15%.

Al:0.01〜1%
0.01%未満であると、鋼板製造時にめっき層中でZn-Feの合金化反応が過度に進行してしまい、1%を超えると、逆にAlによるZn−Fe合金化反応の抑制効果が顕著になることで、Zn−Fe反応を進行させるためにライン速度を低減させざるを得なくなり、生産性を劣化させるので、めっき層中のAlは0.01〜1%とする。
Al: 0.01 to 1%
If it is less than 0.01%, the alloying reaction of Zn-Fe proceeds excessively in the plating layer during the production of the steel sheet, and if it exceeds 1%, conversely, the effect of suppressing the Zn-Fe alloying reaction by Al Becomes noticeable, the line speed must be reduced to advance the Zn-Fe reaction, and the productivity is deteriorated. Therefore, Al in the plating layer is set to 0.01 to 1%.

次に、本発明鋼板の組織的特徴について説明する。   Next, the structural features of the steel sheet of the present invention will be described.

Mn、Si、Al、及び、Cr等の易酸化性元素を含有する鋼板をめっき原板として、合金化溶融亜鉛めっき鋼板を製造する際、めっき前の焼鈍時の雰囲気の水素分圧(PH2)と水蒸気分圧(PH2O)を調整することで、めっき原板の高温酸化挙動を制御し、鋼板内部に、Mn、Si、Al、及び、Cr等の内部酸化物を生成させて、めっき濡れ性を改善し、かつ、原板とめっき層の間のZn−Fe合金化反応を向上させる手法がある。 When manufacturing an alloyed hot-dip galvanized steel sheet using a steel sheet containing an easily oxidizable element such as Mn, Si, Al, and Cr as the plating base plate, the hydrogen partial pressure (P H2 ) in the atmosphere during annealing before plating And adjusting the water vapor partial pressure (P H2O ) to control the high-temperature oxidation behavior of the original plating plate, and to generate internal oxides such as Mn, Si, Al, and Cr inside the steel plate, so that the plating wettability There is a technique for improving the Zn-Fe alloying reaction between the original plate and the plating layer.

この手法においては、焼鈍時に鋼板表面近傍に生成させた内部酸化物が、合金化処理後に、めっき層全体に分散する。   In this method, the internal oxide generated in the vicinity of the steel sheet surface during annealing is dispersed throughout the plating layer after the alloying treatment.

これは、合金化処理時、鋼板側から、Feがめっき層中に拡散する際、同時に、内部酸化物がめっき層中に拡散するためと考えられるが、合金化処理後のめっき層中に内部酸化物が分散していると、合金めっき層の塑性変形能が小さくなり、めっき層に応力が負荷されたとき、めっき層の割れ及び剥離が起き易くなる。   This is thought to be because, when alloying treatment, Fe diffuses into the plating layer from the steel plate side, and at the same time, the internal oxide diffuses into the plating layer. When the oxide is dispersed, the plastic deformability of the alloy plating layer is reduced, and cracking and peeling of the plating layer are likely to occur when stress is applied to the plating layer.

本発明者らは、接着用構造材として優れた合金化溶融亜鉛めっき鋼板を提供するため、他の部材との接着を直接担うめっき層の形態について鋭意検討した。   In order to provide an alloyed hot-dip galvanized steel sheet that is excellent as a structural material for bonding, the present inventors diligently studied the form of the plating layer directly responsible for bonding with other members.

その結果、めっき処理後のめっき鋼板において、めっき層の形態を、鋼板側が、(x1)Mn、Si、Al、及び、Crの酸化物の1種又は2種以上、及び/又は、(x2)Mn、Si、Al、及び、Crの2種以上からなる複合酸化物の1種又は2種以上を内包するZn−Fe合金相とし、表層が、上記酸化物を内包しないζ相を含むZn−Fe合金相とすると、他の部材との接着強度が飛躍的に向上することを見いだした。   As a result, in the plated steel sheet after the plating treatment, the form of the plating layer is such that the steel plate side is (x1) one or more of oxides of Mn, Si, Al, and Cr, and / or (x2) Zn—Fe alloy phase including one or more complex oxides of two or more of Mn, Si, Al, and Cr, and the surface layer includes Zn— containing a ζ phase that does not include the oxide. It has been found that when the Fe alloy phase is used, the adhesive strength with other members is dramatically improved.

接着強度が飛躍的に向上する理由は、次のように考えられる。   The reason why the adhesive strength is dramatically improved is considered as follows.

Zn−Fe合金相の中で、ζ相は、比較的軟質で、上記酸化物を内包していないので、ある程度の変形能を有していて、めっき層の表層に応力が負荷された際、ある程度、変形し得る。それ故、接着剤で他の部材と接着したとき、他の部材との接着が緻密となる。   Among the Zn-Fe alloy phases, the ζ phase is relatively soft and does not contain the oxide, so it has a certain degree of deformability, and when stress is applied to the surface layer of the plating layer, It can be deformed to some extent. Therefore, when it adheres to another member with an adhesive, the adhesion with the other member becomes dense.

