JP2013086987A - Laminated glass - Google Patents

Laminated glass Download PDF

Info

Publication number
JP2013086987A
JP2013086987A JP2011226483A JP2011226483A JP2013086987A JP 2013086987 A JP2013086987 A JP 2013086987A JP 2011226483 A JP2011226483 A JP 2011226483A JP 2011226483 A JP2011226483 A JP 2011226483A JP 2013086987 A JP2013086987 A JP 2013086987A
Authority
JP
Japan
Prior art keywords
laminated glass
film
heat shrinkage
shrinkage rate
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011226483A
Other languages
Japanese (ja)
Other versions
JP5948785B2 (en
Inventor
Tokihiko Aoki
時彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011226483A priority Critical patent/JP5948785B2/en
Publication of JP2013086987A publication Critical patent/JP2013086987A/en
Application granted granted Critical
Publication of JP5948785B2 publication Critical patent/JP5948785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated glass in which occurrence of wrinkles or the like in a functional film is suppressed.SOLUTION: The laminated glass includes a resin film interposed via an adhesive layer between a first glass substrate and a second glass substrate, and also has an approximately annular concealing part near an outer circumference. The resin film shows a heat shrinkage percentage of over 1% and less than 2% in a direction where the heat shrinkage percentage is maximum, and shows a heat shrinkage percentage of over 1% and less than 2% in a direction orthogonal to the above direction. The cut end of the resin film is disposed within each 10 mm range with respect to an inner circumference of the concealing part in a direction toward the cut end of the laminated glass and in the opposite direction thereto, when the laminated glass is viewed from front. The above heat shrinkage percentage of the resin film is measured when the film is held at 150°C for 30 minutes.

Description

本発明は合わせガラスに係り、特に一対のガラス基板間に樹脂フィルムが挟持された合わせガラスに関する。   The present invention relates to laminated glass, and more particularly to laminated glass in which a resin film is sandwiched between a pair of glass substrates.

従来、車両等のフロントガラスに使用する合わせガラスとして、一対のガラス基板間に接着層を介して赤外線反射フィルムを狭持したものが知られている。赤外線反射フィルムは、基材となる樹脂フィルム上に赤外線反射膜が形成されたものである。このような合わせガラスは、例えば、ガラス基板、接着シート、赤外線反射フィルム、接着シート、ガラス基板をこの順に重ね合わせるとともに、一対のガラス基板の外周部からはみ出した赤外線反射フィルムや接着シートを切断除去した後、全体を加熱加圧して一体化することにより製造されている。   Conventionally, as a laminated glass used for a windshield of a vehicle or the like, a glass having an infrared reflection film sandwiched between a pair of glass substrates via an adhesive layer is known. The infrared reflective film is obtained by forming an infrared reflective film on a resin film serving as a base material. Such laminated glass, for example, superimposes a glass substrate, an adhesive sheet, an infrared reflective film, an adhesive sheet, and a glass substrate in this order, and cuts and removes the infrared reflective film and the adhesive sheet protruding from the outer peripheral portion of the pair of glass substrates. Then, it is manufactured by heating and pressurizing the whole.

合わせガラスにおいては、ガラス基板が3次元状に湾曲している場合、赤外線反射フィルムにシワが発生したり、赤外線反射膜にクラックが発生したりするために外観不良となりやすく、また赤外線反射膜の反射率も低下しやすい。赤外線反射フィルムにおけるシワや赤外線反射膜におけるクラックを抑制するために、例えば、特定の熱収縮率を有する赤外線反射フィルムを用いることが知られている(例えば、特許文献1参照)。   In laminated glass, when the glass substrate is curved three-dimensionally, wrinkles are generated in the infrared reflecting film or cracks are generated in the infrared reflecting film. Reflectivity is also likely to decrease. In order to suppress wrinkles in the infrared reflective film and cracks in the infrared reflective film, for example, it is known to use an infrared reflective film having a specific heat shrinkage rate (see, for example, Patent Document 1).

一方、合わせガラスの外周部まで赤外線反射膜を設けると腐食しやすいことから、外周部に赤外線反射膜を設けないことが知られている。また、外周部に赤外線反射膜を設けない場合の反射率や透過率の急激な変化を抑制するために、外側から順に環状の不透明バンドとフェードアウトバンドとを有するものにおいて、フェードアウトバンドに重なるように赤外線反射膜を設けることが知られている(例えば、特許文献2参照)。   On the other hand, since it is easy to corrode when an infrared reflective film is provided up to the outer peripheral portion of the laminated glass, it is known that no infrared reflective film is provided on the outer peripheral portion. In addition, in order to suppress a rapid change in reflectance and transmittance when an infrared reflecting film is not provided on the outer peripheral portion, in order to suppress a sudden change in the reflectance and transmittance, in order from the outside, the annular opaque band and the fade-out band are overlapped with the fade-out band. It is known to provide an infrared reflecting film (see, for example, Patent Document 2).

特開2009−35438号公報JP 2009-35438 A 特表2002−528374号公報JP-T-2002-528374

上記したように、赤外線反射フィルムにおけるシワ等を抑制するために、特定の熱収縮率を有する赤外線反射フィルムを用いることが知られている。しかしながら、このような赤外線反射フィルムを合わせガラスの外周部まで達するように設けた場合、赤外線反射フィルムの熱収縮に伴って、該外周部付近のガラス基板間に空気が巻き込まれて白くなる状態、いわゆる発泡状態となりやすく、また合わせガラスを透視したときの透視像に歪みが発生しやすい。特に、ガラス基板の湾曲が大きい場合、このような発泡や透視像の歪みが発生しやすい。   As described above, it is known to use an infrared reflective film having a specific heat shrinkage rate in order to suppress wrinkles and the like in the infrared reflective film. However, when such an infrared reflective film is provided so as to reach the outer peripheral portion of the laminated glass, with the thermal contraction of the infrared reflective film, a state in which air is caught between the glass substrates near the outer peripheral portion and becomes white, A so-called foamed state is likely to occur, and distortion is likely to occur in the fluoroscopic image when the laminated glass is seen through. In particular, when the glass substrate has a large curvature, such foaming and distortion of the fluoroscopic image are likely to occur.

赤外線反射フィルムを合わせガラスの外周部に設けず、例えばフェードアウトバンドに重なるように設けることも考えられるが、単にフェードアウトバンドに重なるように設けた場合、必ずしも外周部近傍における赤外線反射フィルムのシワを十分に抑制できず、特にガラス基板の湾曲が大きい場合に十分に抑制できない。   It is conceivable that the infrared reflection film is not provided on the outer peripheral portion of the laminated glass, for example, so as to overlap the fade-out band, but when it is provided only to overlap the fade-out band, the wrinkles of the infrared reflection film in the vicinity of the outer peripheral portion are not necessarily sufficient. Cannot be sufficiently suppressed, particularly when the glass substrate has a large curvature.

本発明は、上記課題を解決するためになされたものであって、湾曲が大きい場合であっても、外周部近傍における赤外線反射フィルム等の機能性フィルムのシワや発泡、透視像の歪みが抑制され、外観および視認性の良好な合わせガラスを提供することを目的としている。   The present invention has been made to solve the above-described problems, and suppresses wrinkling and foaming of a functional film such as an infrared reflective film in the vicinity of the outer peripheral portion and distortion of a fluoroscopic image even when the curvature is large. The object is to provide a laminated glass with good appearance and visibility.

本発明の合わせガラスは、第1のガラス基板と第2のガラス基板との間に樹脂フィルムが接着層を介して挟持されるとともに、外周部近傍に略環状の隠蔽部を有する。ここで、樹脂フィルムは樹脂材料のみからなるフィルムであって、合わせガラス中に単独で設けられていてもよいし、その表面に機能膜が形成されて機能性フィルムの一部として設けられていてもよい。また、隠蔽部とは不透明な着色層である。樹脂フィルムは、熱収縮率が最大となる方向の熱収縮率が1%を超え2%未満、かつ該方向に直交する方向の熱収縮率が1%を超え2%未満である。また、樹脂フィルムのカット端は、合わせガラスを正面視したとき、隠蔽部の内周部に対し合わせガラスのカット端方向および該方向と反対方向のそれぞれ10mmの範囲内に配置される。但し、樹脂フィルムの熱収縮率は150℃で30分間保持したときのものである。   In the laminated glass of the present invention, a resin film is sandwiched between the first glass substrate and the second glass substrate via an adhesive layer, and a substantially annular concealing portion is provided in the vicinity of the outer peripheral portion. Here, the resin film is a film made only of a resin material, and may be provided alone in the laminated glass, or a functional film is formed on the surface thereof and provided as a part of the functional film. Also good. The concealing part is an opaque colored layer. The resin film has a heat shrinkage rate in the direction in which the heat shrinkage rate is maximum of more than 1% and less than 2%, and a heat shrinkage rate in a direction perpendicular to the direction of more than 1% and less than 2%. Moreover, when the laminated glass is viewed from the front, the cut end of the resin film is disposed within a range of 10 mm in each of the cut end direction of the laminated glass and the opposite direction to the inner peripheral portion of the concealing portion. However, the heat shrinkage rate of the resin film is that when the resin film is held at 150 ° C. for 30 minutes.

本発明の合わせガラスによれば、熱収縮率が特定範囲内にある樹脂フィルムを用いるとともに、樹脂フィルムのカット端を隠蔽部の内周部に対して特定範囲内に配置することで、湾曲が大きい場合であっても、外周部近傍におけるシワや発泡、また透視像の歪みを抑制でき、かつ外観および視認性の良好なものとすることができる。   According to the laminated glass of the present invention, the resin film having a thermal shrinkage rate in a specific range is used, and the cut end of the resin film is disposed in the specific range with respect to the inner peripheral portion of the concealing portion, thereby curving. Even if it is large, wrinkles and foaming in the vicinity of the outer peripheral portion and distortion of the fluoroscopic image can be suppressed, and the appearance and visibility can be improved.

本発明の合わせガラスの一実施形態を示す平面図。The top view which shows one Embodiment of the laminated glass of this invention. 図1に示す合わせガラスのA−A線断面図。The AA sectional view taken on the line of the laminated glass shown in FIG. 赤外線反射フィルムの一例を示す断面図。Sectional drawing which shows an example of an infrared reflective film. 樹脂フィルムの熱収縮率の測定方法を示す説明図。Explanatory drawing which shows the measuring method of the thermal contraction rate of a resin film.

