JP2013085008A - Arithmetic circuit having resistance adjustment function - Google Patents

Arithmetic circuit having resistance adjustment function Download PDF

Info

Publication number
JP2013085008A
JP2013085008A JP2010041613A JP2010041613A JP2013085008A JP 2013085008 A JP2013085008 A JP 2013085008A JP 2010041613 A JP2010041613 A JP 2010041613A JP 2010041613 A JP2010041613 A JP 2010041613A JP 2013085008 A JP2013085008 A JP 2013085008A
Authority
JP
Japan
Prior art keywords
resistance
gate
resistor
capacitance
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010041613A
Other languages
Japanese (ja)
Inventor
Hideaki Ichikawa
英章 市川
Akira Tanaka
章 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010041613A priority Critical patent/JP2013085008A/en
Priority to PCT/JP2010/006874 priority patent/WO2011104800A1/en
Publication of JP2013085008A publication Critical patent/JP2013085008A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45534Indexing scheme relating to differential amplifiers the FBC comprising multiple switches and being coupled between the LC and the IC

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arithmetic circuit having a resistance adjustment function with a MOS switch capable of reducing an influence of a parasitic capacitance on a MOS switch with an extremely simple method with a smallest area.SOLUTION: Resistances 31-33 and 61, several times as large as the resistances 11-13 to be adjusted, are provided to the gate and the back gate of MOS switches 21-23. 0 is generated at a frequency almost the same pole where a parasitic capacitance is generated, thereby the influence of the parasitic capacitance can be prevented. The resistance does not require characteristics such as absolute variation, temperature characteristic, relative variation and noises. A resistance, which has the highest sheet resistance in the used processes, may be formed in a small width resulted in little area increase. Since the resistance can be reduced in size easier than the capacitance, this art is applicable to a future miniaturization process.

Description

この発明は、MOSスイッチによる抵抗の調整機能を有する演算回路に関する。   The present invention relates to an arithmetic circuit having a resistance adjustment function using a MOS switch.

従来より、入力抵抗、あるいは帰還抵抗の調整により、オペアンプのゲインを切り替える方法は、信号処理を行う多種多様な技術分野で行われてきた。特許文献1に示すように、オペアンプの帰還抵抗を複数の抵抗を直列に並べて構成し、その抵抗値に傾斜をつけ、それぞれの抵抗と並列にスイッチを設け抵抗値を調整する、という手段はその代表的なものの一つである。   Conventionally, a method of switching the gain of an operational amplifier by adjusting an input resistance or a feedback resistance has been performed in various technical fields that perform signal processing. As shown in Patent Document 1, a means of configuring a feedback resistor of an operational amplifier by arranging a plurality of resistors in series, inclining the resistance value, and providing a switch in parallel with each resistor to adjust the resistance value is One of the typical ones.

従来、スイッチはディスクリートの部品により、機械的に開閉されていたが、集積回路の発展により、スイッチにはMOSを用いるようになった。また、近年の集積技術の発展により、メモリを内蔵できるプロセスが開発され、メモリをデジタル回路で制御し、抵抗値を調整することも可能となった。このことにより、MOSスイッチによる抵抗の調整は今後、より一層多くの技術分野で用いられていくと考えられる。   Conventionally, the switch is mechanically opened and closed by discrete components, but with the development of integrated circuits, MOS has been used for the switch. Also, with the recent development of integrated technology, a process capable of incorporating a memory has been developed, and it has become possible to control the memory with a digital circuit and adjust the resistance value. Therefore, it is considered that the resistance adjustment by the MOS switch will be used in more technical fields in the future.

特開昭58−29209号公報JP 58-29209 A

しかしながら、スイッチをMOSで構成すると、MOSの寄生容量により極が発生し、スイッチのない時に比べて高い周波数帯域で位相が変化し、位相余裕がなくなり発振しやすくなる。従来、この対策として、オペアンプ内部に位相補償の容量を追加、あるいは新たに設けることで、低い周波数に極を作り、寄生容量の影響を見えなくしていた。この様子を図9に示す。   However, if the switch is composed of a MOS, a pole is generated due to the parasitic capacitance of the MOS, the phase changes in a higher frequency band than when there is no switch, and there is no phase margin and oscillation tends to occur. Conventionally, as a countermeasure, a phase compensation capacitor is added or newly provided inside the operational amplifier to create a pole at a low frequency so that the influence of the parasitic capacitance is invisible. This is shown in FIG.

ただし、この方法では、オペアンプの周波数特性が劣化してしまい、動作速度が落ちる、という課題がある。また、位相補償の容量で回路の面積が増大してしまうという課題もある。これは、微細プロセスになるほど大きな問題となりうる。容量の微細化は困難であるためである。   However, this method has a problem that the frequency characteristic of the operational amplifier deteriorates and the operation speed decreases. Another problem is that the circuit area increases due to the phase compensation capacitance. This can become a serious problem as the process becomes finer. This is because it is difficult to miniaturize the capacity.

