JP2013086018A - Method of operating organic compound treating apparatus - Google Patents

Method of operating organic compound treating apparatus Download PDF

Info

Publication number
JP2013086018A
JP2013086018A JP2011228690A JP2011228690A JP2013086018A JP 2013086018 A JP2013086018 A JP 2013086018A JP 2011228690 A JP2011228690 A JP 2011228690A JP 2011228690 A JP2011228690 A JP 2011228690A JP 2013086018 A JP2013086018 A JP 2013086018A
Authority
JP
Japan
Prior art keywords
water vapor
desorption
adsorption
organic compound
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011228690A
Other languages
Japanese (ja)
Other versions
JP5835662B2 (en
Inventor
Masami Shudo
雅美 周藤
Hiroomi Kamano
博臣 釜野
Akihiro Tomoto
晃弘 塔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2011228690A priority Critical patent/JP5835662B2/en
Publication of JP2013086018A publication Critical patent/JP2013086018A/en
Application granted granted Critical
Publication of JP5835662B2 publication Critical patent/JP5835662B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent useless emission of residual steam for desorption remaining in adsorption towers 11a and 11b for adsorption of organic compounds, at the timing when desorption is completed with steam for desorption, and occurrence of white smoke due to the emission of the residual steam.SOLUTION: A method of operating, or controlling, an organic compound treating apparatus uses two or more adsorption towers 11a and 11b having, inside them, an adsorption layer packed with an adsorbent adsorbing volatile organic compounds and includes introducing a gas containing a volatile organic compound into at least one of the adsorption towers, making the volatile organic compound adsorbed with the adsorbent to reduce the content of the volatile organic compound and then discharging the treated gas, introducing steam for desorption, in order, into adsorption towers after carrying out adsorption to desorb the volatile organic compound from the adsorbent and reusing the adsorbent. At the timing when the desorption is completed, residual steam for desorption remaining within the adsorption tower is transferred to an adsorption tower to then carry out desorption and/or an adsorption tower having started desorption.

Description

この発明は、有機化合物を含むガスを排出する前に、ガスから有機化合物を除去して処理する処理装置の制御方法に関する。   The present invention relates to a control method for a processing apparatus that removes an organic compound from a gas before discharging the gas containing the organic compound.

工場から発生する排ガスには、そのまま大気中に排出すると問題を起こす揮発性有機化合物が含まれる場合がある。この場合、排ガスを大気中に排出する前に、含有している揮発性有機化合物を処理しなければならない。その方法として、活性炭等の吸着剤を内蔵した吸着塔で、排ガス中に含まれる揮発性有機化合物を吸着剤に吸着させ、ガス中の濃度を低減させて大気へ排出し、その後、吸着剤から揮発性有機化合物を脱着させて吸着塔を再利用可能にするとともに、揮発性有機化合物を処理するという吸脱着方式が一般的である。   Exhaust gas generated from factories may contain volatile organic compounds that cause problems if discharged into the atmosphere as they are. In this case, before exhaust gas is discharged into the atmosphere, the contained volatile organic compounds must be treated. As a method for this, an adsorption tower containing activated carbon or other adsorbent is used to adsorb volatile organic compounds contained in exhaust gas to the adsorbent, reduce the concentration in the gas and discharge it to the atmosphere. An adsorption / desorption system is generally used in which a volatile organic compound is desorbed to make the adsorption tower reusable and the volatile organic compound is treated.

上記の脱着には、揮発性有機化合物を含まないガスを吸着剤に接触させることが必要である。一基の吸着塔で脱着と同時に吸着することはできないので、脱着は速やかに実行することが好ましい。脱着を速める方法としては、脱着用のガスを大量に導入する方法、真空ポンプで吸引して圧力を低下させる方法、吸熱反応である脱着を促進するために高温の脱着用水蒸気を導入する方法などがあり、コストや効率の点から、高温の脱着用水蒸気を用いる方法が多く採用されている。   For the above desorption, it is necessary to bring a gas not containing a volatile organic compound into contact with the adsorbent. Since adsorption cannot be performed simultaneously with desorption by a single adsorption tower, desorption is preferably carried out promptly. As a method of speeding up desorption, a method of introducing a large amount of desorption gas, a method of reducing pressure by suction with a vacuum pump, a method of introducing high-temperature desorption water vapor to promote desorption, which is an endothermic reaction, etc. In view of cost and efficiency, many methods using high-temperature desorption water vapor are used.

いずれにせよ、常に排ガス処理を継続するためには、少なくとも二本の吸着塔を並列させ、一つが脱着工程を行っている間に、別の吸着塔が吸着工程を担うようにしなければならない。それぞれの塔は吸着工程と脱着工程とを交互に行うことになる。   In any case, in order to always continue the exhaust gas treatment, at least two adsorption towers must be arranged in parallel, and while one is performing the desorption process, another adsorption tower must be responsible for the adsorption process. Each column performs an adsorption process and a desorption process alternately.

高温の水蒸気で脱着を行う場合、脱着工程が終わった直後の吸着塔には高温の水蒸気が充満している。ここに排ガスを導入して高温の水蒸気が押し出されると、排出口から大気中に吹き出して白煙を生じる。その正体は湯気でしかないが、外観上問題とされやすいため、この白煙の発生を防止する手段が検討されている。   When desorption is performed with high-temperature steam, the adsorption tower immediately after the desorption step is filled with high-temperature steam. When exhaust gas is introduced here and high-temperature water vapor is pushed out, white smoke is generated from the discharge port into the atmosphere. Although its true identity is only steam, it tends to be a problem in appearance, and means for preventing the generation of white smoke are being studied.

例えば、吸着塔の出口側にコンデンサーを連結し、外気を導入して水蒸気をコンデンサーに押し出し、コンデンサーにて水蒸気を凝縮して回収する方法が提案されている(特許文献1の[0024])。   For example, a method has been proposed in which a condenser is connected to the outlet side of the adsorption tower, outside air is introduced, water vapor is pushed out to the condenser, and water vapor is condensed and recovered by the condenser ([0024] of Patent Document 1).

また特許文献2には、2つの吸着塔を直列に接続し、被処理ガスを上流の吸着塔に流し、その排気を下流の吸着塔に流す方法が記載されている(特許文献2の[0011])。   Patent Document 2 describes a method in which two adsorption towers are connected in series, the gas to be treated is flowed to the upstream adsorption tower, and the exhaust gas is flowed to the downstream adsorption tower ([0011 of Patent Document 2]. ]).

一方、有機物を脱着させた後の水蒸気を、水蒸気を得るための熱を発生させる燃焼炉に供給して、その有機物を燃焼させることで燃料を節約する方法が検討されている(特許文献3)。   On the other hand, a method for saving fuel by supplying water vapor after desorbing organic matter to a combustion furnace that generates heat for obtaining water vapor and burning the organic matter is being studied (Patent Document 3). .

特開2005−66503号公報JP 2005-66503 A 特開2001−179041号公報JP 2001-179041 A 特開2007−222736号公報JP 2007-2222736 A

しかしながら、特許文献1のようにコンデンサーを設けると、それによって部品点数が増えて装置が複雑化し、制御も難しくなり、コストも増加してしまった。   However, when a capacitor is provided as in Patent Document 1, the number of parts increases, which complicates the apparatus, makes control difficult, and increases the cost.

一方、特許文献2には、あくまで被処理ガスとして一旦吸着を終えたガスを別の吸着塔に導入することが記載されているものの、脱着用水蒸気の余剰分については問題視した記載や示唆は全くない。   On the other hand, Patent Document 2 describes that the gas once adsorbed as the gas to be treated is introduced into another adsorption tower, but there is no description or suggestion regarding the surplus of desorption water vapor as a problem. Not at all.

また、特許文献3のように脱着用水蒸気を燃焼炉に送ろうとしても、脱着完了時点で吸着塔内に残っている水蒸気が含有する有機物はわずかであるため、この水蒸気を燃焼炉に導入しても供給できる燃料の全体量が減ることになり、燃焼炉で発生させるべき熱量が低下し、脱着に必要な水蒸気を得るための熱量が賄いきれなくなるおそれがあった。   Moreover, even if an attempt is made to send desorption water vapor to the combustion furnace as in Patent Document 3, since the organic matter contained in the water vapor remaining in the adsorption tower at the time of desorption completion is small, this water vapor is introduced into the combustion furnace. However, the total amount of fuel that can be supplied is reduced, the amount of heat to be generated in the combustion furnace is reduced, and the amount of heat for obtaining water vapor necessary for desorption may not be covered.

さらに、高温の水蒸気をそのまま放出したり、わざわざ凝縮したりすることは、エネルギー上大きなロスであるため、省エネの点からも問題であった。   Furthermore, releasing high-temperature water vapor as it is or condensing it is a problem in terms of energy saving because it is a large loss in energy.

