JP2013087290A - Method for removing sulfur from desulfurization slag - Google Patents

Method for removing sulfur from desulfurization slag Download PDF

Info

Publication number
JP2013087290A
JP2013087290A JP2011225410A JP2011225410A JP2013087290A JP 2013087290 A JP2013087290 A JP 2013087290A JP 2011225410 A JP2011225410 A JP 2011225410A JP 2011225410 A JP2011225410 A JP 2011225410A JP 2013087290 A JP2013087290 A JP 2013087290A
Authority
JP
Japan
Prior art keywords
sulfur
slag
desulfurization
treatment
desulfurized slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011225410A
Other languages
Japanese (ja)
Other versions
JP5838711B2 (en
Inventor
Akitoshi Matsui
章敏 松井
Naoki Kikuchi
直樹 菊池
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011225410A priority Critical patent/JP5838711B2/en
Publication of JP2013087290A publication Critical patent/JP2013087290A/en
Application granted granted Critical
Publication of JP5838711B2 publication Critical patent/JP5838711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively recycle desulfurization slag as a CaO source in a pig iron making step or a steelmaking step, without any effect of sulfur contained therein, by efficiently removing sulfur contained in the desulfurization slag produced by a desulfurization treatment of molten iron.SOLUTION: The method for removing sulfur from the desulfurization slag comprises: a first step of exposing the sulfur-containing desulfurization slag produced by the desulfurization treatment of the molten iron to an atmosphere in which the temperature is within the range of 1,100-1,400°C and the CO/COratio is adjusted according to the form of a sulfur compound in the desulfurization slag, thereby transferring the sulfur as SOfrom the desulfurization slag into a gas phase; a second step of carrying out a desulfurization treatment of exhaust gas containing SOtransferred into the gas phase in the first step; and a third step of recycling the desulfurization slag in which the sulfur content is reduced by the first step as the CaO source in the pig iron making step or a steelmaking step.

Description

本発明は、溶銑の脱硫処理によって発生した、CaOを主成分とする脱硫スラグからこの脱硫スラグに含有される硫黄を除去し、硫黄含有量の低下した脱硫スラグを製銑工程または製鋼工程にてCaO源として有効活用することを可能とするための、脱硫スラグからの硫黄の除去方法に関する。   The present invention removes sulfur contained in this desulfurization slag from the desulfurization slag containing CaO as a main component generated by the desulfurization treatment of hot metal, and the desulfurization slag having a reduced sulfur content is produced in a steelmaking process or a steelmaking process. The present invention relates to a method for removing sulfur from desulfurized slag to enable effective use as a CaO source.

鉄鋼製品の材料特性の向上及び品質要求の高まりを受け、溶銑における予備精錬として溶銑の脱硫処理が鉄鋼各社において行われている。この脱硫処理においては、溶銑中の硫黄は、一般的に、CaOを主成分とするフラックス(脱硫剤)の添加、並びに、このフラックスと溶銑との攪拌処理によって、硫化物形態となってスラグへ除去されている。尚、溶銑の脱硫処理とは、転炉にて脱炭精錬する前の溶銑段階において、溶銑中の硫黄を除去する処理のことである。   In response to the improvement in material properties of steel products and the increasing demand for quality, hot metal desulfurization treatment is being carried out at each steel company as a preliminary refining of hot metal. In this desulfurization treatment, the sulfur in the hot metal generally becomes a sulfide form by adding a flux (desulfurization agent) mainly composed of CaO and stirring the flux and the hot metal into slag. Has been removed. The hot metal desulfurization treatment is a treatment for removing sulfur in the hot metal in the hot metal stage before decarburization and refining in a converter.

溶銑への脱硫処理比率の上昇に伴って、脱硫スラグの発生量が増加する。但し、この脱硫スラグには硫黄が含まれており、水の存在する環境下で脱硫スラグを再利用すると硫黄(黄水)が溶出し、環境に悪影響を与える懸念があり、脱硫スラグの利材化には大きな制約のあるのが実態である。また、溶銑の脱硫処理におけるCaOの脱硫剤としての利用効率は高々数%程度であり、脱硫処理で使用されるCaOの大部分は、未利用のまま脱硫スラグとして製鉄所外へ排出されている。   The amount of desulfurization slag generated increases as the desulfurization treatment ratio to hot metal increases. However, this desulfurized slag contains sulfur, and if desulfurized slag is reused in an environment where water is present, sulfur (yellow water) may elute and adversely affect the environment. The reality is that there are significant restrictions on the conversion. Moreover, the utilization efficiency of CaO as a desulfurization agent in the desulfurization treatment of hot metal is at most several percent, and most of the CaO used in the desulfurization treatment is discharged outside the steelworks as desulfurization slag without being used. .

そこで、これらの課題を解決するべく以下のような技術が提案されている。   In order to solve these problems, the following techniques have been proposed.

例えば、特許文献1には、溶銑の脱硫処理で発生した高温の脱硫スラグを高温のままリサイクルし、新たな溶銑の脱硫処理に使用することでCaOの利用効率を高め、脱硫スラグ排出量を削減する技術が開示されている。   For example, in Patent Document 1, high-temperature desulfurization slag generated by hot metal desulfurization treatment is recycled at a high temperature and used for new hot metal desulfurization treatment, thereby increasing the utilization efficiency of CaO and reducing desulfurization slag emissions. Techniques to do this are disclosed.

特許文献2には、硫黄を含有するスラグを溶媒に浸漬し、溶媒中に二酸化炭素を吹き込んで溶媒をpH4〜10に調整することで、スラグに含まれる硫黄を溶媒中に抽出し、スラグの硫黄含有量を低減させる技術が開示されている。   In Patent Document 2, sulfur containing slag is immersed in a solvent, carbon dioxide is blown into the solvent, and the solvent is adjusted to pH 4 to 10, so that sulfur contained in the slag is extracted into the solvent. Techniques for reducing the sulfur content are disclosed.

また、特許文献3には、脱硫スラグを大気中で1100〜1400℃に加熱し、脱硫スラグに含有される硫黄を亜硫酸ガス(SO2)として除去する技術が開示されている。 Patent Document 3 discloses a technique in which desulfurized slag is heated to 1100 to 1400 ° C. in the atmosphere to remove sulfur contained in the desulfurized slag as sulfurous acid gas (SO 2 ).

特開2004−244706号公報JP 2004-244706 A 特開2011−93761号公報JP 2011-93761 A 特開平7−10616号公報Japanese Patent Laid-Open No. 7-10616

しかしながら、上記従来技術には以下の問題点がある。   However, the above prior art has the following problems.