そこで、本発明は、上記従来の問題点を解決するもので、面積の増加を最小限に留め、かつ、非常に簡易な方法でMOSスイッチの寄生容量の影響を抑える演算回路を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, and provides an arithmetic circuit that minimizes the increase in area and suppresses the influence of parasitic capacitance of a MOS switch by a very simple method. Objective.

この発明の一つの局面に従うと、演算回路は、オペアンプと、ゲインを決めるための少なくとも一つの第一の抵抗を備え、その抵抗値を調整するための少なくとも一つのMOSスイッチを有し、前記MOSスイッチのゲートには第二の抵抗を、バックゲートには第三の抵抗を備えたことを特徴とする。ただし、第二の抵抗と第三の抵抗は必ずしも両方備える必要はなく、どちらか片方でもよい。なお、第二、第三の抵抗は第一の抵抗より大きければ大きいほど効果が出やすい。   According to one aspect of the present invention, the arithmetic circuit includes an operational amplifier and at least one first resistor for determining a gain, and includes at least one MOS switch for adjusting the resistance value. The switch has a second resistor at the gate and a third resistor at the back gate. However, the second resistor and the third resistor are not necessarily provided, and either one may be provided. The larger the second and third resistances are, the more effective the effect is.

このような構成により、MOSスイッチの寄生容量が見えにくくなり、その影響を抑える効果を奏する。   Such a configuration makes it difficult to see the parasitic capacitance of the MOS switch, and has an effect of suppressing the influence.

なお「オペアンプと、ゲインを決めるための少なくとも一つの第一の抵抗を備えた演算回路」について補足するなら、オペアンプと抵抗を使っていれば、反転増幅器でも、I−V変換器でも、差動増幅器でもよい。また、入力抵抗やフィードバック抵抗を分割して複数個の抵抗で構成していた場合も含まれる。   In addition, if it supplements about "the operational circuit having at least one first resistor for determining the operational amplifier and the gain", if the operational amplifier and the resistor are used, the inverting amplifier, the IV converter, the differential An amplifier may be used. Moreover, the case where the input resistance and the feedback resistance are divided and configured by a plurality of resistors is also included.

なお「その抵抗値を調整するための少なくとも一つのMOSスイッチを有し」について補足すると、抵抗は複数あってもその全てにスイッチをつける必要はなく、最低一つでもあればよい。   In addition, to supplement “having at least one MOS switch for adjusting the resistance value”, even if there are a plurality of resistors, it is not necessary to attach switches to all of them, and at least one resistor may be used.

本発明において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。   The effects obtained by typical ones of the inventions disclosed in the present invention will be briefly described as follows.

ゲートに十分大きな抵抗を備えることにより、ゲートソース間とゲートドレイン間、バックゲートゲート間の寄生容量により生じる極と、ほぼ同じ周波数にゼロ点を発生させ、寄生容量の影響を抑える効果がある。また、バックゲートに十分大きな抵抗を備えることにより、バックゲートソース間とバックゲートドレイン間、バックゲートゲート間の寄生容量により生じる極と、ほぼ同じ周波数にゼロ点を発生させ、寄生容量の影響を抑える効果がある。以上の効果により、MOSスイッチのあるなしでオペアンプの周波数特性に変化が出ない。よって、位相補償の容量を追加する必要もなく、容量による面積の増加がない。   By providing the gate with a sufficiently large resistance, there is an effect of suppressing the influence of the parasitic capacitance by generating a zero point at substantially the same frequency as the pole generated by the parasitic capacitance between the gate source and the gate drain and between the back gate gate. In addition, by providing a sufficiently large resistance to the back gate, a zero point is generated at almost the same frequency as the pole caused by the parasitic capacitance between the back gate source, back gate drain, and back gate gate, and the effect of parasitic capacitance is reduced. There is an effect to suppress. Due to the above effects, there is no change in the frequency characteristics of the operational amplifier without the MOS switch. Therefore, there is no need to add a phase compensation capacitor, and there is no increase in area due to the capacitor.

また、ゲート、バックゲートに備える抵抗は大きい方が望ましいが、この抵抗には絶対値のバラつきや温度特性、相対精度、低ノイズなどの特性は要求されない。よって、一般的にそれらの特性の悪い、高シート抵抗のものを細い幅で作ることができるため、面積の増加量は小さくできる。また、容量と異なり抵抗は微細化が容易であるため、微細プロセスにおいても面積の増加率はほとんど変わらないため、今後のトレンドとマッチしている。   In addition, it is desirable that the resistance of the gate and the back gate be large, but the resistance is not required to have characteristics such as variation in absolute value, temperature characteristics, relative accuracy, and low noise. Therefore, a sheet having a high sheet resistance, which generally has poor characteristics, can be made with a narrow width, so that the increase in area can be reduced. In addition, since the resistance can be easily miniaturized unlike the capacitance, the increase rate of the area hardly changes even in the fine process, which matches the future trend.