そこでこの発明は、脱着完了後に吸着塔内に残る水蒸気による白煙の発生を簡便に防ぎ、かつエネルギー効率を向上させることを目的とする。   Accordingly, an object of the present invention is to easily prevent the generation of white smoke due to water vapor remaining in the adsorption tower after completion of desorption, and to improve the energy efficiency.

この発明は、脱着工程が終了した時点で一の吸着塔内に残る残存脱着用水蒸気を転出させて、脱着をこれから行う他の吸着塔、脱着を開始している他の吸着塔、又はその両方に転入させることにより、上記の課題を解決したのである。   This invention transfers the remaining desorbed water vapor remaining in one adsorption tower at the time when the desorption process is completed, so that another adsorption tower to be desorbed from now on, another adsorption tower that has started desorption, or both The above-mentioned problem was solved by moving the system into the area.

すなわち、残存脱着用水蒸気はまだ十分な熱量を残しているため、脱着をこれから開始する他の吸着塔に転入させると、その熱量を脱着開始時に必要な加熱のために用いることができ、その分の脱着用水蒸気が節約できる。また、既に脱着を開始している他の吸着塔に転入させると、脱着用水蒸気の一部としても用いることができる。特に、脱着開始時点で導入することが有効である。脱着開始時点では十分に吸着層が暖まっておらず、脱着用水蒸気を導入しても予熱のために消費されるだけで脱着は容易に進行しないが、その無駄になる分を補うことができるからである。他の吸着塔に転入させれば、その分の水蒸気は、他の脱着用水蒸気と同じラインで循環させたり処理させたりすることができるので、装置から白煙が生じることもない。   That is, since the remaining desorption water vapor still has a sufficient amount of heat, when it is transferred to another adsorption tower from which desorption begins, the amount of heat can be used for the heating required at the start of desorption. The water vapor can be saved. Moreover, when it is transferred into another adsorption tower which has already started desorption, it can be used as a part of desorption water vapor. In particular, it is effective to introduce at the start of desorption. The adsorption layer is not sufficiently warmed at the start of desorption, and even if desorption water vapor is introduced, desorption does not proceed easily just because it is consumed for preheating, but it can compensate for the waste. It is. If it is transferred to another adsorption tower, the corresponding water vapor can be circulated and processed in the same line as other desorption water vapor, so that no white smoke is generated from the apparatus.

具体的な転出入の方法としては、そのためのラインを別途設けてもよいが、その分装置が複雑化してしまうため、元来から使用されている上記脱着用水蒸気を供給するための水蒸気供給ラインを一部逆送させて行うと、装置の拡張を抑えてこの発明を実施できる。   As a specific transfer-in / out method, a line for that purpose may be provided separately, but the apparatus becomes complicated accordingly, so the steam supply line for supplying the above-mentioned desorption steam that has been used originally If this is performed by reversely feeding a part of the apparatus, expansion of the apparatus can be suppressed and the present invention can be implemented.

上記脱着用水蒸気の供給口が、吸着塔の高さ方向に複数段存在している場合には、上記残存脱着用水蒸気を最下段の供給口から供給することで、吸着層の一部ではなく全体を効率よく暖めることができる。   When there are multiple stages of the desorption water vapor supply ports in the height direction of the adsorption tower, the residual desorption water vapor is supplied from the lowermost supply port, so that it is not a part of the adsorption layer. The whole can be warmed up efficiently.

この発明により、残存脱着用水蒸気が有していた熱量を無駄にすることなく他の吸着塔の予熱のために効率よく利用することができ、水蒸気の排出によって白煙が生じることも防ぎ、装置系内の循環性、リサイクル性を向上させることができる。   By this invention, it is possible to efficiently use for preheating other adsorption towers without wasting the amount of heat that the residual desorption steam has, and it is also possible to prevent the generation of white smoke due to the discharge of the steam. Circulation and recycling within the system can be improved.

この発明を実施する有機化合物処理装置の例を示す構成図Configuration diagram showing an example of an organic compound processing apparatus for carrying out the present invention この発明の第一の実施形態におけるフロー図Flow chart in the first embodiment of the present invention この発明の第二の実施形態におけるフロー図Flow chart in the second embodiment of the present invention 燃焼炉と熱交換器を備えた有機化合物処理装置の構成図Configuration diagram of organic compound processing equipment with combustion furnace and heat exchanger

以下、この発明を具体的に説明する。この発明は、揮発性有機化合物を吸着する吸着剤を充填した吸着層を内部に有する吸着塔を複数基有し、その吸着塔の少なくとも一つに、揮発性有機化合物を含有するガスを導入し、前記揮発性有機化合物を上記吸着剤に吸着させて含有量を低減させた処理後ガスを排出し、吸着を行った後の吸着塔には、順に脱着用水蒸気を導入して吸着剤から揮発性有機化合物を脱着させた後に、再び吸着に用いる、有機化合物処理装置の制御方法である。   The present invention will be specifically described below. This invention has a plurality of adsorption towers each having an adsorption layer filled with an adsorbent that adsorbs volatile organic compounds, and a gas containing a volatile organic compound is introduced into at least one of the adsorption towers. The volatile organic compound is adsorbed on the adsorbent, and the treated gas is discharged to reduce the content. After the adsorption, the desorption water vapor is sequentially introduced into the adsorption tower to volatilize the adsorbent. This is a method for controlling an organic compound processing apparatus, which is used again for adsorption after desorbing the organic compound.

この発明を実行する有機化合物処理装置が処理する揮発性有機化合物とは、常圧で加熱することで気体になり得る有機化合物であり、特に常温で液体であるものが吸着処理しやすい。例えば、メタノール、エタノール、イソプロピルアルコール等の炭素数が1〜8程度のアルコール、トルエン、ベンゼンなどの芳香族有機化合物などの、炭化水素系の溶剤が挙げられる。   The volatile organic compound processed by the organic compound processing apparatus for carrying out the present invention is an organic compound that can be turned into a gas when heated at normal pressure, and particularly a liquid that is liquid at room temperature is easily adsorbed. Examples thereof include hydrocarbon solvents such as alcohols having about 1 to 8 carbon atoms such as methanol, ethanol and isopropyl alcohol, and aromatic organic compounds such as toluene and benzene.

まず、図1に示す吸着塔を並列に二基有する装置を有する実施形態について説明するが、吸着塔は三基以上並列であってもよい。また、並列に二基以上設けてあれば、それぞれの列がさらに直列に複数基連結されていても構わない。   First, an embodiment having an apparatus having two adsorption towers in parallel shown in FIG. 1 will be described, but three or more adsorption towers may be arranged in parallel. Moreover, as long as two or more units are provided in parallel, a plurality of each column may be connected in series.

この有機化合物処理装置は、二つの吸着塔11(11a,11b)を有する。それぞれの吸着塔11a,11bは略円筒形であり、下方側の端部近傍に一枚の多孔板20a,20bを設けてある。多孔板20(20a,20b)は吸着塔11の横断面全てを覆う大きさであり、この多孔板20上に、揮発性有機化合物を吸着可能でありかつ加熱により脱着可能な吸着剤を充填させた吸着層12(12a,12b)を設けている。この吸着剤としては、例えば、多孔板の穴より粒径が大きい活性炭の粒子などが挙げられる。吸着層12は吸着塔11の上下端までは到達せず、上下どちらにも空洞部分を有する。   This organic compound processing apparatus has two adsorption towers 11 (11a, 11b). Each of the adsorption towers 11a and 11b has a substantially cylindrical shape, and a single perforated plate 20a and 20b is provided in the vicinity of the lower end. The perforated plate 20 (20a, 20b) is sized to cover the entire cross section of the adsorption tower 11. The perforated plate 20 is filled with an adsorbent that can adsorb volatile organic compounds and can be desorbed by heating. The adsorbing layer 12 (12a, 12b) is provided. Examples of the adsorbent include activated carbon particles having a particle diameter larger than the holes of the perforated plate. The adsorption layer 12 does not reach the upper and lower ends of the adsorption tower 11 and has hollow portions on both the upper and lower sides.

吸着塔11の吸着層12より上端側には、揮発性有機化合物含有ガスAの導入口13(13a,13b)が設けてあり、吸着層12より下端側には、処理後ガスBの排出口15(15a,15b)が設けてある。それぞれの口には弁が設けてある。このうち、排出口15は大気中へ放出するものである。また、下端側の底部には図示しないが、主に蒸気が凝集して生じた水を排出する排水口が設けてある。揮発性有機化合物含有ガスAは、別の装置等で発生したもので、揮発性有機化合物を除去して処理後ガスBにする処理対象である。例えば、種々の排ガスなどが挙げられる。揮発性有機化合物含有ガスAは、導入口13から導入されて排出口15までの間にある吸着層12を通過する際に、揮発性有機化合物を吸着剤に吸着されて、揮発性有機化合物の濃度が低下した処理後ガスBとなる。   The inlet 13 (13a, 13b) for the volatile organic compound-containing gas A is provided at the upper end side of the adsorption layer 12 of the adsorption tower 11, and the post-treatment gas B outlet is provided at the lower end side of the adsorption layer 12. 15 (15a, 15b) are provided. Each mouth has a valve. Among these, the discharge port 15 is discharged into the atmosphere. Moreover, although not shown in figure at the bottom part on the lower end side, there is provided a drainage port for discharging water produced mainly by condensation of steam. The volatile organic compound-containing gas A is generated by another apparatus or the like, and is a processing target for removing the volatile organic compound to form a post-processing gas B. For example, various exhaust gas etc. are mentioned. When the volatile organic compound-containing gas A passes through the adsorption layer 12 introduced from the inlet 13 to the outlet 15, the volatile organic compound is adsorbed by the adsorbent, and the volatile organic compound It becomes the after-treatment gas B having a reduced concentration.