めっき層の表層がζ相を含む本発明鋼板は、Fe−Zn状態図によれば、ζ相の包晶温度である500℃以下の比較的低い温度で合金化処理を行うことで得られる。合金化温度が500℃を超えると、ζ相は不安定となり、δ1相とZn相に分離する。合金化処理をさらに進めると、鋼板からのFeの拡散により、めっき層全体がδ1相となる。   According to the Fe-Zn phase diagram, the steel sheet of the present invention in which the surface layer of the plating layer includes the ζ phase is obtained by performing the alloying process at a relatively low temperature of 500 ° C. or less, which is the peritectic temperature of the ζ phase. When the alloying temperature exceeds 500 ° C., the ζ phase becomes unstable and separates into a δ1 phase and a Zn phase. When the alloying process is further advanced, the entire plated layer becomes a δ1 phase due to diffusion of Fe from the steel sheet.

一般的なゼンジマー方式の手法を用いて、Si等を含有する高強度鋼板を原板として、合金化溶融亜鉛めっき鋼板を製造する際、合金化処理を500℃以下で行うと、めっき層中にFeを一定量確保するために、膨大な時間を必要とする。それ故、通常、500℃以下で合金化処理を行って、合金化溶融亜鉛めっき鋼板を製造することは容易でない。   When an alloyed hot-dip galvanized steel sheet is manufactured at a temperature of 500 ° C. or less when a high-strength steel sheet containing Si or the like is used as a base sheet by using a general Sendzimer method, if the alloying process is performed at 500 ° C. or less, Fe Enormous amount of time is required to secure a certain amount of Therefore, it is usually not easy to produce an alloyed hot-dip galvanized steel sheet by alloying at 500 ° C. or lower.

しかし、本発明者らは、めっき前の焼鈍時の雰囲気の酸素ポテンシャルと昇温速度を調整すると、合金化処理時のZn−Fe合金化反応が飛躍的に促進し、一般的な溶融亜鉛めっき鋼板製造ラインでも、合金化処理温度500℃以下で、合金化溶融亜鉛めっき鋼板を製造できることを知見した。   However, the present inventors dramatically improved the Zn-Fe alloying reaction during the alloying treatment by adjusting the oxygen potential and the temperature rising rate of the atmosphere during annealing before plating. It has also been found that an alloyed hot-dip galvanized steel sheet can be manufactured at an alloying temperature of 500 ° C. or lower even in a steel sheet production line.

ここで、本発明鋼板の製造方法について説明する。   Here, the manufacturing method of this invention steel plate is demonstrated.

全還元炉型(RTF)のラインで、合金化溶融亜鉛めっき鋼板を製造する場合、焼鈍炉内の酸素ポテンシャルを調整して、鋼板表面に存在する酸化膜を還元しつつ、一方で、鋼板中のMn、Si、Al、Cr(易酸化性元素)を酸化することができる。   When producing alloyed hot-dip galvanized steel sheets in the total reduction furnace type (RTF) line, while adjusting the oxygen potential in the annealing furnace to reduce the oxide film present on the steel sheet surface, Mn, Si, Al, and Cr (easily oxidizable elements) can be oxidized.

焼鈍前の鋼板の組織は、通常、圧延まま組織であり、多くの場合、粒径がサブミクロンオーダーの微細な結晶粒で構成されている。この微細組織が、焼鈍炉内で加熱されて、ある一定の温度以上に達すると、回復・再結晶が起きて、結晶粒が徐々に粗大化する。   The structure of the steel sheet before annealing is usually a structure as it is rolled, and in many cases, it is composed of fine crystal grains having a particle size of the order of submicrons. When this microstructure is heated in an annealing furnace and reaches a certain temperature or higher, recovery and recrystallization occur, and the crystal grains gradually become coarser.

しかし、鋼板の加熱過程において、鋼板表面近傍の結晶粒が粗大化する前に、鋼板中の易酸化性元素の酸化を進行させることができれば、内部酸化が結晶粒界で優先的に進行する。内部酸化で生成した内部酸化物は、結晶粒界の移動を抑制するので、鋼板表面近傍の組織を微細なままに維持することができる。   However, if the oxidation of the easily oxidizable element in the steel sheet can proceed before the crystal grains near the surface of the steel sheet become coarse in the heating process of the steel sheet, the internal oxidation proceeds preferentially at the grain boundaries. Since the internal oxide generated by the internal oxidation suppresses the movement of the crystal grain boundary, the structure in the vicinity of the steel sheet surface can be kept fine.