実施形態1による演算回路の例を示す図FIG. 5 is a diagram illustrating an example of an arithmetic circuit according to the first embodiment. 本特許を適用しない演算回路の等価回路を示す図The figure which shows the equivalent circuit of the arithmetic circuit which does not apply this patent 本特許を適用しない演算回路の等価回路を示す図The figure which shows the equivalent circuit of the arithmetic circuit which does not apply this patent 本特許を適用しない演算回路の等価回路を示す図The figure which shows the equivalent circuit of the arithmetic circuit which does not apply this patent 図1に示した演算回路の等価回路を示す図The figure which shows the equivalent circuit of the arithmetic circuit shown in FIG. 図1に示した演算回路の変形例を示す図The figure which shows the modification of the arithmetic circuit shown in FIG. 実施形態2による演算回路の例を示す図FIG. 9 is a diagram illustrating an example of an arithmetic circuit according to the second embodiment. 図5に示した演算回路の等価回路を示す図The figure which shows the equivalent circuit of the arithmetic circuit shown in FIG. 実施形態3による演算回路の例を示す図FIG. 10 is a diagram illustrating an example of an arithmetic circuit according to the third embodiment. 図7に示した演算回路の等価回路を示す図The figure which shows the equivalent circuit of the arithmetic circuit shown in FIG. 従来技術の課題を示す図Diagram showing the problems of the prior art

以下、この発明の実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施形態1)
図1は、実施形態1による演算回路の例を示す図である。図の演算回路は、オペアンプ1を用いた反転アンプである。1の非反転入力端子N1には、リファレンス電圧を接続し、反転入力端子N2と入力端子N3の間には入力抵抗14、N2と出力端子N4の間には、帰還抵抗11、12、13を直列に接続する。21、22、23の3つのPMOSスイッチを抵抗11〜13それぞれに並列に接続する。それぞれのスイッチのゲートには、ゲート抵抗31、32、33を接続する。31〜33のゲートと逆側の端子は、ロー電圧、ハイ電圧(例えば、ロー電圧はGND、ハイ電圧はVCC)に接続し、スイッチをオンオフさせ、帰還抵抗の値を調整する。ロー電圧ハイ電圧の切り替えは、例えば内部のメモリを制御することにより行う。バックゲートは適当に高い電圧に接続する。例えば、抵抗12の値を抵抗11の倍、抵抗13の値を抵抗12の倍、というようにすれば、帰還抵抗の合計は0から抵抗11の7倍まで等間隔で8パターンに調整することができる。
(Embodiment 1)
FIG. 1 is a diagram illustrating an example of an arithmetic circuit according to the first embodiment. The arithmetic circuit in the figure is an inverting amplifier using the operational amplifier 1. The reference voltage is connected to the non-inverting input terminal N1 of 1, and the input resistors 14 are connected between the inverting input terminal N2 and the input terminal N3, and the feedback resistors 11, 12, 13 are connected between the N2 and the output terminal N4. Connect in series. Three PMOS switches 21, 22, and 23 are connected in parallel to the resistors 11 to 13, respectively. Gate resistors 31, 32, and 33 are connected to the gates of the respective switches. Terminals on the opposite side of the gates 31 to 33 are connected to a low voltage and a high voltage (for example, the low voltage is GND and the high voltage is VCC), the switch is turned on and off, and the value of the feedback resistor is adjusted. Switching between the low voltage and the high voltage is performed, for example, by controlling an internal memory. The back gate is connected to a suitably high voltage. For example, if the value of the resistor 12 is double that of the resistor 11 and the value of the resistor 13 is double that of the resistor 12, the total feedback resistance is adjusted to 8 patterns at equal intervals from 0 to 7 times that of the resistor 11. Can do.

[従来構成の等価回路]
まず、従来の構成である、ゲートに抵抗がない演算回路の等価回路を考える。スイッチのゲートは直接ロー、あるいはハイ電圧に繋がり、スイッチをオンオフさせる。今、仮に、スイッチ21、23はオフ、22はオンしている状態であるとする。この時、図1の点線矢印で示すように、抵抗11、スイッチ22、抵抗13を経由してフィードバックがかかる。
[Equivalent circuit of conventional configuration]
First, consider an equivalent circuit of an arithmetic circuit having a conventional configuration and no resistance at the gate. The switch gate is directly connected to a low or high voltage to turn the switch on and off. Assume that the switches 21 and 23 are off and the switch 22 is on. At this time, feedback is applied via the resistor 11, the switch 22, and the resistor 13 as indicated by a dotted arrow in FIG.

図2aに、全ての構成要素、寄生容量を考慮した等価回路を示す。出力端子N4から見ると、まず、オペアンプ1の出力インピーダンス15があり、次に抵抗11が見える。その先がスイッチ22のソース端子N5となり、バックゲート端子N7との間に容量41、ゲート端子N8との間に容量42が付く。ソース端子N5とドレイン端子N6の間には、容量43とスイッチ22のオン抵抗16が並列に見える。また、ドレイン端子N6とバックゲート端子N7との間に容量44、ドレイン端子N6とゲート端子N8との間に容量45、また、ゲート端子N8とバックゲート端子N7の間には容量46が付く。ドレイン端子N6の先は、抵抗13を介して反転入力端子N2に繋がり、N2と入力端子N3の間には、入力抵抗14がある。   FIG. 2a shows an equivalent circuit considering all the components and parasitic capacitance. When viewed from the output terminal N4, first, there is the output impedance 15 of the operational amplifier 1, and then the resistor 11 is visible. The tip is the source terminal N5 of the switch 22, and the capacitor 41 is connected to the back gate terminal N7, and the capacitor 42 is connected to the gate terminal N8. Between the source terminal N5 and the drain terminal N6, the capacitor 43 and the on-resistance 16 of the switch 22 appear in parallel. Further, a capacitor 44 is provided between the drain terminal N6 and the back gate terminal N7, a capacitor 45 is provided between the drain terminal N6 and the gate terminal N8, and a capacitor 46 is provided between the gate terminal N8 and the back gate terminal N7. The tip of the drain terminal N6 is connected to the inverting input terminal N2 through the resistor 13, and an input resistor 14 is provided between the N2 and the input terminal N3.