上記の吸着塔11の吸着層12が設けられた側面に、吸着層12の一部に対して脱着用水蒸気Fを供給する供給口24(24a,24b)が設けてあり、吸着塔11の吸着層12より下の底部に、吸着層12の全体に対して脱着用水蒸気Fを供給する供給口25(25a,25b)が設けてある。これらそれぞれの口に弁が設けてある。これらの供給口24,25は、脱着用水蒸気の供給源に繋がる水蒸気供給ライン21に繋がっており、分岐点22以降が各々の吸着塔11へ向かって分かれている。水蒸気供給ライン21には、分岐点22の前に逆流を防止するための弁23が設けてある。   Supply ports 24 (24a, 24b) for supplying desorption water vapor F to a part of the adsorption layer 12 are provided on the side surface of the adsorption tower 11 where the adsorption layer 12 is provided. Supply ports 25 (25a, 25b) for supplying desorption water vapor F to the entire adsorption layer 12 are provided at the bottom below the layer 12. Each of these ports is provided with a valve. These supply ports 24 and 25 are connected to a water vapor supply line 21 connected to a supply source of desorption water vapor, and the branch points 22 and thereafter are divided toward the respective adsorption towers 11. The steam supply line 21 is provided with a valve 23 for preventing backflow before the branch point 22.

供給口24,25から供給された脱着用水蒸気Fは、供給開始直後は吸着層12で冷やされて大部分が凝縮し、大量の水(ドレン)として排水口から排出されるが、進行する脱着用水蒸気Fの供給とともに、吸着層12の温度が上昇すると、部分的に凝縮して水(ミスト)と上記の混合体となり、吸着層12に吸着された揮発性有機化合物を脱着させ、気体又は液滴(ミスト)状態で、揮発性有機化合物を同伴させつつ上昇し、吸着塔11の塔頂部に設けられた供出口26(26a,26b)から出て行く(揮発性有機化合物含有水蒸気K)。ただし、一旦脱着を行った後はこの工程の一部を後述する残存脱着用水蒸気が担うことになる。   The desorption water vapor F supplied from the supply ports 24 and 25 is cooled by the adsorption layer 12 immediately after the start of supply, and most of the water is condensed and discharged as a large amount of water (drain) from the drain port. When the temperature of the adsorption layer 12 rises with the supply of the water vapor F for use, it partially condenses to become water (mist) and the above mixture, desorbs the volatile organic compound adsorbed on the adsorption layer 12, and gas or In a droplet (mist) state, the volatile organic compound ascends and rises and exits from the outlet 26 (26a, 26b) provided at the top of the adsorption tower 11 (volatile organic compound-containing water vapor K). . However, once desorption is performed, residual desorption water vapor, which will be described later, bears a part of this process.

また、供給口25(25a、25b)にはそれぞれ水蒸気温度センサが設けてあり、後述する残存脱着用水蒸気が通過する際にその温度を計測できる。   Further, each of the supply ports 25 (25a, 25b) is provided with a water vapor temperature sensor, and the temperature can be measured when residual desorption water vapor described later passes.

上記の構成から成る揮発性有機化合物処理装置の運用方法の実施手順を図2のフローと表1の状況遷移表とともに説明する。なお、表1中、「open」は該当部の弁を開放することを示し、「close」は該当部の弁を閉鎖することを示す。「in」は該当部を通して塔内へ向けてガスが流入することを示し、「out」は該当部を通して塔内からガスが流出していることを示す。「−」は閉鎖のまま変わらないことを示し、「|」は開放のまま変わらないことを示す。   The operation procedure of the operation method of the volatile organic compound processing apparatus having the above configuration will be described together with the flow of FIG. 2 and the status transition table of Table 1. In Table 1, “open” indicates that the corresponding valve is opened, and “close” indicates that the corresponding valve is closed. “In” indicates that gas flows into the tower through the corresponding portion, and “out” indicates that gas flows out of the tower through the corresponding portion. “-” Indicates that it remains closed and does not change, and “|” indicates that it remains open.

Figure 2013086018
Figure 2013086018

この発明にかかる揮発性有機化合物処理装置は、まず(S100)、一方の吸着塔11(11a又は11b)に繋がる導入口13(13a又は13b)を開放して、揮発性有機化合物含有ガスAをその一方の吸着塔11(11a又は11b)に導入し、吸着層12の吸着剤に吸着させ始める(S101)。ここでは、まず「a」の塔から吸着を始める。吸着層12aを通過した処理後ガスBは排出口15aから出て大気中へ放出される。この吸着作業を一定時間が経過するまで、又は、吸着能が一定以下になるまで行う(S102)。   In the volatile organic compound processing apparatus according to the present invention, first, (S100), the inlet 13 (13a or 13b) connected to one adsorption tower 11 (11a or 11b) is opened, and the volatile organic compound-containing gas A is removed. It introduce | transduces into the one adsorption tower 11 (11a or 11b), and begins to adsorb | suck to the adsorption agent of the adsorption layer 12 (S101). Here, the adsorption is started from the tower “a”. The treated gas B that has passed through the adsorption layer 12a exits from the outlet 15a and is released into the atmosphere. This adsorption work is performed until a predetermined time elapses or until the adsorption capacity becomes below a certain level (S102).

一方、吸着を終える前から脱着の準備を進めておく。すなわち、水蒸気供給ライン21に繋がる脱着用水蒸気Fの供給源で、脱着を行うために十分な高温の水蒸気を供給できるように準備を整えておく。   On the other hand, preparation for desorption is proceeded before the adsorption is completed. That is, preparations are made so that steam at a high temperature sufficient for desorption can be supplied by a supply source of desorption steam F connected to the steam supply line 21.

次に、吸着塔11aでの吸着を終えるためには導入口13aの弁を閉める(S103)。それと同時に導入口13bの弁を開けて、もしくは導入口13aの弁を閉めるより若干早く導入口13bの弁を開けて、吸着工程を吸着塔11aから吸着塔11bへと移行する(S103)。そして、水蒸気供給ライン21の弁23を開放し、吸着塔11aの上段の供給口24aを開けて(S104)、吸着層12aの一部(上部のみ)について脱着を開始する(S105)。一定時間経過した後に、吸着塔11aの底部の供給口25aを開けて(S106)、吸着層12の全部について脱着を開始させることで、多段的な脱着を進行させる(S107)。このような多段階の脱着開始を行うことで、脱着される揮発性有機化合物の濃度を時間経過に対して平準化し、放出する揮発性有機化合物含有水蒸気Kを処理する際の負荷を分散させることができる。濃度が一時的に極端に高まると、その段階で揮発性有機化合物含有水蒸気Kを成分分離したり燃焼させたりする際の処理負荷が上がってしまうが、平準化によってこの負荷の増大を抑制できる。   Next, in order to finish the adsorption in the adsorption tower 11a, the valve of the inlet 13a is closed (S103). At the same time, the valve of the inlet 13b is opened, or the valve of the inlet 13b is opened slightly earlier than the valve of the inlet 13a is closed, and the adsorption process is shifted from the adsorption tower 11a to the adsorption tower 11b (S103). Then, the valve 23 of the water vapor supply line 21 is opened, the upper supply port 24a of the adsorption tower 11a is opened (S104), and desorption of a part of the adsorption layer 12a (only the upper part) is started (S105). After a certain period of time has elapsed, the supply port 25a at the bottom of the adsorption tower 11a is opened (S106), and desorption is started for all of the adsorption layer 12, thereby allowing multistage desorption to proceed (S107). By performing such multi-stage desorption start, the concentration of the volatile organic compound to be desorbed is leveled over time, and the load when processing the volatile organic compound-containing water vapor K to be released is dispersed. Can do. If the concentration temporarily increases extremely, the processing load for separating and burning the volatile organic compound-containing water vapor K at that stage increases, but the increase in the load can be suppressed by leveling.