以下、本発明の合わせガラスについて図面を参照して説明する。
図1は、樹脂フィルムを有する合わせガラスの一実施形態を示すものであり、特に機能性フィルムである赤外線反射フィルムの一部として樹脂フィルムを有する合わせガラスの実施形態を示す平面図である。また、図2は、図1に示す合わせガラスのA−A線断面図である。
Hereinafter, the laminated glass of this invention is demonstrated with reference to drawings.
FIG. 1 shows an embodiment of a laminated glass having a resin film, and is a plan view showing an embodiment of a laminated glass having a resin film as a part of an infrared reflecting film that is a functional film. FIG. 2 is a cross-sectional view of the laminated glass shown in FIG.

合わせガラス1は、第1のガラス基板2と第2のガラス基板3との間に接着層4を介して機能性フィルムとしての赤外線反射フィルム5なる機能性フィルムが挟持されている。赤外線反射フィルム5は、樹脂フィルム51上に機能膜としての赤外線反射膜52が形成されて構成されている。また、第2のガラス基板3の外周部近傍における内側表面には、略環状の隠蔽部6が設けられている。   In the laminated glass 1, a functional film as an infrared reflective film 5 as a functional film is sandwiched between a first glass substrate 2 and a second glass substrate 3 with an adhesive layer 4 interposed therebetween. The infrared reflective film 5 is configured by forming an infrared reflective film 52 as a functional film on a resin film 51. A substantially annular concealing portion 6 is provided on the inner surface in the vicinity of the outer peripheral portion of the second glass substrate 3.

合わせガラス1は、例えば、第1のガラス基板2側が車外側として使用されるものであり、第2のガラス基板3の内側表面に隠蔽部6が設けられるが、隠蔽部6は必ずしもこのような表面に設けられる必要はなく、第1のガラス基板2の内側表面または第2のガラス基板3の外側表面に設けられていてもよい。   The laminated glass 1 is used, for example, on the first glass substrate 2 side as the outside of the vehicle, and the concealing portion 6 is provided on the inner surface of the second glass substrate 3. It does not need to be provided on the surface, and may be provided on the inner surface of the first glass substrate 2 or the outer surface of the second glass substrate 3.

このような合わせガラス1における樹脂フィルム51は、熱収縮率が最大となる方向の熱収縮率が1%を超え2%未満、かつ該方向に直交する方向の熱収縮率が1%を超え2%未満とされている。但し、樹脂フィルム51の熱収縮率は150℃で30分間保持したときのものである。   The resin film 51 in such a laminated glass 1 has a heat shrinkage rate in the direction in which the heat shrinkage rate is maximized exceeding 1% and less than 2%, and a heat shrinkage rate in the direction orthogonal to the direction exceeding 1%. Less than%. However, the thermal shrinkage rate of the resin film 51 is that when the resin film 51 is held at 150 ° C. for 30 minutes.

図1、2に示すように、樹脂フィルム51を有する赤外線反射フィルム5は、合わせガラス1を正面視したとき、そのカット端5aが、隠蔽部6の内周部6aに対し合わせガラス1のカット端1aの方向および該方向と反対方向のそれぞれ10mmの範囲内に配置される。すなわち、赤外線反射フィルム5のカット端5aを配置できる範囲は、隠蔽部6の内周部6aに対し、合わせガラス1のカット端1aの方向に10mmの範囲、および合わせガラス1のカット端1aの方向とは反対方向に10mmの範囲となる。   As shown in FIGS. 1 and 2, the infrared reflective film 5 having the resin film 51 has a cut end 5 a cut from the inner peripheral portion 6 a of the concealing portion 6 when the laminated glass 1 is viewed from the front. It arrange | positions in the range of 10 mm of the direction of the edge 1a, and the direction opposite to this direction, respectively. That is, the range in which the cut end 5a of the infrared reflecting film 5 can be disposed is 10 mm in the direction of the cut end 1a of the laminated glass 1 and the cut end 1a of the laminated glass 1 with respect to the inner peripheral portion 6a of the concealing portion 6. The range is 10 mm in the opposite direction to the direction.

ここで、図1、2は、隠蔽部6の内周部6aに対し、合わせガラス1のカット端1aの方向とは反対方向となる所定の範囲内に赤外線反射フィルム5のカット端5aを配置した例を示したものである。このように、赤外線反射フィルム5のカット端5aは、合わせガラス1を正面視したときに隠蔽部6の内周部6aと重ならないように配置されていてもよいし、図示しないが隠蔽部6の内周部6aと重なるように配置されていてもよい。但し、いずれの場合についても、赤外線反射フィルム5のカット端5aは、隠蔽部6の内周部6aに対しその両側となるそれぞれ10mmの範囲内に配置される。   Here, in FIGS. 1 and 2, the cut end 5 a of the infrared reflecting film 5 is disposed within a predetermined range that is opposite to the direction of the cut end 1 a of the laminated glass 1 with respect to the inner peripheral portion 6 a of the concealing portion 6. This is an example. Thus, the cut end 5a of the infrared reflective film 5 may be disposed so as not to overlap the inner peripheral portion 6a of the concealing portion 6 when the laminated glass 1 is viewed from the front, and although not shown, the concealing portion 6 is not shown. It may be arranged so as to overlap with the inner peripheral part 6a. However, in any case, the cut end 5a of the infrared reflective film 5 is disposed within a range of 10 mm on both sides of the inner peripheral portion 6a of the concealing portion 6.

このように、樹脂フィルム51の熱収縮率が最大となる方向および該方向に直交する方向の熱収縮率をそれぞれ所定の範囲内とするとともに、そのカット端を隠蔽部6の内周部6aに対し所定の範囲内に配置することで、合わせガラス1の外周部近傍における赤外線反射フィルム5のシワ、該外周部近傍における第1のガラス基板2と第2のガラス基板3との間に空気が巻き込まれて白くなる発泡、また合わせガラス1を透視したときの透視像の歪みを抑制でき、外観および視認性の良好なものとできる。特に、合わせガラス1の湾曲の程度が大きい場合において、その外周部近傍におけるシワや発泡、透視像の歪みを効果的に抑制できる。   As described above, the heat shrinkage rate in the direction in which the heat shrinkage rate of the resin film 51 is maximum and the direction orthogonal to the direction are set within the predetermined ranges, respectively, and the cut end is formed in the inner peripheral portion 6a of the concealing portion 6 On the other hand, by disposing within a predetermined range, air is formed between the wrinkles of the infrared reflecting film 5 in the vicinity of the outer peripheral portion of the laminated glass 1 and between the first glass substrate 2 and the second glass substrate 3 in the vicinity of the outer peripheral portion. Foaming that becomes engulfed in white and distortion of the fluoroscopic image when the laminated glass 1 is seen through can be suppressed, and the appearance and visibility can be improved. In particular, when the degree of curvature of the laminated glass 1 is large, wrinkles, foaming and distortion of the fluoroscopic image in the vicinity of the outer peripheral portion can be effectively suppressed.

第1のガラス基板2、第2のガラス基板3は、一般的な無機透明ガラス板とすることができ、車輌用等として使用されているものであれば特に限定されないが、通常はフロート法で成形されたフロートガラス板が用いられる。また、第1のガラス基板2、第2のガラス基板3は、例えば、ポリカーボネート板やポリメチルメタクリレート板等の有機透明板とすることもできる。第1のガラス基板2、第2のガラス基板3の厚みは、適宜選択することができるが、通常、1.8〜2.5mmが好ましい。第1のガラス基板2、第2のガラス基板3には、例えば、撥水機能、親水機能、防曇機能等を付与するコーティングが施されていてもよい。   The first glass substrate 2 and the second glass substrate 3 can be general inorganic transparent glass plates, and are not particularly limited as long as they are used for vehicles or the like. A molded float glass plate is used. Moreover, the 1st glass substrate 2 and the 2nd glass substrate 3 can also be used as organic transparent boards, such as a polycarbonate board and a polymethylmethacrylate board, for example. Although the thickness of the 1st glass substrate 2 and the 2nd glass substrate 3 can be selected suitably, 1.8-2.5 mm is preferable normally. For example, the first glass substrate 2 and the second glass substrate 3 may be coated with a water repellent function, a hydrophilic function, an antifogging function, and the like.

第1のガラス基板2、第2のガラス基板3の湾曲の程度は必ずしも限定されないが、合わせガラス1としたときの最大曲深さで、10mm以上が好ましく、20mm以上がより好ましく、30mm以上がさらに好ましい。最大曲深さは、ダブリ値とも記されるものであって、湾曲の程度を表す指標となり、数値が大きいほど湾曲の程度が大きくなり、外周部近傍におけるシワや発泡、透視像の歪みが発生しやすくなる。本発明によれば、特にこのような湾曲の程度が大きいものについて、外周部近傍におけるシワや発泡、透視像の歪みを同時かつ効果的に抑制できる。ここで、最大曲深さ(ダブリ値)は、凸状に湾曲している合わせガラスを凸部側が下向きとなるように配置するとともに、この合わせガラスにおける一対の対向する長辺の中点どうしを結ぶように直線を引いたとき、湾曲部の底部における最も深い点から該直線に引いた垂線の長さをmm単位で表したものである。   The degree of curvature of the first glass substrate 2 and the second glass substrate 3 is not necessarily limited, but the maximum bending depth when the laminated glass 1 is used is preferably 10 mm or more, more preferably 20 mm or more, and more preferably 30 mm or more. Further preferred. The maximum bending depth is also referred to as the double value, and is an index that represents the degree of bending. The larger the value, the larger the degree of bending, and wrinkles, foaming, and distortion of the fluoroscopic image occur near the outer periphery. It becomes easy to do. According to the present invention, wrinkles and foaming in the vicinity of the outer peripheral portion and distortion of the fluoroscopic image can be simultaneously and effectively suppressed particularly for those having a large degree of curvature. Here, the maximum bending depth (double value) is such that the laminated glass that is curved in a convex shape is arranged so that the convex side faces downward, and the midpoints of a pair of opposed long sides in this laminated glass are between When a straight line is drawn so as to connect, the length of the perpendicular drawn to the straight line from the deepest point at the bottom of the curved part is expressed in mm.