本演算回路のような構成では、一般的にスイッチのオン抵抗は、調整対象の抵抗より十分小さい値にする。オン抵抗が大きいと、抵抗切り替え時の線形性が失われるためである。つまり、スイッチ22のオン抵抗16は抵抗11に比べ十分小さいと仮定して差し支えない。その仮定の元では、ソース端子N5とドレイン端子N6が共通となるため、N5とN6の間の容量43は無視でき、ソース端子とドレイン端子に分けて考えていた寄生容量は、まとめることができる。また、抵抗13より先には容量が存在しないため、周波数特性に影響を与えない。これらを考慮すると、等価回路は図2bのように簡易化できる。   In a configuration such as this arithmetic circuit, the on-resistance of the switch is generally set to a value sufficiently smaller than the resistance to be adjusted. This is because if the on-resistance is large, the linearity at the time of resistance switching is lost. In other words, it can be assumed that the on-resistance 16 of the switch 22 is sufficiently smaller than the resistance 11. Under the assumption, since the source terminal N5 and the drain terminal N6 are common, the capacitance 43 between N5 and N6 can be ignored, and the parasitic capacitance considered separately for the source terminal and the drain terminal can be collected. . In addition, since there is no capacitance before the resistor 13, the frequency characteristics are not affected. Considering these, the equivalent circuit can be simplified as shown in FIG.

出力端子N4から見て、まず、出力インピーダンス15と抵抗11が見えるのは図2aと同様である。その先のソースドレイン端子N9が、ソース端子N5とドレイン端子N6が共通となった端子である。N9とゲート端子N8との間に容量47が、バックゲート端子N7との間に容量48が付く。47の容量値は、ソースゲート間容量42とドレインゲート間容量45を、48の容量値は、ソースバックゲート間容量41とドレインバックゲート間容量44を、それぞれ足し合わせたものである。そして、図2aと同様、ゲート端子N8とバックゲート端子N7の間に容量46が付く。   As seen from the output terminal N4, the output impedance 15 and the resistor 11 are first visible as in FIG. 2a. The source / drain terminal N9 ahead is a terminal where the source terminal N5 and the drain terminal N6 are common. A capacitor 47 is provided between N9 and the gate terminal N8, and a capacitor 48 is provided between the back gate terminal N7. The capacitance value 47 is the sum of the source-gate capacitance 42 and the drain-gate capacitance 45, and the capacitance value 48 is the sum of the source back-gate capacitance 41 and the drain back-gate capacitance 44. As in FIG. 2a, a capacitor 46 is provided between the gate terminal N8 and the back gate terminal N7.

次に、図2bの回路の、出力端子から反転入力端子までの伝達関数を求める。出力インピーダンス15の値をRout、抵抗11の値をR、容量47の値をCg、容量48の値をCb、容量46の値をCgbとする。   Next, the transfer function from the output terminal to the inverting input terminal of the circuit of FIG. The value of the output impedance 15 is Rout, the value of the resistor 11 is R, the value of the capacitor 47 is Cg, the value of the capacitor 48 is Cb, and the value of the capacitor 46 is Cgb.

本発明の効果を明確にするために、ゲートに付く容量47が主因であるローパスフィルタの伝達関数G11(s)と、バックゲートに付く容量48が主因であるローパスフィルタの伝達関数G12(s)の2つに分けて考える。但し、容量46がどちらの経路で考える際にも影響を及ぼすため、単純に分割は出来ない。そこで、図2cで表すように、G11(s)を求める時はバックゲート端子N7を、G12(s)を求める時はゲート端子N8を、それぞれ開放する。こうすれば、単純なRCのローパスフィルタとして考えることができる。   In order to clarify the effect of the present invention, the transfer function G11 (s) of the low-pass filter mainly due to the capacitor 47 attached to the gate and the transfer function G12 (s) of the low-pass filter mainly caused by the capacitor 48 attached to the back gate. Think of it divided into two. However, since the capacity 46 influences which path is considered, it cannot be simply divided. Therefore, as shown in FIG. 2c, the back gate terminal N7 is opened when G11 (s) is obtained, and the gate terminal N8 is opened when G12 (s) is obtained. In this way, it can be considered as a simple RC low-pass filter.

前者の場合、容量47と並列に、容量46と48の直列の容量が入ることになるため、合成容量51の値Cg’は、Cg'=Cg+(Cb*Cgb)/(Cb+Cgb)となる。抵抗はRout+Rであるため、G11(s)= 1/(1+sCg' (Rout+R))となる。   In the former case, since the capacitances 46 and 48 are connected in parallel with the capacitance 47, the value Cg ′ of the combined capacitance 51 is Cg ′ = Cg + (Cb * Cgb) / (Cb + Cgb). Become. Since the resistance is Rout + R, G11 (s) = 1 / (1 + sCg ′ (Rout + R)).

後者の場合、容量48と並列に、容量46と47の直列の容量が入ることになるため、合成容量52の値Cb’は、Cb'=Cb+(Cg*Cgb)/(Cg+Cgb)となり、G12(s)= 1/(1+sCb' (Rout+R))となる。   In the latter case, since the capacitances 46 and 47 are connected in series with the capacitance 48, the value Cb ′ of the combined capacitance 52 is Cb ′ = Cb + (Cg * Cgb) / (Cg + Cgb). , G12 (s) = 1 / (1 + sCb ′ (Rout + R)).

なお、CgbがCgやCbに対して十分小さい場合は、Cg'≒Cg、Cb'≒Cbである。   When Cgb is sufficiently smaller than Cg and Cb, Cg′≈Cg and Cb′≈Cb.

[実施形態1の等価回路]
図3は本発明で提案する、ゲートに抵抗31〜33がある場合の等価回路である。図2bのMOSスイッチのゲート端子N8とGNDの間に抵抗32を挿入した構成で、その他の構成は図2bと同じである。抵抗32の値をRgとする。
[Equivalent Circuit of Embodiment 1]
FIG. 3 is an equivalent circuit proposed in the present invention in the case where there are resistors 31 to 33 at the gate. A configuration in which a resistor 32 is inserted between the gate terminal N8 and GND of the MOS switch of FIG. 2b is the same as that of FIG. 2b. The value of the resistor 32 is Rg.

こちらも、Cg’とCb’による伝達関数を分けて考える。Cg’によりできるフィルタの伝達関数G21(s)はG21(s)=(Rg+1/sCg')/(R+Rout+Rg+1/sCg')=(1+sCg'Rg)/(1+sCg'(R+Rout+Rg))この時、R+Rout≪Rgならば、G21(s)≒1となり、Rgが十分大きい時は、Cg’の影響をキャンセルできることが分かる。これは、伝達関数の式から明らかなように、周波数fp=2*π*Cg'(R+Rout+Rg)にできた極を、周波数fz=2*π*Cg'*Rgにできるゼロが打ち消すためである。   Here again, the transfer functions of Cg ′ and Cb ′ are considered separately. The transfer function G21 (s) of the filter formed by Cg ′ is G21 (s) = (Rg + 1 / sCg ′) / (R + Rout + Rg + 1 / sCg ′) = (1 + sCg′Rg) / (1 + sCg ′ (R + Rout + Rg)) At this time, if R + Rout << Rg, G21 (s) ≈1, and it can be seen that the effect of Cg ′ can be canceled when Rg is sufficiently large. As is clear from the equation of the transfer function, there is a zero that makes the pole at frequency fp = 2 * π * Cg '(R + Rout + Rg) to frequency fz = 2 * π * Cg' * Rg. This is to counteract.

一方、Cb’によりできるフィルタの伝達関数G22(s)は、抵抗32がないときと同様に、G22(s)=G12(s)= 1/(1+sCb' (Rout+R))となり、バックゲートの寄生容量の影響は残る。このCb’による極の影響を消すためには、図4に示すように、MOSスイッチのソース端子とバックゲート端子をショートするのが望ましい。そのようにすれば、ソースバックゲート間容量、ドレインバックゲート間容量は無視できる。さらに、ゲートバックゲート間容量はゲートソース間容量と同じ場所に付くことになるため、ゲート抵抗31〜33により、キャンセルでき、結果、全てのバックゲートに付く寄生容量は無視できる。しかし、その方法では、全てのMOSのバックゲートを分ける必要があり、集積化する際に面積が大きくなる問題がある。その問題を解決する形態が実施形態2である。   On the other hand, the transfer function G22 (s) of the filter formed by Cb ′ is G22 (s) = G12 (s) = 1 / (1 + sCb ′ (Rout + R)), similarly to the case without the resistor 32. The influence of the parasitic capacitance of the back gate remains. In order to eliminate the influence of the pole due to Cb ', it is desirable to short-circuit the source terminal and the back gate terminal of the MOS switch as shown in FIG. By doing so, the source-back gate capacitance and the drain back-gate capacitance can be ignored. Furthermore, since the gate-back gate capacitance is attached to the same location as the gate-source capacitance, it can be canceled by the gate resistors 31 to 33, and as a result, the parasitic capacitance attached to all the back gates can be ignored. However, in this method, it is necessary to divide all the MOS back gates, and there is a problem that the area becomes large when integrating. Embodiment 2 solves the problem.

(実施形態2)
図5は、実施形態2による演算回路の例を示す図である。実施形態1の構成に、バックゲート抵抗61を加えたもので、その他の構成は実施形態1と同様である。図に示すように複数のMOSのバックゲートは全てショートした後、一つの抵抗で固定電位に繋ぐのが望ましい。こうすれば、バックゲートを全て共通で作成できるため、面積を小さく作ることができる。但し、全てのMOSスイッチのリーク電流が一つの抵抗に流れることになるため、高温時等、リーク電流が増えたときにバックゲートの電位がずれる可能性が高いことに注意しなければならない。なお、実施形態1のゲート抵抗のように、それぞれのMOSのバックゲート毎に抵抗を設けてもよい。ただし、全てのMOSのバックゲートを分けて作成する必要があるため、面積は大きくなる。
(Embodiment 2)
FIG. 5 is a diagram illustrating an example of an arithmetic circuit according to the second embodiment. The back gate resistor 61 is added to the configuration of the first embodiment, and other configurations are the same as those of the first embodiment. As shown in the figure, it is desirable that the back gates of a plurality of MOSs are all short-circuited and then connected to a fixed potential with a single resistor. By doing so, all the back gates can be created in common, so that the area can be made small. However, it should be noted that the leakage current of all the MOS switches flows through one resistor, so that the potential of the back gate is likely to shift when the leakage current increases, such as at high temperatures. Note that a resistor may be provided for each MOS back gate, like the gate resistor of the first embodiment. However, since it is necessary to create all MOS back gates separately, the area becomes large.

[実施形態2の等価回路]
これまでと同様、スイッチ22のみオンした時の、オペアンプの出力から見た図5の等価回路を図6に示す。図3の構成に加えて、バックゲートに抵抗61を加えたもので、その他の構成は図3と同様である。抵抗61の値をRbとする。実施形態1の時と同様に、Cg’とCb’による伝達関数を分けて考える。Cg’によりできるフィルタの伝達関数G31(s)は、実施形態1と同様、
G31(s)= G21(s)= (1+sCg'Rg)/(1+sCg'(R+ROUT+Rg)) ≒1(Rg>>R+ROUTのとき)
である。一方、Cb’によりできるフィルタの伝達関数は、
G32(s)= (1+sCb'Rb)/(1+sCb'(R+ROUT+Rb))≒1(Rb>>R+ROUTのとき)となる。
以上のことから、Rg≫R+ROUTかつ、Rb≫R+ROUTであれば、MOSスイッチの寄生容量の大部分の影響をキャンセルすることができる。
[Equivalent Circuit of Embodiment 2]
As before, FIG. 6 shows an equivalent circuit of FIG. 5 as seen from the output of the operational amplifier when only the switch 22 is turned on. In addition to the configuration of FIG. 3, a resistor 61 is added to the back gate, and other configurations are the same as those of FIG. The value of the resistor 61 is Rb. As in the case of the first embodiment, transfer functions based on Cg ′ and Cb ′ are considered separately. The transfer function G31 (s) of the filter formed by Cg ′ is the same as in the first embodiment.
G31 (s) = G21 (s) = (1 + sCg'Rg) / (1 + sCg '(R + ROUT + Rg)) ≒ 1 (when Rg >> R + ROUT)
It is. On the other hand, the transfer function of the filter formed by Cb ′ is
G32 (s) = (1 + sCb′Rb) / (1 + sCb ′ (R + ROUT + Rb)) ≈1 (when Rb >> R + ROUT).
From the above, if Rg >> R + ROUT and Rb >> R + ROUT, the influence of most of the parasitic capacitance of the MOS switch can be canceled.

(実施形態3)
例えば、バックゲートソース間、バックゲートドレイン間の電位差が小さいとき等、これらの接合容量が、ゲート端子の寄生容量より大きくなる時がある。このように、バックゲートの接合容量が支配的な場合は、バックゲートにのみ抵抗を入れても良い。つまり、図5から、ゲート抵抗31〜33をなくした構成である。その構成を図7に示す。
(Embodiment 3)
For example, when the potential difference between the back gate source and the back gate drain is small, the junction capacitance sometimes becomes larger than the parasitic capacitance of the gate terminal. As described above, when the junction capacitance of the back gate is dominant, a resistor may be added only to the back gate. That is, the gate resistances 31 to 33 are eliminated from FIG. The configuration is shown in FIG.

[実施形態3の等価回路]
これまでと同様、スイッチ22のみオンした時の、オペアンプの出力から見た図7の等価回路を図8に示す。こちらも、図6からゲート抵抗32をなくした構成である。これまでと同様に、Cg’とCb’による影響を分けて考える。
[Equivalent Circuit of Embodiment 3]
As before, FIG. 8 shows an equivalent circuit of FIG. 7 as seen from the output of the operational amplifier when only the switch 22 is turned on. This also has a configuration in which the gate resistor 32 is eliminated from FIG. As before, the influence of Cg ′ and Cb ′ will be considered separately.

Cg’によるフィルタの伝達関数G41(s)は、G41(s)= G11(s)= 1/(1+sCg' (Rout+R))
Cb’によるフィルタの伝達関数G42(s)は
G42(s)= G32(s)= (1+sCb'Rb)/(1+sCb'(R+Rout+Rb))≒1(Rb>>R+Routのとき)
となり、RbがR+Routより十分大きければ、Cb’の影響をキャンセルすることができる。
The transfer function G41 (s) of the filter by Cg ′ is G41 (s) = G11 (s) = 1 / (1 + sCg ′ (Rout + R))
The transfer function G42 (s) of the filter by Cb ′ is
G42 (s) = G32 (s) = (1 + sCb'Rb) / (1 + sCb '(R + Rout + Rb)) ≒ 1 (when Rb >> R + Rout)
If Rb is sufficiently larger than R + Rout, the influence of Cb ′ can be canceled.

(実施形態の変形例)
全ての実施形態において、反転アンプを例に説明しているが、抵抗とオペアンプを用いていれば、反転アンプにこだわらない。非反転アンプやI−V変換アンプ、加算アンプ、差動アンプ等でも構わない。また、調整する抵抗はフィードバック抵抗でなく、入力抵抗等他の抵抗でも良い。また、抵抗は直列に並んでいなくても、並列や、直列と並列の組み合わせでもよい。また、抵抗とMOSスイッチは並列ではなく、直列でも良い。また、用いる全てのMOSスイッチのゲート、あるいはバックゲートに抵抗を備える必要はない。また、スイッチはPMOSでなく、NMOSやアナログスイッチでもよい。また、スイッチの数は2個以下や4個以上でもよい。
(Modification of the embodiment)
In all the embodiments, the inverting amplifier is described as an example. However, if a resistor and an operational amplifier are used, the inverting amplifier is not particular. A non-inverting amplifier, an IV conversion amplifier, a summing amplifier, a differential amplifier, or the like may be used. Further, the resistor to be adjusted is not a feedback resistor but may be another resistor such as an input resistor. The resistors may not be arranged in series, but may be in parallel or a combination of series and parallel. Further, the resistor and the MOS switch may be in series instead of in parallel. Further, it is not necessary to provide a resistor at the gate or back gate of all the MOS switches used. Further, the switch is not a PMOS, but may be an NMOS or an analog switch. Also, the number of switches may be two or less or four or more.

以上のように、MOSのゲートやバックゲートに高抵抗を挿入して、寄生容量の影響を抑える本回路構成は、非常に簡易であり、かつ、面積の増加も小さい。また、抵抗を入れることによる懸念も、本回路においてはほとんどない。よって、集積回路を用いる多種多様な分野において好適な回路構成である。   As described above, the present circuit configuration in which a high resistance is inserted in the MOS gate and the back gate to suppress the influence of the parasitic capacitance is very simple and the increase in area is small. In addition, there is almost no concern in this circuit due to the insertion of resistors. Therefore, the circuit configuration is suitable in various fields using an integrated circuit.

1 オペアンプ
11 帰還抵抗1
12 帰還抵抗2
13 帰還抵抗3
14 入力抵抗
15 オペアンプの出力インピーダンス
16 PMOSスイッチ22のオン抵抗
21 PMOSスイッチ1
22 PMOSスイッチ2
23 PMOSスイッチ3
31 ゲートに設ける抵抗1
32 ゲートに設ける抵抗2
33 ゲートに設ける抵抗3
34 バックゲートに設ける抵抗
41 ソースバックゲート間接合容量
42 ソースゲート間寄生容量
43 ソースドレイン間寄生容量
44 ドレインバックゲート間接合容量
45 ドレインゲート間寄生容量
46 ゲートバックゲート間寄生容量
47 41と43の並列容量
48 42と44の並列容量
51 46と48の直列容量と47の並列容量
52 46と47の直列容量と48の並列容量
N1 オペアンプ1の非反転入力端子
N2 オペアンプ1の反転入力端子
N3 入力端子
N4 出力端子
N5 PMOSスイッチ22のソース端子
N6 PMOSスイッチ22のドレイン端子
N7 PMOSスイッチ22のバックゲート端子
N8 PMOSスイッチ22のゲート端子
N9 PMOSスイッチ22のソースドレインショート時ソースドレイン端子
1 operational amplifier 11 feedback resistor 1
12 Feedback resistor 2
13 Feedback resistor 3
14 Input resistance 15 Output impedance of operational amplifier 16 On-resistance of PMOS switch 22 21 PMOS switch 1
22 PMOS switch 2
23 PMOS switch 3
31 Resistance 1 at the gate
32 Resistance 2 at the gate
33 Resistance 3 at the gate
34 Resistance provided at the back gate 41 Junction capacitance between source back gates 42 Parasitic capacitance between source gates 43 Parasitic capacitance between source drains 44 Junction capacitance between drain back gates 45 Parasitic capacitance between drain gates 46 Parasitic capacitance between gate back gates 47 Parallel capacitance 48 Parallel capacitance of 42 and 44 51 Series capacitance of 46 and 48 and 47 Parallel capacitance 52 Series capacitance of 46 and 47 and 48 parallel capacitance N1 Non-inverting input terminal of operational amplifier 1 N2 Inverting input terminal of operational amplifier 1 N3 input Terminal N4 Output terminal N5 Source terminal of PMOS switch 22 N6 Drain terminal of PMOS switch 22 N7 Back gate terminal of PMOS switch 22 N8 Gate terminal of PMOS switch 22 N9 Source drain terminal of PMOS switch 22 when source drain is shorted

Claims (3)

オペアンプと、ゲインを決めるための少なくとも一つの第一の抵抗を備えた演算回路において、その抵抗値を調整するための少なくとも一つのMOSスイッチを有し、前記MOSスイッチのゲートには第二の抵抗を備えたことを特徴とする演算回路。 An operational circuit having an operational amplifier and at least one first resistor for determining gain has at least one MOS switch for adjusting the resistance value, and the gate of the MOS switch has a second resistor. An arithmetic circuit comprising: 請求項1のMOSスイッチにおいてバックゲートには第三の抵抗を備えたことを特徴とする演算回路。 2. The arithmetic circuit according to claim 1, wherein the back gate includes a third resistor. オペアンプと、ゲインを決めるための少なくとも一つの第一の抵抗を備えた演算回路において、その抵抗値を調整するための少なくとも一つのMOSスイッチを有し、前記MOSスイッチのバックゲートには第二の抵抗を備えたことを特徴とする演算回路。 An operational circuit having an operational amplifier and at least one first resistor for determining a gain has at least one MOS switch for adjusting the resistance value, and a back gate of the MOS switch has a second gate An arithmetic circuit comprising a resistor.
JP2010041613A 2010-02-26 2010-02-26 Arithmetic circuit having resistance adjustment function Pending JP2013085008A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010041613A JP2013085008A (en) 2010-02-26 2010-02-26 Arithmetic circuit having resistance adjustment function
PCT/JP2010/006874 WO2011104800A1 (en) 2010-02-26 2010-11-25 Calculation circuit having gain adjusting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041613A JP2013085008A (en) 2010-02-26 2010-02-26 Arithmetic circuit having resistance adjustment function

Publications (1)

Publication Number Publication Date
JP2013085008A true JP2013085008A (en) 2013-05-09

Family

ID=44506248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041613A Pending JP2013085008A (en) 2010-02-26 2010-02-26 Arithmetic circuit having resistance adjustment function

Country Status (2)

Country Link
JP (1) JP2013085008A (en)
WO (1) WO2011104800A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970644B2 (en) * 2018-06-11 2021-11-24 日立Astemo株式会社 Semiconductor devices and sensor systems
CN114222400B (en) * 2021-12-15 2023-07-25 苏州欧普照明有限公司 LED driving power supply, driving method and lamp

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10047647A1 (en) * 1999-12-03 2001-06-07 Fairchild Semiconductor High frequency switching circuit, has impedance element which is connected between enable signal node and gate of MOS transistor
JP2001274645A (en) * 2000-03-24 2001-10-05 Sanyo Electric Co Ltd Operational amplifier circuit and integrated circuit
JP4640948B2 (en) * 2004-06-17 2011-03-02 ローム株式会社 Amplifier with ALC and electronic device using the same
JP2009253330A (en) * 2008-04-01 2009-10-29 Seiko Epson Corp Variable resistor array, amplifier circuit and electronic equipment

Also Published As

Publication number Publication date
WO2011104800A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US8441382B2 (en) Current steering DAC with switched cascode output current source/sink
US20180284829A1 (en) Voltage regulators with improved power supply rejection using negative impedance
JPS58187015A (en) Switched capacitor circuit
US20070090880A1 (en) Operational amplifier for outputting high voltage output signal
US8193861B2 (en) Differential amplifier
KR100198237B1 (en) Gain control amplifier circuit having differential amplifier
KR101887156B1 (en) Low switching error, small capacitors, auto-zero offset buffer amplifier
SE519691C2 (en) High speed and high gain operational amplifier
JP2007011972A (en) Direct current power supply voltage stabilization circuit
US7443240B2 (en) AM intermediate frequency variable gain amplifier circuit, variable gain amplifier circuit and its semiconductor integrated circuit
TWI810676B (en) Output stage circuit
US7068090B2 (en) Amplifier circuit
US9401694B2 (en) Operational transconductance amplifier, operational transconductance amplifier-capacitor filter and high order reconfigurable analog filter
KR100486989B1 (en) Filter-equipped semiconductor integrated circuit
JP2013085008A (en) Arithmetic circuit having resistance adjustment function
US7642855B2 (en) Compensation of an amplifier comprising at least two gain stages
US20050200411A1 (en) Differential amplifier without common mode feedback
US7358799B2 (en) Switchable high pass configuration and an optical receiver with a switchable high pass configuration
US9847758B2 (en) Low noise amplifier
US9231540B2 (en) High performance class AB operational amplifier
JP2004120564A (en) Operational amplifier
JP2008193347A (en) Current mirror circuit and charge pump circuit
JP3784382B2 (en) Semiconductor integrated circuit
US20230361729A1 (en) Class-ab stabilization
US20230238928A1 (en) Chopper stabilized amplifier