具体的には、脱着は次のように進行する。最初は供給された脱着用水蒸気Fによって吸着層12aが暖められ、水蒸気は凝縮されて水となって排水されるが、十分に熱せられた後は、脱着用水蒸気Fによって吸着層12aから揮発性有機化合物が脱着される。これが、吸着層12aのうち、供給口24aよりも上の領域でまず起こり(S105)、続いて吸着層12aの残りの領域で起こる(S107)。脱着工程を通じて、脱着された揮発性有機化合物はミストや水蒸気に同伴された揮発性有機化合物含有水蒸気Kとして、供出口26aから外部へと供出される(S108)。供出口26aから出た揮発性有機化合物含有水蒸気Kには、揮発性有機化合物が含まれているので、これを何らかの形で回収又は利用することが望ましい。例えば、コンデンサーなどで凝集させて水と有機化合物を回収してもよいし、燃焼炉に送り込んで脱着用水蒸気Fを得るための燃料の一部としても用いてもよい。このような脱着作業(S108)を、十分に吸着層12aから揮発性有機化合物が脱着されるまで行う。具体的には、一定時間が経過するまで、揮発性有機化合物含有水蒸気K中に含まれる揮発性有機化合物の量が一定以下になるまで、又は、揮発性有機化合物含有水蒸気Kの温度が一定以上になるまで行う。特に、リアルタイムで水蒸気中における揮発性有機化合物の含有量を測定することは困難であるため、時間又は温度で判断するのが望ましい。脱着が十分に進行したら、揮発性有機化合物含有水蒸気Kの温度は十分に元の脱着用水蒸気Fの温度に近づくからである。   Specifically, desorption proceeds as follows. At first, the adsorption layer 12a is warmed by the supplied desorption water vapor F, and the water vapor is condensed and drained as water. After sufficiently heated, the desorption water vapor F causes the adsorption layer 12a to be volatile. Organic compounds are desorbed. This first occurs in the region of the adsorption layer 12a above the supply port 24a (S105), and then occurs in the remaining region of the adsorption layer 12a (S107). Through the desorption step, the desorbed volatile organic compound is delivered to the outside from the outlet 26a as volatile organic compound-containing water vapor K accompanied by mist or water vapor (S108). Since the volatile organic compound-containing water vapor K exiting from the outlet 26a contains a volatile organic compound, it is desirable to recover or use this in some form. For example, water and an organic compound may be collected by aggregating with a condenser or the like, or may be used as a part of fuel to be sent to a combustion furnace to obtain desorption water vapor F. Such desorption operation (S108) is performed until the volatile organic compound is sufficiently desorbed from the adsorption layer 12a. Specifically, until the amount of volatile organic compound contained in the volatile organic compound-containing water vapor K becomes less than a certain value until a certain time elapses, or the temperature of the volatile organic compound-containing water vapor K exceeds a certain value. Do until it becomes. In particular, since it is difficult to measure the content of volatile organic compounds in water vapor in real time, it is desirable to make a judgment based on time or temperature. This is because if the desorption proceeds sufficiently, the temperature of the volatile organic compound-containing water vapor K sufficiently approaches the temperature of the original desorption water vapor F.

脱着を終了させるには、水蒸気供給ライン21の弁23を閉鎖し、併せて上段の供給口24aを閉鎖する(S109)。ただし、下段の供給口25aは開放したままとしておく。その状態で、吸着塔11bでの吸着工程が終わるまで待機する(S110)。   In order to finish the desorption, the valve 23 of the water vapor supply line 21 is closed, and the upper supply port 24a is also closed (S109). However, the lower supply port 25a is left open. In this state, the process waits until the adsorption process in the adsorption tower 11b is completed (S110).

吸着塔11bでの吸着が終わったら、導入口13bを閉鎖し、導入口13aを開放して、揮発性有機化合物含有ガスAを導入口13aから吸着塔11a内に導入して吸着塔11aでの吸着を開始する(S111)。ただし、吸着を終えた吸着塔11bについては、導入口13bの閉鎖とともに上段の供給口24bを閉鎖しておくが、底部の供給口25bは開放しておく(S112)。   When the adsorption in the adsorption tower 11b is completed, the inlet 13b is closed, the inlet 13a is opened, and the volatile organic compound-containing gas A is introduced into the adsorption tower 11a from the inlet 13a to be absorbed in the adsorption tower 11a. Adsorption is started (S111). However, for the adsorption tower 11b that has completed the adsorption, the upper supply port 24b is closed together with the introduction port 13b being closed, but the bottom supply port 25b is opened (S112).

これにより、吸着塔11aでは、排出口15aは閉鎖されたままで、供給口25aが空いているので、吸着塔11a内に残存していた高温の残存脱着用水蒸気は、揮発性有機化合物含有ガスAに押し出されて、供給口25aから転出して行く(S113)。転出された残存脱着用水蒸気は、供給口25aから分岐点22まで逆送したのち、分岐点22から供給口25bまで順送して、供給口25bから吸着塔11b内に転入される(S114)。こうして残存脱着用水蒸気は、吸着塔11aが保有していた熱量ごと、吸着塔11bに移動する。吸着塔11aに残存していた残存脱着用水蒸気によって、吸着塔11b内が暖められるので、脱着開始時において吸着塔11bに導入される脱着用水蒸気Fの無駄が少なくなる。なお、このとき水蒸気供給ライン21の弁23は閉鎖してある。   Thereby, in the adsorption tower 11a, since the discharge port 15a remains closed and the supply port 25a is vacant, the high-temperature residual desorption water vapor remaining in the adsorption tower 11a is converted into the volatile organic compound-containing gas A. And is transferred from the supply port 25a (S113). The residual desorbed water vapor transferred is reversely fed from the supply port 25a to the branch point 22, and then forwarded from the branch point 22 to the supply port 25b, and transferred into the adsorption tower 11b from the supply port 25b (S114). . Thus, the remaining desorbed water vapor moves to the adsorption tower 11b for each amount of heat held in the adsorption tower 11a. Since the inside of the adsorption tower 11b is warmed by the remaining desorption water vapor remaining in the adsorption tower 11a, the waste of the desorption water vapor F introduced into the adsorption tower 11b at the start of desorption is reduced. At this time, the valve 23 of the water vapor supply line 21 is closed.

ここで、底面の供給口25bの弁を開放したのは、上部にある供給口24bの弁のみを開放すると残存水蒸気により有機溶剤が多量に脱着し、平準化の妨げになるおそれがあるためである。底面から残存水蒸気を転入させれば、この熱量は専ら吸着層全体を暖めるために使われ、脱着にはほとんど寄与しない。即ち、上記の平準化の妨げにはならない。
高さ方向に複数の供給口がある場合も、このように最も供出口に近い(すなわち、最上段の)供給口のみを開放することは、避けたほうが良い。
Here, the reason why the valve on the bottom supply port 25b is opened is that if only the valve on the upper supply port 24b is opened, a large amount of organic solvent may be desorbed by residual water vapor, which may hinder leveling. is there. If residual water vapor is transferred from the bottom, this amount of heat is used exclusively to warm the entire adsorption layer and contributes little to desorption. That is, it does not hinder the above leveling.
Even when there are a plurality of supply ports in the height direction, it is better to avoid opening only the supply port closest to the supply port (that is, the uppermost).

この残存脱着用水蒸気の転出入は徹底して行うのではなく、途中で打ち切ることが好ましい。残存脱着用水蒸気は徐々に冷やされてくるため、転出の終盤になってくると、わざわざ転出入させて再利用するほどの熱量はなくなってくる。そのような残存脱出用水蒸気を吸着塔11bに転入させても予熱させる効果が不充分であり、それよりは脱着用水蒸気Fをそのまま導入させてしまった方が、効率がよくなる。このため、吸着塔11aでは、塔内や供給口配管などのいずれかに設けた温度センサにて温度を測定しつづけ、残存脱着用水蒸気を転出入しても熱効率がかえって悪くなると考えられる一定温度を下回ったら転出を止めるために供給口25aを閉鎖し、排出口15aを開放して、排出口15aから気体を排出するように変更する(S115)。この時点で排出される気体は、処理後ガスBと残存脱着用水蒸気との混合体となっている可能性が高く、以後、処理後ガスBの含有量が増加していく。残存脱着用水蒸気は、元々持っていた水蒸気の大半が既に凝集して水となって底部の上記排水口から排出されているので、処理後ガスBとともに大気中へ排出しても、白煙を生じることはほとんどない。その後、吸着塔11aでは上記のように一定時間が経過するなどの条件が成立するまで吸着工程を続けていく(S116〜)。   It is preferable not to thoroughly carry out the transfer of the residual desorption water vapor but to terminate it halfway. Since the remaining desorbed water vapor is gradually cooled, when it comes to the end of the transfer, there is no more heat to move in and out for reuse. Even if such residual escape steam is transferred into the adsorption tower 11b, the effect of preheating is insufficient, and it is more efficient to introduce the desorption steam F as it is. For this reason, in the adsorption tower 11a, the temperature is continuously measured with a temperature sensor provided in either the tower or the supply port piping, and a constant temperature at which the thermal efficiency is considered to deteriorate even if the residual desorption water vapor is transferred in and out. In order to stop the transfer, the supply port 25a is closed, the discharge port 15a is opened, and the gas is discharged from the discharge port 15a (S115). The gas discharged at this time is highly likely to be a mixture of the treated gas B and the remaining desorbed water vapor, and the content of the treated gas B increases thereafter. The remaining desorbed water vapor has already condensed most of the water vapor that it originally had and becomes water, and is discharged from the drain outlet at the bottom. It rarely happens. Thereafter, the adsorption step is continued in the adsorption tower 11a until a condition such as a fixed time elapses as described above (S116 ~).

なお、残存脱着用水蒸気の温度の低下速度は、外気温が同じであればほぼ一定になると考えられるので、一旦温度センサにて残存脱着用水蒸気の転出時の温度を測定して、上記の一定温度以下になるまでの時間を測定しておき、二度目以降はその一定時間が経過した時点で転出を終えるように設定してもよい。この他、残存脱着用水蒸気を転入させる吸着塔11bの上面に温度センサを設け、この温度が一定以上に達したときに転出入を打ち切ってもよい。これは、特に残存脱着用水蒸気を吸着塔の上部から転入させる場合に効果を発揮する。即ち、残存脱着用水蒸気により予期せず脱着が進行しないため、平準化を妨げることがないためである。なお、後述する実施形態のように残存脱着用水蒸気と脱着用水蒸気Fを混合して転入させる場合、塔内に供給される脱着用水蒸気の総量が増加するが、前記温度センサに連動させることでこの残存脱着用水蒸気の有無に関わらず同じ運転条件で平準化を行うことができる。   The rate of decrease in the temperature of the remaining desorption water vapor is considered to be substantially constant if the outside air temperature is the same. Therefore, once the temperature at the time of transfer of the remaining desorption water vapor is measured with a temperature sensor, The time until the temperature is lowered may be measured, and the second and subsequent times may be set so that the transfer is completed when the certain time has elapsed. In addition, a temperature sensor may be provided on the upper surface of the adsorption tower 11b for transferring the remaining desorbed water vapor, and the transfer-in / out may be stopped when the temperature reaches a certain level. This is particularly effective when the residual desorption water vapor is transferred from the upper part of the adsorption tower. That is, since the desorption does not proceed unexpectedly due to the remaining desorption water vapor, leveling is not hindered. In addition, when residual desorption water vapor and desorption water vapor F are mixed and transferred as in the embodiment described later, the total amount of desorption water vapor supplied into the tower increases, but by interlocking with the temperature sensor, Leveling can be performed under the same operating conditions regardless of the presence or absence of this residual desorption water vapor.

一方、吸着塔11bでは、上段の供給口24bを開放して、下段の供給口25bを一旦閉鎖する(S115)。これと併せて、水蒸気供給ライン21の弁23を開放することで、水蒸気供給ライン21から供給される脱着用水蒸気Fが、上段の供給口24bから供給されて、吸着層12bの上段部分の脱着が開始される(S116)。その後、供給口25bを開放して(S117)、吸着層12bの全体で脱着を起こさせることで(S118)、吸着層12bの全体から一挙に揮発性有機化合物が脱着されることを防ぎ、脱着量の平準化を図る。
底部の供給口25bの弁開放(S117)により、吸着層全体の脱着が開始されるが、底面からの残存水蒸気により吸着層の下段が暖められているため脱着が速やかに起こり、脱着工程の時間短縮になる。
On the other hand, in the adsorption tower 11b, the upper supply port 24b is opened and the lower supply port 25b is temporarily closed (S115). At the same time, by opening the valve 23 of the water vapor supply line 21, the desorption water vapor F supplied from the water vapor supply line 21 is supplied from the upper supply port 24 b, and the upper portion of the adsorption layer 12 b is desorbed. Is started (S116). Thereafter, the supply port 25b is opened (S117), and desorption is caused in the entire adsorption layer 12b (S118), thereby preventing the volatile organic compound from being desorbed all at once from the entire adsorption layer 12b. Aim the level.
The desorption of the entire adsorption layer is started by opening the valve of the supply port 25b at the bottom (S117). However, since the lower stage of the adsorption layer is warmed by residual water vapor from the bottom surface, desorption occurs quickly, and the time of the desorption process It will be shortened.

その後の、吸着塔11bにおける脱着終了後の経過(S119〜)は、上記のS109の後と吸着塔11a,11bの関係が逆になっただけで同じである。すなわち、吸着塔11b内に残存した残存脱着用水蒸気が、導入口13bから導入された揮発性有機化合物含有ガスAに押し出されて、底部の供給口25bから転出され、分岐点22まで逆送され、吸着塔11aの供給口25aから転入されることで、吸着塔11bに残存していた熱量の多くが吸着塔11aに移動する。   Subsequent progress after the desorption in the adsorption tower 11b (S119-) is the same only after the relationship between the above-mentioned S109 and the adsorption towers 11a and 11b is reversed. That is, the remaining desorbed water vapor remaining in the adsorption tower 11 b is pushed out to the volatile organic compound-containing gas A introduced from the inlet 13 b, transferred from the bottom supply port 25 b, and sent back to the branch point 22. By being transferred from the supply port 25a of the adsorption tower 11a, most of the heat remaining in the adsorption tower 11b moves to the adsorption tower 11a.

このような、脱着完了時に残る残存脱着用水蒸気の転出入を脱着終了及び吸着開始の際に行うことで、水蒸気量及び熱量を無駄にせず、なおかつ、高温の水蒸気を大気中に排出することを防ぎ、白煙の発生を防止することができる。   By carrying out the transfer of residual desorbed water vapor remaining at the completion of desorption at the end of desorption and at the start of adsorption, the amount of water vapor and heat is not wasted, and high temperature water vapor is discharged into the atmosphere. And the generation of white smoke can be prevented.

上記の実施形態は、残存脱着用水蒸気の転出入の際に、弁23を閉じて新たな脱着用水蒸気の供給を一時的に停止している。これは残存脱着用水蒸気が水蒸気源へ逆流することを防ぐためである。ただし、この弁23が単なるオンオフだけでなく、流量を調整できる弁であれば、残存脱着用水蒸気が転出入の際に水蒸気源へ逆流することを防ぎつつ、新たな脱着用水蒸気を供給して、速やかな転出入と脱着開始を行うことができる。この第二の実施形態を、上記第一の実施形態を基礎として説明する。   In the above embodiment, when the residual desorption water vapor is transferred in and out, the valve 23 is closed to temporarily stop the supply of new desorption water vapor. This is to prevent the remaining desorbed water vapor from flowing back to the water vapor source. However, if this valve 23 is not only on / off but also a valve whose flow rate can be adjusted, it is possible to supply new desorption water vapor while preventing the remaining desorption water vapor from flowing back to the water vapor source during transfer. , Prompt transfer and start of desorption can be performed. This second embodiment will be described based on the first embodiment.

この第二の実施形態の実施手順を、図3のフローと表2の状況遷移表とともに説明する。S100〜S111までは第一の実施形態と同じであるが、図2及び表1におけるS112〜S116を変更しており、それぞれをS112a〜S116aと表記する。すなわち、吸着塔11bでの吸着が終わり、吸着塔11aでの吸着を開始する際(S111)、吸着を終えた吸着塔11bの、上部の供給口24b,及び底部の供給口25bの両方の弁を開放するとともに、水蒸気源から新たな脱着用水蒸気を供給するべく弁23を開放する(S112a)。ただし、弁23と上部の供給口24bの弁は、流量を絞ることが可能であり、いずれも全開にせず、適度に調整する必要がある。   The implementation procedure of the second embodiment will be described together with the flow of FIG. 3 and the status transition table of Table 2. S100 to S111 are the same as those of the first embodiment, but S112 to S116 in FIG. 2 and Table 1 are changed, and are denoted as S112a to S116a, respectively. That is, when the adsorption in the adsorption tower 11b is finished and the adsorption in the adsorption tower 11a is started (S111), both the upper supply port 24b and the bottom supply port 25b of the adsorption tower 11b after the adsorption are completed. And the valve 23 is opened to supply new desorption water vapor from the water vapor source (S112a). However, the flow rate of the valve 23 and the valve of the upper supply port 24b can be reduced, and neither of them is fully opened and needs to be adjusted appropriately.

Figure 2013086018
Figure 2013086018

吸着塔11a内に残存していた残存脱着用水蒸気が供給口25aから転出する(S113a。第一の実施形態S113と同様。)。この転出した残存脱着用水蒸気と、水蒸気供給ライン21から弁23を通して供給された新たな脱着用水蒸気Fとが、分岐点22付近で混合して、上部の供給口24b及び底部の供給口25bから、吸着塔11b内に供給される(S114a)。ただし、混合した水蒸気が弁23へ逆流しないように、コントロールバルブである弁23を通過する流量を適切に調整しておく。また、上部の供給口24bの弁をコントロールバルブとするか、又は、分岐点22と供給口24bとの間にコントロールバルブを設けるか、いずれかの位置のコントロールバルブにより、上部の供給口24bへ流れ込む水蒸気量を絞り、底部の供給口25bへ優先的に水蒸気が供給されるように調整する。これにより、上部の供給口24bに過剰にならない程度の水蒸気が供給されて、速やかに脱着を開始でき、第一の実施形態よりも脱着に要する時間を短縮できる。また、それと並行して、吸着層12bの上部の供給口24bよりも下の部分が、転入してきた残存脱着用水蒸気と新たな脱着用水蒸気Fとによって十分暖められる。その後、底部の供給口25bの弁は一旦閉鎖する(S115a)が、既に吸着層12bの上部では脱着が進行しているため(S116a)、下部での脱着開始までの時間ロスも少なくなり、吸着層12bが十分に暖められた状態で、その後の全体脱着(S117,S118)が開始される。これにより、吸着層12bの下部に吸着されていた揮散性有機化合物は、第一の実施形態よりも早く脱着されるため、吸着層12bの上部から脱着された揮散性有機化合物の供出に続くまでの時間が短縮され、供出量の低下を抑え、全体として第一の実施形態よりも、揮散性有機化合物の量がさらに平準化される。   The remaining desorbed water vapor remaining in the adsorption tower 11a is transferred from the supply port 25a (S113a, as in the first embodiment S113). The transferred desorption water vapor that has been transferred and the new desorption water vapor F supplied from the water vapor supply line 21 through the valve 23 are mixed in the vicinity of the branch point 22, and are supplied from the upper supply port 24 b and the bottom supply port 25 b. Is supplied into the adsorption tower 11b (S114a). However, the flow rate passing through the valve 23 that is a control valve is appropriately adjusted so that the mixed water vapor does not flow back to the valve 23. Further, the valve of the upper supply port 24b is used as a control valve, or a control valve is provided between the branch point 22 and the supply port 24b, or the control valve at any position is connected to the upper supply port 24b. The amount of water vapor flowing in is reduced and adjusted so that water vapor is preferentially supplied to the supply port 25b at the bottom. Thereby, water vapor | steam which is not excessive is supplied to the upper supply port 24b, desorption can be started rapidly, and the time required for desorption can be shortened rather than 1st embodiment. In parallel with this, the portion below the supply port 24b at the top of the adsorption layer 12b is sufficiently warmed by the residual desorption water vapor that has been transferred in and the new desorption water vapor F. Thereafter, the valve of the bottom supply port 25b is once closed (S115a), but since desorption has already progressed in the upper part of the adsorption layer 12b (S116a), the time loss until the desorption starts in the lower part is reduced, and adsorption is performed. Subsequent total desorption (S117, S118) is started with the layer 12b sufficiently warmed. Thereby, since the volatile organic compound adsorbed on the lower part of the adsorption layer 12b is desorbed earlier than in the first embodiment, until the volatile organic compound desorbed from the upper part of the adsorption layer 12b is followed. The amount of the volatile organic compound is further leveled as compared with the first embodiment as a whole.

以上と同様の変更が、吸着塔11aへの転入時にも行われる(S122a〜S125a)。   The same change as described above is also performed at the time of transfer to the adsorption tower 11a (S122a to S125a).

次に、有機化合物処理装置の構成が異なる場合の、応用的な実施形態について述べる。
有機化合物処理装置が水蒸気供給ライン21に弁23を持たない場合でも、この発明の実施は可能である。すなわち、水蒸気供給ライン21から常に脱着用水蒸気Fが供給され続けていても、その供給圧力を上回る程度の圧力で吸着塔11a(又は11b)に揮発性有機化合物含有ガスAを供給すると、それによって押されて転出させられる残存脱着用水蒸気が、供給される脱着用水蒸気Fを押し戻し、供給口25a(又は25b)から分岐点22まで残存脱着用水蒸気を逆送させることができる。分岐点22まで到達した残存脱着用水蒸気と新たな脱着用水蒸気とは、上記第二の実施形態と同様に混合されて分岐点22から供給口25b(又は25a)へ順送され、吸着塔11b(又は11a)へ残存脱着用水蒸気を転入させることができる。一方、分岐点22よりも上流側の水蒸気供給ライン21では、脱着用水蒸気Fの流れが分岐しないため、供給圧力が高くなり、残存脱着用水蒸気の逆流がある程度進んでも、途中で脱着用水蒸気Fの圧力によって逆流は止まり、水蒸気の供給源まで逆流することを防ぐことができる。このような弁23を持たない構成とすることによって、部品点数を減らして装置を簡略化できるとともに、制御すべき弁の数が減るので、制御機構も簡略化できる。
Next, an applied embodiment when the configuration of the organic compound processing apparatus is different will be described.
Even when the organic compound processing apparatus does not have the valve 23 in the water vapor supply line 21, the present invention can be implemented. That is, even if the desorption water vapor F is continuously supplied from the water vapor supply line 21, when the volatile organic compound-containing gas A is supplied to the adsorption tower 11a (or 11b) at a pressure exceeding the supply pressure, The residual desorption water vapor that is pushed out and pushed out pushes back the supplied desorption water vapor F, and the residual desorption water vapor can be fed back from the supply port 25a (or 25b) to the branch point 22. The residual desorption water vapor that has reached the branch point 22 and the new desorption water vapor are mixed in the same manner as in the second embodiment and are forwarded from the branch point 22 to the supply port 25b (or 25a), and the adsorption tower 11b. The residual desorption water vapor can be transferred into (or 11a). On the other hand, in the steam supply line 21 upstream from the branch point 22, the flow of the desorption water vapor F does not branch. Therefore, even if the supply pressure increases and the reverse flow of the remaining desorption water vapor proceeds to some extent, the desorption water vapor F is halfway. The backflow stops by the pressure of and the backflow to the water vapor supply source can be prevented. By adopting such a configuration without the valve 23, the number of parts can be reduced and the apparatus can be simplified, and the number of valves to be controlled can be reduced, so that the control mechanism can be simplified.

なお、弁23を設けない場合でも、上記第二の実施形態のように、転入の際に上部の供給口24a(又は24b)をコントロールバルブによって絞りつつ開放してもよい。   Even when the valve 23 is not provided, the upper supply port 24a (or 24b) may be opened while being throttled by the control valve at the time of transfer as in the second embodiment.

この発明を実施するにあたり、有機化合物処理装置が有する吸着塔11は、二基の場合に限定されず、三基以上を並列に設けてあっても実施可能である。三基以上の吸着塔を、それぞれタイミングをずらして吸着、脱着させることで、処理装置の目的である吸着工程を安定して進行させることができる。吸着の開始時には、揮発性有機化合物含有ガスAが吸着層12に浸透する際にある程度の時間と圧力が必要となり、圧損が生じるため、導入して速やかに吸着が100%の効率で進行するわけではない。その吸着開始時の圧損を他の吸着塔が補うことで、本来の目的である吸着塔の吸着工程を安定して進行させることができる。その上で、一の吸着塔で脱着完了時に残存している残存脱着用水蒸気を吸着開始とともに転出させ、次の脱着を行う吸着塔に転入させれば、上記の吸着塔が二基の場合の実施形態と同様に、一の吸着塔に蓄積していた熱を有効に利用することができるとともに、残存脱着用水蒸気の大気放出を防いで、白煙の発生を防止できる。   In practicing the present invention, the adsorption tower 11 included in the organic compound processing apparatus is not limited to two, and can be implemented even when three or more are provided in parallel. By adsorbing and desorbing three or more adsorption towers at different timings, the adsorption process, which is the object of the processing apparatus, can proceed stably. At the start of adsorption, a certain amount of time and pressure is required for the volatile organic compound-containing gas A to permeate the adsorption layer 12 and pressure loss occurs, so that the adsorption proceeds promptly with 100% efficiency. is not. By compensating the pressure loss at the start of the adsorption by another adsorption tower, the adsorption process of the adsorption tower, which is the original purpose, can proceed stably. Then, if the residual desorption water vapor remaining at the completion of desorption in one adsorption tower is transferred at the start of adsorption and transferred to the adsorption tower for the next desorption, the above-mentioned adsorption tower is in the case of two groups. Similarly to the embodiment, the heat accumulated in one adsorption tower can be used effectively, and the release of residual desorbed water vapor can be prevented to prevent the generation of white smoke.

また、三基以上の吸着塔を並行して運用する場合、脱着が完了した一の吸着塔から、既に脱着が開始されている別の吸着塔に残存脱着用水蒸気を転出入させてもよい。この場合、脱着の開始前に予熱しておくことはできないが、残存脱着用水蒸気が大気中へと放出されず、新たな脱着用水蒸気Fと一緒に脱着に用いることができるので、水蒸気の無駄を減らすことはでき、また、水蒸気の大気外放出による白煙の発生も抑えることが出来る。   When three or more adsorption towers are operated in parallel, residual desorbed water vapor may be transferred from one adsorption tower that has been desorbed to another adsorption tower that has already been desorbed. In this case, it cannot be preheated before the start of desorption, but the remaining desorbed water vapor is not released into the atmosphere and can be used for desorption together with new desorbed water vapor F. The generation of white smoke due to the release of water vapor outside the atmosphere can also be suppressed.

この発明を実施する有機化合物処理装置に水蒸気を供給する供給源としては、外部に存在する水蒸気発生源があればそれを利用してもよい。揮発性有機化合物含有ガスAの発生源が熱を発するものである場合はその熱により水を蒸発させて脱着用水蒸気Fを得てもよい。一方、有機化合物の処理装置として装置内で水蒸気の供給を行い、装置を完結させる場合には、燃料を燃やして熱を発生させる燃焼炉31と、その燃焼炉の熱により水を脱着用水蒸気Fにする熱交換器32とを併設させるとよい。その場合の有機化合物処理装置の構成図を図4に示す。   As a supply source for supplying water vapor to the organic compound processing apparatus for carrying out the present invention, if there is an external water vapor generation source, it may be used. When the generation source of the volatile organic compound-containing gas A generates heat, water may be evaporated by the heat to obtain the desorption water vapor F. On the other hand, when supplying steam in the apparatus as an organic compound processing apparatus and completing the apparatus, a combustion furnace 31 that burns fuel to generate heat and water vapor F that desorbs water by the heat of the combustion furnace. A heat exchanger 32 is preferably provided. The block diagram of the organic compound processing apparatus in that case is shown in FIG.

燃焼炉31は上記の脱着用水蒸気Fを生成させるための熱を発生させるためのものであり、そのための燃料Dを供給する燃料供給口42を有しており、それとは別に、上記の吸着塔11(11a,11b)の供出口26(26a,26b)から送られてきた有機化合物含有水蒸気Kを供給する含有水蒸気供給口43も有している。また燃焼炉31は当然にバーナや煙突も有している(いずれも図示せず。)。さらに、内部温度を測定する燃焼炉内温度センサ44を有している。この燃焼炉31で発生した熱が、熱交換器32へ供給される。   The combustion furnace 31 is for generating heat for generating the desorption water vapor F and has a fuel supply port 42 for supplying the fuel D therefor. 11 (11a, 11b) also includes a water vapor supply port 43 for supplying the organic compound-containing water vapor K sent from the outlet 26 (26a, 26b). Of course, the combustion furnace 31 also has a burner and a chimney (both not shown). Furthermore, it has a combustion furnace temperature sensor 44 for measuring the internal temperature. Heat generated in the combustion furnace 31 is supplied to the heat exchanger 32.

熱交換器32は、水蒸気の元となる水Eを供給する循環口51を備え、水Eを加熱して脱着用水蒸気Fを発生させる。生じた脱着用水蒸気Fは、水蒸気発生口52から水蒸気供給ライン21を通じて、上記の吸着塔11の供給口24,25へ供給されるが、その吸着塔11a、11bへと分かれる分岐点22の前に、循環用分岐53が設けてあり、分岐の一方は熱交換器32へ循環する循環経路54を形成している。この循環経路54中には、水Eを噴霧する機能を有しており、循環口51を通じて熱交換器32に繋がる。生成する脱着用水蒸気Fが十分な高温になるまでは、発生する水蒸気はこの循環経路54を巡り、吸着塔11や外部へは排出しないようにして、熱効率を高めている。また、熱交換器32は発生する水蒸気の温度を調整するために、内部温度を測定する水蒸気温度センサ56を有している。   The heat exchanger 32 includes a circulation port 51 that supplies water E that is a source of water vapor, and heats the water E to generate desorption water vapor F. The generated desorption water vapor F is supplied from the water vapor generation port 52 through the water vapor supply line 21 to the supply ports 24 and 25 of the adsorption tower 11 before the branch point 22 that is divided into the adsorption towers 11a and 11b. In addition, a circulation branch 53 is provided, and one of the branches forms a circulation path 54 that circulates to the heat exchanger 32. The circulation path 54 has a function of spraying water E and is connected to the heat exchanger 32 through the circulation port 51. Until the desorption water vapor F to be generated reaches a sufficiently high temperature, the generated water vapor goes around the circulation path 54 and is not discharged to the adsorption tower 11 or the outside, thereby improving the thermal efficiency. The heat exchanger 32 has a water vapor temperature sensor 56 for measuring the internal temperature in order to adjust the temperature of the generated water vapor.

上記の循環用分岐53の他方は、上記の吸着塔11a,11bへ分かれる分岐点22との間にさらにもう一つの放出用分岐55が設けてある。この放出用分岐55の一方は、大気への開放口59に繋がっており、循環経路54内の内圧が過剰になったり、脱着用水蒸気Fが余ったときに、大気中に逃がすことができるよう、必要に応じて開閉可能な弁が設けられている。特に、弁23を設けないでこの発明を実施するにあたり、逆送する残存脱着用水蒸気によって循環経路54などの内圧が許容限界に近づいたときに、放出を行う安全弁として作用する。   Another discharge branch 55 is provided between the other branch of the circulation 53 and the branch point 22 that branches to the adsorption towers 11a and 11b. One of the discharge branches 55 is connected to an opening 59 to the atmosphere so that it can be released into the atmosphere when the internal pressure in the circulation path 54 becomes excessive or the desorption water vapor F is left. A valve that can be opened and closed as necessary is provided. In particular, when the present invention is carried out without providing the valve 23, it acts as a safety valve that discharges when the internal pressure of the circulation path 54 or the like approaches the allowable limit due to the residual desorbed water vapor that is fed back.

A 揮発性有機化合物含有ガス
B 処理後ガス
D 燃料
E 水
F 脱着用水蒸気
K 揮発性有機化合物含有水蒸気
11,11a,11b 吸着塔
12,12a,12b 吸着層
13,13a,13b 導入口
15,15a,15b 排出口
20,20a,20b 多孔板
21 水蒸気供給ライン
22 分岐点
23 弁
24,24a,24b 供給口
25,25a,25b 供給口
26,26a,26b 供出口
31 燃焼炉
32 熱交換器
35 放出用分岐
42 燃料供給口
43 含有水蒸気供給口
44 燃焼炉内温度センサ
51 循環口
52 水蒸気発生口
53 循環用分岐
54 循環経路
55 放出用分岐
56 水蒸気温度センサ
59 開放口
A volatile organic compound-containing gas B post-treatment gas D fuel E water F desorption water vapor K volatile organic compound-containing water vapor 11, 11a, 11b adsorption towers 12, 12a, 12b adsorption layers 13, 13a, 13b inlets 15, 15a , 15b Discharge port 20, 20a, 20b Perforated plate 21 Steam supply line 22 Branch point 23 Valves 24, 24a, 24b Supply port 25, 25a, 25b Supply port 26, 26a, 26b Supply port 31 Combustion furnace 32 Heat exchanger 35 Release Branch 42 Fuel supply port 43 Water vapor supply port 44 Combustion furnace temperature sensor 51 Circulation port 52 Water vapor generation port 53 Circulation branch 54 Circulation path 55 Discharge branch 56 Water vapor temperature sensor 59 Opening port

Claims (5)