この際、加熱過程の雰囲気と加熱速度を調整することで、内部酸化の進行を制御して、鋼板表面近傍の微細組織の厚みを制御することができる。鋼板表面が微細組織で構成されていると、鋼板表面の結晶粒界を通じて、Znが鋼板に容易に浸入する。   At this time, by adjusting the atmosphere and heating rate of the heating process, the progress of internal oxidation can be controlled, and the thickness of the microstructure near the steel sheet surface can be controlled. When the steel plate surface is composed of a fine structure, Zn easily penetrates into the steel plate through the grain boundaries on the steel plate surface.

そのため、微細組織の厚みを、合金化処理時に消費されるFe量に相当する厚み以上にすると、合金化処理時に、微細組織の厚みに相当する分のFeとZnとの反応が爆発的に進行し、通常の溶融めっき鋼板製造ラインにおいて、合金化処理温度を500℃以下としても、十分にめっき層中のFe量を確保することができる。   Therefore, if the thickness of the microstructure is greater than the thickness corresponding to the amount of Fe consumed during the alloying process, the reaction between Fe and Zn corresponding to the thickness of the microstructure proceeds explosively during the alloying process. However, in a normal hot-dip plated steel sheet production line, even if the alloying temperature is 500 ° C. or lower, the amount of Fe in the plating layer can be sufficiently secured.

このとき、めっき層の表層側に生成するζ相中に、焼鈍時に鋼板表面近傍に生成した内部酸化物は存在しない。この理由は明らかでないが、ζ相は、合金化処理時に生成したものではなく、めっき浴浸漬時に、鋼板表面からめっき浴中に溶出したFeと浴中のZnが反応して、鋼板表面にZn−Fe合金相として析出したものと考えられる。   At this time, there is no internal oxide generated in the vicinity of the steel sheet surface during annealing in the ζ phase generated on the surface side of the plating layer. The reason for this is not clear, but the ζ phase is not generated during the alloying process, and during the immersion in the plating bath, Fe eluted from the steel plate surface into the plating bath reacts with Zn in the bath to cause Zn on the steel plate surface. It is thought that it was precipitated as a -Fe alloy phase.

ここで、図1に、合金化処理後の鋼板とめっき層の界面近傍の微細組織を示す。鋼板1とめっき層2の間に、内部酸化物3を内包する微細組織が形成されている。図2に、内部酸化物を内包しないζ相を含むめっき層の表層を示す。図2に示すめっき層2において、黒点が内部酸化物であるが、めっき層2の表層に、黒点(内部酸化物)は存在しない。即ち、めっき層の表層は、ζ相となっている。   Here, FIG. 1 shows a microstructure near the interface between the steel sheet and the plated layer after the alloying treatment. Between the steel plate 1 and the plating layer 2, a fine structure including the internal oxide 3 is formed. FIG. 2 shows a surface layer of a plating layer containing a ζ phase that does not include an internal oxide. In the plating layer 2 shown in FIG. 2, black spots are internal oxides, but black spots (internal oxides) do not exist on the surface layer of the plating layer 2. That is, the surface layer of the plating layer is a ζ phase.

めっき浴中でFeが溶出する際、焼鈍時に生成した内部酸化物も、ある程度の量、めっき浴中に溶出するが、浴中でZn−Fe合金層が析出する際、内部酸化物は、合金層中に取り込まれないものと推察される。   When Fe elutes in the plating bath, some amount of internal oxide generated during annealing also elutes in the plating bath, but when the Zn-Fe alloy layer precipitates in the bath, the internal oxide It is assumed that it is not incorporated into the strata.

めっき前の還元焼鈍雰囲気は、水素を0.1〜50体積%含む窒素で構成する。水素が0.1体積%未満では、焼鈍前に鋼板表面に存在する酸化膜を十分還元できず、めっき濡れ性を改善できない。水素が50体積%を超えると、必要な水蒸気分圧(PH2O)に対応する露点が高くなり過ぎて、装置内での結露を防ぐための設備を導入するなど、生産コストの上昇を招く。それ故、窒素雰囲気中の水素は0.1〜50体積%とする。 The reducing annealing atmosphere before plating is composed of nitrogen containing 0.1 to 50% by volume of hydrogen. When hydrogen is less than 0.1% by volume, the oxide film present on the surface of the steel sheet cannot be sufficiently reduced before annealing, and the plating wettability cannot be improved. If hydrogen exceeds 50% by volume, the dew point corresponding to the required water vapor partial pressure (P H2O ) becomes too high, leading to an increase in production costs such as the introduction of equipment for preventing condensation in the apparatus. Therefore, hydrogen in the nitrogen atmosphere is 0.1 to 50% by volume.