第1のガラス基板2および第2のガラス基板3の少なくとも一方の外周部近傍には、略環状の隠蔽部6が形成される。隠蔽部6はべた塗り状のものとされており、その幅は、通常、10〜200mmの範囲内である。   A substantially annular concealing portion 6 is formed in the vicinity of the outer peripheral portion of at least one of the first glass substrate 2 and the second glass substrate 3. The concealing part 6 has a solid coating shape, and its width is usually in the range of 10 to 200 mm.

図示しないが、隠蔽部6に対して合わせガラス1のカット端1aの方向とは反対方向の部分にはフェードアウトバンド部を設けてもよい。フェードアウトバンド部を設ける場合は、例えば、多数のドットが集合したものとされる。ドットとしては、円形、長方形、多角形等の形状が挙げられ、通常、0.001〜10.00mmの範囲で大きさが変更される。フェードアウトバンド部62は、ドット以外の形態とすることもでき、例えば、線幅の異なる複数の線とすることもできる。なお、フェードアウトバンド部を設ける場合についても、フェードアウトバンド部を設けない場合と同様、赤外線反射フィルム5のカット端5aは隠蔽部6の内周部6aを基準として配置する。   Although not shown, a fade-out band portion may be provided in a portion opposite to the direction of the cut end 1 a of the laminated glass 1 with respect to the concealing portion 6. In the case where the fade-out band portion is provided, for example, a large number of dots are gathered. Examples of the dot include shapes such as a circle, a rectangle, and a polygon, and the size is usually changed within a range of 0.001 to 10.00 mm. The fade-out band part 62 can also have a form other than a dot, for example, a plurality of lines having different line widths. In addition, also when providing a fade-out band part, the cut end 5a of the infrared reflective film 5 is arrange | positioned on the basis of the inner peripheral part 6a of the concealing part 6 similarly to the case where a fade-out band part is not provided.

隠蔽部6は、着色セラミックペースト等の公知の材料を用い、公知の製造方法を用いて形成することができる。隠蔽部6の形成に使用されるインクとしては、例えば、濃色顔料、ガラスフリット、耐火物フィラーおよびエチルセルロース等の樹脂が溶剤に分散されてなるインクが用いられる。通常、第1のガラス基板2または第2のガラス基板3となるガラス板に所定のパターンにインクを印刷し、乾燥や紫外線照射等による仮焼付けを行った後、ガラス板を切断機で切断し、第1のガラス基板2または第2のガラス基板3として切り出す。そして、切り出したガラス板を、曲げ工程において所定の型に載せ、加熱炉でガラス軟化点以上に加熱し、冷却して所望の形状に湾曲する。隠蔽部6は、該曲げ工程において加熱冷却されることにより、ガラス板に完全に焼き付けられる。   The concealing portion 6 can be formed using a known material such as a colored ceramic paste and using a known manufacturing method. As the ink used for forming the concealing portion 6, for example, an ink in which dark pigment, glass frit, refractory filler, and resin such as ethyl cellulose are dispersed in a solvent is used. Usually, ink is printed in a predetermined pattern on a glass plate to be the first glass substrate 2 or the second glass substrate 3, and after pre-baking by drying or ultraviolet irradiation, the glass plate is cut with a cutting machine. The first glass substrate 2 or the second glass substrate 3 is cut out. Then, the cut glass plate is placed on a predetermined mold in the bending step, heated to the glass softening point or higher in a heating furnace, cooled, and bent into a desired shape. The concealing part 6 is completely baked on the glass plate by being heated and cooled in the bending step.

接着層4は、第1のガラス基板2や第2のガラス基板3と赤外線反射フィルム5とを有効に接着でき、また合わせガラス1の視認性を十分に確保できるものが好ましく、例えば、熱可塑性樹脂を主成分とする樹脂組成物をシート状に成形した一対の接着シートからなるものが好ましい。このような接着シートの厚みは、0.1〜1mmが好ましく、0.2〜0.8mmがより好ましい。   The adhesive layer 4 is preferably one that can effectively bond the first glass substrate 2 or the second glass substrate 3 and the infrared reflective film 5 and can sufficiently ensure the visibility of the laminated glass 1, for example, thermoplastic. What consists of a pair of adhesive sheet which shape | molded the resin composition which has resin as a main component in a sheet form is preferable. The thickness of such an adhesive sheet is preferably 0.1 to 1 mm, and more preferably 0.2 to 0.8 mm.

熱可塑性樹脂としては、例えば、可塑化ポリビニルアセタール系樹脂、可塑化ポリ塩化ビニル系樹脂、飽和ポリエステル系樹脂、可塑化飽和ポリエステル系樹脂、ポリウレタン系樹脂、可塑化ポリウレタン系樹脂、エチレン−酢酸ビニル共重合体系樹脂、エチレン−エチルアクリレート共重合体系樹脂等の従来からこの種の用途に用いられている熱可塑性樹脂が挙げられる。   Examples of the thermoplastic resin include plasticized polyvinyl acetal resin, plasticized polyvinyl chloride resin, saturated polyester resin, plasticized saturated polyester resin, polyurethane resin, plasticized polyurethane resin, and ethylene-vinyl acetate. The thermoplastic resin conventionally used for this kind of use, such as polymer system resin and ethylene-ethyl acrylate copolymer system resin, is mentioned.

これらの中でも、透明性、耐候性、強度、接着力、耐貫通性、衝撃エネルギー吸収性、耐湿性、遮熱性、および遮音性等の諸性能のバランスに優れたものを得られることから、可塑化ポリビニルアセタール系樹脂が好適に用いられる。これらの熱可塑性樹脂は、単独で用いてもよいし、2種類以上を併用してもよい。上記可塑化ポリビニルアセタール系樹脂における「可塑化」とは、可塑剤の添加により可塑化されていることを意味する。その他の可塑化樹脂についても同様である。   Among these, it is possible to obtain a plastic having an excellent balance of various properties such as transparency, weather resistance, strength, adhesion, penetration resistance, impact energy absorption, moisture resistance, heat insulation, and sound insulation. A polyvinyl acetal resin is preferably used. These thermoplastic resins may be used alone or in combination of two or more. “Plasticization” in the plasticized polyvinyl acetal resin means that it is plasticized by adding a plasticizer. The same applies to other plasticized resins.

上記ポリビニルアセタール系樹脂としては、ポリビニルアルコール(以下、必要に応じて「PVA」と言うこともある)とホルムアルデヒドとを反応させて得られるポリビニルホルマール樹脂、PVAとアセトアルデヒドとを反応させて得られる狭義のポリビニルアセタール樹脂、PVAとn−ブチルアルデヒドとを反応させて得られるポリビニルブチラール樹脂(以下、必要に応じて「PVB」と言うこともある)等が挙げられ、特に、透明性、耐候性、強度、接着力、耐貫通性、衝撃エネルギー吸収性、耐湿性、遮熱性、および遮音性等の諸性能のバランスに優れることから、PVBが好適なものとして挙げられる。なお、これらのポリビニルアセタール系樹脂は、単独で用いてもよいし、2種類以上を併用してもよい。   The polyvinyl acetal-based resin is a polyvinyl formal resin obtained by reacting polyvinyl alcohol (hereinafter sometimes referred to as “PVA” if necessary) and formaldehyde, and a narrow meaning obtained by reacting PVA and acetaldehyde. Polyvinyl acetal resin, polyvinyl butyral resin obtained by reacting PVA and n-butyraldehyde (hereinafter sometimes referred to as “PVB” if necessary), etc., in particular, transparency, weather resistance, PVB is preferred as it is excellent in balance of various properties such as strength, adhesive strength, penetration resistance, impact energy absorption, moisture resistance, heat insulation, and sound insulation. These polyvinyl acetal resins may be used alone or in combination of two or more.

上記ポリビニルアセタール系樹脂の合成に用いられるPVAは、特に限定されるものではないが、平均重合度が200〜5000のものが好ましく、より好ましくは500〜3000のものである。上記ポリビニルアセタール系樹脂は、特に限定されるものではないが、アセタール化度が40〜85モル%であるものが好ましく、より好ましくは50〜75モル%のものである。上記ポリビニルアセタール系樹脂は、残存アセチル基量が30モル% 以下であることが好ましく、より好ましくは0.5〜24モル%である。   The PVA used for the synthesis of the polyvinyl acetal resin is not particularly limited, but preferably has an average degree of polymerization of 200 to 5000, more preferably 500 to 3000. The polyvinyl acetal resin is not particularly limited, but preferably has a degree of acetalization of 40 to 85 mol%, more preferably 50 to 75 mol%. The polyvinyl acetal resin preferably has a residual acetyl group content of 30 mol% or less, more preferably 0.5 to 24 mol%.

熱可塑性樹脂、好ましくはポリビニルアセタール系樹脂を可塑化するために用いられる可塑剤としては、例えば、一塩基性有機酸エステル系、多塩基性有機酸エステル系等の有機酸エステル系可塑剤や、有機リン酸系、有機亜リン酸系等のリン酸系可塑剤等が挙げられる。   Examples of the plasticizer used for plasticizing a thermoplastic resin, preferably a polyvinyl acetal resin, include, for example, organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, And phosphoric acid plasticizers such as organic phosphoric acid and organic phosphorous acid.

熱可塑性樹脂、好ましくはポリビニルアセタール系樹脂に対する可塑剤の添加量は、熱可塑性樹脂の平均重合度や、ポリビニルアセタール系樹脂の平均重合度やアセタール化度および残存アセチル基量等によっても異なるが、熱可塑性樹脂、好ましくはポリビニルアセタール系樹脂100質量部に対し、可塑剤10〜80質量部が好ましい。熱可塑性樹脂、好ましくはポリビニルアセタール系樹脂100質量部に対する可塑剤の添加量が10質量部未満であると、熱可塑性樹脂、好ましくはポリビニルアセタール系樹脂の可塑化が不十分となって、成形が困難となることがあり、逆に熱可塑性樹脂、好ましくはポリビニルアセタール系樹脂100質量部に対する可塑剤の添加量が80質量部を超えると、得られる接着層の強度が不十分となることがある。   The amount of the plasticizer added to the thermoplastic resin, preferably the polyvinyl acetal resin, varies depending on the average degree of polymerization of the thermoplastic resin, the average degree of polymerization of the polyvinyl acetal resin, the degree of acetalization, and the amount of residual acetyl groups. The amount of the plasticizer is preferably 10 to 80 parts by mass with respect to 100 parts by mass of the thermoplastic resin, preferably the polyvinyl acetal resin. When the addition amount of the plasticizer relative to 100 parts by mass of the thermoplastic resin, preferably polyvinyl acetal resin is less than 10 parts by mass, plasticization of the thermoplastic resin, preferably polyvinyl acetal resin becomes insufficient, and molding is not possible. On the contrary, if the amount of the plasticizer added exceeds 100 parts by mass of the thermoplastic resin, preferably polyvinyl acetal resin, the strength of the resulting adhesive layer may be insufficient. .

樹脂組成物は、上記熱可塑性樹脂の他、例えば接着性調整剤、カップリング剤、界面活性剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、赤外線吸収剤、蛍光剤、脱水剤、消泡剤、帯電防止剤、難燃剤等の各種添加剤の1種類もしくは2種類以上を含有していてもよい。   In addition to the above thermoplastic resins, the resin composition is, for example, an adhesion modifier, a coupling agent, a surfactant, an antioxidant, a thermal stabilizer, a light stabilizer, an ultraviolet absorber, an infrared absorber, a fluorescent agent, a dehydrating agent. One kind or two or more kinds of various additives such as an agent, an antifoaming agent, an antistatic agent and a flame retardant may be contained.

赤外線反射フィルム5は、図3に示すように基材となる樹脂フィルム51上に赤外線反射膜52が形成されたものである。樹脂フィルム51は、熱収縮率が最大となる方向の熱収縮率が1%を超え2%未満、該方向に直交する方向の熱収縮率が1%を超え2%未満である。但し、樹脂フィルム51の熱収縮率は150℃で30分間保持したときのものである。なお、熱収縮率が最大となる方向の熱収縮率と該方向に直交する方向の熱収縮率とは、必ずしも異なっている必要はなく、互いに同一であってもよい。   As shown in FIG. 3, the infrared reflective film 5 is obtained by forming an infrared reflective film 52 on a resin film 51 serving as a base material. The resin film 51 has a thermal shrinkage rate in the direction in which the thermal shrinkage rate is maximized exceeding 1% and less than 2%, and a thermal shrinkage rate in a direction orthogonal to the direction is more than 1% and less than 2%. However, the thermal shrinkage rate of the resin film 51 is that when the resin film 51 is held at 150 ° C. for 30 minutes. Note that the thermal contraction rate in the direction in which the thermal contraction rate is maximum and the thermal contraction rate in the direction orthogonal to the direction do not necessarily have to be different from each other, and may be the same.

一般に、樹脂フィルム51は、その構成材料をフィルム状に延伸することにより製造される。このような延伸により製造されるものについては、延伸による応力が残留応力として存在しており、この残留応力により合わせガラス1を製造する際の加熱加圧により熱収縮する。特に、主たる延伸方向であるフィルム成形方向、いわゆるMD方向について熱収縮しやすい。   Generally, the resin film 51 is manufactured by extending the constituent material into a film shape. About what is manufactured by such extending | stretching, the stress by extending | stretching exists as a residual stress, and it heat-shrinks by the heating-pressing at the time of manufacturing the laminated glass 1 with this residual stress. In particular, the film tends to shrink in the film forming direction, which is the main stretching direction, so-called MD direction.

樹脂フィルム51の熱収縮率が最大となる方向および該方向に直交する方向の熱収縮率を、それぞれ1%を超え2%未満とすることで、合わせガラス1の外周部近傍に発生するシワや発泡、また透視像の歪みを抑制できる。すなわち、いずれかの方向の熱収縮率が1%以下である場合、熱収縮率が小さすぎるために、合わせガラス1の外周部近傍にシワが発生しやすく、特に合わせガラス1の湾曲が大きい場合に湾曲に追随できないためにシワが発生しやすい。また、いずれかの方向の熱収縮率が2%以上の場合、熱収縮率が大きすぎるために、合わせガラス1の外周部近傍に発泡が発生しやすくなるとともに、透視像の歪みも発生しやすく、特に合わせガラス1の湾曲が大きい場合に発泡や透視像の歪みが発生しやすい。   By setting the heat shrinkage rate in the direction in which the heat shrinkage rate of the resin film 51 is maximum and the direction perpendicular to the direction to more than 1% and less than 2%, wrinkles generated near the outer peripheral portion of the laminated glass 1 Foaming and distortion of the fluoroscopic image can be suppressed. That is, when the heat shrinkage rate in either direction is 1% or less, the heat shrinkage rate is too small, so that wrinkles are likely to occur in the vicinity of the outer peripheral portion of the laminated glass 1, and particularly when the laminated glass 1 has a large curvature. Since it cannot follow the curve, wrinkles are likely to occur. Further, when the thermal shrinkage rate in any direction is 2% or more, the thermal shrinkage rate is too large, so that foaming is likely to occur in the vicinity of the outer peripheral portion of the laminated glass 1, and distortion of the fluoroscopic image is also likely to occur. In particular, foaming and distortion of the fluoroscopic image are likely to occur when the laminated glass 1 has a large curvature.

樹脂フィルム51は、熱収縮率が最大となる方向の熱収縮率が1.1%以上1.9%以下、かつ該方向に直交する方向の熱収縮率が1.1%以上1.9%以下であることが好ましく、熱収縮率が最大となる方向の熱収縮率が1.3%以上1.7%以下、かつ該方向に直交する方向の熱収縮率が1.3%以上1.7%以下であることがより好ましい。熱収縮率の調整は、製造時の延伸状態等を適宜調整することにより行うことができる。   The resin film 51 has a heat shrinkage rate in the direction in which the heat shrinkage rate is maximum of 1.1% to 1.9%, and a heat shrinkage rate in a direction orthogonal to the direction of 1.1% to 1.9%. The heat shrinkage rate in the direction in which the heat shrinkage rate is maximum is 1.3% to 1.7%, and the heat shrinkage rate in the direction perpendicular to the direction is 1.3% to 1. More preferably, it is 7% or less. The heat shrinkage rate can be adjusted by appropriately adjusting the stretched state during production.

ここで、樹脂フィルム51の熱収縮率は、上記したように150℃で30分間保持したときのものである。熱収縮率の測定のための熱処理は、加熱用オーブンに宙吊りに浮かせた状態(無負荷状態)で行われる。また、熱収縮率は、熱処理前の長さをL、熱処理後の長さLとしたとき、下記式(1)により算出される。ここで、長さL、Lは、樹脂フィルム51における熱収縮率が最大となる方向または該方向に直交する方向の長さである。
熱収縮率=((L−L)/L)×100[%] ……(1)
Here, the thermal shrinkage rate of the resin film 51 is that when the resin film 51 is held at 150 ° C. for 30 minutes as described above. The heat treatment for measuring the heat shrinkage rate is performed in a state suspended in a heating oven (no load state). The heat shrinkage rate is calculated by the following formula (1), where L 1 is the length before heat treatment and L 2 is the length after heat treatment. Here, the lengths L 1 and L 2 are lengths in the direction in which the thermal shrinkage rate in the resin film 51 is maximized or in the direction perpendicular to the direction.
Thermal contraction rate = ((L 1 −L 2 ) / L 1 ) × 100 [%] (1)

具体的には、以下のようにして熱収縮率を求めることができる。
まず、樹脂フィルム51から熱収縮率が最大となる方向または該方向に直交する方向に沿って、図4に示すような短冊状の試験片55を切り出す。試験片55は、例えば長さ150mm×幅20mmのものである。この試験片55には、長手方向に約100mmの間隔を空けて一対の基準線56、57を記入し、この基準線56、57間の長さLを測定する。この長さLは、上記式(1)のLに相当する。
Specifically, the thermal contraction rate can be obtained as follows.
First, a strip-shaped test piece 55 as shown in FIG. 4 is cut out from the resin film 51 along a direction in which the thermal shrinkage rate is maximum or a direction orthogonal to the direction. The test piece 55 has a length of 150 mm and a width of 20 mm, for example. A pair of reference lines 56 and 57 are written on the test piece 55 with an interval of about 100 mm in the longitudinal direction, and a length L between the reference lines 56 and 57 is measured. This length L corresponds to L 1 in the above formula (1).

熱風循環式オーブン内に試験片55を垂直に吊り下げ、150℃まで昇温して30分間保持し、室温まで自然冷却して60分間保持した後、再び長さLを測定する。この長さLは、上記式(1)のLに相当する。そして、得られた長さL(L、L)を上記式(1)に代入することにより熱収縮率を算出することができる。 The test piece 55 is suspended vertically in a hot air circulation oven, heated to 150 ° C. and held for 30 minutes, naturally cooled to room temperature and held for 60 minutes, and then the length L is measured again. This length L corresponds to L 2 in the above formula (1). Then, the thermal contraction rate can be calculated by substituting the obtained length L (L 1 , L 2 ) into the above formula (1).

通常、フィルム成形方向は熱収縮率が最大となる方向に相当することから、予めフィルム成形方向がわかっていれば、このフィルム成形方向について求められた熱収縮率を上記した熱収縮率が最大となる方向の熱収縮率とすることができる。同様の理由から、フィルム成形方向に直交する方向について求められた熱収縮率を上記した熱収縮率が最大となる方向に直交する方向の熱収縮率とすることができる。   Usually, the film forming direction corresponds to the direction in which the heat shrinkage rate is maximized. Therefore, if the film forming direction is known in advance, the heat shrinkage rate obtained for the film forming direction is the maximum heat shrinkage rate. The heat shrinkage rate in the direction of For the same reason, the thermal contraction rate obtained in the direction orthogonal to the film forming direction can be set as the thermal contraction rate in the direction orthogonal to the direction in which the thermal contraction rate is maximized.

樹脂フィルム51の構成材料は、所定の熱収縮率が得られるものであれば特に限定されず、例えば、ポリカーボネート、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリエーテルスルフォン、ポリアリレート、ナイロン、シクロオレフィンポリマー等が挙げられる。   The constituent material of the resin film 51 is not particularly limited as long as a predetermined heat shrinkage can be obtained. For example, polycarbonate, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide , Polyethersulfone, polyarylate, nylon, cycloolefin polymer and the like.

通常、比較的に高強度であり、合わせガラス1の製造時における損傷を抑制できることから、ポリエチレンテレフタレート(PET)が好適に用いられる。樹脂フィルム51の厚さは、必ずしも限定されないが、5〜200μmが好ましく、25〜125μmがより好ましく、50〜100μmがさらに好ましい。   Usually, polyethylene terephthalate (PET) is suitably used because it has a relatively high strength and can suppress damage during the production of the laminated glass 1. Although the thickness of the resin film 51 is not necessarily limited, 5-200 micrometers is preferable, 25-125 micrometers is more preferable, and 50-100 micrometers is further more preferable.

赤外線反射膜52は、例えば、酸化物層53と金属層54とが交互に(2n+1)層(但し、nは1以上4以下の整数)積層されたものである。なお、図3に示すものについてはn=1のもの、すなわち酸化物層53と金属層54との合計層数が3であるものを示している。図示しないが、赤外線反射膜52上には保護層等が形成されていてもよい。   For example, the infrared reflective film 52 is formed by alternately stacking (2n + 1) layers of oxide layers 53 and metal layers 54 (where n is an integer of 1 or more and 4 or less). In addition, about what is shown in FIG. 3, it is a thing of n = 1, ie, the thing whose total number of layers of the oxide layer 53 and the metal layer 54 is three. Although not shown, a protective layer or the like may be formed on the infrared reflective film 52.

赤外線反射膜52における酸化物層53は、一般に屈折率1.7〜2.6(波長550nmでの屈折率、以下同様)が好ましく、特に1.8〜2.6が好ましく、例えば、酸化ビスマス、酸化スズ、酸化亜鉛、酸化タンタル、酸化ニオブ、酸化タングステン、酸化チタン、酸化ジルコニウム、酸化インジウム等の金属酸化物を主成分とする層、あるいはこれらの混合物を含む層が好ましい。特に、酸化亜鉛を主成分とする層、または酸化インジウムを主成分とする層が好ましい。酸化亜鉛を主成分とする層としては、酸化亜鉛単独の酸化物の層、または、スズ、アルミニウム、クロム、チタン、シリコン、ホウ素、マグネシウム、インジウム、およびガリウムから選ばれる少なくとも1種以上の元素を含有する酸化亜鉛を主成分とする層が挙げられ、酸化インジウムを主成分とする層としては、スズを含有する酸化インジウムを主成分とする層が挙げられる。   The oxide layer 53 in the infrared reflective film 52 generally has a refractive index of 1.7 to 2.6 (refractive index at a wavelength of 550 nm, the same shall apply hereinafter), particularly preferably 1.8 to 2.6, such as bismuth oxide. In addition, a layer mainly containing a metal oxide such as tin oxide, zinc oxide, tantalum oxide, niobium oxide, tungsten oxide, titanium oxide, zirconium oxide, or indium oxide, or a layer containing a mixture thereof is preferable. In particular, a layer mainly composed of zinc oxide or a layer mainly composed of indium oxide is preferable. As a layer mainly composed of zinc oxide, an oxide layer of zinc oxide alone or at least one element selected from tin, aluminum, chromium, titanium, silicon, boron, magnesium, indium, and gallium is used. Examples include a layer mainly containing zinc oxide, and examples of the layer mainly containing indium oxide include a layer mainly containing indium oxide containing tin.

これらの中でも、金属層54を安定的に、かつ高い結晶性を有しながら形成できる点から、酸化亜鉛、または、スズ、アルミニウム、クロム、チタン、シリコン、ホウ素、マグネシウム、インジウム、およびガリウムから選ばれる1種以上の元素を含有する酸化亜鉛、特にアルミニウムおよびチタンの少なくとも一方を含有する酸化亜鉛を主成分とする層が好ましい。なお、各酸化物層53は、単層であってもよいし、多層であってもよい。   Among these, zinc oxide or tin, aluminum, chromium, titanium, silicon, boron, magnesium, indium, and gallium are selected from the point that the metal layer 54 can be formed stably and with high crystallinity. A layer mainly composed of zinc oxide containing one or more elements, particularly zinc oxide containing at least one of aluminum and titanium is preferable. Each oxide layer 53 may be a single layer or multiple layers.

金属層54は、銀を主成分とするものが好ましく、例えば、銀のみからなるもの、または銀を主成分とする合金からなるものが挙げられる。金属層54における銀以外の構成成分は、例えばパラジウム、金、銅等であり、これら銀以外の構成成分の含有量は合計で0.3〜10原子%が好ましい。   The metal layer 54 is preferably composed mainly of silver, for example, composed of only silver or composed of an alloy composed mainly of silver. Constituent components other than silver in the metal layer 54 are, for example, palladium, gold, copper, etc., and the content of these constituent components other than silver is preferably 0.3 to 10 atomic% in total.

酸化物層53や金属層54の厚さは、全体の層数や各層の構成材料によっても異なるが、例えば、各酸化物層53は5〜100nm、各金属層54は5〜20nm、全ての酸化物層53と金属層54とを合わせた全体の層厚は50〜400nm、より好ましくは150〜300nmである。   The thicknesses of the oxide layer 53 and the metal layer 54 vary depending on the total number of layers and the constituent materials of each layer. For example, each oxide layer 53 is 5 to 100 nm, each metal layer 54 is 5 to 20 nm, The total layer thickness of the oxide layer 53 and the metal layer 54 is 50 to 400 nm, more preferably 150 to 300 nm.

なお、赤外線反射膜52としては、酸化物層53と金属層54とからなるものの代わりに、高屈折率層と低屈折率層とからなるものとしてもよい。通常、高屈折率層と低屈折率層とを合計した層数は3以上であり、高屈折率層の厚さが70〜150nm、低屈折率層の厚さが100〜200nmである。   The infrared reflective film 52 may be composed of a high refractive index layer and a low refractive index layer instead of the oxide layer 53 and the metal layer 54. Usually, the total number of the high refractive index layer and the low refractive index layer is 3 or more, the thickness of the high refractive index layer is 70 to 150 nm, and the thickness of the low refractive index layer is 100 to 200 nm.

高屈折率層としては、例えば屈折率が1.9以上、好ましくは1.9〜2.5の誘電体であり、具体的には、酸化タンタル(屈折率:2.0〜2.2)、酸化チタン(屈折率:2.2〜2.5)、酸化ジルコニウム(屈折率:1.9〜2.0)、および酸化ハフニウム(屈折率:1.95〜2.15)等の高屈折率材料の中から選ばれる少なくとも1種からなるものが挙げられる。   The high refractive index layer is, for example, a dielectric having a refractive index of 1.9 or more, preferably 1.9 to 2.5, and specifically, tantalum oxide (refractive index: 2.0 to 2.2). , Titanium oxide (refractive index: 2.2 to 2.5), zirconium oxide (refractive index: 1.9 to 2.0), and hafnium oxide (refractive index: 1.95 to 2.15) The thing which consists of at least 1 sort (s) chosen from rate materials is mentioned.

また、低屈折率層としては、例えば、屈折率が1.5以下、好ましくは1.2〜1.5の誘電体であり、具体的には酸化シリコン(屈折率:1.44〜1.48)、およびフッ化マグネシウム(屈折率:1.35〜1.41)等の低屈折率材料の中から選ばれる少なくとも1種からなるものが挙げられる。   The low refractive index layer is, for example, a dielectric having a refractive index of 1.5 or less, preferably 1.2 to 1.5, specifically silicon oxide (refractive index: 1.44 to 1.4). 48) and at least one selected from low refractive index materials such as magnesium fluoride (refractive index: 1.35 to 1.41).

赤外線フィルム5は、樹脂材料のみからなる機能性フィルムであってもよい。この場合、フィルム材料は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリエチレン、ポリスチレン、ポリカーボネート、ナイロン、ポリエーテルスルフォン、ポリフッ化ビニリデンとポリメチルメタクリレートの混合物、エチレン、と不飽和モノカルボン酸とのコポリマー、スチレンとメチルメタクリレートのコポリマー等を組み合わせることにより、所望の機能を発現させることが出来る。   The infrared film 5 may be a functional film made only of a resin material. In this case, the film material is composed of polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polyethylene, polystyrene, polycarbonate, nylon, polyether sulfone, a mixture of polyvinylidene fluoride and polymethyl methacrylate, ethylene, and an unsaturated monocarboxylic acid. A desired function can be expressed by combining a copolymer, a copolymer of styrene and methyl methacrylate, and the like.

赤外線反射フィルム5は、既に説明したように、合わせガラス1を正面視したとき、そのカット端5aが、隠蔽部6の内周部6aに対し、合わせガラス1のカット端1aの方向および該方向と反対方向のそれぞれ10mmの範囲内に配置される。ここで、赤外線反射フィルム5のカット端5aは、その全周が上記範囲内に配置されるが、必ずしも周方向において隠蔽部6の内周部6aから常に一定の距離に配置される必要はなく、少なくとも全周が上記範囲内に配置されていれば該距離は周方向において変化してもよい。   As already described, when the laminated glass 1 is viewed from the front, the infrared reflecting film 5 has its cut end 5a in the direction of the cut end 1a of the laminated glass 1 and the direction with respect to the inner peripheral portion 6a of the concealing portion 6. Are arranged within a range of 10 mm in the opposite direction. Here, the cut edge 5a of the infrared reflective film 5 is disposed within the above-mentioned range, but it is not always necessary to be disposed at a constant distance from the inner peripheral part 6a of the concealing part 6 in the circumferential direction. As long as at least the entire circumference is disposed within the above range, the distance may change in the circumferential direction.

赤外線反射フィルム5のカット端5aが隠蔽部6の内周部6aから合わせガラス1のカット端1aの方向に10mmを超えて離れる場合、赤外線反射フィルム5の形状が大きすぎるために、合わせガラス1の外周部近傍にシワが発生しやすく、特に合わせガラス1の湾曲が大きい場合にシワが発生しやすい。また、赤外線反射フィルム5のカット端5aが隠蔽部6の内周部6aから合わせガラス1のカット端1aとは反対の方向に10mmを超えて離れる場合、シワの発生は抑制されるが、赤外線反射フィルム5のカット端5aと隠蔽部6の内周部6aとの距離が離れすぎるために、外観および車内側からの視認性等の観点から好ましくない。赤外線反射フィルム5のカット端5aは、隠蔽部6の内周部6aから、合わせガラス1のカット端1aの方向またはその反対の方向に5mmの範囲内に配置されることが好ましい。   When the cut end 5a of the infrared reflective film 5 is separated from the inner peripheral portion 6a of the concealing portion 6 in the direction of the cut end 1a of the laminated glass 1 by more than 10 mm, the shape of the infrared reflective film 5 is too large, so that the laminated glass 1 Wrinkles are likely to occur in the vicinity of the outer periphery of the glass, and particularly when the laminated glass 1 has a large curvature, wrinkles are likely to occur. Moreover, when the cut end 5a of the infrared reflective film 5 is separated from the inner peripheral portion 6a of the concealing portion 6 by more than 10 mm in the direction opposite to the cut end 1a of the laminated glass 1, the generation of wrinkles is suppressed. Since the distance between the cut end 5a of the reflective film 5 and the inner peripheral portion 6a of the concealing portion 6 is too large, it is not preferable from the viewpoints of appearance and visibility from the inside of the vehicle. The cut end 5a of the infrared reflecting film 5 is preferably disposed within a range of 5 mm from the inner peripheral portion 6a of the concealing portion 6 in the direction of the cut end 1a of the laminated glass 1 or in the opposite direction.

合わせガラス1は、自動車、鉄道、船舶等に適用することができ、特に自動車のフロントガラスに好適である。合わせガラス1は、外周部近傍におけるシワや発泡、また透視像の歪みが抑制され、特に湾曲が大きい場合において、シワや発泡、また透視像の歪みが抑制され、外観および視認性が良好なことから、これらの用途、特に自動車のフロントガラスに好適である。   The laminated glass 1 can be applied to automobiles, railways, ships, and the like, and is particularly suitable for automobile windshields. Laminated glass 1 is capable of suppressing wrinkles and foaming in the vicinity of the outer peripheral portion, and distortion of the fluoroscopic image, and particularly having a large curvature, suppressing wrinkles and foaming, and distortion of the fluoroscopic image, and has good appearance and visibility. Therefore, it is suitable for these uses, particularly for automobile windshields.

次に、合わせガラス1の製造方法について説明する。
合わせガラス1は、例えば、赤外線反射フィルム5の両面にそれぞれ接着層4となる第1の接着シートおよび第2の接着シートを重ね合わせて加熱加圧して積層体とする工程と、該積層体の両面にそれぞれ第1のガラス基板2および第2のガラス基板3を重ね合わせて加熱加圧して合わせガラス1とする工程とを経て製造することができる(以下、第1の方法と記す)。
Next, the manufacturing method of the laminated glass 1 is demonstrated.
The laminated glass 1 includes, for example, a step of laminating a first adhesive sheet and a second adhesive sheet that become the adhesive layer 4 on both surfaces of the infrared reflective film 5 and heating and pressing to form a laminate, The first glass substrate 2 and the second glass substrate 3 are superposed on both surfaces and heated and pressed to form a laminated glass 1 (hereinafter referred to as a first method).

また、合わせガラス1は、例えば、第1のガラス基板2、第1の接着シート、赤外線反射フィルム5、第2の接着シート、および第2のガラス基板3をこの順に重ね合わせて積層体とする工程と、該積層体を加熱加圧することにより合わせガラス1とする工程とを経て製造することができる(以下、第2の方法と記す)。   Moreover, the laminated glass 1 makes the laminated body by superimposing the 1st glass substrate 2, the 1st adhesive sheet, the infrared reflective film 5, the 2nd adhesive sheet, and the 2nd glass substrate 3 in this order, for example. It can be manufactured through a step and a step of forming the laminated glass 1 by heating and pressing the laminate (hereinafter referred to as a second method).

合わせガラス1は、第1の方法のように、一部の構成層のみを積層して積層体とした後、これに第1のガラス基板2および第2のガラス基板3を圧着して製造してもよいし、また第2の方法のように、全構成層を積層して積層体とした後、これを圧着して製造してもよい。   The laminated glass 1 is manufactured by laminating only a part of the constituent layers to form a laminated body as in the first method, and then bonding the first glass substrate 2 and the second glass substrate 3 to the laminated body. Alternatively, as in the second method, all the constituent layers may be laminated to form a laminated body, and then this may be manufactured by pressure bonding.

いずれの製造方法についても、赤外線反射フィルム5として、熱収縮率が最大となる方向の熱収縮率が1%を超え2%未満、かつ該方向に直交する方向の熱収縮率が1%を超え2%未満である樹脂フィルム51を有し、最終的に圧着して合わせガラス1としたときに、カット端5aが隠蔽部6の内周部6aから合わせガラス1のカット端1aの方向および該方向と反対方向のそれぞれ10mmの範囲内となるような形状および大きさのものを用いる。   In any of the manufacturing methods, as the infrared reflective film 5, the thermal shrinkage rate in the direction in which the thermal shrinkage rate is maximum is more than 1% and less than 2%, and the thermal shrinkage rate in the direction orthogonal to the direction is more than 1%. When it has a resin film 51 that is less than 2% and is finally crimped into a laminated glass 1, the cut end 5 a extends from the inner peripheral part 6 a of the concealing part 6 to the cut end 1 a of the laminated glass 1 and the Use a shape and a size that are within a range of 10 mm in the opposite direction.

第1の方法における積層体の製造は、赤外線反射フィルム5の両面にそれぞれ第1の接着シートおよび第2の接着シートを重ね合わせたものを、例えば温度約40〜80℃、圧力約0.1〜1.0MPaの条件で加熱加圧することにより行うことができる。   In the production of the laminate in the first method, the first adhesive sheet and the second adhesive sheet are superimposed on both surfaces of the infrared reflective film 5, respectively, for example, at a temperature of about 40 to 80 ° C. and a pressure of about 0.1. It can be performed by heating and pressing under a condition of ˜1.0 MPa.

また、第1の方法における圧着は、例えば、積層体の両面にそれぞれ第1のガラス基板2および第2のガラス基板3を重ね合わせたものをゴムバッグのような真空バッグ中に入れ、圧力が約1〜36kPaとなるように脱気しつつ約70〜110℃に加熱して予備圧着した後、オートクレーブにて温度120〜150℃、圧力約0.98〜1.47MPaで加熱加圧して行うことができる。   The pressure bonding in the first method is performed, for example, by putting the first glass substrate 2 and the second glass substrate 3 on both sides of the laminate in a vacuum bag such as a rubber bag, and applying pressure. It is heated to about 70 to 110 ° C. while pre-depressing while degassing so as to be about 1 to 36 kPa, and then heated and pressurized at a temperature of 120 to 150 ° C. and a pressure of about 0.98 to 1.47 MPa in an autoclave. be able to.

一方、第2の方法における圧着についても、同様にして積層体をゴムバッグのような真空バッグ中に入れ、圧力が約1〜36kPaとなるように脱気しつつ約70〜110℃に加熱して予備圧着した後、オートクレーブにて温度約120〜150℃、圧力約0.98〜1.47MPaで加熱加圧して行うことができる。   On the other hand, for the pressure bonding in the second method, similarly, the laminate is put in a vacuum bag such as a rubber bag and heated to about 70 to 110 ° C. while degassing so that the pressure becomes about 1 to 36 kPa. After pre-bonding, it can be carried out by heating and pressurizing in an autoclave at a temperature of about 120 to 150 ° C. and a pressure of about 0.98 to 1.47 MPa.

以下、本発明について、実施例を参照してより詳細に説明する。
なお、下記の例1〜6のうち、例4が本発明の実施例となるものであり、その他が本発明の比較例となるものである。
Hereinafter, the present invention will be described in more detail with reference to examples.
Of the following Examples 1 to 6, Example 4 is an example of the present invention, and the others are comparative examples of the present invention.

(例1)
PETフィルムとして、熱収縮率が最大となる方向(フィルム成形方向(MD方向))の熱収縮率が1.0%、該方向に直交する方向(フィルム成形方向に直交する方向(TD方向))の熱収縮率が1.0%のもの(三菱樹脂社製、商品名:O321E100、UE82−HX−4、厚さ100μm)を用意した。なお、熱収縮率が最大となる方向の熱収縮率は、上記測定方法により求めた3枚のPETフィルムについての熱収縮率が最大となる方向の熱収縮率を平均したものである。同様に、直交する方向の熱収縮率は、3枚のPETフィルムについての直交する方向の熱収縮率を平均したものである。
(Example 1)
As a PET film, the heat shrinkage rate in the direction (film forming direction (MD direction)) having the maximum heat shrinkage rate is 1.0%, and the direction perpendicular to the direction (direction perpendicular to the film forming direction (TD direction)). (Commercial name: O321E100, UE82-HX-4, thickness 100 μm, manufactured by Mitsubishi Plastics, Inc.) was prepared. In addition, the heat shrinkage rate in the direction in which the heat shrinkage rate is maximized is an average of the heat shrinkage rates in the direction in which the heat shrinkage rates of the three PET films obtained by the measurement method are maximized. Similarly, the heat shrinkage rate in the orthogonal direction is the average of the heat shrinkage rates in the orthogonal direction for the three PET films.

このPETフィルム上に、以下に示すようにマグネトロンスパッタリング法により高屈折率誘電体層となるNb層と低屈折率誘電体層となるSiO層とを交互に合わせて9層積層して赤外線反射膜を形成し、赤外線反射フィルムとした。 On this PET film, as shown below, nine layers of Nb 2 O 5 layers to be high refractive index dielectric layers and SiO 2 layers to be low refractive index dielectric layers are alternately laminated by magnetron sputtering as shown below. Thus, an infrared reflecting film was formed to obtain an infrared reflecting film.

なお、各Nb層は、NBOターゲット(AGCセラミック社製、商品名:NBO)を用いて、アルゴンガスに5体積%の酸素ガスを混合した混合ガスを導入しつつ、0.1Paの圧力で周波数20kHz、電力密度5.1W/cm、反転パルス幅5μsecのパルススパッタを行って形成した。 Incidentally, each of Nb 2 O 5 layer, NBO target (AGC ceramic trade name: NBO) using, while introducing a mixed gas of 5 vol% of oxygen gas to argon gas, 0.1 Pa of It was formed by performing pulse sputtering with a pressure of frequency 20 kHz, power density 5.1 W / cm 2 , and inversion pulse width 5 μsec.

また、各SiO層は、Siターゲットを用いてアルゴンガスに27体積%の酸素ガスを混合した混合ガスを導入しつつ、0.3Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行って形成した。 In addition, each SiO 2 layer is introduced with a mixed gas in which 27 vol% oxygen gas is mixed with argon gas using a Si target, while a frequency of 20 kHz and a power density of 3.8 W / cm 2 at a pressure of 0.3 Pa. It was formed by performing pulse sputtering with an inversion pulse width of 5 μsec.

各Nb層、SiO層の厚さは、成膜時間を変更することにより調整し、PETフィルム側から順にNb層(95nm)/SiO層(153nm)/Nb層(95nm)/SiO層(153nm)/Nb層(95nm)/SiO層(153nm)/Nb層(95nm)/SiO層(25nm)/Nb層(10nm)とした。 The thickness of each Nb 2 O 5 layer and SiO 2 layer is adjusted by changing the film formation time, and in order from the PET film side, Nb 2 O 5 layer (95 nm) / SiO 2 layer (153 nm) / Nb 2 O 5 layers (95 nm) / SiO 2 layer (153 nm) / Nb 2 O 5 layer (95 nm) / SiO 2 layer (153 nm) / Nb 2 O 5 layer (95 nm) / SiO 2 layer (25 nm) / Nb 2 O 5 layer (10 nm).

次に、第1のガラス基板、第1の接着シート、上記赤外線反射フィルム、第2の接着シート、第2のガラス基板を、この順に重ね合わせて端部を仮止めして積層体とした。   Next, the first glass substrate, the first adhesive sheet, the infrared reflective film, the second adhesive sheet, and the second glass substrate were superposed in this order, and the ends were temporarily fixed to obtain a laminate.

ここで、第1のガラス基板および第2のガラス基板には、車両用フロントガラスとなる湾曲状態の異なる3種類のもの(型式A(ダブリ値:15mm)、型式B(ダブリ値:25mm)、型式C(ダブリ値:35mm))を用いた。また、第2のガラス基板には、外周部近傍における内側表面に幅20mmの略環状の隠蔽部を設けた。   Here, the first glass substrate and the second glass substrate have three kinds of different curved states (model A (double value: 15 mm), model B (double value: 25 mm)) to be a vehicle windshield. Model C (double value: 35 mm)) was used. Further, the second glass substrate was provided with a substantially annular concealing portion having a width of 20 mm on the inner surface in the vicinity of the outer peripheral portion.

赤外線反射フィルムは、合わせガラスとしたときに、そのカット端が第1のガラス基板および第2のガラス基板の外周部に達するもの、すなわち隠蔽部の全体に重なる大きさのものとした(カットバック無し)。また、第1の接着シート、第2の接着シートは、厚さ0.38mmのPVBフィルム(ソルーシア・ジャパン社製)とした。   When the infrared reflecting film is made of laminated glass, the cut end thereof reaches the outer periphery of the first glass substrate and the second glass substrate, that is, has a size that overlaps the entire concealing portion (cutback). None). The first adhesive sheet and the second adhesive sheet were PVB films (manufactured by Solusia Japan) having a thickness of 0.38 mm.

そして、真空バッグに積層体を入れ、圧力計の表示が100kPa以下となるように脱気した後120℃に加熱して予備圧着し、さらにオートクレーブにて温度135℃、圧力1.3MPaで60分間の加熱加圧を行い、最終的に冷却して合わせガラスとした。   Then, the laminate is put into a vacuum bag, deaerated so that the pressure gauge display is 100 kPa or less, heated to 120 ° C. and pre-pressed, and further autoclaved at a temperature of 135 ° C. and a pressure of 1.3 MPa for 60 minutes. And finally cooled to obtain a laminated glass.

(例2)
赤外線反射フィルムとして、合わせガラスとしたときに、そのカット端の全周が隠蔽部の内周部に対して合わせガラスのカット端の方向とは反対方向に位置するものであって、隠蔽部の内周部から10mm以内となる大きさのもの、具体的には該内周部から5mmとなる大きさのものを用いた以外は例1と同様にして湾曲状態の異なる3種類の合わせガラス(カットバック有り)を製造した。
(Example 2)
When the laminated glass is used as the infrared reflecting film, the entire circumference of the cut end is located in the direction opposite to the direction of the cut end of the laminated glass with respect to the inner peripheral part of the concealed part, Three types of laminated glass having different curved states in the same manner as in Example 1 except that one having a size within 10 mm from the inner peripheral portion, specifically, one having a size becoming 5 mm from the inner peripheral portion was used. Manufactured).

(例3)
PETフィルムとして、熱収縮率が最大となる方向(フィルム成形方向(MD方向))の熱収縮率が1.5%、直交方向(フィルム成形方向に直交する方向(TD方向))の熱収縮率が1.5%のもの(三菱樹脂社製、商品名:O321E100、UE82−HX−5、厚さ100μm)を用いた以外は例1と同様にして湾曲状態の異なる3種類の合わせガラス(カットバック無し)を製造した。
(Example 3)
As a PET film, the heat shrinkage rate in the direction in which the heat shrinkage rate is maximum (film forming direction (MD direction)) is 1.5%, and the heat shrinkage rate in the orthogonal direction (direction perpendicular to the film forming direction (TD direction)). 3% laminated glass (cut) in the same manner as in Example 1 except that 1.5% (trade name: O321E100, UE82-HX-5, thickness 100 μm) manufactured by Mitsubishi Plastics Co., Ltd. was used. No back) was produced.

(例4)
赤外線反射フィルムとして、合わせガラスとしたときに、そのカット端の全周が隠蔽部の内周部に対して合わせガラスのカット端の方向とは反対方向に位置するものであって、隠蔽部の内周部から10mm以内となる大きさのもの、具体的には該内周部から5mmとなる大きさのものを用いた以外は例3と同様にして湾曲状態の異なる3種類の合わせガラス(カットバック有り)を製造した。
(Example 4)
When the laminated glass is used as the infrared reflecting film, the entire circumference of the cut end is located in the direction opposite to the direction of the cut end of the laminated glass with respect to the inner peripheral part of the concealed part, Three types of laminated glass having different curved states in the same manner as in Example 3 except that one having a size within 10 mm from the inner peripheral portion, specifically, one having a size becoming 5 mm from the inner peripheral portion was used. Manufactured).

(例5)
PETフィルムとして、熱収縮率が最大となる方向(フィルム成形方向(MD方向))の熱収縮率が2.0%、直交方向(フィルム成形方向に直交する方向(TD方向))の熱収縮率が2.0%のもの(三菱樹脂社製、商品名:O321E100、UE82−HX−6、厚さ100μm)を用いた以外は例1と同様にして湾曲状態の異なる3種類の合わせガラス(カットバック無し)を製造した。
(Example 5)
As a PET film, the heat shrinkage rate in the direction (film forming direction (MD direction)) in which the heat shrinkage rate is maximum is 2.0%, and the heat shrinkage rate in the orthogonal direction (direction perpendicular to the film forming direction (TD direction)). 3% laminated glass (cut) in the same manner as in Example 1 except that 2.0% (made by Mitsubishi Plastics, trade name: O321E100, UE82-HX-6, thickness 100 μm) was used. No back) was produced.

(例6)
赤外線反射フィルムとして、合わせガラスとしたときに、そのカット端の全周が隠蔽部の内周部に対して合わせガラスのカット端の方向とは反対方向に位置するものであって、隠蔽部の内周部から10mm以内となる大きさのもの、具体的には該内周部から5mmとなる大きさのものを用いた以外は例5と同様にして湾曲状態の異なる3種類の合わせガラス(カットバック有り)を製造した。
(Example 6)
When the laminated glass is used as the infrared reflecting film, the entire circumference of the cut end is located in the direction opposite to the direction of the cut end of the laminated glass with respect to the inner peripheral part of the concealed part, Three types of laminated glass having different curved states in the same manner as in Example 5 except that a glass having a size within 10 mm from the inner periphery, specifically a glass having a size of 5 mm from the inner periphery, was used. Manufactured).

次に、例1〜6の合わせガラスについて、以下の項目について評価を行った。結果を表1に示す。   Next, the following items were evaluated for the laminated glasses of Examples 1 to 6. The results are shown in Table 1.

(シワ)
製造された合わせガラスについて、外周部近傍における赤外線反射フィルムのシワの発生を目視により観察した。表中、「無し」は赤外線反射フィルムにシワの発生が認められなかったもの、「有り」は赤外線反射フィルムにシワの発生が認められたもの、「顕著に有り」は赤外線反射フィルムにおけるシワの発生が顕著であったものを示す。
(発泡)
製造された合わせガラスについて、外周部近傍における空気の巻き込みによる白色化の有無を目視により観察した。表中、「無し」は白色化の発生が認められなかったもの、「若干有り」は合わせガラスの外周部の周方向の一部に白色化の発生が認められたもの、「有り」は合わせガラスの外周部の周方向の半分程度に白色化の発生が認められたもの、「顕著に有り」は合わせガラスの外周部の周方向のほぼ全体に白色化の発生が認められたものを示す。
(透視歪)
製造された合わせガラスについて、外周部近傍における赤外線反射フィルムが設けられた部分を通して対象物を透視したときの対象物(透視像)の歪みを目視により評価した。表中、「無し」は透視像に歪みの発生が認められなかったもの、「若干有り」は透視像を平行に近い角度から見た場合にのみ歪みの発生が認められたもの、「有り」は透視像をいかなる角度から見ても歪みの発生が認められたものを示す。
(Wrinkle)
About the manufactured laminated glass, the generation | occurrence | production of the wrinkle of the infrared reflective film in the outer peripheral part vicinity was observed visually. In the table, “None” indicates that no wrinkles were observed on the infrared reflecting film, “Yes” indicates that wrinkles were observed on the infrared reflecting film, and “Noticeably” indicates wrinkles on the infrared reflecting film. The occurrence was remarkable.
(Foam)
About the manufactured laminated glass, the presence or absence of whitening by the entrainment of the air in the outer peripheral part vicinity was observed visually. In the table, “None” indicates that no whitening was observed, “Slightly” indicates that whitening occurred in a part of the circumferential direction of the laminated glass, and “Yes” indicates that The occurrence of whitening was observed in about half of the circumferential direction of the outer periphery of the glass, and “notably present” indicates that the occurrence of whitening was observed in almost the entire circumferential direction of the laminated glass. .
(Transparent distortion)
About the manufactured laminated glass, distortion of the target object (transparent image) when the target object was seen through through the part provided with the infrared reflective film in the vicinity of the outer peripheral part was visually evaluated. In the table, “None” indicates that no distortion was observed in the fluoroscopic image, “Slightly present” indicates that distortion was observed only when the fluoroscopic image was viewed from a nearly parallel angle, and “Yes”. Indicates that the occurrence of distortion was observed when the perspective image was viewed from any angle.

Figure 2013086987
Figure 2013086987

表1から明らかなように、所定の熱収縮率を有する樹脂フィルムを用いるとともに、樹脂フィルムを有する赤外線反射フィルムのカット端を隠蔽部の内周部に対して所定の位置に配置することで、特に湾曲の大きな合わせガラスについて、その外周部近傍におけるシワや発泡、透視像の歪みを抑制でき、外観および視認性の良好なものとすることができる。   As is clear from Table 1, by using a resin film having a predetermined heat shrinkage rate and disposing the cut end of the infrared reflective film having the resin film at a predetermined position with respect to the inner peripheral portion of the concealing portion, In particular, for laminated glass having a large curvature, wrinkles, foaming and distortion of the fluoroscopic image in the vicinity of the outer peripheral portion can be suppressed, and the appearance and visibility can be improved.

1…合わせガラス、1a…カット端、2…第1のガラス基板、3…第2のガラス基板、4…接着層、5…赤外線反射フィルム(機能性フィルム)、5a…カット端、6…隠蔽部、6a…内周部、51…樹脂フィルム、52…赤外線反射膜(機能膜)、53…酸化物層、54…金属層   DESCRIPTION OF SYMBOLS 1 ... Laminated glass, 1a ... Cut end, 2 ... 1st glass substrate, 3 ... 2nd glass substrate, 4 ... Adhesive layer, 5 ... Infrared reflective film (functional film), 5a ... Cut end, 6 ... Concealment Part 6a ... inner peripheral part 51 ... resin film 52 ... infrared reflective film (functional film) 53 ... oxide layer 54 ... metal layer

Claims (3)

第1のガラス基板と第2のガラス基板との間に樹脂フィルムが接着層を介して挟持されるとともに、外周部近傍に略環状の隠蔽部を有する合わせガラスであって、
前記樹脂フィルムは、熱収縮率が最大となる方向の熱収縮率が1%を超え2%未満、かつ前記方向に直交する方向の熱収縮率が1%を超え2%未満であり、前記樹脂フィルムのカット端は、前記合わせガラスを正面視したとき、前記隠蔽部の内周部に対し合わせガラスのカット端方向および該方向と反対方向のそれぞれ10mmの範囲内に配置されることを特徴とする合わせガラス。
但し、前記樹脂フィルムの熱収縮率は150℃で30分間保持したときのものである。
Between the first glass substrate and the second glass substrate, a resin film is sandwiched via an adhesive layer, and is a laminated glass having a substantially annular concealing portion in the vicinity of the outer periphery,
The resin film has a heat shrinkage rate in the direction in which the heat shrinkage rate is maximum of more than 1% and less than 2%, and a heat shrinkage rate in a direction perpendicular to the direction of more than 1% and less than 2%, When the laminated glass is viewed from the front, the cut end of the film is disposed within a range of 10 mm in each of the cut end direction of the laminated glass and the opposite direction to the inner peripheral portion of the concealing portion. Laminated glass.
However, the heat shrinkage rate of the resin film is that when the resin film is held at 150 ° C. for 30 minutes.
前記合わせガラスの最大曲深さが15mm以上である請求項1記載の合わせガラス。   The laminated glass according to claim 1, wherein the laminated glass has a maximum bending depth of 15 mm or more. 前記樹脂フィルムと、前記樹脂フィルム上に形成された赤外線反射膜とを有する赤外線反射フィルムを具備する請求項1または2記載の合わせガラス。   The laminated glass of Claim 1 or 2 which comprises the infrared reflective film which has the said resin film and the infrared reflective film formed on the said resin film.
JP2011226483A 2011-10-14 2011-10-14 Laminated glass Active JP5948785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011226483A JP5948785B2 (en) 2011-10-14 2011-10-14 Laminated glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011226483A JP5948785B2 (en) 2011-10-14 2011-10-14 Laminated glass

Publications (2)

Publication Number Publication Date
JP2013086987A true JP2013086987A (en) 2013-05-13
JP5948785B2 JP5948785B2 (en) 2016-07-06

Family

ID=48531271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226483A Active JP5948785B2 (en) 2011-10-14 2011-10-14 Laminated glass

Country Status (1)

Country Link
JP (1) JP5948785B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090712A1 (en) * 2015-11-27 2017-06-01 積水化学工業株式会社 Interlayer for laminated glass, and laminated glass
CN107207338A (en) * 2015-01-26 2017-09-26 旭硝子株式会社 Laminated glass
JP2017190269A (en) * 2016-04-15 2017-10-19 日本板硝子株式会社 Laminated glass and manufacturing method thereof
JP2018138456A (en) * 2018-03-22 2018-09-06 大日本印刷株式会社 Laminated glass, glass with heating mechanism and vehicle
JP2018538225A (en) * 2015-10-23 2018-12-27 サン−ゴバン グラス フランス Method for producing a composite pane having an infrared reflective coating on a carrier film
CN113165973A (en) * 2018-12-05 2021-07-23 日本板硝子株式会社 Laminated glass for automobile
WO2021246402A1 (en) 2020-06-03 2021-12-09 富士フイルム株式会社 Reflective film, laminated glass production method, and laminated glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528374A (en) * 1998-10-30 2002-09-03 ソシエタ イタリアーナ ベトロ − エスアイブイ − ソシエタ ペル アチオニ Transparent panel
JPWO2005040868A1 (en) * 2003-10-27 2007-04-19 帝人デュポンフィルム株式会社 Near-infrared shielding film
JP2009035438A (en) * 2007-07-31 2009-02-19 Central Glass Co Ltd Infrared ray reflective laminated glass
JP2010159394A (en) * 2008-12-11 2010-07-22 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010159200A (en) * 2008-12-11 2010-07-22 Mitsubishi Plastics Inc Polyester film for laminated glass
US20100215952A1 (en) * 2007-07-31 2010-08-26 CentralGlass Company, Limited Laminated Glass Having Plastic Film Inserted Therein
JP2010215491A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010265161A (en) * 2009-04-16 2010-11-25 Central Glass Co Ltd Method for producing plastic film-inserted laminated glass and plastic film-inserted laminated glass

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528374A (en) * 1998-10-30 2002-09-03 ソシエタ イタリアーナ ベトロ − エスアイブイ − ソシエタ ペル アチオニ Transparent panel
US6495261B1 (en) * 1998-10-30 2002-12-17 Societa Italiana Vetro - Siv - S.P.A Glazing panels
JPWO2005040868A1 (en) * 2003-10-27 2007-04-19 帝人デュポンフィルム株式会社 Near-infrared shielding film
US20070273964A1 (en) * 2003-10-27 2007-11-29 Taro Oya Near-Infrared Ray Shielding Film
JP2009035438A (en) * 2007-07-31 2009-02-19 Central Glass Co Ltd Infrared ray reflective laminated glass
US20100215952A1 (en) * 2007-07-31 2010-08-26 CentralGlass Company, Limited Laminated Glass Having Plastic Film Inserted Therein
JP2010159394A (en) * 2008-12-11 2010-07-22 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010159200A (en) * 2008-12-11 2010-07-22 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010215491A (en) * 2009-02-18 2010-09-30 Mitsubishi Plastics Inc Polyester film for laminated glass
JP2010265161A (en) * 2009-04-16 2010-11-25 Central Glass Co Ltd Method for producing plastic film-inserted laminated glass and plastic film-inserted laminated glass

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207338A (en) * 2015-01-26 2017-09-26 旭硝子株式会社 Laminated glass
US20170305240A1 (en) * 2015-01-26 2017-10-26 Asahi Glass Company, Limited Laminated glass
JP2018158883A (en) * 2015-01-26 2018-10-11 Agc株式会社 Laminated glass
JP2018538225A (en) * 2015-10-23 2018-12-27 サン−ゴバン グラス フランス Method for producing a composite pane having an infrared reflective coating on a carrier film
WO2017090712A1 (en) * 2015-11-27 2017-06-01 積水化学工業株式会社 Interlayer for laminated glass, and laminated glass
JPWO2017090712A1 (en) * 2015-11-27 2018-09-13 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
JP2017190269A (en) * 2016-04-15 2017-10-19 日本板硝子株式会社 Laminated glass and manufacturing method thereof
JP2018138456A (en) * 2018-03-22 2018-09-06 大日本印刷株式会社 Laminated glass, glass with heating mechanism and vehicle
CN113165973A (en) * 2018-12-05 2021-07-23 日本板硝子株式会社 Laminated glass for automobile
US11964544B2 (en) 2018-12-05 2024-04-23 Nippon Sheet Glass Company, Limited Automobile laminated glass
WO2021246402A1 (en) 2020-06-03 2021-12-09 富士フイルム株式会社 Reflective film, laminated glass production method, and laminated glass

Also Published As

Publication number Publication date
JP5948785B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5948785B2 (en) Laminated glass
KR100458923B1 (en) Interlayer film for laminated glass and laminated glass
KR102013117B1 (en) Vehicle front glass
KR102215670B1 (en) Vehicle-windshield-glass intermediate film, rolled body, and vehicle windshield glass
US20140199534A1 (en) Laminated glass intermediate film and laminated glass
JP6791753B2 (en) Laminated glass interlayer film and laminated glass
JPWO2012008587A1 (en) Infrared reflective substrate and laminated glass
CN105722678B (en) Method for manufacturing composite glass laminate having thermal radiation shielding properties
TWI749041B (en) Interlayer film for colored laminated glass and colored laminated glass
JP6853290B2 (en) Thermoplastic resin film and laminated glass
JP6874764B2 (en) Laminated glass
JP2020097518A (en) Interlayer for glass laminate and glass laminate
JP2013006731A (en) Interlayer for laminated glass and laminated glass
JP2008105942A (en) Interlayer for laminated glass and laminated glass
JP7374888B2 (en) Polyvinyl acetal resin film
JP4511907B2 (en) Thermoplastic resin sheet, method for producing laminated glass, and laminated glass
JP6739939B2 (en) Thermoplastic resin film and laminated glass
JP2013001595A (en) Interlayer for laminated glass and laminated glass
CN109071338B (en) Interlayer film for laminated glass and laminated glass
JPWO2015147218A1 (en) Laminated glass interlayer film and laminated glass
WO2011055685A1 (en) Method for producing laminated glass
JPWO2020175178A1 (en) Laminated glass interlayer and laminated glass
JP7466454B2 (en) Polyvinyl acetal resin film and laminate containing same
JP2015193514A (en) Thermoplastic resin film, and laminated glass
JP2011144061A (en) Laminated glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5948785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250