揮発性有機化合物を吸着する吸着剤を充填した吸着層を内部に有する吸着塔を複数基有し、その吸着塔の少なくとも一つに、揮発性有機化合物を含有するガスを導入し、前記揮発性有機化合物を上記吸着剤に吸着させて含有量を低減させた処理後ガスを排出し、
吸着を行った後の吸着塔に、順に脱着用水蒸気を導入して吸着剤から揮発性有機化合物を脱着させた後に、再び吸着に用いる、有機化合物処理装置の制御方法であって、
上記脱着が終了した時点でその吸着塔内に残存する残存脱着用水蒸気を転出させて、脱着をこれから行う他の吸着塔、脱着を開始している他の吸着塔、又はその両方に転入することを特徴とする、有機化合物処理装置の運用方法。
A plurality of adsorption towers each having an adsorption layer filled with an adsorbent for adsorbing volatile organic compounds, and a gas containing a volatile organic compound is introduced into at least one of the adsorption towers; After the organic compound is adsorbed on the adsorbent and the content is reduced, the treated gas is discharged,
A method of controlling an organic compound treatment apparatus, which is used for adsorption again after introducing desorption water vapor in order to the adsorption tower after performing adsorption and desorbing volatile organic compounds from the adsorbent,
When the desorption is completed, the remaining desorption water vapor remaining in the adsorption tower is transferred, and transferred to another adsorption tower to be desorbed, another adsorption tower in which desorption has started, or both. A method for operating an organic compound processing apparatus, characterized by:
上記吸着塔に上記脱着用水蒸気を供給する水蒸気供給ラインは、供給源から途中まで共有されて個々の吸着塔に向けて分かれる分岐点を有しており、
他の上記吸着塔への上記残存脱着用水蒸気の転出入を、一の上記吸着塔の脱着用水蒸気供給口を転出のための排出口としてそこから上記水蒸気供給ラインを分岐点まで逆送させ、その分岐点から他の上記吸着塔の転入のための供給口となる脱着用水蒸気供給口まで順送させて行うことを特徴とする請求項1に記載の有機化合物処理装置の運用方法。
The water vapor supply line that supplies the desorption water vapor to the adsorption tower has a branch point that is shared partway from the supply source and is divided toward the individual adsorption tower,
The transfer of the remaining desorbed water vapor into the other adsorption tower, the desorption water vapor supply port of one of the adsorption towers as a discharge port for transfer, from there the water vapor supply line back to the branch point, The operation method of the organic compound processing apparatus according to claim 1, wherein the operation is carried out by sequentially feeding from the branch point to a desorption water vapor supply port serving as a supply port for transfer of the other adsorption tower.
上記脱着用水蒸気供給口が、上記吸着塔の高さ方向に複数段存在しており、上記転入のための供給口として、少なくとも最上段以外の上記脱着用水蒸気供給口を利用することを特徴とする請求項2に記載の有機化合物処理装置の運用方法。   The desorption water vapor supply ports are present in a plurality of stages in the height direction of the adsorption tower, and the desorption water vapor supply ports other than at least the uppermost stage are used as the supply ports for the transfer. The operation method of the organic compound processing apparatus according to claim 2. 上記脱着用水蒸気の供給源から、上記分岐点までの間に逆流を防ぐ弁が無く、
上記供給源まで残存脱着用水蒸気が逆送することを、上記供給源からの脱着用水蒸気の連続供給によって防ぐことを特徴とする請求項2又は3に記載の有機化合物処理装置の運用方法。
There is no valve that prevents backflow between the desorption water vapor source and the branch point,
The operation method of the organic compound processing apparatus according to claim 2 or 3, wherein a reverse supply of the remaining desorption water vapor to the supply source is prevented by continuous supply of the desorption water vapor from the supply source.
一の上記吸着塔内に残存した上記残存脱着用水蒸気の転出を、当該一の上記吸着塔における転出のための排出口における水蒸気温度が予め定めた温度を下回った時点、又は転出開始から予め定めた時間を経過した時点で打ち切ることを特徴とする請求項1乃至4のいずれかに記載の有機化合物処理装置の運用方法。   The transfer of the remaining desorbed water vapor remaining in the one adsorption tower is determined in advance from the time when the water vapor temperature at the outlet for transfer in the one adsorption tower falls below a predetermined temperature, or from the start of the transfer. 5. The method of operating an organic compound processing apparatus according to claim 1, wherein the operation is terminated when a predetermined time has elapsed.
JP2011228690A 2011-10-18 2011-10-18 Control method of volatile organic compound processing apparatus Expired - Fee Related JP5835662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011228690A JP5835662B2 (en) 2011-10-18 2011-10-18 Control method of volatile organic compound processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228690A JP5835662B2 (en) 2011-10-18 2011-10-18 Control method of volatile organic compound processing apparatus

Publications (2)

Publication Number Publication Date
JP2013086018A true JP2013086018A (en) 2013-05-13
JP5835662B2 JP5835662B2 (en) 2015-12-24

Family

ID=48530519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228690A Expired - Fee Related JP5835662B2 (en) 2011-10-18 2011-10-18 Control method of volatile organic compound processing apparatus

Country Status (1)

Country Link
JP (1) JP5835662B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255896A (en) * 2012-06-13 2013-12-26 Ihi Corp Device for recovering volatile organic compound, and system for treating the volatile organic compound
CN115537227A (en) * 2022-10-21 2022-12-30 中国石油化工股份有限公司 Adsorption tower and method for removing oxygen-containing compounds in isoparaffin solvent
CN115970441A (en) * 2022-11-02 2023-04-18 原初科技(北京)有限公司 Carbon dioxide absorption furnace and using method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116421A (en) * 1979-03-02 1980-09-08 Nittetsu Kakoki Kk Solvent reclaiming system
JPS55124523A (en) * 1979-03-20 1980-09-25 Nittetsu Kakoki Kk Adsorbing and desorbing method
JPS6320020A (en) * 1986-07-11 1988-01-27 Toho Kako Kensetsu Kk Adsorbing and desorbing method by activated carbon
JPH05225A (en) * 1991-06-25 1993-01-08 Kikkoman Corp Apparatus for recovering aroma component
JP2001129350A (en) * 1999-11-08 2001-05-15 Nittetu Chemical Engineering Ltd Cooling method of activated carbon bed for recovering solvent
JP2005066503A (en) * 2003-08-26 2005-03-17 Toho Kako Kensetsu Kk Solvent-containing gas treatment method
US20070193447A1 (en) * 2006-02-22 2007-08-23 Shigekazu Uji Method of processing volatile organic compound and system for processing volatile organic compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116421A (en) * 1979-03-02 1980-09-08 Nittetsu Kakoki Kk Solvent reclaiming system
JPS55124523A (en) * 1979-03-20 1980-09-25 Nittetsu Kakoki Kk Adsorbing and desorbing method
JPS6320020A (en) * 1986-07-11 1988-01-27 Toho Kako Kensetsu Kk Adsorbing and desorbing method by activated carbon
JPH05225A (en) * 1991-06-25 1993-01-08 Kikkoman Corp Apparatus for recovering aroma component
JP2001129350A (en) * 1999-11-08 2001-05-15 Nittetu Chemical Engineering Ltd Cooling method of activated carbon bed for recovering solvent
JP2005066503A (en) * 2003-08-26 2005-03-17 Toho Kako Kensetsu Kk Solvent-containing gas treatment method
US20070193447A1 (en) * 2006-02-22 2007-08-23 Shigekazu Uji Method of processing volatile organic compound and system for processing volatile organic compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255896A (en) * 2012-06-13 2013-12-26 Ihi Corp Device for recovering volatile organic compound, and system for treating the volatile organic compound
CN115537227A (en) * 2022-10-21 2022-12-30 中国石油化工股份有限公司 Adsorption tower and method for removing oxygen-containing compounds in isoparaffin solvent
CN115970441A (en) * 2022-11-02 2023-04-18 原初科技(北京)有限公司 Carbon dioxide absorption furnace and using method thereof

Also Published As

Publication number Publication date
JP5835662B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
KR101401813B1 (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil fired power plant
US6666911B2 (en) Treatment system for waste gas containing volatile organic compounds
US9079134B2 (en) Carbon dioxide separating and capturing apparatus
JP7283833B2 (en) Continuous treatment process and equipment for highly concentrated organic wastewater
CN102348949A (en) Wood chip drying system for drying wood chip and associated method for drying wood chip
JP5835662B2 (en) Control method of volatile organic compound processing apparatus
CN109482036A (en) A kind of adsorption treatment of organic exhaust gas and its desorption and regeneration technique of adsorbent
JP2002523718A (en) Organic wastewater evaporative heat storage incineration system
CN102553286A (en) Method and device for solvent recovery and incineration processing of coating production line drying workshop and comprehensive utilization of energy
FR2464744A1 (en) METHOD AND INSTALLATION FOR THERMAL REGENERATION OF ADSORBENT PRODUCTS LOADED
JP5113207B2 (en) Operation method of volatile organic compound processing equipment
RU2716772C1 (en) System for extracting co2 and method of extracting co2
JP5744721B2 (en) Carbonization method and apparatus
CN109482165A (en) The desorption and regeneration and its tail gas treatment process of the adsorbent of organic matter in adsorbed water body
KR20110074335A (en) Concentration control type device for adsorbing and desorbing activated-carbon
JP5262236B2 (en) Volatile organic compound treatment system and volatile organic compound treatment method
FR2993478A1 (en) INSTALLATION AND METHOD FOR GAS TREATMENT WITH REGENERATION AND RECYCLING OF GASES FROM REGENERATION.
JP2016007596A (en) Control method for volatile organic compound treatment apparatus
JP6229267B2 (en) Gas processing apparatus and gas processing method
JP6139180B2 (en) Operation method of volatile organic compound processing equipment
US6964729B1 (en) Oxidizing undesired compounds resident within liquid absorbent compounds, reducing atmospheric pollution, regenerating a liquid absorbent and conserving fuel usage associated with reboiler utilization
CN101314561A (en) Adsorbent bed resolution method and adsorber for recycling acetone
KR101958293B1 (en) Apparatus for removing carbon dioxide for capturing carbon dioxide
JP5387991B2 (en) Operation method of volatile organic compound adsorption tower
JP2015142884A (en) Volatile organic compound treatment apparatus and treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151022

R150 Certificate of patent or registration of utility model

Ref document number: 5835662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees