JP2013085364A - Grid connection power conversion equipment control device and grid connection power conversion equipment - Google Patents
Grid connection power conversion equipment control device and grid connection power conversion equipment Download PDFInfo
- Publication number
- JP2013085364A JP2013085364A JP2011223190A JP2011223190A JP2013085364A JP 2013085364 A JP2013085364 A JP 2013085364A JP 2011223190 A JP2011223190 A JP 2011223190A JP 2011223190 A JP2011223190 A JP 2011223190A JP 2013085364 A JP2013085364 A JP 2013085364A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- voltage
- power
- phase information
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 38
- 230000005856 abnormality Effects 0.000 claims abstract description 73
- 238000010248 power generation Methods 0.000 claims description 31
- 238000000605 extraction Methods 0.000 claims description 11
- 230000003111 delayed effect Effects 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 abstract description 5
- 230000000717 retained effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 230000006641 stabilisation Effects 0.000 description 7
- 238000011105 stabilization Methods 0.000 description 7
- 238000005070 sampling Methods 0.000 description 6
- 230000001052 transient effect Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 240000005523 Peganum harmala Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/40—Synchronising a generator for connection to a network or to another generator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
本発明は、系統連系用電力変換装置の制御装置、及び系統連系用電力変換装置に関するものである。 The present invention relates to a control device for a grid interconnection power conversion device and a grid interconnection power conversion device.
近年、環境負荷の小さい太陽光発電システムが益々注目されており、数百軒程度の街全体で太陽光発電システムを一斉導入するといった新たな試みがなされている。このように比較的狭い地域に集中して多くの太陽光発電システムが電力系統に接続されると、様々な懸念材料が生まれてくる。 In recent years, a photovoltaic power generation system with a small environmental load has attracted more and more attention, and a new attempt has been made to simultaneously introduce a photovoltaic power generation system in several hundred towns. When many solar power generation systems are connected to the power system in such a relatively small area, various concerns arise.
太陽光発電システム等の分散電源システムでは、太陽光発電パネル等の発電装置と電力系統との間に電力変換装置、所謂パワーコンディショナ(PCS、以下単にパワコンと称す)が設置されている。パワコンは、発電電力を系統周波数に合わせた交流電力に変換するインバータとその制御装置とを備え、電力変換動作に加えて、系統で停電等が生じた場合に個々の分散電源システムを系統から解列させる単独運転防止機能や、瞬時電圧低下時(瞬低時)に先の機能により不要解列するのを防止する瞬低時運転継続機能(FRT機能)を備えることが必要とされてきている。該機能は、上記のような太陽光発電システムが集中大量導入された地域においては特に、地域全体の太陽光発電システムが一斉解列することで系統に与える影響が多大となるため、系統安定化を図るためも必要な機能でもある。 In a distributed power supply system such as a solar power generation system, a power conversion device, a so-called power conditioner (PCS, hereinafter simply referred to as a power conditioner) is installed between a power generation device such as a solar power generation panel and a power system. The power converter is equipped with an inverter that converts the generated power into AC power that matches the system frequency and its control device. In addition to the power conversion operation, the power converter can solve individual distributed power systems from the system when a power failure occurs in the system. It has become necessary to provide an isolated operation prevention function that causes a series connection and a continuous operation function during a low voltage (FRT function) that prevents unnecessary disconnection due to the previous function when the instantaneous voltage drops (instantaneous voltage drop). . This function is particularly effective in regions where the above-described photovoltaic power generation systems are introduced in a concentrated manner, because the effect of the entire photovoltaic power generation system in the entire region on the grid is great. This is also a necessary function.
また、パワコンでは、系統電圧の基本波電圧位相を検出し、その位相検出に基づいて系統に合わせた交流電力の生成と注入とを行っているが、系統の電圧低下異常時に基本波電圧位相を喪失する虞があり、喪失した状態で交流電力を系統に出力すると、系統や他の電力機器に悪影響を与えてしまう。そのため、例えば特許文献1に開示の電力変換装置(制御装置)のように、基本波電圧位相を系統からその都度検出し、上記のような瞬低を含む電圧低下異常時において、基本波電圧位相の喪失を低減する技術が考えられている。 In addition, the power conditioner detects the fundamental voltage phase of the system voltage, and generates and injects AC power matched to the system based on the phase detection. If the AC power is output to the grid in the lost state, the grid and other power devices are adversely affected. Therefore, for example, as in the power conversion device (control device) disclosed in Patent Document 1, the fundamental wave voltage phase is detected from the system each time, and the fundamental wave voltage phase is detected at the time of the voltage drop abnormality including the instantaneous drop as described above. A technique for reducing the loss of this is considered.
ところで、電力系統にて瞬低が生じてパワコン側で基本波電圧位相を喪失し、それが復帰するまでの期間においては、位相が不安定な状況でその位相に基づいて動作するパワコンと、系統上や系統に接続される電力機器に備えられたリアクトル、コンデンサ等との関係で、非基本波次数の共振電流が系統上の電流に重畳し、継続的に発生する。特に、系統に太陽光発電システムが大量連系された場合では、系統上の共振電流が多大となり、このことで更に需要家の負荷機器の電圧低下による停止、所謂負荷脱落等が加わって共振現象が一層増大し、大量の太陽光発電システムが系統から一斉解列してしまうことが懸念材料となっている。 By the way, in the period until the voltage drop occurs in the power system and the fundamental voltage phase is lost on the power conditioner side, and the power conditioner recovers, The resonance current of the non-fundamental wave order is superimposed on the current on the system and is continuously generated in relation to the reactor, the capacitor, and the like provided in the power equipment connected to the system. In particular, when a large number of photovoltaic power generation systems are connected to the grid, the resonance current on the grid becomes large, which causes a stop due to a voltage drop in the load equipment of the customer, so-called load drop, etc. However, there is a concern that a large number of photovoltaic power generation systems will be disconnected from the grid all at once.
また、解列の前段階で数サイクルの一時的な動作停止機能(ゲートブロック機能)を追加するような場合、動作停止中の出力電流はゼロとなり、その後の瞬低復帰時の電流ソフトスタートの影響を受けることになる。つまり、該機能が用いられた場合では、瞬低復帰時からの出力電流の立ち上がりが緩やかとなり、瞬低前の状態まで速やかに回復できないという問題があった。 Also, if a temporary operation stop function (gate block function) of several cycles is added before the disconnection, the output current during operation stop becomes zero, and the current soft start at the time of instantaneous voltage drop recovery after that Will be affected. In other words, when this function is used, there is a problem that the rise of the output current from the time when the voltage sag recovers becomes gradual, and the state before the voltage sag cannot be recovered quickly.
本発明は、上記課題を解決するためになされたものであって、その目的は、系統瞬低時において出力電流を継続させつつも共振電流の発生を抑制し、一層の系統安定化を図ることができる系統連系用電力変換装置の制御装置、及び系統連系用電力変換装置を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its object is to suppress the generation of a resonance current while continuing the output current at the time of a system sag and to further stabilize the system. An object of the present invention is to provide a control device for a grid interconnection power converter and a grid interconnection power converter.
上記課題を解決するために、請求項1に記載の発明は、発電装置にて発電された発電電力を電力系統に出力可能な交流電力に変換動作する電力変換器に対して、前記電力系統でのその時々の電力状況に適切な制御を実施する系統連系用電力変換装置の制御装置であって、前記発電装置の発電電圧に基づいて前記電力変換器の出力電流振幅を設定する出力電流振幅設定手段と、前記電力系統の系統電圧の振幅及び位相情報を都度抽出する系統電圧情報抽出手段と、前記設定した出力電流振幅と前記抽出した位相情報とに基づいて、前記電力変換器の動作を制御すべく該電力変換器の出力電流値を設定する出力電流値設定手段と、前記系統電圧の振幅情報に基づいて電圧低下異常の判定を行う異常判定手段と、前記電圧低下異常の判定時までの正常時の位相情報を保持する位相情報保持手段と、前記出力電流値設定手段での前記出力電流値の設定に際し、前記電圧低下異常が生じていない場合には前記抽出した位相情報を適用し、前記電圧低下異常が生じた場合には前記抽出した位相情報に替えて前記保持した位相情報を適用すべく切り替える位相情報切替手段とを備えたことをその要旨とする。 In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a power converter that converts the generated power generated by the power generator into AC power that can be output to the power system. The control device for the grid interconnection power conversion device that performs appropriate control according to the current power status of the output power, and sets the output current amplitude of the power converter based on the power generation voltage of the power generation device Based on the setting means, the system voltage information extraction means for extracting the amplitude and phase information of the system voltage of the power system each time, the operation of the power converter based on the set output current amplitude and the extracted phase information. Output current value setting means for setting the output current value of the power converter to be controlled, abnormality determination means for determining a voltage drop abnormality based on the amplitude information of the system voltage, and until the voltage drop abnormality determination time Positive Phase information holding means for holding phase information at the time, and setting of the output current value in the output current value setting means, if the voltage drop abnormality has not occurred, apply the extracted phase information, The gist of the invention is that it comprises phase information switching means for switching to apply the held phase information in place of the extracted phase information when a voltage drop abnormality occurs.
この発明では、系統電圧の電圧低下異常が判定される時までの正常時の位相情報が保持される。そして、出力電流値設定手段での出力電流値の設定に際し、電圧低下異常が生じていない場合には都度抽出される位相情報が適用され、電圧低下異常が生じた場合には先の保持された位相情報が適用されるように切り替えられる。つまり、電圧低下異常が生じた場合、正常時の安定した位相情報を用いて出力電流値が設定されるため、この制御装置にて制御される電力変換器の動作は正常時と同様に安定したものとなる。結果、電力変換器からの出力電流に非基本波次数の共振電流が発生することが低減され、一層の系統安定化に寄与できる。 In the present invention, the phase information at the normal time until the voltage drop abnormality of the system voltage is determined is held. When the output current value is set by the output current value setting means, the phase information extracted every time when the voltage drop abnormality does not occur is applied, and when the voltage drop abnormality occurs, the previous information is retained. It is switched so that phase information is applied. In other words, when a voltage drop abnormality occurs, the output current value is set using the stable phase information at the normal time, so the operation of the power converter controlled by this control device is as stable as at the normal time. It will be a thing. As a result, the generation of a non-fundamental order resonance current in the output current from the power converter is reduced, which can contribute to further system stabilization.
請求項2に記載の発明は、請求項1に記載の系統連系用電力変換装置の制御装置において、前記位相情報保持手段は、前記電圧低下異常の判定時までの正常時の位相情報を少なくとも1サイクル分保持し、前記電圧低下異常が生じた場合に、前記保持した位相情報が前記出力電流値設定手段に対して順次出力されるように構成されたことをその要旨とする。 According to a second aspect of the present invention, in the control device for a grid interconnection power conversion device according to the first aspect, the phase information holding means has at least normal phase information until the determination of the voltage drop abnormality. The gist of the present invention is that the stored phase information is sequentially output to the output current value setting means when the voltage drop abnormality occurs after holding for one cycle.
この発明では、電圧低下異常の判定時までの正常時の位相情報が少なくとも1サイクル分保持可能とされ、電圧低下異常が生じた場合に、保持した位相情報が出力電流値設定手段に対して順次出力される。これにより、電圧低下異常が生じた場合の適切な位相情報の出力を演算不要で容易に行うことが可能となる。 In the present invention, the normal phase information until the determination of the voltage drop abnormality can be held for at least one cycle, and when the voltage drop abnormality occurs, the held phase information is sequentially supplied to the output current value setting means. Is output. As a result, it is possible to easily output appropriate phase information when a voltage drop abnormality occurs without requiring computation.
請求項3に記載の発明は、請求項1に記載の系統連系用電力変換装置の制御装置において、前記位相情報保持手段は、前記電圧低下異常の判定時までの正常時の位相情報を所定個保持し、前記電圧低下異常が生じた場合に、前記保持した所定個の位相情報に基づいてその時の位相情報を算出しながら前記出力電流値設定手段に対して順次出力されるように構成されたことをその要旨とする。 According to a third aspect of the present invention, in the control device for the grid interconnection power conversion device according to the first aspect, the phase information holding unit is configured to predetermine phase information at a normal time until the determination of the voltage drop abnormality. When the voltage drop abnormality occurs, the output current value setting means is sequentially output while calculating the phase information at that time based on the held predetermined phase information. This is the gist.
この発明では、電圧低下異常の判定時までの正常時の位相情報が所定個保持可能とされ、電圧低下異常が生じた場合に、保持した所定個の位相情報に基づくその時の位相情報を算出しながら、その算出された位相情報が出力電流値設定手段に対して順次出力される。これにより、電圧低下異常が生じた場合の適切な位相情報の出力を容易に行うことが可能で、保持する位相情報が少なくて済む。 In this invention, it is possible to hold a predetermined number of normal phase information until the determination of the voltage drop abnormality, and when the voltage drop abnormality occurs, the phase information at that time is calculated based on the held predetermined phase information. However, the calculated phase information is sequentially output to the output current value setting means. As a result, it is possible to easily output appropriate phase information when a voltage drop abnormality occurs, and to store less phase information.
請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の系統連系用電力変換装置の制御装置において、前記系統電圧情報抽出手段は、前記系統電圧の振幅及び位相情報の抽出に際し、αβ変換器又は瞬時正相変換器によるαβ変換又は瞬時正相変換を用いたことをその要旨とする。 According to a fourth aspect of the present invention, in the control device for a grid interconnection power conversion device according to any one of the first to third aspects, the system voltage information extracting means includes amplitude and phase information of the system voltage. The gist of the present invention is that αβ conversion or instantaneous positive phase conversion by an αβ converter or instantaneous positive phase converter is used for extraction.
この発明では、系統電圧の振幅及び位相情報の抽出に際し、αβ変換又は瞬時正相変換が用いられる。これにより、いずれの変換であっても、変換後の出力値が瞬低等の電圧低下異常にて瞬時に変化するため、瞬低等を含む電圧低下異常の判定をより確実に行うことが可能となる。 In the present invention, αβ conversion or instantaneous positive phase conversion is used in extracting the system voltage amplitude and phase information. As a result, in any conversion, the output value after conversion changes instantaneously due to a voltage drop abnormality such as a momentary drop, so it is possible to more reliably determine a voltage drop abnormality including a momentary drop etc. It becomes.
請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の系統連系用電力変換装置の制御装置において、前記位相情報切替手段は、前記電圧低下異常が判定された後に正常状態に復帰する際、前記出力電流値設定手段に出力する前記位相情報をその復帰時から遅延手段にて所定時間遅延させて保持態様側から抽出態様側に切り替えることをその要旨とする。 The invention according to claim 5 is the control device for the grid interconnection power conversion device according to any one of claims 1 to 4, wherein the phase information switching unit is configured to determine that the voltage drop abnormality is determined. When returning to a normal state, the gist is to switch the phase information output to the output current value setting means from the holding mode side to the extraction mode side by delaying the phase information by a delay unit for a predetermined time from the return time.
この発明では、電圧低下異常が判定された後に正常状態に復帰する際、出力電流値設定手段に出力する位相情報がその復帰時から所定時間の遅延を経て保持態様側から抽出態様側に切り替えられる。これにより、電圧低下異常からの復帰時に系統上で過渡変化が生じている可能性があるため、その過渡変化が位相情報に反映されることが防止され、電力変換器の出力安定化、一層の系統安定化に寄与できる。 In this invention, when returning to the normal state after the voltage drop abnormality is determined, the phase information output to the output current value setting means is switched from the holding mode side to the extraction mode side after a predetermined time delay from the return time. . As a result, there may be a transient change on the system at the time of recovery from the voltage drop abnormality, so that the transient change is prevented from being reflected in the phase information, and the output of the power converter is further stabilized. It can contribute to system stabilization.
請求項6に記載の発明は、発電装置にて発電された発電電力を電力系統に出力可能な交流電力に変換動作する電力変換器と、請求項1〜5のいずれか1項に記載の制御装置とを備えた系統連系用電力変換装置である。 The invention according to claim 6 is a power converter that converts the generated power generated by the power generator into AC power that can be output to the power system, and the control according to any one of claims 1 to 5. It is the power converter device for grid connection provided with the apparatus.
この発明では、請求項1〜5のいずれか1項に記載の制御装置が用いられることで、電力変換器からの出力電流に非基本波次数の共振電流が発生することが低減され、一層の系統安定化に寄与できる系統連系用電力変換装置として提供できる。 In the present invention, the use of the control device according to any one of claims 1 to 5 reduces the generation of a non-fundamental-order resonance current in the output current from the power converter. It can be provided as a system interconnection power conversion device that can contribute to system stabilization.
本発明によれば、系統瞬低時において出力電流を継続させつつも共振電流の発生を抑制でき、一層の系統安定化を図ることができる系統連系用電力変換装置の制御装置、及び系統連系用電力変換装置を提供することができる。 According to the present invention, it is possible to suppress the generation of a resonance current while continuing the output current at the time of a system instantaneous drop, and to further improve the system stabilization. A system power conversion device can be provided.
以下、本発明を具体化した一実施形態を図面に従って説明する。
図1は、本実施形態における太陽光発電システムを示す。太陽光発電システム10は、太陽光発電パネルPVで発電した直流電力を、パワーコンディショナ(パワコン)11にて系統周波数(50Hz又は60Hz)の三相交流電力に変換し、変換した交流電力を商用電力系統Lsに出力するものである。パワコン11は、電圧型電流制御方式を採用している。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
FIG. 1 shows a photovoltaic power generation system according to this embodiment. The solar power generation system 10 converts direct current power generated by the solar power generation panel PV into three-phase alternating current power of a system frequency (50 Hz or 60 Hz) by a power conditioner (power conditioner) 11 and uses the converted alternating current power for commercial use. This is output to the power system Ls. The power conditioner 11 employs a voltage type current control method.
パワコン11は、直流−交流電力変換器であるインバータ12とそれを制御する制御装置13とを備えている。インバータ12は、半導体スイッチング素子(図示略)を複数用いた三相ブリッジ回路にて構成されている。インバータ12には、発電にて得られた太陽光発電パネルPVからの直流電力が充電コンデンサ14を経て入力される。インバータ12は、制御装置13によるスイッチング制御(PWM制御)に基づいて、入力された直流電力をその時々の電力系統Lsの状況に応じた三相交流電力に変換し、各相の連系リアクトル15を介して電力系統Lsに出力する。 The power conditioner 11 includes an inverter 12 that is a DC-AC power converter and a control device 13 that controls the inverter 12. The inverter 12 is configured by a three-phase bridge circuit using a plurality of semiconductor switching elements (not shown). Direct current power from the photovoltaic power generation panel PV obtained by power generation is input to the inverter 12 via the charging capacitor 14. Based on switching control (PWM control) by the control device 13, the inverter 12 converts the input DC power into three-phase AC power corresponding to the situation of the power system Ls at that time, and the interconnection reactor 15 for each phase. Is output to the power system Ls.
制御装置13は、インバータ12の制御を実施するにあたり、連系リアクトル15の後段、即ち系統Lsとの連系点における三相の系統電圧Vsa,Vsb,Vsc及び系統電流Isa,Isb,Iscを所定サンプリング周期で入力する。系統電圧Vsa,Vsb,Vsc及び系統電流Isa,Isb,Iscは、三相/二相(3Φ/2Φ)変換部21にて、αβ軸の固定座標系の二相電圧値Vsα,Vsβ及び二相電流値Isα,Isβにそれぞれ変換される(αβ変換)。 When the control device 13 controls the inverter 12, the control device 13 determines the three-phase system voltages Vsa, Vsb, Vsc and the system currents Isa, Isb, Isc at the subsequent stage of the connection reactor 15, that is, the connection points with the system Ls. Input at the sampling cycle. The system voltages Vsa, Vsb, Vsc and system currents Isa, Isb, Isc are converted into two-phase voltage values Vsα, Vsβ and two-phase in a fixed coordinate system of αβ axis by a three-phase / two-phase (3Φ / 2Φ) converter 21. They are converted into current values Isα and Isβ, respectively (αβ conversion).
位相算出部22は、三相/二相変換部21からの二相電圧値Vsα,Vsβを入力し、これらから電圧位相を算出し、算出した電圧位相を電流位相に変換(位相調整)することで、その時々で適切な電流位相θαβの算出を行っている。尚、位相算出部22の詳細構成は、図2を用いて後述する。位相算出部22は、算出した電流位相θαβを出力電流値算出部23に出力する。出力電流値算出部23には、電流位相θαβとともに指令値切替部24からの出力電流振幅指令値Icも入力される。 The phase calculation unit 22 receives the two-phase voltage values Vsα and Vsβ from the three-phase / two-phase conversion unit 21, calculates the voltage phase from these, and converts the calculated voltage phase into a current phase (phase adjustment). Thus, an appropriate current phase θαβ is calculated from time to time. The detailed configuration of the phase calculation unit 22 will be described later with reference to FIG. The phase calculation unit 22 outputs the calculated current phase θαβ to the output current value calculation unit 23. The output current value calculation unit 23 also receives the output current amplitude command value Ic from the command value switching unit 24 together with the current phase θαβ.
指令値切替部24について、第1及び第2入力端子a1,a2を有し、第1入力端子a1には、直流電圧制御部25からの出力電流振幅指令値が入力される。直流電圧制御部25は、太陽光発電パネルPVとインバータ12との間に設けられた充電コンデンサ14の充電電圧Vdcを該発電パネルPVの発電電圧として入力し、充電電圧Vdcが定常電圧となるようにその時々の出力電流振幅指令値を設定し、設定した指令値を第1入力端子a1に出力する。 The command value switching unit 24 has first and second input terminals a1 and a2. The output current amplitude command value from the DC voltage control unit 25 is input to the first input terminal a1. The DC voltage control unit 25 inputs the charging voltage Vdc of the charging capacitor 14 provided between the photovoltaic power generation panel PV and the inverter 12 as the power generation voltage of the power generation panel PV so that the charging voltage Vdc becomes a steady voltage. Is set to the output current amplitude command value at that time, and the set command value is output to the first input terminal a1.
第2入力端子a2には、指令値保持部26にて保持された出力電流振幅指令値が入力される。指令値保持部26は、直流電圧制御部25から出力電流振幅指令値が入力されており、位相算出部22に備えられる後述の電圧低下判定部47にて電圧低下異常時と判定された際、その判定信号を保持指令信号として入力し、その時に取得した出力電流振幅指令値の保持を行うとともに、保持したその指令値を第2入力端子a2に出力する。 The output current amplitude command value held by the command value holding unit 26 is input to the second input terminal a2. When the command value holding unit 26 receives the output current amplitude command value from the DC voltage control unit 25 and is determined by the voltage drop determination unit 47 (described later) included in the phase calculation unit 22 to be at the time of voltage drop abnormality, The determination signal is input as a holding command signal, the output current amplitude command value acquired at that time is held, and the held command value is output to the second input terminal a2.
尚、後述の電圧低下判定部47(図2参照)では、二相電圧値Vsα,Vsβとして入力される系統電圧Vsa,Vsb,Vscから、電力系統Lsにて瞬時電圧低下時(瞬低時)を含む所定レベル以上の電圧低下異常が生じているか否かの判定が行われている。 In the voltage drop determination unit 47 (see FIG. 2), which will be described later, from the system voltages Vsa, Vsb, Vsc that are input as the two-phase voltage values Vsα, Vsβ, when the instantaneous voltage drops in the power system Ls (at the time of instantaneous drop) Whether or not a voltage drop abnormality of a predetermined level or more that includes
また、電圧低下異常と判定された判定信号は、切替制御信号として指令値切替部24の制御端子a0に入力される。即ち、電圧低下異常と判定されていない正常時(系統健全時)において、その旨を切替制御信号として入力される指令値切替部24では第1入力端子a1が選択され、直流電圧制御部25から第1入力端子a1を介して入力されるその時々の出力電流振幅指令値が指令値切替部24の出力電流振幅指令値Icとして出力電流値算出部23に出力される。 Further, the determination signal determined as the voltage drop abnormality is input to the control terminal a0 of the command value switching unit 24 as a switching control signal. That is, at the normal time when the voltage drop abnormality is not determined (when the system is healthy), the command value switching unit 24 to which this is input as a switching control signal selects the first input terminal a1, and the DC voltage control unit 25 The current output current amplitude command value input via the first input terminal a1 is output to the output current value calculation unit 23 as the output current amplitude command value Ic of the command value switching unit 24.
これに対し、瞬低を含む所定レベル以上の電圧低下異常が生じたと判定されると、その旨を切替制御信号として入力される指令値切替部24では第2入力端子a2が選択される。また同時に、指令値保持部26にもその異常判定に基づく保持指令信号が入力され、その時の直流電圧制御部25からの出力電流振幅指令値が指令値保持部26にて保持されるとともに、第2入力端子a2に出力される。そのため、指令値切替部24では第2入力端子a2を介して入力される指令値保持部26にて保持された出力電流振幅指令値が指令値切替部24の出力電流振幅指令値Icとして出力電流値算出部23に出力される。 On the other hand, if it is determined that a voltage drop abnormality of a predetermined level or more including a voltage sag has occurred, the command value switching unit 24 to which this is input as a switching control signal selects the second input terminal a2. At the same time, a holding command signal based on the abnormality determination is input to the command value holding unit 26, and the output current amplitude command value from the DC voltage control unit 25 at that time is held in the command value holding unit 26. 2 is output to the input terminal a2. Therefore, in the command value switching unit 24, the output current amplitude command value held by the command value holding unit 26 input via the second input terminal a2 is used as the output current amplitude command value Ic of the command value switching unit 24. It is output to the value calculation unit 23.
出力電流値算出部23は、入力された出力電流振幅指令値Icと電流位相θαβとに基づいて、その時々で適切な振幅及び位相の出力電流値の算出を行う。算出された出力電流値は、αβ軸の固定座標系の二相電流値Icα,Icβとしてそれぞれ演算器27a,27bに入力される。 Based on the input output current amplitude command value Ic and the current phase θαβ, the output current value calculation unit 23 calculates an output current value having an appropriate amplitude and phase from time to time. The calculated output current values are input to the calculators 27a and 27b as the two-phase current values Icα and Icβ in the αβ axis fixed coordinate system, respectively.
演算器27aは、指令値に基づく出力電流値算出部23からの二相電流値Icαと、実値に基づく三相/二相変換部21からの二相電流値Isαとを用いて偏差を演算し、α軸側の演算結果を電圧変換器28aに出力する。演算器27bは、指令値に基づく出力電流値算出部23からの二相電流値Icβと、実値に基づく三相/二相変換部21からの二相電流値Isβとを用いて偏差を演算し、β軸側の演算結果を電圧変換器28bに出力する。 The calculator 27a calculates a deviation using the two-phase current value Icα from the output current value calculation unit 23 based on the command value and the two-phase current value Isα from the three-phase / two-phase conversion unit 21 based on the actual value. Then, the calculation result on the α-axis side is output to the voltage converter 28a. The calculator 27b calculates a deviation using the two-phase current value Icβ from the output current value calculation unit 23 based on the command value and the two-phase current value Isβ from the three-phase / two-phase conversion unit 21 based on the actual value. Then, the calculation result on the β-axis side is output to the voltage converter 28b.
電圧変換器28aは、演算器27aの演算結果である電流指令値と実値との偏差電流値を電圧値に変換し、α軸側の偏差電圧値として演算器29aに出力する。電圧変換器28bは、演算器27bの演算結果である電流指令値と実値との偏差電流値を電圧値に変換し、β軸側の偏差電圧値として演算器29bに出力する。 The voltage converter 28a converts the deviation current value between the current command value and the actual value, which is the calculation result of the calculator 27a, into a voltage value, and outputs the voltage value to the calculator 29a as the deviation voltage value on the α-axis side. The voltage converter 28b converts a deviation current value between the current command value and the actual value, which is a calculation result of the calculator 27b, into a voltage value, and outputs the voltage value to the calculator 29b as a deviation voltage value on the β-axis side.
演算器29aは、電圧変換器28aからの偏差電圧値を、三相/二相変換部21からの二相電圧値Vsαに反映し、α軸側の出力電圧値Vcαとして二相/三相(2Φ/3Φ)変換部30に出力する。演算器29bは、電圧変換器28bからの偏差電圧値を、三相/二相変換部21からの二相電圧値Vsβに反映し、β軸側の出力電圧値Vcβとして二相/三相変換部30に出力する。 The computing unit 29a reflects the deviation voltage value from the voltage converter 28a in the two-phase voltage value Vsα from the three-phase / two-phase conversion unit 21, and the two-phase / three-phase ( 2Φ / 3Φ) to the converter 30. The computing unit 29b reflects the deviation voltage value from the voltage converter 28b in the two-phase voltage value Vsβ from the three-phase / two-phase conversion unit 21, and performs two-phase / three-phase conversion as the output voltage value Vcβ on the β-axis side. To the unit 30.