焼鈍雰囲気のlog(PH2O/PH2)は0以下とする。log(PH2O/PH2)を大きくすると、合金化は促進するが、0を超えると、焼鈍前に鋼板表面に生成した酸化膜を充分に還元できず、めっき濡れ性を確保できないので、log(PH2O/PH2)の上限は0とした。より好ましくは、−0.1以下である。 The log (P H2O / P H2 ) of the annealing atmosphere is 0 or less. If log (P H2O / P H2 ) is increased, alloying is promoted, but if it exceeds 0, the oxide film formed on the surface of the steel sheet before annealing cannot be sufficiently reduced, and plating wettability cannot be secured. The upper limit of (P H2O / P H2 ) was 0. More preferably, it is -0.1 or less.

なお、焼鈍還元雰囲気の露点は、−30℃超〜20℃とする。−30℃以下であると、Si、Mn等の易酸化性元素を鋼中に内部酸化させるために必要な酸素ポテンシャルを確保することが困難となるので、露点は、−30℃超とする。好ましくは、−25℃以上である。一方で、20℃を超えると、還元ガスを流す配管の結露が顕著になり、安定した雰囲気制御が困難となるので、露点は、20℃以下とする。好ましくは、15℃以下である。   In addition, the dew point of the annealing reduction atmosphere shall be more than -30 degreeC-20 degreeC. If it is −30 ° C. or lower, it becomes difficult to secure an oxygen potential necessary for internal oxidation of easily oxidizable elements such as Si and Mn in the steel, so the dew point is set to be over −30 ° C. Preferably, it is −25 ° C. or higher. On the other hand, if the temperature exceeds 20 ° C., dew condensation on the piping through which the reducing gas flows becomes remarkable, and stable atmosphere control becomes difficult. Therefore, the dew point is set to 20 ° C. or less. Preferably, it is 15 degrees C or less.

焼鈍の最高到達温度の下限は750℃とする。最高到達温度が750℃未満であると、焼鈍前に鋼板表面に生成した酸化膜を十分還元できず、めっき濡れ性を確保できない。焼鈍の最高到達温度の上限は900℃とする。焼鈍温度が900℃を超えると、プレス成形性が劣化するとともに、加熱に必要な熱量が増大して、製造コストの上昇を招く。好ましくは760〜880℃である。   The lower limit of the maximum temperature reached for annealing is 750 ° C. If the maximum temperature reached is less than 750 ° C., the oxide film generated on the surface of the steel plate before annealing cannot be sufficiently reduced, and the plating wettability cannot be ensured. The upper limit of the maximum temperature reached for annealing is 900 ° C. When the annealing temperature exceeds 900 ° C., the press formability deteriorates and the amount of heat necessary for heating increases, leading to an increase in manufacturing cost. Preferably it is 760-880 degreeC.

還元焼鈍雰囲気中で、鋼板が600℃に達すると、600℃以上のある一定の温度領域(T1以上T2以下の領域)を6℃/秒以下の加熱速度で750〜900℃まで加熱して焼鈍を行う。加熱速度が6℃/秒を超えると、加熱速度が早すぎて、内部酸化が十分に進行する前に鋼板内部の結晶粒が粗大化してしまい、本発明が必要とする組織形態が得られなくなってしまうので、加熱速度は6℃/秒以下とする。好ましくは4℃/秒以下である。下限は特に定めないが、生産性の観点から0.2℃/秒以上が好ましい。   When the steel sheet reaches 600 ° C. in a reduced annealing atmosphere, a certain temperature region of 600 ° C. or higher (T1 or more and T2 region) is heated to 750 to 900 ° C. at a heating rate of 6 ° C./second or less. I do. When the heating rate exceeds 6 ° C./second, the heating rate is too fast, and the crystal grains inside the steel sheet become coarse before the internal oxidation proceeds sufficiently, and the structure form required by the present invention cannot be obtained. Therefore, the heating rate is set to 6 ° C./second or less. Preferably it is 4 degrees C / sec or less. The lower limit is not particularly defined, but is preferably 0.2 ° C./second or more from the viewpoint of productivity.

還元焼鈍雰囲気の成分組成及び露点、及び、鋼板の加熱速度及び焼鈍温度は、鋼板表面近傍に、所望の“内部酸化物を内包する微細組織”を形成する上で重要である。   The component composition and dew point of the reduction annealing atmosphere, and the heating rate and annealing temperature of the steel sheet are important in forming a desired “microstructure containing internal oxides” in the vicinity of the steel sheet surface.

本発明鋼板では、合金化処理後、めっき層に隣接する鋼板側に、“内部酸化物を内包する微細組織”が残っていることが特徴である。それ故、鋼板の表面近傍に、所定の厚さの“内部酸化物を内包する微細組織”を形成する必要がある。“内部酸化物を内包する微細組織”の厚さは、還元焼鈍雰囲気の成分組成及び露点、及び、鋼板の加熱速度及び焼鈍温度を調整して、所望の厚さの“内部酸化物を内包する微細組織”を形成する。   The steel sheet of the present invention is characterized in that after the alloying treatment, a “microstructure containing an internal oxide” remains on the steel sheet side adjacent to the plating layer. Therefore, it is necessary to form a “fine structure including an internal oxide” having a predetermined thickness in the vicinity of the surface of the steel plate. The thickness of the “microstructure containing the internal oxide” is adjusted by adjusting the component composition and dew point of the reducing annealing atmosphere, the heating rate and the annealing temperature of the steel sheet, and including the “internal oxide” of the desired thickness. A “fine structure” is formed.

溶融亜鉛めっきは、Al:0.01〜1%を含む亜鉛めっき浴を用い、浴温430〜500℃で行う。Alが0.01%未満であると、めっき浴中において、Zn−Fe合金相が急激に成長し、鋼種によっては、浸漬時間のみの制御で、耐パウダリング性に優れためっき層を得ることが困難になると同時に、めっき浴中におけるボトムドロスの生成量が顕著に増大し、ドロス起因の表面欠陥によりめっき鋼板の外観不良が生じる。   The hot dip galvanizing is performed at a bath temperature of 430 to 500 ° C. using a galvanizing bath containing Al: 0.01 to 1%. If the Al content is less than 0.01%, the Zn-Fe alloy phase grows rapidly in the plating bath, and depending on the steel type, a plating layer with excellent powdering resistance can be obtained by controlling only the immersion time. At the same time, the amount of bottom dross generated in the plating bath is remarkably increased, and surface defects due to dross cause poor appearance of the plated steel sheet.

Alが1%を超えると、AlによるZn−Fe合金化反応の抑制効果が顕著になることで、Zn−Fe反応を進行させるためにライン速度を低減させざるを得なくなり、生産性を劣化させる。   If Al exceeds 1%, the effect of suppressing the Zn-Fe alloying reaction by Al becomes remarkable, so that the line speed must be reduced to advance the Zn-Fe reaction, and the productivity is deteriorated. .

亜鉛めっき浴の浴温が430℃未満であると、亜鉛の融点が約420℃であることから、温度制御が不安定となると、めっき浴の一部が凝固する懸念がある。500℃を超えると、シンクロールや亜鉛ポットなどの設備の寿命が短くなる。それ故、亜鉛めっき浴の浴温は430〜500が好ましい。より好ましくは440〜480℃である。   If the bath temperature of the galvanizing bath is less than 430 ° C., the melting point of zinc is about 420 ° C. Therefore, if temperature control becomes unstable, there is a concern that a part of the plating bath solidifies. When it exceeds 500 ° C., the life of equipment such as a sink roll and a zinc pot is shortened. Therefore, the bath temperature of the galvanizing bath is preferably 430 to 500. More preferably, it is 440-480 degreeC.

めっき付着量は、特に制約はないが、耐食性の観点から、片面付着量で1μm以上が望ましい。加工性、溶接性、及び、経済性の観点から、片面付着量は20μm以下が望ましい。   The plating adhesion amount is not particularly limited, but is preferably 1 μm or more in terms of one-side adhesion amount from the viewpoint of corrosion resistance. From the viewpoint of workability, weldability, and economy, the amount of adhesion on one side is desirably 20 μm or less.

合金化温度は420〜500℃とする。420℃未満であると、合金化反応の進行が遅くなり、めっき層の表面にZnが残留する可能性が高くなる。500℃を超えると、合金化処理時に、ζ相が不安定となり、所望の接着強度が得られない。   The alloying temperature is 420 to 500 ° C. When the temperature is lower than 420 ° C., the progress of the alloying reaction is delayed, and the possibility that Zn remains on the surface of the plating layer increases. If it exceeds 500 ° C., the ζ phase becomes unstable during the alloying treatment, and the desired adhesive strength cannot be obtained.

なお、本発明のめっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の化成処理、例えば、りん酸塩処理、溶接性向上処理、潤滑性向上処理等を施すことは、本発明を逸脱しない。   The plated steel sheet of the present invention is subjected to upper layer plating for the purpose of improving paintability and weldability, and various chemical conversion treatments such as phosphate treatment, weldability improvement treatment, lubricity improvement treatment, etc. This does not depart from the present invention.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
表1に示す組成の冷延鋼板をめっき原板とし、縦型の溶融めっきシミュレータを用いて、合金化溶融亜鉛めっき鋼板を製造した。めっき前の還元焼鈍条件は表2に示す。最高到達温度に達した後の保定温度は100秒とした。
(Example)
An alloyed hot-dip galvanized steel sheet was manufactured using a cold-rolled steel sheet having the composition shown in Table 1 as a plating original sheet and a vertical hot-dip plating simulator. Table 2 shows the conditions for reduction annealing before plating. The retention temperature after reaching the maximum temperature was 100 seconds.