即ち、特許文献1では、高温でリサイクルされる脱硫スラグ中には硫黄が含有されており、リサイクル回数を重ねることによって脱硫スラグ中の硫黄濃度が上昇して脱硫能が低下するので、リサイクルできる量には制約がある。また、脱硫スラグの発生量は少なくなるものの、最終的には脱硫スラグを処理する必要がある。   That is, in Patent Document 1, sulfur is contained in desulfurized slag that is recycled at a high temperature, and the sulfur concentration in the desulfurized slag increases and the desulfurization ability decreases as the number of recycling is repeated. There are limitations. Further, although the amount of desulfurized slag generated is reduced, it is finally necessary to treat the desulfurized slag.

特許文献2は湿式処理であり、湿式処理の場合、処理に必要な薬品が高価であるのみならず、大掛かりな処理設備が必要となり、設備費及び運転費ともに高価となる。   Patent Document 2 is a wet process, and in the case of a wet process, not only chemicals necessary for the process are expensive, but also a large-scale processing facility is required, and both the equipment cost and the operation cost are expensive.

特許文献3は、大気中での脱硫であるので、本明細書で後述するように、脱硫スラグに含有されるCaS中の硫黄のみが気相側に除去可能であり、CaSO3やCaSO4といった硫黄化合物の形態で脱硫スラグ中に存在する硫黄は除去することができないという問題がある。 Since Patent Document 3 is desulfurization in the atmosphere, as described later in this specification, only sulfur in CaS contained in the desulfurization slag can be removed to the gas phase side, such as CaSO 3 and CaSO 4. There is a problem that sulfur existing in the desulfurized slag in the form of a sulfur compound cannot be removed.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶銑の脱硫処理で発生する脱硫スラグに含有される硫黄を効率的に除去することによって、製銑工程及び製鋼工程では、硫黄濃度の低下した脱硫スラグを硫黄の影響を受けることなくCaO源として有効にリサイクル活用することのできる、脱硫スラグからの硫黄の除去方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to efficiently remove sulfur contained in the desulfurization slag generated in the desulfurization treatment of the hot metal, thereby making the steelmaking process and the steelmaking process effective. An object of the present invention is to provide a method for removing sulfur from desulfurized slag, in which desulfurized slag having a reduced sulfur concentration can be effectively recycled as a CaO source without being affected by sulfur.

上記課題を解決するための本発明の要旨は以下のとおりである。
(1)溶銑の脱硫処理において発生した硫黄を含有する脱硫スラグを、雰囲気温度が1100〜1400℃の範囲であり、且つ、雰囲気のCO/CO2比が前記脱硫スラグ中の硫黄化合物の形態に応じて調整された雰囲気中に曝し、前記脱硫スラグ中の硫黄をSOxとして雰囲気の気相側に除去する第1の工程と、前記第1の工程において気相側に除去されたSOxを含有する排ガスを脱硫処理する第2の工程と、前記第1の工程によって硫黄含有量が低下した脱硫スラグを製銑工程または製鋼工程でのCaO源としてリサイクルする第3の工程と、を有することを特徴とする、脱硫スラグからの硫黄の除去方法。
(2)前記第1の工程において、脱硫スラグの脱硫率が80%以上となるように、雰囲気のCO/CO2比を調整することを特徴とする、上記(1)に記載の脱硫スラグからの硫黄の除去方法。
(3)前記第1の工程において、雰囲気のCO/CO2比を、脱硫スラグ中の硫黄がCaSの形態の化合物である場合にSOxとして除去される範囲と、脱硫スラグ中の硫黄がCaSO3及びCaSO4の形態の化合物である場合にSOxとして除去される範囲と、の少なくとも2つの範囲に変更することを特徴とする、上記(1)または上記(2)に記載の脱硫スラグからの硫黄の除去方法。
(4)前記第3の工程における処理後の脱硫スラグのリサイクル先が、鉄鉱石の焼結工程または高炉での溶銑製造工程であることを特徴とする、上記(1)ないし上記(3)の何れか1項に記載の脱硫スラグからの硫黄の除去方法。
(5)前記第3の工程における処理後の脱硫スラグのリサイクル先が、製鋼精錬工程における溶銑の脱硫処理、予備脱燐処理、脱炭精錬処理の何れかであることを特徴とする、上記(1)ないし上記(3)の何れか1項に記載の脱硫スラグからの硫黄の除去方法。
(6)前記第1の工程に供する脱硫スラグから事前に金属鉄を分離することを特徴とする、上記(1)ないし上記(5)の何れか1項に記載の脱硫スラグからの硫黄の除去方法。
The gist of the present invention for solving the above problems is as follows.
(1) The desulfurization slag containing sulfur generated in the desulfurization treatment of hot metal has an atmospheric temperature in the range of 1100 to 1400 ° C., and the CO / CO 2 ratio of the atmosphere is in the form of the sulfur compound in the desulfurization slag. And a first step of removing sulfur in the desulfurized slag as SOx on the gas phase side of the atmosphere and SOx removed on the gas phase side in the first step. A second step of desulfurizing the exhaust gas, and a third step of recycling the desulfurized slag whose sulfur content has been reduced by the first step as a CaO source in the ironmaking step or the steelmaking step. And a method for removing sulfur from desulfurized slag.
(2) In the first step, the CO / CO 2 ratio of the atmosphere is adjusted such that the desulfurization rate of the desulfurization slag is 80% or more. To remove sulfur in water.
(3) In the first step, the CO / CO 2 ratio of the atmosphere is set such that the sulfur is removed as SOx when the sulfur in the desulfurized slag is a compound in the form of CaS, and the sulfur in the desulfurized slag is CaSO 3. And sulfur from the desulfurized slag according to (1) or (2) above, wherein the sulfur is changed to at least two ranges of the range removed as SOx in the case of a compound in the form of CaSO 4 Removal method.
(4) The recycle destination of the desulfurization slag after the treatment in the third step is an iron ore sintering step or a hot metal production step in a blast furnace, wherein (1) to (3) above The removal method of sulfur from the desulfurization slag of any one of Claims 1.
(5) The recycle destination of the desulfurization slag after the treatment in the third step is any one of hot metal desulfurization treatment, preliminary dephosphorization treatment, and decarburization refining treatment in the steelmaking refining step, 1) thru | or the removal method of sulfur from the desulfurization slag in any one of said (3).
(6) The removal of sulfur from the desulfurized slag according to any one of (1) to (5) above, wherein metallic iron is separated in advance from the desulfurized slag used in the first step. Method.

本発明によれば、溶銑の脱硫処理で発生する脱硫スラグを製銑工程または製鋼工程へリサイクルするにあたり、先ず、前記脱硫スラグ中の硫黄を、処理雰囲気温度及び処理雰囲気のCO/CO2比を調整して気相側へSOxとして除去し、硫黄含有量の低下したスラグを製銑工程または製鋼工程におけるCaO源としてリサイクルするので、脱硫スラグに含有された硫黄の大半は気相側へ除去され、製銑工程及び製鋼工程では、硫黄の影響を受けることなくCaO源として再利用することができる。 According to the present invention, when recycling the desulfurization slag generated in the hot metal desulfurization process to the steelmaking process or the steelmaking process, first, sulfur in the desulfurization slag is treated with the treatment atmosphere temperature and the CO / CO 2 ratio of the treatment atmosphere. Since it is adjusted and removed to the gas phase side as SOx, and the slag with reduced sulfur content is recycled as a CaO source in the ironmaking process or steelmaking process, most of the sulfur contained in the desulfurized slag is removed to the gas phase side. In the iron making process and the steel making process, it can be reused as a CaO source without being affected by sulfur.

製銑工程へのリサイクルでは、鉄鉱石の焼結工程または高炉へのリサイクルによって高炉スラグの発生量が増加するが、高炉スラグは、高炉スラグを微粉末状にしてセメントの混和材として使用することによって、高炉スラグ中のCaO分などがセメントと同様のポゾラン反応を起こし、セメントの強度を発現させる。従来、セメント原料のCaO分は炭酸カルシウム(CaCO3)を焼成して製造しており、この焼成時に熱エネルギーを必要とするのみならずCO2ガスも発生するが、高炉スラグ微粉末をセメントに混ぜて高炉スラグセメント(「高炉セメント」と呼ぶ)とした場合には、高炉スラグ微粉末/普通ポルトランドセメントの混合比率に応じて、焼成エネルギー及びCO2ガスの発生量を低減可能となる。また、製鋼工程へのリサイクルでは、スラグをCaO源としてリサイクルすることで、生石灰(CaO)の使用量を低減することができ、製鋼スラグの発生量を大幅に低減することができる。同時に、脱硫スラグを製銑工程や製鋼工程にリサイクルすることで、脱硫スラグ中の鉄分をも鉄資源として有効活用することが可能となる。 In recycling to the ironmaking process, the amount of blast furnace slag generated increases due to the iron ore sintering process or recycling to the blast furnace. As a result, the CaO content in the blast furnace slag causes a pozzolanic reaction similar to that of the cement and develops the strength of the cement. Conventionally, the CaO content of the cement raw material has been manufactured by calcining calcium carbonate (CaCO 3 ), and this calcining requires not only thermal energy but also generates CO 2 gas. When mixed into a blast furnace slag cement (referred to as “blast furnace cement”), the firing energy and the amount of CO 2 gas generated can be reduced according to the mixing ratio of blast furnace slag fine powder / ordinary Portland cement. Moreover, in recycling to a steelmaking process, the amount of quicklime (CaO) used can be reduced by recycling slag as a CaO source, and the generated amount of steelmaking slag can be greatly reduced. At the same time, by recycling the desulfurized slag to the iron making process and the steel making process, it becomes possible to effectively use the iron content in the desulfurized slag as an iron resource.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、CaO単体、或いは、CaOにCaF2またはAl23をCaOの滓化促進剤とて添加したCaO−CaF2やCaO−Al23を脱硫剤として用いた溶銑の脱硫処理で発生する脱硫スラグを、CaO源として製銑工程または製鋼工程でリサイクル使用する際に、リサイクルする前に脱硫スラグから硫黄を除去する方法を検討した。 The inventors of the present invention used CaO alone, or hot metal using CaO—CaF 2 or CaO—Al 2 O 3 obtained by adding CaF 2 or Al 2 O 3 to CaO as a CaO hatching accelerator. When the desulfurization slag generated in the desulfurization treatment is recycled as a CaO source in the steelmaking process or the steelmaking process, a method for removing sulfur from the desulfurization slag before recycling is examined.

先ず、製鉄所内での脱硫スラグの冷却・粉砕処理プロセスにおいて、脱硫スラグから試料を採取し、脱硫スラグ中の硫黄の化合物形態についてX線回折を用いて調査した。その結果、脱硫スラグ中には、従来考えられていたCaSの化合物形態以外にも、CaSO3やCaSO4の形態で存在することが確認できた。これは、冷却・粉砕処理プロセスの過程でCaSが大気に酸化され、CaSO3やCaSO4が生成するものと考えられる。 First, in the process of cooling and pulverizing desulfurized slag in the steelworks, a sample was taken from the desulfurized slag, and the compound form of sulfur in the desulfurized slag was investigated using X-ray diffraction. As a result, it was confirmed that the desulfurized slag was present in the form of CaSO 3 or CaSO 4 in addition to the conventionally considered compound form of CaS. This is presumably because CaS is oxidized into the atmosphere during the cooling / pulverization process, and CaSO 3 and CaSO 4 are generated.

次に、熱力学的な検討を行った。その結果、CaSであれば、脱硫スラグを大気中で酸化させることでCaS中の硫黄が気体のSOxになり、脱硫スラグ中の硫黄を気相側へ除去することが可能であるが、CaSO3やCaSO4は大気中で酸化させてもSOxとして気相側へ除去することができないことが分った。即ち、脱硫スラグ中のCaSO3やCaSO4をSOxとして気相へ除去するためには、反応雰囲気の平衡酸素ポテンシャルを低下させ、SOxを乖離させる必要のあることが分った。 Next, a thermodynamic study was performed. As a result, if CaS, the desulfurization slag becomes SOx sulfur in gas in CaS by oxidizing in the atmosphere, it is possible to remove the sulfur in the desulfurization slag into the gas phase side, CaSO 3 It has been found that CaSO 4 cannot be removed to the gas phase side as SOx even when oxidized in the atmosphere. That is, it has been found that in order to remove CaSO 3 and CaSO 4 in the desulfurized slag as SOx into the gas phase, it is necessary to lower the equilibrium oxygen potential of the reaction atmosphere and dissociate SOx.

本発明者らは、上記の熱力学的検討の妥当性を確認すべく実験調査を行った。実験は、加熱炉内にスラグ試料を装入し、加熱炉内の酸素ポテンシャルを制御するためにCO/CO2比を調整して行った。その結果、加熱炉内のCO/CO2比を調整することで、CaSの形態でも、またCaSO3やCaSO4の形態でも、脱硫スラグ中の硫黄を除去できることが確認できた。今回、実験調査を行った脱硫スラグに関しては、CaSの形態の硫黄を気相へ除去する場合には、CO/CO2比を0.01未満とし、一方、CaSO3やCaSO4の形態の硫黄を気相へ除去する場合には、CO/CO2比を0.1以上とすることで、脱硫スラグに含まれる硫黄質量の80%以上を除去できること、つまり80%以上の脱硫率で硫黄を気相に除去できることが分った。 The present inventors conducted an experimental investigation to confirm the validity of the above-described thermodynamic examination. The experiment was performed by inserting a slag sample into the heating furnace and adjusting the CO / CO 2 ratio in order to control the oxygen potential in the heating furnace. As a result, it was confirmed that by adjusting the CO / CO 2 ratio in the heating furnace, sulfur in the desulfurized slag can be removed even in the form of CaS, or in the form of CaSO 3 or CaSO 4 . Regarding the desulfurized slag that was investigated this time, when removing sulfur in the form of CaS to the gas phase, the CO / CO 2 ratio was made less than 0.01, while sulfur in the form of CaSO 3 or CaSO 4. In the gas phase, the CO / CO 2 ratio is 0.1 or more, so that 80% or more of the sulfur mass contained in the desulfurization slag can be removed, that is, the sulfur is removed at a desulfurization rate of 80% or more. It was found that it can be removed in the gas phase.

また、CaS、CaSO3及びCaSO4が脱硫スラグに混在する場合についても実験調査を行った。これらの硫黄化合物が混在する場合には、CO/CO2比を一概に定めることはできない。しかしながら、種々調査の結果、硫黄化合物が混在する場合には、先ず、雰囲気のCO/CO2比を0.01未満としてCaSの形態で存在する硫黄を除去し、その後、雰囲気のCO/CO2比を0.1以上に高めてCaSO3やCaSO4の形態で存在する硫黄を除去するという、硫黄除去処理中に雰囲気のCO/CO2比を2水準に変更した2段階の硫黄除去が可能であることを確認した。この場合、始めにCaSO3やCaSO4の形態で存在する硫黄を除去し、その後CaSの形態で存在する硫黄を除去するようにしてもよい。但し、混在していても、脱硫スラグに存在する硫黄の大部分がCaSの形態であれば、2段階の硫黄除去を行わなくても、雰囲気のCO/CO2比を0.01未満とする1段階の処理でも、80%以上の脱硫率を得ることができる。 In addition, an experimental investigation was also conducted in the case where CaS, CaSO 3 and CaSO 4 were mixed in the desulfurized slag. When these sulfur compounds are mixed, the CO / CO 2 ratio cannot be determined unconditionally. However, when sulfur compounds are mixed as a result of various investigations, first, sulfur present in the form of CaS is removed by setting the CO / CO 2 ratio of the atmosphere to less than 0.01, and then the CO / CO 2 of the atmosphere is removed. It is possible to remove sulfur in two stages by changing the CO / CO 2 ratio of the atmosphere to two levels during the sulfur removal process by removing the sulfur present in the form of CaSO 3 or CaSO 4 by increasing the ratio to 0.1 or more. It was confirmed that. In this case, sulfur existing in the form of CaSO 3 or CaSO 4 may be removed first, and then sulfur existing in the form of CaS may be removed. However, even if they are mixed, if most of the sulfur present in the desulfurized slag is in the form of CaS, the CO / CO 2 ratio of the atmosphere is set to less than 0.01 without performing two-stage sulfur removal. Even in one-stage treatment, a desulfurization rate of 80% or more can be obtained.

尚、本明細書に記載(後述の実施例を参照)した脱硫スラグでは、気相への硫黄の除去のためのCO/CO2比が上記の閾値となったが、脱硫スラグ中のCaS、CaSO3、CaSO4の各硫黄化合物の存在比率が実施例に示す脱硫スラグの範囲と大きく異なる場合には、処理後のスラグ中硫黄濃度を確認しつつ、CO/CO2比を適正な範囲に調整すればよい。定性的にはCaSの存在比率が高い場合には、CO/CO2比を低くし、CaSO3やCaSO4の存在比率が高い場合にはCO/CO2比を高くすることで対応可能であることを別途実験により確認している。 In addition, in the desulfurization slag described in this specification (see the examples described later), the CO / CO 2 ratio for removing sulfur to the gas phase became the above threshold, but the CaS in the desulfurization slag, When the abundance ratio of each sulfur compound of CaSO 3 and CaSO 4 is greatly different from the range of desulfurization slag shown in the examples, the CO / CO 2 ratio is adjusted to an appropriate range while checking the sulfur concentration in the slag after treatment. Adjust it. If qualitatively high existence ratio of CaS can lower the CO / CO 2 ratio, when the existence ratio of CaSO 3 and CaSO 4 higher can be coped with by increasing the CO / CO 2 ratio This is confirmed by a separate experiment.

更に、処理する際の雰囲気温度について実験調査を行った結果、1100〜1400℃の範囲が脱硫スラグからの硫黄除去に適していることが分った。1100℃未満では、硫黄の除去反応速度が遅いために脱硫率がやや低位となった。一方、1400℃より高い処理温度では、脱硫率はさほど変化しないにも拘わらず、処理容器の耐火物への損傷が大きくコストアップとなった。   Furthermore, as a result of conducting an experimental investigation on the atmospheric temperature during the treatment, it was found that a range of 1100 to 1400 ° C. is suitable for removing sulfur from the desulfurized slag. Below 1100 ° C., the desulfurization rate was slightly low due to the slow removal reaction rate of sulfur. On the other hand, at a processing temperature higher than 1400 ° C., although the desulfurization rate did not change so much, damage to the refractory in the processing container was greatly increased, and the cost was increased.

このような処理によって硫黄含有量が低下した脱硫スラグのリサイクル方法としては、鉄鉱石の焼結工程におけるCaO源(造滓剤)として利用し、その後、高炉での溶銑製造工程で装入原料として使用する方法以外に、高炉での溶銑製造工程でのCaO系の造滓剤として直接使用する方法、または、高炉溶銑の予備脱燐処理や脱硫処理におけるCaO系フラックスとして使用する方法、或いは、転炉での溶銑の脱炭精錬工程における造滓剤として使用する方法などが、好適な例として挙げられる。これ以外の工程であっても、製鉄所における製銑工程及び製鋼工程の生石灰を使用している工程である限り、生石灰の代替として使用可能である。尚、発生する脱硫スラグの全量を本発明の処理に供しても構わないが、溶銑の脱硫処理において発生した脱硫スラグを、再度、溶銑の脱硫処理に使用することは省資源の観点からも有効である。つまり、脱硫スラグ中の硫黄濃度がリサイクルにより高くなり脱硫剤としての効用が無くなるまでは、溶銑脱硫処理工程へのリサイクルを行い、脱硫スラグ中の硫黄濃度が高くなり脱硫剤としての効用が無くなった時点で、本発明を適用することが好ましい。   As a method for recycling desulfurized slag whose sulfur content has been reduced by such treatment, it is used as a CaO source (slagging agent) in the iron ore sintering process, and then used as a raw material in the hot metal production process in a blast furnace. In addition to the method used, it can be used directly as a CaO-based iron making agent in the hot metal production process in the blast furnace, or as a CaO-based flux in the preliminary dephosphorization treatment or desulfurization treatment of the blast furnace hot metal, or A suitable example is a method of using it as a slag-forming agent in a decarburizing and refining process of hot metal in a furnace. Even if it is a process other than this, as long as it is the process which uses the quicklime of the iron making process and steelmaking process in an ironworks, it can be used as a substitute for quicklime. Although the total amount of desulfurized slag generated may be subjected to the treatment of the present invention, it is also effective from the viewpoint of resource saving to use the desulfurized slag generated in the hot metal desulfurization treatment again for the desulfurization treatment of hot metal. It is. In other words, until the sulfur concentration in the desulfurization slag is increased by recycling and the effect as a desulfurization agent is lost, recycling to the hot metal desulfurization treatment process is performed, and the sulfur concentration in the desulfurization slag becomes high and the effect as a desulfurization agent is lost. At some point, it is preferable to apply the present invention.

また、本発明の硫黄除去処理に供する脱硫スラグには金属鉄が含まれていることが多く、この金属鉄の一部は、硫黄除去処理を経た後には酸化鉄となる。酸化鉄を含んだスラグを製銑工程や製鋼工程にリサイクルした場合には、酸化鉄は還元されて鉄資源となり得るものの、酸化鉄の還元エネルギーが必要となる。そこで、本発明の硫黄除去処理に供する前に脱硫スラグから金属鉄を取り除くことが好ましい。金属鉄の分離には、例えば磁力を用いた分離や、鉄とスラグとの比重差を利用した遠心気流分離など、スラグの形状や処理量に応じて適切なプロセスを選択すればよい。   Moreover, the desulfurization slag used for the sulfur removal treatment of the present invention often contains metallic iron, and a part of this metallic iron becomes iron oxide after the sulfur removal treatment. When slag containing iron oxide is recycled to the iron making process or the steel making process, the iron oxide can be reduced to become an iron resource, but the reduction energy of iron oxide is required. Therefore, it is preferable to remove metallic iron from the desulfurized slag before being subjected to the sulfur removal treatment of the present invention. For separation of metallic iron, an appropriate process may be selected according to the shape and processing amount of slag, such as separation using magnetic force or centrifugal airflow separation using the difference in specific gravity between iron and slag.

気相側へ除去されたSOxを含有する排ガスに対して脱硫処理を施し、排ガス中のSOxの大気への放散を防止する。排煙脱硫処理方法としては、一般に広く適用されている石灰石膏法や、水酸化マグネシウム法、或いは乾式の活性コークス法など様々な方式を採用することができる。排煙脱硫方式は、硫黄除去処理によって発生する排ガスの流量や副生物の処置、処理コスト、設備コストなどを総合的して最適な方式を選択すればよい。   The exhaust gas containing SOx removed to the gas phase side is subjected to desulfurization treatment to prevent the SOx in the exhaust gas from being released into the atmosphere. As the flue gas desulfurization treatment method, various methods such as a lime gypsum method, a magnesium hydroxide method, and a dry activated coke method which are generally widely used can be employed. For the flue gas desulfurization method, an optimum method may be selected by comprehensively considering the flow rate of exhaust gas generated by the sulfur removal treatment, the treatment of by-products, the processing cost, the equipment cost, and the like.

硫黄除去処理を行う反応容器としては、脱硫スラグに熱を与え、容器内の雰囲気を制御できるものであればどのようなものでもよく、具体的には、ロータリーキルンやRHFや流動層などが挙げられる。また、加熱方式としてはLPGバーナーやLNGバーナーなどであればCO/CO比の調整も兼ねることができる。 As the reaction vessel for performing the sulfur removal treatment, any reaction vessel can be used as long as it can heat the desulfurization slag and control the atmosphere in the vessel, and specifically includes a rotary kiln, RHF, fluidized bed, and the like. . Further, if the heating method is an LPG burner, an LNG burner or the like, the CO / CO 2 ratio can also be adjusted.

以上説明したように、本発明によれば、溶銑の脱硫処理で発生する脱硫スラグを製銑工程または製鋼工程へリサイクルするにあたり、処理温度を最適な範囲とし、且つ、脱硫スラグ中の硫黄の化合物形態に応じて処理雰囲気のCO/CO2比を制御して硫黄除去処理を脱硫スラグに施すので、脱硫スラグ中の硫黄を気体のSOxとして気相へ除去することができ、硫黄含有量の少ない脱硫スラグをCaO源として有効活用することが実現される。これにより、脱硫スラグ自体の発生量が減少して脱硫スラグの処理コストを削減することができるとともに、脱硫スラグを製鉄所外で有効利用したときの黄水発生などのリスクも回避することができる。 As described above, according to the present invention, when recycling the desulfurization slag generated in the hot metal desulfurization process to the ironmaking process or the steelmaking process, the processing temperature is set to an optimum range, and the sulfur compound in the desulfurization slag is used. Since the sulfur removal treatment is applied to the desulfurization slag by controlling the CO / CO 2 ratio of the treatment atmosphere according to the form, the sulfur in the desulfurization slag can be removed to the gas phase as gaseous SOx, and the sulfur content is low Effective utilization of desulfurized slag as a CaO source is realized. Thereby, the generation amount of desulfurization slag itself can be reduced and the processing cost of the desulfurization slag can be reduced, and risks such as yellow water generation when the desulfurization slag is effectively used outside the steelworks can be avoided. .

高炉から出銑された高炉溶銑をトピードカーで受銑し、トピードカーに収容された高炉溶銑に脱珪処理及び予備脱燐処理を施し、その後、高炉溶銑を溶銑鍋に移し替え、溶銑鍋内の高炉溶銑に機械攪拌式脱硫装置により脱硫処理を施し、この脱硫処理終了後の高炉溶銑を転炉に装入して転炉にて脱炭精錬を施し、かくして、高炉溶銑から溶鋼を溶製する製銑−製鋼工程において本発明を適用した。高炉での出銑から転炉脱炭精錬終了までの高炉溶銑及び溶製される溶鋼の化学成分の例を表1に示す。   The blast furnace hot metal discharged from the blast furnace is received by a topped car, the blast furnace hot metal accommodated in the topped car is subjected to desiliconization treatment and preliminary dephosphorization treatment, and then the blast furnace hot metal is transferred to the hot metal ladle and the blast furnace in the hot metal ladle. The hot metal is desulfurized by a mechanical stirring desulfurization device, the blast furnace hot metal after this desulfurization treatment is charged into the converter, and decarburization refining is performed in the converter, thus producing molten steel from the blast furnace hot metal. The present invention was applied in the steelmaking process. Table 1 shows examples of chemical components of the blast furnace hot metal and the molten steel produced from the blast furnace tapping to the end of converter decarburization refining.

Figure 2013087290
Figure 2013087290

表1に示すように、脱硫処理前の高炉溶銑には0.03質量%程度の硫黄が含有されており、溶銑脱硫工程において脱硫剤としてCaO源を添加し攪拌処理をすることで0.002質量%まで脱硫される。この時発生する脱硫スラグに対して本発明を適用する試験を行った。脱硫スラグの代表組成を表2に示す。   As shown in Table 1, the blast furnace hot metal before the desulfurization treatment contains about 0.03% by mass of sulfur, and 0.002 by adding a CaO source as a desulfurization agent in the hot metal desulfurization step and stirring. Desulfurized to mass%. The test which applies this invention with respect to the desulfurization slag generated at this time was done. Table 2 shows representative compositions of desulfurized slag.

Figure 2013087290
Figure 2013087290

50トンの脱硫スラグを、加熱バーナーを備えたロータリーキルンに装入し、バーナーによって脱硫スラグを加熱して脱硫スラグからの硫黄除去処理を実施した。脱硫スラグ中の硫黄化合物の形態は、処理前に脱硫スラグから試料を採取し、X線回折装置を用いてその存在比率を確認した。炉内雰囲気の温度は加熱バーナーの出力を調整することで制御し、炉内雰囲気はバーナーのガス条件を変更することでCO/CO2比を制御した。排ガス側には排煙脱硫設備を設け、排ガス中のSOxを無害化処理した。表3に、試験条件並びに試験結果を示す。 50 tons of desulfurized slag was charged into a rotary kiln equipped with a heating burner, and the desulfurized slag was heated by the burner to remove sulfur from the desulfurized slag. Regarding the form of the sulfur compound in the desulfurized slag, a sample was taken from the desulfurized slag before the treatment, and the abundance ratio was confirmed using an X-ray diffractometer. The temperature in the furnace atmosphere was controlled by adjusting the output of the heating burner, and the CO / CO 2 ratio was controlled in the furnace atmosphere by changing the gas conditions of the burner. A flue gas desulfurization facility was provided on the exhaust gas side to detoxify SOx in the exhaust gas. Table 3 shows test conditions and test results.

Figure 2013087290
Figure 2013087290

本発明例1〜4においては、脱硫スラグ中の硫黄化合物の形態がCaS主体であったので、CO/CO2比を低くすることだけで、処理温度1100〜1400℃において80%以上の脱硫率を得ることができた。 In the inventive examples 1 to 4, since the form of the sulfur compound in the desulfurized slag was mainly CaS, the desulfurization rate of 80% or more at the treatment temperature of 1100 to 1400 ° C. was achieved only by reducing the CO / CO 2 ratio. Could get.

一方、比較例1及び比較例3は、脱硫スラグ中の硫黄化合物の形態が本発明例1〜4と同様にCaS主体であったが、処理温度をそれぞれ1000℃及び1500℃と本発明の範囲外とした。その結果、比較例1では低温に起因する脱硫速度の低下によって脱硫率が80%を下回り、比較例3では脱硫率は80%以上であったものの、炉内の耐火物に溶損が発生した。   On the other hand, in Comparative Example 1 and Comparative Example 3, the form of the sulfur compound in the desulfurized slag was mainly CaS as in Examples 1-4 of the present invention, but the processing temperatures were 1000 ° C and 1500 ° C, respectively, and the scope of the present invention. It was outside. As a result, in Comparative Example 1, the desulfurization rate was less than 80% due to a decrease in the desulfurization rate due to the low temperature, and in Comparative Example 3, the desulfurization rate was 80% or more, but the refractory in the furnace was melted. .

本発明例5〜11においては、脱硫スラグ中の硫黄化合物がCaS、CaSO3、CaSO4の混在物であったので、先ず、炉内雰囲気のCO/CO2比を低くしてCaSを除去し、その後、炉内雰囲気のCO/CO2比を高くしてCaSO3やCaSO4の除去を試みた。その結果、何れも脱硫率は80%以上となった。 In Invention Examples 5 to 11, since the sulfur compound in the desulfurized slag was a mixture of CaS, CaSO 3 and CaSO 4 , first, the CO / CO 2 ratio in the furnace atmosphere was lowered to remove CaS. Thereafter, removal of CaSO 3 and CaSO 4 was attempted by increasing the CO / CO 2 ratio in the furnace atmosphere. As a result, in all cases, the desulfurization rate was 80% or more.

一方、比較例2と比較例4は、脱硫スラグ中の硫黄化合物がCaS、CaSO3、CaSO4の混在物であり、先ず、炉内雰囲気のCO/CO2比を低くし、その後CO/CO2比を高くしたが、処理温度をそれぞれ1000℃、1500℃と本発明の範囲外とした。その結果、処理温度が1000℃の比較例2では脱硫率が80%を下回り、処理温度が1500℃の比較例4では耐火物の溶損が認められた。 On the other hand, in Comparative Example 2 and Comparative Example 4, the sulfur compound in the desulfurized slag is a mixture of CaS, CaSO 3 , and CaSO 4. First, the CO / CO 2 ratio in the furnace atmosphere is lowered, and then the CO / CO 2 is reduced. 2 The ratio was increased, but the processing temperatures were 1000 ° C. and 1500 ° C., respectively, outside the scope of the present invention. As a result, in Comparative Example 2 where the treatment temperature was 1000 ° C., the desulfurization rate was less than 80%, and in Comparative Example 4 where the treatment temperature was 1500 ° C., the refractory was melted.

比較例5及び比較例6は、脱硫スラグ中の硫黄化合物の形態がCaS主体であったが、処理雰囲気のCO/CO2比をやや高くして試験した。この場合には硫黄を十分に除去することができず、脱硫率は80%を下回った。また、比較例7及び比較例8は、脱硫スラグ中の硫黄化合物の形態がCaS、CaSO3、CaSO4の混在物であったが、処理雰囲気のCO/CO2比をやや低くして試験した。この場合も同様に脱硫率は80%を下回った。 In Comparative Example 5 and Comparative Example 6, the form of the sulfur compound in the desulfurized slag was mainly CaS, but the test was conducted with a slightly higher CO / CO 2 ratio in the treatment atmosphere. In this case, sulfur could not be removed sufficiently, and the desulfurization rate was less than 80%. Further, Comparative Examples 7 and 8 in the form of sulfur compounds in desulfurization slag CaS, CaSO 3, although there was a mixture of CaSO 4, was tested slightly lower CO / CO 2 ratio of the treatment atmosphere . In this case, the desulfurization rate was similarly less than 80%.

本発明例1〜11の硫黄除去処理後の脱硫スラグを鉄鉱石の焼結工程における造滓剤用のCaO源として使用し、製造した焼結鉱を鉄源として高炉に装入し、高炉溶銑を製造したが、何ら問題は発生しなかった。また、リサイクルを行った際の高炉スラグを用いて高炉スラグセメントを製造したが、JIS A 6206「コンクリート用高炉スラグ微粉末」の品質規格を満足しており、また、JIS R 5211 「高炉セメント」の強度などの特性も従来と同等で何ら問題はなく、従来と同様にセメント製造の省エネルギー化が可能となった。   The desulfurization slag after the sulfur removal treatment of Invention Examples 1 to 11 was used as a CaO source for a slagging agent in the iron ore sintering step, and the produced sintered ore was charged into a blast furnace as an iron source, Produced no problems. In addition, blast furnace slag cement was manufactured using the blast furnace slag that was recycled, but it satisfied the quality standard of JIS A 6206 “Blast furnace slag fine powder for concrete” and JIS R 5211 “Blast furnace cement” The strength and other properties are the same as in the past, and there are no problems.

また、本発明例1〜11の硫黄除去処理後の脱硫スラグを製鋼工程における溶銑の脱硫処理、予備脱燐処理、脱炭精錬処理用のCaO源としても用いたが、何ら問題無く精錬操業を行うことができた。   Moreover, although the desulfurization slag after the sulfur removal treatment of Invention Examples 1 to 11 was used as a CaO source for hot metal desulfurization treatment, preliminary dephosphorization treatment, and decarburization refining treatment in the steelmaking process, the refining operation can be performed without any problem. Could be done.

更に、事前に磁気分離により脱硫スラグから金属鉄を取り除いてから、硫黄除去処理を行っても、雰囲気の温度及びCO/CO2比が適正な条件であれば脱硫率は80%以上を満足し、また、事前に取り除いた金属鉄は、鉄資源として製銑工程や製鋼工程で還元エネルギーを消費することなく活用することができた。 Furthermore, even after removing metallic iron from the desulfurization slag by magnetic separation in advance and performing the sulfur removal treatment, the desulfurization rate satisfies 80% or more if the temperature of the atmosphere and the CO / CO 2 ratio are appropriate. In addition, the metal iron removed in advance could be utilized as iron resources without consuming reducing energy in the iron making process or the steel making process.

一方、溶銑の脱硫処理で発生した脱硫スラグを本発明の硫黄除去処理を施すことなくそのまま焼結鉱のCaO源としてリサイクルした場合には、焼結での排ガス中SOx濃度が規制値を超えてしまうために、焼結設備に排煙脱硫処理を設置しなければ操業が成り立たなかった。また、脱硫スラグを本発明の硫黄除去処理を施すことなくそのまま高炉へリサイクルした場合には、高炉スラグの硫黄濃度が上昇し、高炉スラグセメントの製造条件を満足することができなかった。更に、脱硫スラグを本発明の硫黄除去処理を施すことなくそのまま製鋼工程の予備脱燐処理や脱炭精錬処理にCaO源としてリサイクルした場合には、溶銑や溶鋼の硫黄濃度が上昇し、操業阻害を引き起こした。溶銑の脱硫処理にCaO源としてリサイクルした場合には、或る一定の量まではリサイクル可能であったものの、脱硫スラグの発生全量を製鉄所内でリサイクルすることは不可能であった。   On the other hand, when the desulfurization slag generated in the hot metal desulfurization treatment is recycled as it is as a CaO source of sintered ore without performing the sulfur removal treatment of the present invention, the SOx concentration in the exhaust gas during sintering exceeds the regulation value. For this reason, the operation could not be completed unless the flue gas desulfurization treatment was installed in the sintering facility. In addition, when the desulfurized slag was recycled to the blast furnace as it was without performing the sulfur removal treatment of the present invention, the sulfur concentration of the blast furnace slag increased, and the production conditions for the blast furnace slag cement could not be satisfied. Furthermore, if the desulfurized slag is recycled as a CaO source for the preliminary dephosphorization process or decarburization refining process of the steelmaking process without performing the sulfur removal process of the present invention, the sulfur concentration of the hot metal or the molten steel increases and operation is inhibited. Caused. When the hot metal desulfurization treatment was recycled as a CaO source, it was possible to recycle up to a certain amount, but it was impossible to recycle the entire amount of desulfurization slag generated in the steelworks.

Claims (6)

溶銑の脱硫処理において発生した硫黄を含有する脱硫スラグを、雰囲気温度が1100〜1400℃の範囲であり、且つ、雰囲気のCO/CO2比が前記脱硫スラグ中の硫黄化合物の形態に応じて調整された雰囲気中に曝し、前記脱硫スラグ中の硫黄をSOxとして雰囲気の気相側に除去する第1の工程と、
前記第1の工程において気相側に除去されたSOxを含有する排ガスを脱硫処理する第2の工程と、
前記第1の工程によって硫黄含有量が低下した脱硫スラグを製銑工程または製鋼工程でのCaO源としてリサイクルする第3の工程と、
を有することを特徴とする、脱硫スラグからの硫黄の除去方法。
The desulfurization slag containing sulfur generated in the desulfurization treatment of hot metal has an atmospheric temperature in the range of 1100 to 1400 ° C., and the CO / CO 2 ratio of the atmosphere is adjusted according to the form of the sulfur compound in the desulfurization slag A first step of exposing to the atmosphere and removing sulfur in the desulfurized slag as SOx to the gas phase side of the atmosphere;
A second step of desulfurizing the exhaust gas containing SOx removed on the gas phase side in the first step;
A third step of recycling the desulfurized slag having a reduced sulfur content in the first step as a CaO source in the iron making step or the steel making step;
A method for removing sulfur from desulfurized slag, comprising:
前記第1の工程において、脱硫スラグの脱硫率が80%以上となるように、雰囲気のCO/CO2比を調整することを特徴とする、請求項1に記載の脱硫スラグからの硫黄の除去方法。 The removal of sulfur from the desulfurized slag according to claim 1, wherein the CO / CO 2 ratio of the atmosphere is adjusted so that the desulfurization rate of the desulfurized slag is 80% or more in the first step. Method. 前記第1の工程において、雰囲気のCO/CO2比を、脱硫スラグ中の硫黄がCaSの形態の化合物である場合にSOxとして除去される範囲と、脱硫スラグ中の硫黄がCaSO3及びCaSO4の形態の化合物である場合にSOxとして除去される範囲と、の少なくとも2つの範囲に変更することを特徴とする、請求項1または請求項2に記載の脱硫スラグからの硫黄の除去方法。 In the first step, the CO / CO 2 ratio of the atmosphere is set such that the sulfur is removed as SOx when sulfur in the desulfurized slag is a compound in the form of CaS, and the sulfur in the desulfurized slag is CaSO 3 and CaSO 4. The method for removing sulfur from the desulfurized slag according to claim 1 or 2, wherein the range is changed to at least two ranges of the range of removal as SOx in the case of a compound of the form. 前記第3の工程における処理後の脱硫スラグのリサイクル先が、鉄鉱石の焼結工程または高炉での溶銑製造工程であることを特徴とする、請求項1ないし請求項3の何れか1項に記載の脱硫スラグからの硫黄の除去方法。   The recycle destination of the desulfurization slag after the treatment in the third step is an iron ore sintering step or a hot metal production step in a blast furnace, according to any one of claims 1 to 3. A method for removing sulfur from the desulfurized slag as described. 前記第3の工程における処理後の脱硫スラグのリサイクル先が、製鋼精錬工程における溶銑の脱硫処理、予備脱燐処理、脱炭精錬処理の何れかであることを特徴とする、請求項1ないし請求項3の何れか1項に記載の脱硫スラグからの硫黄の除去方法。   The recycling destination of the desulfurization slag after the treatment in the third step is any one of hot metal desulfurization treatment, preliminary dephosphorization treatment, and decarburization refining treatment in the steelmaking refining step. Item 4. The method for removing sulfur from the desulfurized slag according to any one of Items 3 to 4. 前記第1の工程に供する脱硫スラグから事前に金属鉄を分離することを特徴とする、請求項1ないし請求項5の何れか1項に記載の脱硫スラグからの硫黄の除去方法。   The method for removing sulfur from desulfurized slag according to any one of claims 1 to 5, wherein metallic iron is separated in advance from the desulfurized slag used in the first step.
JP2011225410A 2011-10-13 2011-10-13 Method for removing sulfur from desulfurized slag Active JP5838711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225410A JP5838711B2 (en) 2011-10-13 2011-10-13 Method for removing sulfur from desulfurized slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225410A JP5838711B2 (en) 2011-10-13 2011-10-13 Method for removing sulfur from desulfurized slag

Publications (2)

Publication Number Publication Date
JP2013087290A true JP2013087290A (en) 2013-05-13
JP5838711B2 JP5838711B2 (en) 2016-01-06

Family

ID=48531520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225410A Active JP5838711B2 (en) 2011-10-13 2011-10-13 Method for removing sulfur from desulfurized slag

Country Status (1)

Country Link
JP (1) JP5838711B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015078951A1 (en) * 2013-11-28 2015-06-04 Voestalpine Stahl Gmbh Method for treating desulfurization slag
WO2020196966A1 (en) * 2019-03-28 2020-10-01 주식회사 포스코 Raw material production equipment and raw material production method
CN115852090A (en) * 2022-11-15 2023-03-28 安徽工业大学 Method for modifying and recycling metallurgical refining waste residues
CN116332215A (en) * 2021-12-23 2023-06-27 兴展技术开发股份有限公司 Method for reducing sulfur content in calcium fluoride sludge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093761A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method for treating slag containing sulfur and calcium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093761A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method for treating slag containing sulfur and calcium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015078951A1 (en) * 2013-11-28 2015-06-04 Voestalpine Stahl Gmbh Method for treating desulfurization slag
JP2017505857A (en) * 2013-11-28 2017-02-23 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh Desulfurization slag treatment method
US10174389B2 (en) 2013-11-28 2019-01-08 Voestalpine Stahl Gmbh Method for treating desulfurization slag
WO2020196966A1 (en) * 2019-03-28 2020-10-01 주식회사 포스코 Raw material production equipment and raw material production method
CN116332215A (en) * 2021-12-23 2023-06-27 兴展技术开发股份有限公司 Method for reducing sulfur content in calcium fluoride sludge
CN115852090A (en) * 2022-11-15 2023-03-28 安徽工业大学 Method for modifying and recycling metallurgical refining waste residues
CN115852090B (en) * 2022-11-15 2023-09-29 安徽工业大学 Method for modifying and recycling metallurgical refining waste residues

Also Published As

Publication number Publication date
JP5838711B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP6064341B2 (en) How to remove sulfur from desulfurized slag
TWI410501B (en) Method for recovering iron and phosphorus from steel slag
JP5408369B2 (en) Hot metal pretreatment method
JP5569174B2 (en) Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material
JP5838711B2 (en) Method for removing sulfur from desulfurized slag
CN113373275A (en) Internal recycling method for KR desulfurization slag steel plant
JP2013189688A (en) Method for removing sulfur from desulfurization slag
JP5895887B2 (en) Desulfurization treatment method for molten steel
JP5720497B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP5408379B2 (en) Hot metal pretreatment method
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP5884186B2 (en) Desulfurization slag regeneration method and desulfurization slag recycling method
JP5268019B2 (en) How to remove hot metal
JP2008196026A (en) Method for preliminarily treating molten pig iron
JP5061598B2 (en) Hot metal desulfurization method
JP5573727B2 (en) Method for reforming hot metal desulfurization slag
JP5915711B2 (en) Method for recovering iron and phosphorus from steelmaking slag
CN114317873A (en) Steelmaking slagging process
JP2007270238A (en) Method for applying dephosphorize-treatment to molten iron
KR20120036179A (en) Method for dephosphorsing during pre-treating pig iron using waste materials of steel making process
JP4639943B2 (en) Hot metal desulfurization method
JP6369699B2 (en) Recovery method of refining flux from hot metal desulfurization slag and dephosphorization / desulfurization method of hot metal
WO2017159840A1 (en) Molten-iron pretreatment method
JP5447554B2 (en) Dephosphorization method for hot metal
JP6295692B2 (en) Steelmaking slag treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5838711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250