二相/三相変換部30は、αβ軸の固定座標系の二相出力電圧値Vcα,Vcβを三相出力電圧値Vca,Vcb,Vccに変換する。変換された三相出力電圧値Vca,Vcb,Vccは、PWM制御部31に出力される。 The two-phase / three-phase converter 30 converts the two-phase output voltage values Vcα and Vcβ in the αβ axis fixed coordinate system into three-phase output voltage values Vca, Vcb, and Vcc. The converted three-phase output voltage values Vca, Vcb, Vcc are output to the PWM control unit 31.
PWM制御部31は、インバータ12のPWM制御を実施する際に用いる制御パルスを設定するものであり、入力された三相出力電圧値Vca,Vcb,Vccに基づいて制御パルスのオンパルス幅(デューティ)を適切値に決定する。そして、PWM制御部31は、その時々で決定される制御パルスに基づいて、インバータ12の適切なスイッチング動作を行っている。 The PWM control unit 31 sets a control pulse used when the PWM control of the inverter 12 is performed, and an on-pulse width (duty) of the control pulse based on the input three-phase output voltage values Vca, Vcb, Vcc. Is determined to an appropriate value. And the PWM control part 31 is performing the suitable switching operation | movement of the inverter 12 based on the control pulse determined at that time.
次に、位相算出部22の詳細構造について図2を用いて説明する。
位相算出部22では、三相/二相変換部21からの二相電圧値Vsα,Vsβが振幅演算部41及び位相演算部42にそれぞれ所定サンプリング周期毎に入力される。位相演算部42は、入力された二相電圧値Vsα,Vsβに基づいて電圧位相を算出し、算出した電圧位相を電流位相に変換するといったその時々の電流位相θαβの演算を行い、位相値切替部43の第1入力端子b1に出力する。
Next, the detailed structure of the phase calculation unit 22 will be described with reference to FIG.
In the phase calculation unit 22, the two-phase voltage values Vsα and Vsβ from the three-phase / two-phase conversion unit 21 are input to the amplitude calculation unit 41 and the phase calculation unit 42 for each predetermined sampling period. The phase calculation unit 42 calculates the voltage phase based on the input two-phase voltage values Vsα and Vsβ, calculates the current phase θαβ at that time, such as converting the calculated voltage phase into a current phase, and switches the phase value The signal is output to the first input terminal b1 of the unit 43.
位相値切替部43は、第1及び第2入力端子b1,b2を有し、第1入力端子b1には、位相演算部42からの電流位相θαβが入力される。第2入力端子b2には、位相保持部44にて保持された電流位相θαβが入力される。 The phase value switching unit 43 has first and second input terminals b1 and b2, and the current phase θαβ from the phase calculation unit 42 is input to the first input terminal b1. The current phase θαβ held by the phase holding unit 44 is input to the second input terminal b2.
位相保持部44は、位相値切替部43から出力される電流位相θαβを入力し、mサイクル分(本実施形態では1サイクル、即ち1周期分)の位相情報の更新及び保持を行っている。例えば、位相値切替部43において第1入力端子b1が選択される場合、位相保持部44には、位相演算部42からの電流位相θαβの過去mサイクル分の位相情報が順次更新されて保持される。また、位相値切替部43において第2入力端子b2が選択される場合、第2入力端子b2に切り替わる前までに第1入力端子b1から入力されていた電流位相θαβの過去mサイクル分の位相情報が保持され、また位相値切替部43と位相保持部44の接続態様から同一情報にて繰り返し更新される。 The phase holding unit 44 receives the current phase θαβ output from the phase value switching unit 43, and updates and holds the phase information for m cycles (in this embodiment, one cycle, that is, one cycle). For example, when the first input terminal b1 is selected in the phase value switching unit 43, the phase holding unit 44 sequentially updates and holds the phase information for the past m cycles of the current phase θαβ from the phase calculation unit 42. The Further, when the second input terminal b2 is selected in the phase value switching unit 43, phase information for the past m cycles of the current phase θαβ input from the first input terminal b1 before switching to the second input terminal b2. And is repeatedly updated with the same information from the connection mode of the phase value switching unit 43 and the phase holding unit 44.
振幅演算部41は、入力された二相電圧値Vsα,Vsβに基づいてその時々の電圧振幅値|V|、この場合絶対値の演算を行い、振幅変化分算出部45及び後述の第2判定器48にそれぞれ出力する。 The amplitude calculation unit 41 calculates a voltage amplitude value | V | at that time, in this case, an absolute value based on the input two-phase voltage values Vsα and Vsβ, and calculates an amplitude change calculation unit 45 and a second determination described later. Output to each of the devices 48.
振幅変化分算出部45は、今回のサンプリングで算出された電圧振幅値|V|をそのまま演算器45aに入力するとともに、1サイクル前(1周期前)のサンプリングで算出された電圧振幅値|V|を入力し、両値の差分から電圧振幅変化分|ΔV|の算出を行う。算出された電圧振幅変化分|ΔV|は、第1判定器46に出力される。 The amplitude variation calculation unit 45 inputs the voltage amplitude value | V | calculated by the current sampling as it is to the computing unit 45a and also calculates the voltage amplitude value | V calculated by sampling one cycle before (one cycle before). | Is input, and the voltage amplitude change | ΔV | is calculated from the difference between the two values. The calculated voltage amplitude change | ΔV | is output to the first determiner 46.
第1判定器46は、入力された電圧振幅変化分|ΔV|と予め設定された基準値ΔVrefとの比較を行い、電圧振幅変化分|ΔV|が基準値ΔVrefより小であるときは出力信号をLレベル、電圧振幅変化分|ΔV|が基準値ΔVrefより大となったときには出力信号をHレベルに切り替える。つまり、第1判定器46は、電圧振幅変化分|ΔV|を用いて、瞬低を含む電圧低下異常が生じたか否かの判定を行っている。第1判定器46からの出力信号は、電圧低下判定部47に出力される。 The first determination unit 46 compares the input voltage amplitude change | ΔV | with a preset reference value ΔVref. When the voltage amplitude change | ΔV | is smaller than the reference value ΔVref, an output signal is output. When the voltage amplitude change | ΔV | is greater than the reference value ΔVref, the output signal is switched to the H level. That is, the first determiner 46 uses the voltage amplitude change | ΔV | to determine whether or not a voltage drop abnormality including an instantaneous drop has occurred. An output signal from the first determination unit 46 is output to the voltage drop determination unit 47.
電圧低下判定部47は、RSフリップフロップにて構成されており、第1判定器46からの出力信号はS端子(セット端子)に入力される。電圧低下判定部47のR端子(リセット端子)には、第2判定器48の出力信号がアンド回路(AND回路)49、オンディレイタイマ50を介して入力される。 The voltage drop determination unit 47 is configured by an RS flip-flop, and an output signal from the first determination unit 46 is input to the S terminal (set terminal). The output signal of the second determiner 48 is input to the R terminal (reset terminal) of the voltage drop determination unit 47 via the AND circuit (AND circuit) 49 and the on-delay timer 50.
第2判定器48は、入力された電圧振幅値|V|と予め設定された基準値Vrefとの比較を行い、電圧振幅値|V|が基準値Vrefより小であるときは出力信号をLレベル、電圧振幅値|V|が基準値Vrefより大となったときには出力信号をHレベルに切り替える。つまり、第2判定器48は、電圧振幅値|V|を用いて、瞬低を含む電圧低下異常が生じた後に正常電圧レベルに復帰したか否かの判定を行っている。第2判定器48からの出力信号は、アンド回路49に出力される。 The second determiner 48 compares the input voltage amplitude value | V | with a preset reference value Vref. When the voltage amplitude value | V | is smaller than the reference value Vref, the second determiner 48 outputs an output signal L When the level and voltage amplitude value | V | becomes larger than the reference value Vref, the output signal is switched to the H level. In other words, the second determiner 48 uses the voltage amplitude value | V | to determine whether or not the voltage has returned to the normal voltage level after the occurrence of a voltage drop abnormality including an instantaneous drop. An output signal from the second determiner 48 is output to the AND circuit 49.
アンド回路49は、2入力型であり、一方の入力端子に第2判定器48からの出力信号が、他方の入力端子に電圧低下判定部47からの出力信号がそれぞれ入力される。アンド回路49の出力信号は、信号伝達を所定時間Tdだけ遅延させるオンディレイタイマ50を介して電圧低下判定部47のR端子に出力される。そして、電圧低下判定部47は、このR端子と先のS端子とに入力される信号に基づいてQ端子から出力する出力信号の論理を変更し、該出力信号は位相値切替部43の制御端子b0に出力される。 The AND circuit 49 is a two-input type, and an output signal from the second determiner 48 is input to one input terminal, and an output signal from the voltage drop determination unit 47 is input to the other input terminal. The output signal of the AND circuit 49 is output to the R terminal of the voltage drop determination unit 47 via an on-delay timer 50 that delays signal transmission by a predetermined time Td. The voltage drop determination unit 47 changes the logic of the output signal output from the Q terminal based on the signal input to the R terminal and the previous S terminal, and the output signal is controlled by the phase value switching unit 43. It is output to the terminal b0.
ここで、電圧低下判定部47は、初期状態としてQ端子からLレベルの出力信号を出力する。これを受け、位相値切替部43では、第1入力端子b1が選択され、その時々の二相電圧値Vsα,Vsβに基づいて位相演算部42から出力される電流位相θαβが出力されるようになっている。つまり、系統電圧Vsa,Vsb,Vscが正常電圧レベルである場合、このようにして電流位相θαβが位相値切替部43、即ち位相算出部22から出力され、出力電流値算出部23(図1参照)にて出力電流値の設定が行われる。また、位相値切替部43から出力される電流位相θαβは、位相保持部44において過去1サイクル分が更新されつつ保持される。 Here, the voltage drop determination unit 47 outputs an L level output signal from the Q terminal as an initial state. In response, the phase value switching unit 43 selects the first input terminal b1, and outputs the current phase θαβ output from the phase calculation unit 42 based on the two-phase voltage values Vsα and Vsβ at that time. It has become. That is, when the system voltages Vsa, Vsb, and Vsc are at normal voltage levels, the current phase θαβ is thus output from the phase value switching unit 43, that is, the phase calculation unit 22, and the output current value calculation unit 23 (see FIG. 1). ) Is used to set the output current value. In addition, the current phase θαβ output from the phase value switching unit 43 is held in the phase holding unit 44 while the past one cycle is updated.
そして、系統電圧Vsa,Vsb,Vscに瞬低等の電圧低下異常が生じて第1判定器46にて電圧振幅変化分|ΔV|が基準値ΔVrefより大となると、第1判定器46の出力信号がLレベルからHレベルに切り替わり、電圧低下判定部47のS端子がHレベルになる。これを受け、電圧低下判定部47のQ端子から出力される出力信号がLレベルからHレベルに切り替わり、次にR端子がHレベルになるまで、Q端子から出力される出力信号がHレベルに維持される。すると、位相値切替部43では、第1入力端子b1から第2入力端子b2に切り替わり、位相保持部44にて保持した1サイクル分の電流位相θαβが位相値切替部43(位相算出部22)から順次出力されるようになる。 When a voltage drop abnormality such as an instantaneous drop occurs in the system voltages Vsa, Vsb, and Vsc and the voltage amplitude change | ΔV | becomes larger than the reference value ΔVref in the first determiner 46, the output of the first determiner 46 The signal is switched from the L level to the H level, and the S terminal of the voltage drop determination unit 47 becomes the H level. In response, the output signal output from the Q terminal of the voltage drop determination unit 47 is switched from the L level to the H level, and then the output signal output from the Q terminal is set to the H level until the R terminal becomes the H level. Maintained. Then, the phase value switching unit 43 switches from the first input terminal b1 to the second input terminal b2, and the current phase θαβ for one cycle held by the phase holding unit 44 is changed to the phase value switching unit 43 (phase calculation unit 22). Will be output sequentially.
このとき、位相保持部44にて保持される1サイクル分の電流位相θαβは、瞬低等の電圧低下異常となる直前の正常時(系統健全時)のものであるため、瞬低等の電圧低下異常が生じている期間においても、安定した正常時の電流位相θαβに基づいて出力電流値算出部23(図1参照)にて出力電流値の設定が行われる。 At this time, the current phase θαβ for one cycle held by the phase holding unit 44 is in a normal state (when the system is healthy) immediately before a voltage drop abnormality such as a voltage drop, so a voltage such as a voltage drop Even during the period in which the drop abnormality occurs, the output current value is set by the output current value calculation unit 23 (see FIG. 1) based on the stable normal current phase θαβ.
やがて、系統電圧Vsa,Vsb,Vscが瞬低等の電圧低下異常から正常電圧レベルまで復帰して第2判定器48にて電圧振幅値|V|が基準値Vrefより大となると、第2判定器48の出力信号がLレベルからHレベルに切り替わる。このとき、アンド回路49に入力される電圧低下判定部47のQ端子からの出力信号がHレベルとなっていることから、第2判定器48の出力信号がHレベルになることで、アンド回路49の出力信号がLレベルからHレベルに切り替わる。そして、所定時間Td経過後、オンディレイタイマ50の出力信号がLレベルからHレベルに切り替わり、電圧低下判定部47のR端子がHレベルになる。 Eventually, when the system voltage Vsa, Vsb, Vsc recovers from a voltage drop abnormality such as an instantaneous drop to a normal voltage level and the voltage amplitude value | V | becomes larger than the reference value Vref by the second determiner 48, the second determination is made. The output signal of the device 48 is switched from L level to H level. At this time, since the output signal from the Q terminal of the voltage drop determination unit 47 input to the AND circuit 49 is at the H level, the output signal of the second determination unit 48 is at the H level. 49 output signals are switched from L level to H level. Then, after the predetermined time Td has elapsed, the output signal of the on-delay timer 50 is switched from the L level to the H level, and the R terminal of the voltage drop determination unit 47 becomes the H level.
これを受け、電圧低下判定部47のQ端子から出力される出力信号がHレベルからLレベルに切り替わり、位相値切替部43では、第2入力端子b2から第1入力端子b1に切り替わる。位相値切替部43(位相算出部22)からは、その時々の二相電圧値Vsα,Vsβに基づく電流位相θαβが出力され、出力電流値算出部23(図1参照)での出力電流値の設定に用いられる。 In response to this, the output signal output from the Q terminal of the voltage drop determination unit 47 switches from H level to L level, and the phase value switching unit 43 switches from the second input terminal b2 to the first input terminal b1. The phase value switching unit 43 (phase calculation unit 22) outputs a current phase θαβ based on the two-phase voltage values Vsα and Vsβ at that time, and the output current value of the output current value calculation unit 23 (see FIG. 1) is output. Used for setting.
次に、このように構成された制御装置13の制御によるパワコン11の動作(作用)を図1及び図2を参照しつつ説明する。
系統電圧Vsa,Vsb,Vscが正常電圧レベルで推移している場合では、インバータ12の動作を決定する出力電流値算出部23での出力電流値は、その時々の充電電圧Vdcに基づいて算出される出力電流振幅指令値と、その時々の系統電圧Vsa,Vsb,Vsc(二相電圧値Vsα,Vsβ)に基づいて算出される電流位相θαβとを用いて設定される。こうして設定された出力電流値に基づいて動作するインバータ12により、太陽光発電パネルPVで発電した直流電力が電力系統Lsに合った交流電力に適切に変換されて、該系統Lsに出力される。
Next, the operation (action) of the power conditioner 11 under the control of the control device 13 configured as described above will be described with reference to FIGS. 1 and 2.
When the system voltages Vsa, Vsb, and Vsc are changing at the normal voltage level, the output current value in the output current value calculation unit 23 that determines the operation of the inverter 12 is calculated based on the charging voltage Vdc at that time. Output current amplitude command value and current phase θαβ calculated based on the system voltages Vsa, Vsb, Vsc (two-phase voltage values Vsα, Vsβ) at that time. By the inverter 12 that operates based on the output current value set in this manner, the DC power generated by the photovoltaic power generation panel PV is appropriately converted into AC power suitable for the power system Ls and output to the system Ls.
系統電圧Vsa,Vsb,Vscに瞬低等の電圧低下異常が生じると、その異常と判定された時点(電圧低下判定部47のQ端子がHレベルとなった時点)の出力電流振幅指令値が指令値保持部26にて保持されるとともに、保持された出力電流振幅指令値が異常判定期間で継続して出力電流値算出部23に出力されるようになる。また、異常と判定される直前の正常時の電流位相θαβが位相保持部44にてmサイクル分(1サイクル分)保持されていることから、正常時の電流位相θαβが異常判定期間で継続して出力電流値算出部23に出力される。 When a voltage drop abnormality such as an instantaneous drop occurs in the system voltages Vsa, Vsb, and Vsc, the output current amplitude command value at the time when the abnormality is determined (when the Q terminal of the voltage drop determination unit 47 becomes H level) is While being held in the command value holding unit 26, the held output current amplitude command value is continuously output to the output current value calculating unit 23 in the abnormality determination period. In addition, since the normal current phase θαβ immediately before being determined to be abnormal is held for m cycles (one cycle) in the phase holding unit 44, the normal current phase θαβ continues in the abnormality determination period. Is output to the output current value calculator 23.
従って、出力電流値算出部23では、系統Lsが正常時の安定した位相情報を用いて出力電流値が設定されるため、インバータ12の動作は正常時と同様に安定したものとなり、インバータ12からの出力電流に非基本波次数の共振電流が発生することが低減される。また本実施形態の手法を用いれば、系統電圧Vsa,Vsb,Vscがゼロとなったとしても、位相を喪失しない点で優れている。 Therefore, in the output current value calculation unit 23, the output current value is set using stable phase information when the system Ls is normal, so that the operation of the inverter 12 becomes stable in the same way as when the system Ls is normal. The generation of a non-fundamental order resonance current in the output current is reduced. Further, the use of the method of this embodiment is excellent in that the phase is not lost even if the system voltages Vsa, Vsb, and Vsc become zero.
ここで、図4は、系統から基本波電圧位相を都度検出して位相喪失の低減を図る仕様のパワコンが使用された時の連系点での系統電圧Vsa,Vsb,Vsc及び系統電流Isa,Isb,Iscの変化を示しているが、同図4に示すように、系統上で瞬低が発生すると、非基本波次数の共振電流及び共振電圧が発生するとともに、それが継続してしまう。特に系統にこの仕様のパワコンが大量連系されるような場合、系統上の共振電流及び共振電圧が多大となり、また需要家の負荷脱落等が加わって共振現象の増大を招いて、場合によってはパワコン(太陽光発電システム)が一斉解列する虞がある。 Here, FIG. 4 shows the system voltages Vsa, Vsb, Vsc and the system current Isa, at the connection point when a power conditioner having a specification for reducing the phase loss by detecting the fundamental wave voltage phase from the system is used. Although changes in Isb and Isc are shown, as shown in FIG. 4, when an instantaneous drop occurs in the system, a resonance current and a resonance voltage of a non-fundamental wave order are generated and continued. Especially when a large number of power conditioners of this specification are connected to the system, the resonance current and resonance voltage on the system become large, and the load drop of the customer is added, leading to an increase in the resonance phenomenon. There is a risk that power conditioners (solar power generation systems) will be disconnected all at once.
これに対して図3は、本実施形態のパワコン11の動作に基づく系統電圧(連系点電圧)Vsa,Vsb,Vsc及び系統電流(連系点電流)Isa,Isb,Iscの変化を示しているが、同図3に示すように、系統Ls上で瞬低が発生しても、非基本波次数の共振電流及び共振電圧の発生が即座に抑制される。またこのことは、系統Lsにパワコン11(太陽光発電システム10)が大量連系されるような場合に特に有効である。 On the other hand, FIG. 3 shows changes in the system voltages (connection point voltages) Vsa, Vsb, Vsc and the system currents (connection point currents) Isa, Isb, Isc based on the operation of the power conditioner 11 of the present embodiment. However, as shown in FIG. 3, even if an instantaneous drop occurs on the system Ls, the generation of the resonance current and the resonance voltage of the non-fundamental wave order is immediately suppressed. This is particularly effective when a large number of power conditioners 11 (solar power generation systems 10) are connected to the system Ls.
やがて、系統電圧Vsa,Vsb,Vscが瞬低等の電圧低下異常から正常電圧レベルまで復帰すると、オンディレイタイマ50の動作により所定時間Tdを経過した後から、位相保持部44からの電流位相θαβの出力から正常時の位相演算部42からの電流位相θαβの出力に切り替わる。つまり、復帰時において系統Ls上で過渡変化が生じている可能性があり、その過渡変化が電流位相θαβに反映されることが防止される。このことは、復帰時のインバータ12の動作の安定化に寄与するものとなり、図3に示すように、復帰時(瞬低解除時)の系統電圧Vsa,Vsb,Vsc及び系統電流Isa,Isb,Iscの歪み抑制に寄与できる。 Eventually, when the system voltages Vsa, Vsb, and Vsc return to the normal voltage level from the voltage drop abnormality such as a momentary drop, the current phase θαβ from the phase holding unit 44 is reached after a predetermined time Td has elapsed due to the operation of the on-delay timer 50. Is switched to the output of the current phase θαβ from the normal phase calculator 42. That is, there is a possibility that a transient change has occurred on the system Ls at the time of return, and the transient change is prevented from being reflected in the current phase θαβ. This contributes to the stabilization of the operation of the inverter 12 at the time of return. As shown in FIG. 3, the system voltages Vsa, Vsb, Vsc and the system currents Isa, Isb, This can contribute to suppression of distortion of Isc.
次に、本実施形態の特徴的な効果を記載する。
(1)出力電流値の設定に用いる電流位相θαβの算出を行っている位相算出部22に位相保持部44が備えられ、該位相保持部44にて系統電圧Vsa,Vsb,Vscの電圧低下異常が判定される時までの正常時の位相情報がmサイクル分(本形態では1サイクル分)、更新されつつ保持される。そして、出力電流値算出部23での出力電流値の設定に際し、位相算出部22の位相値切替部43及び電圧低下判定部47等の動作にて、電圧低下異常が生じていない場合には、位相演算部42から出力される都度抽出の位相情報が適用され、電圧低下異常が生じた場合には、先の位相保持部44にて保持された位相情報が適用されるようにしている。つまり、電圧低下異常が生じた場合、位相保持部44にて保持された正常時の安定した位相情報を用いて出力電流値が設定されるため、インバータ12の動作は正常時と同様に安定したものとなる。結果、インバータ12(パワコン11)からの出力電流に非基本波次数の共振電流が発生することを低減でき、一層の系統Ls安定化に寄与することができる。
Next, characteristic effects of the present embodiment will be described.
(1) The phase holding unit 44 is provided in the phase calculating unit 22 that calculates the current phase θαβ used for setting the output current value, and the phase holding unit 44 has a voltage drop abnormality of the system voltages Vsa, Vsb, and Vsc. The normal phase information until the time is determined is held for m cycles (one cycle in this embodiment) while being updated. Then, when setting the output current value in the output current value calculation unit 23, in the operation of the phase value switching unit 43 and the voltage drop determination unit 47 of the phase calculation unit 22, when the voltage drop abnormality has not occurred, The extracted phase information is applied each time output from the phase calculation unit 42, and when voltage drop abnormality occurs, the phase information held in the previous phase holding unit 44 is applied. That is, when a voltage drop abnormality occurs, the output current value is set using the stable phase information at the normal time held by the phase holding unit 44, so that the operation of the inverter 12 is stabilized as in the normal time. It will be a thing. As a result, it is possible to reduce the occurrence of a non-fundamental-order resonance current in the output current from the inverter 12 (power conditioner 11), and to contribute to further stabilization of the system Ls.
(2)電圧低下異常の判定時までの正常時の位相情報がmサイクル分(本形態では1サイクル)分保持可能な位相保持部44が備えられ、電圧低下異常が生じた場合に、保持したmサイクル分の位相情報の順次出力が行われている。これにより、電圧低下異常が生じた場合の適切な位相情報の出力を演算不要で容易に行うことができる。 (2) A phase holding unit 44 capable of holding normal phase information for m cycles (1 cycle in this embodiment) until the determination of the voltage drop abnormality is provided, and held when a voltage drop abnormality occurs. The phase information for m cycles is sequentially output. As a result, it is possible to easily output appropriate phase information when a voltage drop abnormality has occurred without requiring computation.
(3)系統電圧Vsa,Vsb,Vscの振幅及び位相情報の抽出に際し、αβ変換を行う三相/二相変換部21が用いられている。これにより、変換後の出力値が瞬低等の電圧低下異常にて瞬時に変化するため、瞬低等を含む電圧低下異常の判定をより確実に行うことができる。また、αβ変換を用いれば、系統周波数が変化しても正確な位相情報を得ることができる。 (3) A three-phase / two-phase converter 21 that performs αβ conversion is used when extracting the amplitude and phase information of the system voltages Vsa, Vsb, and Vsc. Thereby, since the output value after conversion changes instantaneously due to a voltage drop abnormality such as a voltage drop, it is possible to more reliably determine a voltage drop abnormality including a voltage drop. Moreover, if αβ conversion is used, accurate phase information can be obtained even if the system frequency changes.
(4)電圧低下異常が判定された後に正常状態に復帰する際、出力電流値算出部23に出力する位相情報がオンディレイタイマ50の動作にてその復帰時から所定時間Tdの遅延を経て保持態様側から抽出態様側に切り替えるようにしている。これにより、電圧低下異常からの復帰時に系統Ls上で過渡変化が生じている可能性があるため、その過渡変化が位相情報に反映されることを防止でき、インバータ12の出力安定化、一層の系統Ls安定化に寄与することができる。 (4) When returning to the normal state after the voltage drop abnormality is determined, the phase information output to the output current value calculation unit 23 is retained after a delay of a predetermined time Td from the return by the operation of the on-delay timer 50. The mode is switched from the mode side to the extraction mode side. As a result, there may be a transient change on the system Ls at the time of recovery from the voltage drop abnormality, so that the transient change can be prevented from being reflected in the phase information, and the output of the inverter 12 can be stabilized. This can contribute to the stabilization of the system Ls.
尚、本発明の実施形態は、以下のように変更してもよい。
・上記実施形態では、位相算出部22を図2のように構成したが、適宜変更してもよい。例えば、図5に示すような位相算出部22Aの構成としてもよい。
In addition, you may change embodiment of this invention as follows.
In the above embodiment, the phase calculation unit 22 is configured as shown in FIG. For example, the configuration of the phase calculation unit 22A as shown in FIG. 5 may be used.
図5に示す位相算出部22Aは、mサイクル分の位相情報を保持する位相保持部44に替えて、位相記憶部51、位相カウンタ52、及び演算器53を備える。位相記憶部51は、位相値切替部43から出力される電流位相θαβを入力し、所定個(例えば1個)の位相情報の更新及び保持を行う。また、位相記憶部51は、電圧低下判定部47からの出力信号が入力され、電圧低下異常判定がなされた旨の出力信号が入力されると、位相値切替部43が第2入力端子b2に切り替わる直前の第1入力端子b1から入力された正常時の電流位相θαβが例えば1個保持され、電圧低下異常判定がなされている期間中はその更新が禁止される。位相カウンタ52は、サンプリング毎に系統周波数を考慮した位相変化分を算出する。そして、演算器53では、位相記憶部51で記憶される正常時の電流位相θαβに対しその時々のサンプリング毎の位相変化分が加えられ、正常時の位相情報が順次出力可能となっている。このように構成しても、電圧低下異常が生じた場合の適切な位相情報の出力を容易に行うことができる。また、位相記憶部51にて保持する位相情報が少なくて済む。 The phase calculation unit 22A illustrated in FIG. 5 includes a phase storage unit 51, a phase counter 52, and a calculator 53 instead of the phase holding unit 44 that holds phase information for m cycles. The phase storage unit 51 receives the current phase θαβ output from the phase value switching unit 43, and updates and holds a predetermined number (for example, one) of phase information. Further, when the output signal from the voltage drop determination unit 47 is input to the phase storage unit 51 and the output signal indicating that the voltage drop abnormality determination has been made is input, the phase value switching unit 43 is connected to the second input terminal b2. For example, one normal current phase θαβ input from the first input terminal b1 immediately before switching is held, and updating thereof is prohibited during the period when the voltage drop abnormality determination is made. The phase counter 52 calculates a phase change amount considering the system frequency for each sampling. The computing unit 53 adds the phase change amount for each sampling to the normal current phase θαβ stored in the phase storage unit 51 so that normal phase information can be sequentially output. Even with this configuration, it is possible to easily output appropriate phase information when a voltage drop abnormality occurs. Also, less phase information is held in the phase storage unit 51.
・上記実施形態では、系統電圧Vsa,Vsb,Vscの振幅及び位相情報の抽出を行うべくαβ変換を行う三相/二相変換部21を用いたが、その他の変換器を用いてもよい。例えば図6に示すような瞬時正相変換器21Aを用いてもよい。 In the above embodiment, the three-phase / two-phase conversion unit 21 that performs αβ conversion to extract the amplitude and phase information of the system voltages Vsa, Vsb, and Vsc is used, but other converters may be used. For example, an instantaneous positive phase converter 21A as shown in FIG. 6 may be used.
図6に示す瞬時正相変換器21Aは、演算器61a〜61d、遅延部62a〜遅延部62c、回転演算器63a,63bを備える。第1相系統電圧Vsaは、その実部(Re)が演算器61aに入力されるとともに、同実部(Re)が1/4サイクル遅延を行う遅延部62aを介して虚部(Im)として演算器61bに入力される。第2相系統電圧Vsbは、その実部(Re)が演算a(=ej2π/3)を行う回転演算器63aを介して演算器61cに入力されるとともに、同実部(Re)が1/4サイクル遅延を行う遅延部62b、回転演算器63aを介して虚部(Im)として演算器61dに入力される。第3相系統電圧Vscは、その実部(Re)が演算a2を行う回転演算器63bを介して演算器61cに入力されるとともに、同実部(Re)が1/4サイクル遅延を行う遅延部62c、回転演算器63bを介して虚部(Im)として演算器61dに入力される。演算器61c,61dの演算結果は、演算器61a,61bにそれぞれ入力される。そして、演算器61aからは、実部側の演算結果として第1電圧値Vs1が、演算器61bからは虚部側の演算結果として第2電圧値Vs2がそれぞれ位相算出部22に出力され、振幅情報を含む第1電圧値Vs1及び位相情報を含む第2電圧値Vs2から振幅及び位相情報の抽出が行われる。このような瞬時正相変換器21Aを用いても、振幅情報を含む第1電圧値Vs1が瞬低等の電圧低下異常にて瞬時に変化するため、瞬低等を含む電圧低下異常の判定をより確実に行うことができる。 The instantaneous positive phase converter 21A shown in FIG. 6 includes calculators 61a to 61d, delay units 62a to 62c, and rotation calculators 63a and 63b. The real part (Re) of the first phase system voltage Vsa is input to the calculator 61a, and the real part (Re) is calculated as an imaginary part (Im) via a delay part 62a that delays a quarter cycle. Is input to the device 61b. The second phase system voltage Vsb is input to the calculator 61c via the rotation calculator 63a whose real part (Re) performs the calculation a (= e j2π / 3 ), and the real part (Re) is 1 / It is input to the computing unit 61d as an imaginary part (Im) through the delay unit 62b that performs a 4-cycle delay and the rotation computing unit 63a. The third phase system voltage Vsc has its real part (Re) is input to the arithmetic unit 61c via the rotary operation unit 63b to perform an operation a 2, the real part (Re) performs 1/4 cycle delay delay The imaginary part (Im) is input to the computing unit 61d through the unit 62c and the rotation computing unit 63b. The calculation results of the calculators 61c and 61d are input to the calculators 61a and 61b, respectively. Then, the calculator 61a outputs the first voltage value Vs1 as the calculation result on the real part side, and the calculator 61b outputs the second voltage value Vs2 as the calculation result on the imaginary part side, respectively. Extraction of amplitude and phase information is performed from the first voltage value Vs1 including information and the second voltage value Vs2 including phase information. Even if such an instantaneous positive phase converter 21A is used, since the first voltage value Vs1 including amplitude information changes instantaneously due to a voltage drop abnormality such as a sag, a voltage drop abnormality including a sag is determined. This can be done more reliably.
また、先の瞬時正相変換器21Aは、三相の系統Lsに対応すべく、三相の電圧Vsa,Vsb,Vscを振幅及び位相情報の抽出を行うための第1及び第2電圧値Vs1,Vs2に変換するものであったが、図7に示す瞬時正相変換器21Bを用いて、単相の系統に適用できるようにしてもよい。瞬時正相変換器21Bは遅延部62aのみを備え、単相電圧Vsの実部(Re)が第1電圧値Vs1として、また1/4サイクル遅延を行う遅延部62aを介した虚部(Im)が第2電圧値Vs2として位相算出部22に出力され、第1及び第2電圧値Vs1,Vs2から振幅及び位相情報の抽出が行われる。これに合わせてインバータ12を単相インバータに変更する等の構成変更により、パワコン11が単相系統に適用できるものとなる。 In addition, the previous instantaneous positive phase converter 21A has first and second voltage values Vs1 for extracting amplitude and phase information of the three-phase voltages Vsa, Vsb, and Vsc so as to correspond to the three-phase system Ls. , Vs2, but may be applied to a single-phase system using the instantaneous positive phase converter 21B shown in FIG. The instantaneous positive phase converter 21B includes only the delay unit 62a, and the real part (Re) of the single-phase voltage Vs is set as the first voltage value Vs1, and the imaginary part (Im via the delay unit 62a that performs a 1/4 cycle delay). ) Is output to the phase calculation unit 22 as the second voltage value Vs2, and the amplitude and phase information is extracted from the first and second voltage values Vs1 and Vs2. In accordance with this, the power converter 11 can be applied to a single-phase system by changing the configuration such as changing the inverter 12 to a single-phase inverter.
・上記実施形態の位相情報の保持する個数や保持のタイミング等、位相情報の保持態様を適宜変更してもよい。
・上記実施形態の出力電流振幅指令値の保持する個数や保持のタイミング等、出力電流振幅指令値の保持態様を適宜変更してもよい。
-You may change suitably the holding | maintenance aspects of phase information, such as the number of holding | maintaining phase information of the said embodiment, and the timing of holding | maintenance.
The retention mode of the output current amplitude command value, such as the number of output current amplitude command values to be retained and the retention timing, may be changed as appropriate.
・上記実施形態では、電力変換器としてインバータ12を備えていたが、その他の電力変換器と置換してもよく、その他の電力変換器と組み合わせてもよい。
・上記実施形態では、太陽光発電システム10のパワコン11に適用したが、その他の分散電源システムのパワコン、例えば風力発電システム、コージェネレーションシステム等のパワコンに適用してもよい。
-In above-mentioned embodiment, although the inverter 12 was provided as a power converter, you may substitute with another power converter and may combine with another power converter.
In the above-described embodiment, the present invention is applied to the power conditioner 11 of the solar power generation system 10, but may be applied to other power conditioners such as a wind power generation system and a cogeneration system.
11 パワーコンディショナ(パワコン、系統連系用電力変換装置)
12 インバータ(電力変換器)
13 制御装置
21 三相/二相変換部(系統電圧情報抽出手段、αβ変換器)
21A,21B 瞬時正相変換器
23 出力電流値算出部(出力電流値設定手段)
24 指令値切替部(出力電流振幅設定手段)
25 直流電圧制御部(出力電流振幅設定手段)
26 指令値保持部(出力電流振幅設定手段)
41 振幅演算部(系統電圧情報抽出手段)
42 位相演算部(系統電圧情報抽出手段)
43 位相値切替部(位相情報切替手段)
44 位相保持部(位相情報保持手段)
46 第1判定器(異常判定手段)
47 電圧低下判定部(異常判定手段、位相情報切替手段)
50 オンディレイタイマ(遅延手段)
51 位相記憶部(位相情報保持手段)
PV 太陽光発電パネル(発電装置)
Ls 電力系統
Vdc 充電電圧(発電電圧)
Vsa,Vsb,Vsc 系統電圧
Ic 出力電流振幅指令値(出力電流振幅、振幅情報)
θαβ 電流位相(位相情報)
Td 所定時間
11 Power conditioner (Power converter, power converter for grid connection)
12 Inverter (Power converter)
13 Controller 21 Three-phase / two-phase converter (system voltage information extraction means, αβ converter)
21A, 21B Instantaneous positive phase converter 23 Output current value calculation unit (output current value setting means)
24 Command value switching unit (output current amplitude setting means)
25 DC voltage controller (output current amplitude setting means)
26 Command value holding unit (output current amplitude setting means)
41 Amplitude calculation section (system voltage information extraction means)
42 Phase calculation section (system voltage information extraction means)
43 Phase value switching unit (phase information switching means)
44 Phase holding unit (phase information holding means)
46 1st determination device (abnormality determination means)
47 Voltage drop determination unit (abnormality determination means, phase information switching means)
50 On-delay timer (delay means)
51 Phase storage unit (phase information holding means)
PV solar power generation panel (power generation equipment)
Ls Power system Vdc Charging voltage (power generation voltage)
Vsa, Vsb, Vsc System voltage Ic Output current amplitude command value (output current amplitude, amplitude information)
θαβ Current phase (phase information)
Td predetermined time
Claims (6)
前記発電装置の発電電圧に基づいて前記電力変換器の出力電流振幅を設定する出力電流振幅設定手段と、
前記電力系統の系統電圧の振幅及び位相情報を都度抽出する系統電圧情報抽出手段と、
前記設定した出力電流振幅と前記抽出した位相情報とに基づいて、前記電力変換器の動作を制御すべく該電力変換器の出力電流値を設定する出力電流値設定手段と、
前記系統電圧の振幅情報に基づいて電圧低下異常の判定を行う異常判定手段と、
前記電圧低下異常の判定時までの正常時の位相情報を保持する位相情報保持手段と、
前記出力電流値設定手段での前記出力電流値の設定に際し、前記電圧低下異常が生じていない場合には前記抽出した位相情報を適用し、前記電圧低下異常が生じた場合には前記抽出した位相情報に替えて前記保持した位相情報を適用すべく切り替える位相情報切替手段と
を備えたことを特徴とする系統連系用電力変換装置の制御装置。 For grid connection that implements appropriate control of the power status of the power system for the power converter that converts the generated power generated by the power generator into AC power that can be output to the power system. A control device for a power converter,
Output current amplitude setting means for setting the output current amplitude of the power converter based on the generated voltage of the power generation device;
System voltage information extraction means for extracting the amplitude and phase information of the system voltage of the power system each time;
Based on the set output current amplitude and the extracted phase information, output current value setting means for setting the output current value of the power converter to control the operation of the power converter;
An abnormality determination means for determining a voltage drop abnormality based on the amplitude information of the system voltage;
Phase information holding means for holding normal phase information until the determination of the voltage drop abnormality;
When the output current value is set by the output current value setting means, the extracted phase information is applied when the voltage drop abnormality does not occur, and the extracted phase when the voltage drop abnormality occurs. A control apparatus for a grid-connected power converter, comprising: phase information switching means for switching to apply the held phase information instead of information.