焼鈍後に連続して窒素ガス中で鋼板を450℃まで冷却し、Alを0.12%含有する溶融亜鉛浴に3秒浸漬した。溶融亜鉛めっき浴の温度は、鋼板が浴に進入した温度と同じ450℃とした。   After annealing, the steel sheet was continuously cooled to 450 ° C. in nitrogen gas and immersed in a molten zinc bath containing 0.12% Al for 3 seconds. The temperature of the hot dip galvanizing bath was 450 ° C., the same as the temperature at which the steel sheet entered the bath.

めっき後、ガスワイパーで亜鉛の目付量を5〜15μmに調整し、合金化処理を行った。合金化温度は450〜500℃とし、めっき層中のFe量が9〜11%未満となるようにした。合金化処理の後、鋼板を窒素ガスにて室温まで冷却した。めっき層の成分組成は、めっき層を酸で溶解した後、ICPを用いて化学分析して測定した。   After plating, the basis weight of zinc was adjusted to 5 to 15 μm with a gas wiper, and an alloying treatment was performed. The alloying temperature was 450 to 500 ° C., and the amount of Fe in the plating layer was 9 to less than 11%. After the alloying treatment, the steel sheet was cooled to room temperature with nitrogen gas. The component composition of the plating layer was measured by dissolving the plating layer with an acid and then chemically analyzing it using ICP.

めっき層の断面組織観察は、溶融亜鉛めっき鋼板の断面を研磨した後、SEMを用いて行い、めっき層中における酸化物粒子の分布を確認した。また、めっき層の相構成は定電流電解法により行い、ζ相の有無を確認した。   The cross-sectional structure of the plating layer was observed using a SEM after polishing the cross section of the hot dip galvanized steel sheet, and the distribution of oxide particles in the plating layer was confirmed. The phase configuration of the plating layer was performed by a constant current electrolysis method, and the presence or absence of the ζ phase was confirmed.

製造しためっき鋼板に対して、引張剪断試験を行い、めっき/鋼板界面の密着性を調査した結果を、焼鈍条件、めっき層の断面組織観察結果と併せて、表2に示す。   Table 2 shows the results of conducting a tensile shear test on the manufactured plated steel sheet and examining the adhesion at the plating / steel sheet interface, together with the annealing conditions and the observation results of the sectional structure of the plated layer.

接合強度の評価は、引張剪断試験で、以下のように行った。   Evaluation of joining strength was performed as follows in a tensile shear test.

上記の手法で製造した板厚が0.8mmの合金化溶融亜鉛めっき鋼板を、100mm×25mmに切断し、これらを2枚用意して、互いに板長さ方向に12.5mmずらした状態で、重なり合う部分に接着剤を塗布して接合した。   The alloyed hot-dip galvanized steel sheet with a thickness of 0.8 mm produced by the above method is cut into 100 mm × 25 mm, and two of them are prepared, and in a state where they are shifted from each other by 12.5 mm in the plate length direction, Adhesive was applied to the overlapping portions and joined.

接着材には、市販のエポキシ系接着剤を用い、25mm×12.5mmの接着面に約100μmの厚みで塗布した。作製した試験片を冷凍庫に5時間放置した後、0℃の雰囲気下で50mm/分の速度で引張り、引張剪断試験を行なった。破壊するまでの最大荷重を測定し、この最大荷重を剪断面積(接着面積)で割った引張剪断強度で、接着強度を評価した。評価結果を、表2に示す。評価基準は、下記の通りである。   A commercially available epoxy adhesive was used as the adhesive, and it was applied to a 25 mm × 12.5 mm adhesive surface with a thickness of about 100 μm. The prepared test piece was left in a freezer for 5 hours, and then pulled at a rate of 50 mm / min in an atmosphere of 0 ° C. to perform a tensile shear test. The maximum load until failure was measured, and the adhesive strength was evaluated by the tensile shear strength obtained by dividing the maximum load by the shear area (adhesion area). The evaluation results are shown in Table 2. The evaluation criteria are as follows.

◎:180kgf/mm2以上
○+:160kgf/mm2以上、180kgf/mm2未満
○:140kgf/mm2以上、160kgf/mm2未満
△:120kgf/mm2以上、140kgf/mm2未満
×:120kgf/mm2未満
◎: 180kgf / mm 2 or more ○ +: 160kgf / mm 2 or more and less than 180kgf / mm 2 ○: 140kgf / mm 2 or more and less than 160kgf / mm 2 △: 120kgf / mm 2 or more, 140kgf / mm 2 less than ×: 120kgf / Mm 2 less

前述したように、本発明によれば、接着強度が飛躍的に向上した合金化溶融亜鉛めっき鋼板を提供することができる。よって、本発明は、亜鉛めっき鋼板製造産業において利用可能性が高いものである。   As described above, according to the present invention, an alloyed hot-dip galvanized steel sheet having dramatically improved adhesive strength can be provided. Therefore, the present invention has high applicability in the galvanized steel sheet manufacturing industry.

1 鋼板
2 めっき層
3 内部酸化物
1 Steel plate 2 Plating layer 3 Internal oxide

Claims (7)

質量%で、C:0.05〜0.50%、Mnを0.01〜3.0%含有し、さらに、Si:3.0%以下、Al:2.0%以下、Cr:2.0%以下の1種又は2種以上を含有し、Mn+Si+Al+Cr:0.4%以上で、残部Fe及び不可避的不純物からなる鋼板の表面に、Fe:7〜15%、Al:0.01〜1%、残部Zn及び不可避的不純物からなるめっき層を有する合金化溶融亜鉛めっき鋼板において、
(x)上記めっき層の鋼板側が、(x1)Mn、Si、Al、及び、Crの酸化物の1種又は2種以上、及び/又は、(x2)Mn、Si、Al、及び、Crの2種以上からなる複合酸化物の1種又は2種以上を内包するZn−Fe合金相であり、
(y)上記めっき層の表層が、上記酸化物及び/又は複合酸化物を内包しないζ相を含むZn−Fe合金相である
ことを特徴とするめっき接着強度に優れた合金化溶融亜鉛めっき鋼板。
In mass%, C: 0.05 to 0.50%, Mn 0.01 to 3.0%, Si: 3.0% or less, Al: 2.0% or less, Cr: 2. One or two or more of 0% or less, Mn + Si + Al + Cr: 0.4% or more, Fe: 7 to 15%, Al: 0.01 to 1 on the surface of the steel plate made of the remaining Fe and inevitable impurities %, In the alloyed hot-dip galvanized steel sheet having a plating layer consisting of the balance Zn and inevitable impurities,
(X) The steel plate side of the plating layer is one or more of (x1) Mn, Si, Al, and Cr oxides and / or (x2) Mn, Si, Al, and Cr. A Zn-Fe alloy phase containing one or more of complex oxides composed of two or more,
(Y) An alloyed hot-dip galvanized steel sheet having excellent plating adhesive strength, wherein the surface layer of the plating layer is a Zn—Fe alloy phase containing a ζ phase that does not contain the oxide and / or the composite oxide. .
前記Zn−Fe合金相は、合金化処理時、めっき層から浸入したZnと鋼板中のFeが反応して生成したものであることを特徴とする請求項1に記載の接着強度に優れた合金化溶融亜鉛めっき鋼板。   2. The alloy having excellent adhesive strength according to claim 1, wherein the Zn—Fe alloy phase is formed by a reaction between Zn infiltrated from a plating layer and Fe in a steel plate during alloying treatment. Hot-dip galvanized steel sheet. 前記鋼板が、さらに、質量%で、B:0.010%以下を含有することを特徴とする請求項1又は2に記載の接着強度に優れた合金化溶融亜鉛めっき鋼板。   The alloyed hot-dip galvanized steel sheet with excellent adhesive strength according to claim 1 or 2, wherein the steel sheet further contains B: 0.010% or less in terms of mass%. 前記鋼板が、さらに、質量%で、P:0.10%以下を含有することを特徴とする請求項1〜3のいずれか1項に記載の接着強度に優れた合金化溶融亜鉛めっき鋼板。   The alloyed hot-dip galvanized steel sheet with excellent adhesive strength according to any one of claims 1 to 3, wherein the steel sheet further contains P: 0.10% or less by mass%. 請求項1〜4のいずれか1項に記載の接着強度に優れた合金化溶融亜鉛めっき鋼板の製造方法において、
請求項1〜4のいずれか1項に記載の成分組成の鋼板を、水素:0.1〜50体積%、残部:窒素及び不可避不純物からなり、log(PH2O/PH2)が0以下の雰囲気中で、600℃以上のある一定の温度領域(T1以上T2以下の領域)を、6℃/秒以下で最高750〜900℃に加熱して焼鈍し、その後、溶融亜鉛めっきを行い、次いで、420〜500℃で合金化処理を行う
ことを特徴とする接着強度に優れた合金化溶融亜鉛めっき鋼板の製造方法。
In the manufacturing method of the galvannealed steel plate excellent in the adhesive strength of any one of Claims 1-4,
The steel sheet having the component composition according to any one of claims 1 to 4, comprising hydrogen: 0.1 to 50% by volume, balance: nitrogen and inevitable impurities, and log (P H2O / P H2 ) is 0 or less. In an atmosphere, a certain temperature region of 600 ° C. or higher (T1 or more and T2 region) is annealed by heating to 750 to 900 ° C. at a maximum of 6 ° C./second, followed by hot dip galvanization, A method for producing an alloyed hot-dip galvanized steel sheet having excellent adhesive strength, characterized by performing an alloying treatment at 420 to 500 ° C.
前記焼鈍を、連続式溶融めっき設備の全還元炉で行うことを特徴とする請求項5に記載の接着強度に優れた合金化溶融亜鉛めっき鋼板の製造方法。   6. The method for producing an alloyed hot-dip galvanized steel sheet having excellent adhesive strength according to claim 5, wherein the annealing is performed in a total reduction furnace of a continuous hot-dip plating facility. 前記溶融亜鉛めっきを、Al:0.01〜1%を含む亜鉛めっき浴を用い、浴温:430〜500℃で行うことを特徴とする請求項1〜6のいずれか1項に記載の接着強度に優れた合金化溶融亜鉛めっき鋼板の製造方法。   The adhesion according to any one of claims 1 to 6, wherein the hot dip galvanizing is performed at a bath temperature of 430 to 500 ° C using a galvanizing bath containing Al: 0.01 to 1%. A method for producing a galvannealed steel sheet having excellent strength.
JP2011227336A 2011-10-14 2011-10-14 Alloyed hot-dip galvanized steel sheet with excellent adhesive strength and its manufacturing method Active JP5741364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011227336A JP5741364B2 (en) 2011-10-14 2011-10-14 Alloyed hot-dip galvanized steel sheet with excellent adhesive strength and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227336A JP5741364B2 (en) 2011-10-14 2011-10-14 Alloyed hot-dip galvanized steel sheet with excellent adhesive strength and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2013087313A true JP2013087313A (en) 2013-05-13
JP5741364B2 JP5741364B2 (en) 2015-07-01

Family

ID=48531541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227336A Active JP5741364B2 (en) 2011-10-14 2011-10-14 Alloyed hot-dip galvanized steel sheet with excellent adhesive strength and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5741364B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166057A (en) * 2016-03-11 2017-09-21 Jfeスチール株式会社 Method of manufacturing high-strength hot-dip galvanized steel plate
US10406780B2 (en) 2013-04-26 2019-09-10 Kobe Steel, Ltd. Hot-dip galvannealed steel sheet for hot stamping and method for manufacturing steel part
WO2022230402A1 (en) * 2021-04-27 2022-11-03 日本製鉄株式会社 Alloyed hot-dip galvanized steel sheet
CN116219294A (en) * 2022-02-28 2023-06-06 北京理工大学重庆创新中心 Non-coating high-temperature oxidation resistant hot stamping forming steel added with Y element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024972A (en) * 2006-07-19 2008-02-07 Nippon Steel Corp High-strength hot-dip galvannealed steel sheet superior in chipping resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024972A (en) * 2006-07-19 2008-02-07 Nippon Steel Corp High-strength hot-dip galvannealed steel sheet superior in chipping resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10406780B2 (en) 2013-04-26 2019-09-10 Kobe Steel, Ltd. Hot-dip galvannealed steel sheet for hot stamping and method for manufacturing steel part
JP2017166057A (en) * 2016-03-11 2017-09-21 Jfeスチール株式会社 Method of manufacturing high-strength hot-dip galvanized steel plate
WO2022230402A1 (en) * 2021-04-27 2022-11-03 日本製鉄株式会社 Alloyed hot-dip galvanized steel sheet
CN116219294A (en) * 2022-02-28 2023-06-06 北京理工大学重庆创新中心 Non-coating high-temperature oxidation resistant hot stamping forming steel added with Y element

Also Published As

Publication number Publication date
JP5741364B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5633653B1 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP6317453B2 (en) Hot-dip galvanized steel sheet with excellent liquid metal embrittlement cracking resistance
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP7358542B2 (en) Method for manufacturing alloyed hot-dip galvanized steel sheet resistant to liquid metal embrittlement
JP2020509205A (en) Hot-dip aluminum-plated steel excellent in corrosion resistance and workability and method for producing the same
JP2008214752A (en) High strength hot-dip galvanized steel sheet excellent in formability and weldability and manufacturing method therefor
WO2014157155A1 (en) Hot-dip galvanized steel plate with excellent coating adhesion and process for producing same
JP6094649B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP4329639B2 (en) Steel plate for heat treatment with excellent liquid metal brittleness resistance
JP2013534566A (en) Method for producing austenitic steel
JP6124499B2 (en) High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof
WO2002022893A1 (en) High tensile strength hot dip plated steel sheet and method for production thereof
JP6694961B2 (en) Austenitic hot-dip aluminized steel sheet having excellent plating property and weldability, and method for producing the same
WO2015115112A1 (en) Alloyed hot-dip galvanized steel sheet and method for producing same
JP5741364B2 (en) Alloyed hot-dip galvanized steel sheet with excellent adhesive strength and its manufacturing method
JP4631379B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP7131719B1 (en) Hot press member, hot press steel sheet, and manufacturing method thereof
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
KR20140008723A (en) High strength galvanealed steel sheet with good coatability and coating adhesion and method for manufacturing the same
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP5728827B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2005336545A (en) Steel sheet to be galvannealed
KR102031459B1 (en) Ultra high strength high manganese galvanized steel sheet having excellent coatability and method of manufacturing the same
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2005200711A (en) Method of producing hot dip galvannealed steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350