前記位相情報保持手段は、前記電圧低下異常の判定時までの正常時の位相情報を少なくとも1サイクル分保持し、前記電圧低下異常が生じた場合に、前記保持した位相情報が前記出力電流値設定手段に対して順次出力されるように構成されたことを特徴とする系統連系用電力変換装置の制御装置。 In the control apparatus of the grid connection power converter device according to claim 1,
The phase information holding means holds at least one cycle of normal phase information until the determination of the voltage drop abnormality, and when the voltage drop abnormality occurs, the held phase information is set to the output current value setting. A control device for a grid interconnection power converter, wherein the controller is configured to sequentially output to the means.
前記位相情報保持手段は、前記電圧低下異常の判定時までの正常時の位相情報を所定個保持し、前記電圧低下異常が生じた場合に、前記保持した所定個の位相情報に基づいてその時の位相情報を算出しながら前記出力電流値設定手段に対して順次出力されるように構成されたことを特徴とする系統連系用電力変換装置の制御装置。 In the control apparatus of the grid connection power converter device according to claim 1,
The phase information holding means holds a predetermined number of normal phase information until the determination of the voltage drop abnormality, and when the voltage drop abnormality occurs, the phase information holding means based on the held predetermined phase information at that time A control device for a grid interconnection power converter, wherein the controller is configured to sequentially output to the output current value setting means while calculating phase information.
前記系統電圧情報抽出手段は、前記系統電圧の振幅及び位相情報の抽出に際し、αβ変換器又は瞬時正相変換器によるαβ変換又は瞬時正相変換を用いたことを特徴とする系統連系用電力変換装置の制御装置。 In the control apparatus of the grid connection power converter device according to any one of claims 1 to 3,
The grid voltage information extracting means uses αβ conversion or instantaneous positive phase conversion by an αβ converter or instantaneous positive phase converter when extracting the amplitude and phase information of the system voltage. Control device for the conversion device.
前記位相情報切替手段は、前記電圧低下異常が判定された後に正常状態に復帰する際、前記出力電流値設定手段に出力する前記位相情報をその復帰時から遅延手段にて所定時間遅延させて保持態様側から抽出態様側に切り替えることを特徴とする系統連系用電力変換装置の制御装置。 In the control apparatus of the grid connection power converter device according to any one of claims 1 to 4,
The phase information switching means holds the phase information output to the output current value setting means delayed by a delay means for a predetermined time from the return time when returning to the normal state after the voltage drop abnormality is determined. The control apparatus of the power converter for grid connection characterized by switching from the aspect side to the extraction aspect side.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011223190A JP5760930B2 (en) | 2011-10-07 | 2011-10-07 | Control device for power conversion device for grid connection, and power conversion device for grid connection |
PCT/JP2012/074553 WO2013051429A1 (en) | 2011-10-07 | 2012-09-25 | Controller for grid-connected power conversion device and grid-connected power conversion device |
CN201280044344.1A CN103797701A (en) | 2011-10-07 | 2012-09-25 | Controller for grid-connected power conversion device and the grid-connected power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011223190A JP5760930B2 (en) | 2011-10-07 | 2011-10-07 | Control device for power conversion device for grid connection, and power conversion device for grid connection |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013085364A true JP2013085364A (en) | 2013-05-09 |
JP2013085364A5 JP2013085364A5 (en) | 2014-09-25 |
JP5760930B2 JP5760930B2 (en) | 2015-08-12 |
Family
ID=48043591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011223190A Active JP5760930B2 (en) | 2011-10-07 | 2011-10-07 | Control device for power conversion device for grid connection, and power conversion device for grid connection |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5760930B2 (en) |
CN (1) | CN103797701A (en) |
WO (1) | WO2013051429A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014195396A (en) * | 2013-03-01 | 2014-10-09 | Chube Univ | Output control circuit |
JP2015195710A (en) * | 2014-03-20 | 2015-11-05 | パナソニックIpマネジメント株式会社 | Electric power conversion device and control method for the same |
JP2016063576A (en) * | 2014-09-16 | 2016-04-25 | 日新電機株式会社 | Controller for power conversion device for system interconnection, and power conversion device for system interconnection |
US10236793B2 (en) | 2016-06-30 | 2019-03-19 | Tabuchi Electric Co., Ltd. | Grid connection power conversion device and output current control method thereof |
US10516330B2 (en) | 2014-09-30 | 2019-12-24 | Kabushiki Kaisha Yaskawa Denki | Power converting device for controlling current based on oscillation component of voltage amplitude, and current control method based on oscillation component of voltage amplitude |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3579370A1 (en) * | 2018-06-05 | 2019-12-11 | Nordex Energy GmbH | Method for operating a wind turbine |
JP7535782B2 (en) | 2020-10-28 | 2024-08-19 | 学校法人同志社 | Control method for grid-connected inverter system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07227044A (en) * | 1994-02-07 | 1995-08-22 | Toshiba Corp | Controller for ac-dc converter |
JP2000014162A (en) * | 1998-06-17 | 2000-01-14 | Sanyo Electric Co Ltd | Inverter for linking systems to each other |
JP3547355B2 (en) * | 1999-12-28 | 2004-07-28 | 株式会社日立製作所 | Power conversion system |
JP2008059968A (en) * | 2006-09-01 | 2008-03-13 | Matsushita Electric Ind Co Ltd | Fuel cell system |
JP2011036040A (en) * | 2009-07-31 | 2011-02-17 | Renesas Electronics Corp | System interconnection system and system interconnection method |
-
2011
- 2011-10-07 JP JP2011223190A patent/JP5760930B2/en active Active
-
2012
- 2012-09-25 CN CN201280044344.1A patent/CN103797701A/en active Pending
- 2012-09-25 WO PCT/JP2012/074553 patent/WO2013051429A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014195396A (en) * | 2013-03-01 | 2014-10-09 | Chube Univ | Output control circuit |
JP2015195710A (en) * | 2014-03-20 | 2015-11-05 | パナソニックIpマネジメント株式会社 | Electric power conversion device and control method for the same |
JP2016063576A (en) * | 2014-09-16 | 2016-04-25 | 日新電機株式会社 | Controller for power conversion device for system interconnection, and power conversion device for system interconnection |
US10516330B2 (en) | 2014-09-30 | 2019-12-24 | Kabushiki Kaisha Yaskawa Denki | Power converting device for controlling current based on oscillation component of voltage amplitude, and current control method based on oscillation component of voltage amplitude |
US10236793B2 (en) | 2016-06-30 | 2019-03-19 | Tabuchi Electric Co., Ltd. | Grid connection power conversion device and output current control method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2013051429A1 (en) | 2013-04-11 |
CN103797701A (en) | 2014-05-14 |
JP5760930B2 (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5760930B2 (en) | Control device for power conversion device for grid connection, and power conversion device for grid connection | |
AU2011213174B2 (en) | Detection of islanding for grid connected inverter | |
KR102386628B1 (en) | AC switch and uninterruptible power supply including same and net low compensation device | |
Cecati et al. | A suitable control technique for fault-tolerant converters in distributed generation | |
JP6065273B2 (en) | Isolated operation detection device and detection method | |
KR101646170B1 (en) | Power System Control Method for Operation With Grid-Connection and Isolation | |
JP5946291B2 (en) | CONVERTER, CONVERTER CONTROL METHOD, AND CONVERTER CONTROL PROGRAM | |
Wang et al. | Reliability-oriented design and analysis of input capacitors in single-phase transformer-less photovoltaic inverters | |
Youssef et al. | Sensors fault diagnosis and fault tolerant control for grid connected PV system | |
JP2015146712A (en) | Controller of power converter for system interconnection, and power converter for system interconnection | |
JP6494252B2 (en) | Power conditioner, power system, and control method for power conditioner | |
JP6316152B2 (en) | Inverter | |
Gaillard et al. | A fault tolerant converter topology for wind energy conversion system with doubly fed induction generator | |
WO2014047560A1 (en) | Serially connected micro-inverter system having concertina output voltage control | |
JP2008228494A (en) | Inverter for coordinating system | |
Wang | Improved control strategy of grid-forming inverters for fault ride-through in a microgrid system | |
JP6141227B2 (en) | Inverter | |
WO2019073761A1 (en) | Power conversion device | |
KR20080034527A (en) | 1 or 3 phase power conditioning system for photovoltaic generation | |
JP2019047701A (en) | Power conversion device and control method thereof | |
Seo et al. | DC islanding detection algorithm using injection current perturbation technique for photovoltaic converters in DC distribution | |
JP2019054641A (en) | Power conversion equipment | |
JP6415260B2 (en) | Power conditioner, its control device and power system | |
JP2023039641A (en) | Power conversion device | |
US20220334151A1 (en) | Open-phase detection circuit and power conversion apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140812 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5760930 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |